]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - net/sunrpc/cache.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / net / sunrpc / cache.c
... / ...
CommitLineData
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2. See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <linux/string_helpers.h>
24#include <linux/uaccess.h>
25#include <linux/poll.h>
26#include <linux/seq_file.h>
27#include <linux/proc_fs.h>
28#include <linux/net.h>
29#include <linux/workqueue.h>
30#include <linux/mutex.h>
31#include <linux/pagemap.h>
32#include <asm/ioctls.h>
33#include <linux/sunrpc/types.h>
34#include <linux/sunrpc/cache.h>
35#include <linux/sunrpc/stats.h>
36#include <linux/sunrpc/rpc_pipe_fs.h>
37#include "netns.h"
38
39#define RPCDBG_FACILITY RPCDBG_CACHE
40
41static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42static void cache_revisit_request(struct cache_head *item);
43
44static void cache_init(struct cache_head *h, struct cache_detail *detail)
45{
46 time_t now = seconds_since_boot();
47 INIT_HLIST_NODE(&h->cache_list);
48 h->flags = 0;
49 kref_init(&h->ref);
50 h->expiry_time = now + CACHE_NEW_EXPIRY;
51 if (now <= detail->flush_time)
52 /* ensure it isn't already expired */
53 now = detail->flush_time + 1;
54 h->last_refresh = now;
55}
56
57static void cache_fresh_unlocked(struct cache_head *head,
58 struct cache_detail *detail);
59
60struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
61 struct cache_head *key, int hash)
62{
63 struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL;
64 struct hlist_head *head;
65
66 head = &detail->hash_table[hash];
67
68 read_lock(&detail->hash_lock);
69
70 hlist_for_each_entry(tmp, head, cache_list) {
71 if (detail->match(tmp, key)) {
72 if (cache_is_expired(detail, tmp))
73 /* This entry is expired, we will discard it. */
74 break;
75 cache_get(tmp);
76 read_unlock(&detail->hash_lock);
77 return tmp;
78 }
79 }
80 read_unlock(&detail->hash_lock);
81 /* Didn't find anything, insert an empty entry */
82
83 new = detail->alloc();
84 if (!new)
85 return NULL;
86 /* must fully initialise 'new', else
87 * we might get lose if we need to
88 * cache_put it soon.
89 */
90 cache_init(new, detail);
91 detail->init(new, key);
92
93 write_lock(&detail->hash_lock);
94
95 /* check if entry appeared while we slept */
96 hlist_for_each_entry(tmp, head, cache_list) {
97 if (detail->match(tmp, key)) {
98 if (cache_is_expired(detail, tmp)) {
99 hlist_del_init(&tmp->cache_list);
100 detail->entries --;
101 freeme = tmp;
102 break;
103 }
104 cache_get(tmp);
105 write_unlock(&detail->hash_lock);
106 cache_put(new, detail);
107 return tmp;
108 }
109 }
110
111 hlist_add_head(&new->cache_list, head);
112 detail->entries++;
113 cache_get(new);
114 write_unlock(&detail->hash_lock);
115
116 if (freeme) {
117 cache_fresh_unlocked(freeme, detail);
118 cache_put(freeme, detail);
119 }
120 return new;
121}
122EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127static void cache_fresh_locked(struct cache_head *head, time_t expiry,
128 struct cache_detail *detail)
129{
130 time_t now = seconds_since_boot();
131 if (now <= detail->flush_time)
132 /* ensure it isn't immediately treated as expired */
133 now = detail->flush_time + 1;
134 head->expiry_time = expiry;
135 head->last_refresh = now;
136 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
137 set_bit(CACHE_VALID, &head->flags);
138}
139
140static void cache_fresh_unlocked(struct cache_head *head,
141 struct cache_detail *detail)
142{
143 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
144 cache_revisit_request(head);
145 cache_dequeue(detail, head);
146 }
147}
148
149struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
150 struct cache_head *new, struct cache_head *old, int hash)
151{
152 /* The 'old' entry is to be replaced by 'new'.
153 * If 'old' is not VALID, we update it directly,
154 * otherwise we need to replace it
155 */
156 struct cache_head *tmp;
157
158 if (!test_bit(CACHE_VALID, &old->flags)) {
159 write_lock(&detail->hash_lock);
160 if (!test_bit(CACHE_VALID, &old->flags)) {
161 if (test_bit(CACHE_NEGATIVE, &new->flags))
162 set_bit(CACHE_NEGATIVE, &old->flags);
163 else
164 detail->update(old, new);
165 cache_fresh_locked(old, new->expiry_time, detail);
166 write_unlock(&detail->hash_lock);
167 cache_fresh_unlocked(old, detail);
168 return old;
169 }
170 write_unlock(&detail->hash_lock);
171 }
172 /* We need to insert a new entry */
173 tmp = detail->alloc();
174 if (!tmp) {
175 cache_put(old, detail);
176 return NULL;
177 }
178 cache_init(tmp, detail);
179 detail->init(tmp, old);
180
181 write_lock(&detail->hash_lock);
182 if (test_bit(CACHE_NEGATIVE, &new->flags))
183 set_bit(CACHE_NEGATIVE, &tmp->flags);
184 else
185 detail->update(tmp, new);
186 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
187 detail->entries++;
188 cache_get(tmp);
189 cache_fresh_locked(tmp, new->expiry_time, detail);
190 cache_fresh_locked(old, 0, detail);
191 write_unlock(&detail->hash_lock);
192 cache_fresh_unlocked(tmp, detail);
193 cache_fresh_unlocked(old, detail);
194 cache_put(old, detail);
195 return tmp;
196}
197EXPORT_SYMBOL_GPL(sunrpc_cache_update);
198
199static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
200{
201 if (cd->cache_upcall)
202 return cd->cache_upcall(cd, h);
203 return sunrpc_cache_pipe_upcall(cd, h);
204}
205
206static inline int cache_is_valid(struct cache_head *h)
207{
208 if (!test_bit(CACHE_VALID, &h->flags))
209 return -EAGAIN;
210 else {
211 /* entry is valid */
212 if (test_bit(CACHE_NEGATIVE, &h->flags))
213 return -ENOENT;
214 else {
215 /*
216 * In combination with write barrier in
217 * sunrpc_cache_update, ensures that anyone
218 * using the cache entry after this sees the
219 * updated contents:
220 */
221 smp_rmb();
222 return 0;
223 }
224 }
225}
226
227static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
228{
229 int rv;
230
231 write_lock(&detail->hash_lock);
232 rv = cache_is_valid(h);
233 if (rv == -EAGAIN) {
234 set_bit(CACHE_NEGATIVE, &h->flags);
235 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
236 detail);
237 rv = -ENOENT;
238 }
239 write_unlock(&detail->hash_lock);
240 cache_fresh_unlocked(h, detail);
241 return rv;
242}
243
244/*
245 * This is the generic cache management routine for all
246 * the authentication caches.
247 * It checks the currency of a cache item and will (later)
248 * initiate an upcall to fill it if needed.
249 *
250 *
251 * Returns 0 if the cache_head can be used, or cache_puts it and returns
252 * -EAGAIN if upcall is pending and request has been queued
253 * -ETIMEDOUT if upcall failed or request could not be queue or
254 * upcall completed but item is still invalid (implying that
255 * the cache item has been replaced with a newer one).
256 * -ENOENT if cache entry was negative
257 */
258int cache_check(struct cache_detail *detail,
259 struct cache_head *h, struct cache_req *rqstp)
260{
261 int rv;
262 long refresh_age, age;
263
264 /* First decide return status as best we can */
265 rv = cache_is_valid(h);
266
267 /* now see if we want to start an upcall */
268 refresh_age = (h->expiry_time - h->last_refresh);
269 age = seconds_since_boot() - h->last_refresh;
270
271 if (rqstp == NULL) {
272 if (rv == -EAGAIN)
273 rv = -ENOENT;
274 } else if (rv == -EAGAIN ||
275 (h->expiry_time != 0 && age > refresh_age/2)) {
276 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
277 refresh_age, age);
278 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
279 switch (cache_make_upcall(detail, h)) {
280 case -EINVAL:
281 rv = try_to_negate_entry(detail, h);
282 break;
283 case -EAGAIN:
284 cache_fresh_unlocked(h, detail);
285 break;
286 }
287 }
288 }
289
290 if (rv == -EAGAIN) {
291 if (!cache_defer_req(rqstp, h)) {
292 /*
293 * Request was not deferred; handle it as best
294 * we can ourselves:
295 */
296 rv = cache_is_valid(h);
297 if (rv == -EAGAIN)
298 rv = -ETIMEDOUT;
299 }
300 }
301 if (rv)
302 cache_put(h, detail);
303 return rv;
304}
305EXPORT_SYMBOL_GPL(cache_check);
306
307/*
308 * caches need to be periodically cleaned.
309 * For this we maintain a list of cache_detail and
310 * a current pointer into that list and into the table
311 * for that entry.
312 *
313 * Each time cache_clean is called it finds the next non-empty entry
314 * in the current table and walks the list in that entry
315 * looking for entries that can be removed.
316 *
317 * An entry gets removed if:
318 * - The expiry is before current time
319 * - The last_refresh time is before the flush_time for that cache
320 *
321 * later we might drop old entries with non-NEVER expiry if that table
322 * is getting 'full' for some definition of 'full'
323 *
324 * The question of "how often to scan a table" is an interesting one
325 * and is answered in part by the use of the "nextcheck" field in the
326 * cache_detail.
327 * When a scan of a table begins, the nextcheck field is set to a time
328 * that is well into the future.
329 * While scanning, if an expiry time is found that is earlier than the
330 * current nextcheck time, nextcheck is set to that expiry time.
331 * If the flush_time is ever set to a time earlier than the nextcheck
332 * time, the nextcheck time is then set to that flush_time.
333 *
334 * A table is then only scanned if the current time is at least
335 * the nextcheck time.
336 *
337 */
338
339static LIST_HEAD(cache_list);
340static DEFINE_SPINLOCK(cache_list_lock);
341static struct cache_detail *current_detail;
342static int current_index;
343
344static void do_cache_clean(struct work_struct *work);
345static struct delayed_work cache_cleaner;
346
347void sunrpc_init_cache_detail(struct cache_detail *cd)
348{
349 rwlock_init(&cd->hash_lock);
350 INIT_LIST_HEAD(&cd->queue);
351 spin_lock(&cache_list_lock);
352 cd->nextcheck = 0;
353 cd->entries = 0;
354 atomic_set(&cd->readers, 0);
355 cd->last_close = 0;
356 cd->last_warn = -1;
357 list_add(&cd->others, &cache_list);
358 spin_unlock(&cache_list_lock);
359
360 /* start the cleaning process */
361 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
362}
363EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
364
365void sunrpc_destroy_cache_detail(struct cache_detail *cd)
366{
367 cache_purge(cd);
368 spin_lock(&cache_list_lock);
369 write_lock(&cd->hash_lock);
370 if (current_detail == cd)
371 current_detail = NULL;
372 list_del_init(&cd->others);
373 write_unlock(&cd->hash_lock);
374 spin_unlock(&cache_list_lock);
375 if (list_empty(&cache_list)) {
376 /* module must be being unloaded so its safe to kill the worker */
377 cancel_delayed_work_sync(&cache_cleaner);
378 }
379}
380EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
381
382/* clean cache tries to find something to clean
383 * and cleans it.
384 * It returns 1 if it cleaned something,
385 * 0 if it didn't find anything this time
386 * -1 if it fell off the end of the list.
387 */
388static int cache_clean(void)
389{
390 int rv = 0;
391 struct list_head *next;
392
393 spin_lock(&cache_list_lock);
394
395 /* find a suitable table if we don't already have one */
396 while (current_detail == NULL ||
397 current_index >= current_detail->hash_size) {
398 if (current_detail)
399 next = current_detail->others.next;
400 else
401 next = cache_list.next;
402 if (next == &cache_list) {
403 current_detail = NULL;
404 spin_unlock(&cache_list_lock);
405 return -1;
406 }
407 current_detail = list_entry(next, struct cache_detail, others);
408 if (current_detail->nextcheck > seconds_since_boot())
409 current_index = current_detail->hash_size;
410 else {
411 current_index = 0;
412 current_detail->nextcheck = seconds_since_boot()+30*60;
413 }
414 }
415
416 /* find a non-empty bucket in the table */
417 while (current_detail &&
418 current_index < current_detail->hash_size &&
419 hlist_empty(&current_detail->hash_table[current_index]))
420 current_index++;
421
422 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
423
424 if (current_detail && current_index < current_detail->hash_size) {
425 struct cache_head *ch = NULL;
426 struct cache_detail *d;
427 struct hlist_head *head;
428 struct hlist_node *tmp;
429
430 write_lock(&current_detail->hash_lock);
431
432 /* Ok, now to clean this strand */
433
434 head = &current_detail->hash_table[current_index];
435 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
436 if (current_detail->nextcheck > ch->expiry_time)
437 current_detail->nextcheck = ch->expiry_time+1;
438 if (!cache_is_expired(current_detail, ch))
439 continue;
440
441 hlist_del_init(&ch->cache_list);
442 current_detail->entries--;
443 rv = 1;
444 break;
445 }
446
447 write_unlock(&current_detail->hash_lock);
448 d = current_detail;
449 if (!ch)
450 current_index ++;
451 spin_unlock(&cache_list_lock);
452 if (ch) {
453 set_bit(CACHE_CLEANED, &ch->flags);
454 cache_fresh_unlocked(ch, d);
455 cache_put(ch, d);
456 }
457 } else
458 spin_unlock(&cache_list_lock);
459
460 return rv;
461}
462
463/*
464 * We want to regularly clean the cache, so we need to schedule some work ...
465 */
466static void do_cache_clean(struct work_struct *work)
467{
468 int delay = 5;
469 if (cache_clean() == -1)
470 delay = round_jiffies_relative(30*HZ);
471
472 if (list_empty(&cache_list))
473 delay = 0;
474
475 if (delay)
476 queue_delayed_work(system_power_efficient_wq,
477 &cache_cleaner, delay);
478}
479
480
481/*
482 * Clean all caches promptly. This just calls cache_clean
483 * repeatedly until we are sure that every cache has had a chance to
484 * be fully cleaned
485 */
486void cache_flush(void)
487{
488 while (cache_clean() != -1)
489 cond_resched();
490 while (cache_clean() != -1)
491 cond_resched();
492}
493EXPORT_SYMBOL_GPL(cache_flush);
494
495void cache_purge(struct cache_detail *detail)
496{
497 struct cache_head *ch = NULL;
498 struct hlist_head *head = NULL;
499 struct hlist_node *tmp = NULL;
500 int i = 0;
501
502 write_lock(&detail->hash_lock);
503 if (!detail->entries) {
504 write_unlock(&detail->hash_lock);
505 return;
506 }
507
508 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
509 for (i = 0; i < detail->hash_size; i++) {
510 head = &detail->hash_table[i];
511 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
512 hlist_del_init(&ch->cache_list);
513 detail->entries--;
514
515 set_bit(CACHE_CLEANED, &ch->flags);
516 write_unlock(&detail->hash_lock);
517 cache_fresh_unlocked(ch, detail);
518 cache_put(ch, detail);
519 write_lock(&detail->hash_lock);
520 }
521 }
522 write_unlock(&detail->hash_lock);
523}
524EXPORT_SYMBOL_GPL(cache_purge);
525
526
527/*
528 * Deferral and Revisiting of Requests.
529 *
530 * If a cache lookup finds a pending entry, we
531 * need to defer the request and revisit it later.
532 * All deferred requests are stored in a hash table,
533 * indexed by "struct cache_head *".
534 * As it may be wasteful to store a whole request
535 * structure, we allow the request to provide a
536 * deferred form, which must contain a
537 * 'struct cache_deferred_req'
538 * This cache_deferred_req contains a method to allow
539 * it to be revisited when cache info is available
540 */
541
542#define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
543#define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
544
545#define DFR_MAX 300 /* ??? */
546
547static DEFINE_SPINLOCK(cache_defer_lock);
548static LIST_HEAD(cache_defer_list);
549static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
550static int cache_defer_cnt;
551
552static void __unhash_deferred_req(struct cache_deferred_req *dreq)
553{
554 hlist_del_init(&dreq->hash);
555 if (!list_empty(&dreq->recent)) {
556 list_del_init(&dreq->recent);
557 cache_defer_cnt--;
558 }
559}
560
561static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
562{
563 int hash = DFR_HASH(item);
564
565 INIT_LIST_HEAD(&dreq->recent);
566 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
567}
568
569static void setup_deferral(struct cache_deferred_req *dreq,
570 struct cache_head *item,
571 int count_me)
572{
573
574 dreq->item = item;
575
576 spin_lock(&cache_defer_lock);
577
578 __hash_deferred_req(dreq, item);
579
580 if (count_me) {
581 cache_defer_cnt++;
582 list_add(&dreq->recent, &cache_defer_list);
583 }
584
585 spin_unlock(&cache_defer_lock);
586
587}
588
589struct thread_deferred_req {
590 struct cache_deferred_req handle;
591 struct completion completion;
592};
593
594static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
595{
596 struct thread_deferred_req *dr =
597 container_of(dreq, struct thread_deferred_req, handle);
598 complete(&dr->completion);
599}
600
601static void cache_wait_req(struct cache_req *req, struct cache_head *item)
602{
603 struct thread_deferred_req sleeper;
604 struct cache_deferred_req *dreq = &sleeper.handle;
605
606 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
607 dreq->revisit = cache_restart_thread;
608
609 setup_deferral(dreq, item, 0);
610
611 if (!test_bit(CACHE_PENDING, &item->flags) ||
612 wait_for_completion_interruptible_timeout(
613 &sleeper.completion, req->thread_wait) <= 0) {
614 /* The completion wasn't completed, so we need
615 * to clean up
616 */
617 spin_lock(&cache_defer_lock);
618 if (!hlist_unhashed(&sleeper.handle.hash)) {
619 __unhash_deferred_req(&sleeper.handle);
620 spin_unlock(&cache_defer_lock);
621 } else {
622 /* cache_revisit_request already removed
623 * this from the hash table, but hasn't
624 * called ->revisit yet. It will very soon
625 * and we need to wait for it.
626 */
627 spin_unlock(&cache_defer_lock);
628 wait_for_completion(&sleeper.completion);
629 }
630 }
631}
632
633static void cache_limit_defers(void)
634{
635 /* Make sure we haven't exceed the limit of allowed deferred
636 * requests.
637 */
638 struct cache_deferred_req *discard = NULL;
639
640 if (cache_defer_cnt <= DFR_MAX)
641 return;
642
643 spin_lock(&cache_defer_lock);
644
645 /* Consider removing either the first or the last */
646 if (cache_defer_cnt > DFR_MAX) {
647 if (prandom_u32() & 1)
648 discard = list_entry(cache_defer_list.next,
649 struct cache_deferred_req, recent);
650 else
651 discard = list_entry(cache_defer_list.prev,
652 struct cache_deferred_req, recent);
653 __unhash_deferred_req(discard);
654 }
655 spin_unlock(&cache_defer_lock);
656 if (discard)
657 discard->revisit(discard, 1);
658}
659
660/* Return true if and only if a deferred request is queued. */
661static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
662{
663 struct cache_deferred_req *dreq;
664
665 if (req->thread_wait) {
666 cache_wait_req(req, item);
667 if (!test_bit(CACHE_PENDING, &item->flags))
668 return false;
669 }
670 dreq = req->defer(req);
671 if (dreq == NULL)
672 return false;
673 setup_deferral(dreq, item, 1);
674 if (!test_bit(CACHE_PENDING, &item->flags))
675 /* Bit could have been cleared before we managed to
676 * set up the deferral, so need to revisit just in case
677 */
678 cache_revisit_request(item);
679
680 cache_limit_defers();
681 return true;
682}
683
684static void cache_revisit_request(struct cache_head *item)
685{
686 struct cache_deferred_req *dreq;
687 struct list_head pending;
688 struct hlist_node *tmp;
689 int hash = DFR_HASH(item);
690
691 INIT_LIST_HEAD(&pending);
692 spin_lock(&cache_defer_lock);
693
694 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
695 if (dreq->item == item) {
696 __unhash_deferred_req(dreq);
697 list_add(&dreq->recent, &pending);
698 }
699
700 spin_unlock(&cache_defer_lock);
701
702 while (!list_empty(&pending)) {
703 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
704 list_del_init(&dreq->recent);
705 dreq->revisit(dreq, 0);
706 }
707}
708
709void cache_clean_deferred(void *owner)
710{
711 struct cache_deferred_req *dreq, *tmp;
712 struct list_head pending;
713
714
715 INIT_LIST_HEAD(&pending);
716 spin_lock(&cache_defer_lock);
717
718 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
719 if (dreq->owner == owner) {
720 __unhash_deferred_req(dreq);
721 list_add(&dreq->recent, &pending);
722 }
723 }
724 spin_unlock(&cache_defer_lock);
725
726 while (!list_empty(&pending)) {
727 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
728 list_del_init(&dreq->recent);
729 dreq->revisit(dreq, 1);
730 }
731}
732
733/*
734 * communicate with user-space
735 *
736 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
737 * On read, you get a full request, or block.
738 * On write, an update request is processed.
739 * Poll works if anything to read, and always allows write.
740 *
741 * Implemented by linked list of requests. Each open file has
742 * a ->private that also exists in this list. New requests are added
743 * to the end and may wakeup and preceding readers.
744 * New readers are added to the head. If, on read, an item is found with
745 * CACHE_UPCALLING clear, we free it from the list.
746 *
747 */
748
749static DEFINE_SPINLOCK(queue_lock);
750static DEFINE_MUTEX(queue_io_mutex);
751
752struct cache_queue {
753 struct list_head list;
754 int reader; /* if 0, then request */
755};
756struct cache_request {
757 struct cache_queue q;
758 struct cache_head *item;
759 char * buf;
760 int len;
761 int readers;
762};
763struct cache_reader {
764 struct cache_queue q;
765 int offset; /* if non-0, we have a refcnt on next request */
766};
767
768static int cache_request(struct cache_detail *detail,
769 struct cache_request *crq)
770{
771 char *bp = crq->buf;
772 int len = PAGE_SIZE;
773
774 detail->cache_request(detail, crq->item, &bp, &len);
775 if (len < 0)
776 return -EAGAIN;
777 return PAGE_SIZE - len;
778}
779
780static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
781 loff_t *ppos, struct cache_detail *cd)
782{
783 struct cache_reader *rp = filp->private_data;
784 struct cache_request *rq;
785 struct inode *inode = file_inode(filp);
786 int err;
787
788 if (count == 0)
789 return 0;
790
791 inode_lock(inode); /* protect against multiple concurrent
792 * readers on this file */
793 again:
794 spin_lock(&queue_lock);
795 /* need to find next request */
796 while (rp->q.list.next != &cd->queue &&
797 list_entry(rp->q.list.next, struct cache_queue, list)
798 ->reader) {
799 struct list_head *next = rp->q.list.next;
800 list_move(&rp->q.list, next);
801 }
802 if (rp->q.list.next == &cd->queue) {
803 spin_unlock(&queue_lock);
804 inode_unlock(inode);
805 WARN_ON_ONCE(rp->offset);
806 return 0;
807 }
808 rq = container_of(rp->q.list.next, struct cache_request, q.list);
809 WARN_ON_ONCE(rq->q.reader);
810 if (rp->offset == 0)
811 rq->readers++;
812 spin_unlock(&queue_lock);
813
814 if (rq->len == 0) {
815 err = cache_request(cd, rq);
816 if (err < 0)
817 goto out;
818 rq->len = err;
819 }
820
821 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
822 err = -EAGAIN;
823 spin_lock(&queue_lock);
824 list_move(&rp->q.list, &rq->q.list);
825 spin_unlock(&queue_lock);
826 } else {
827 if (rp->offset + count > rq->len)
828 count = rq->len - rp->offset;
829 err = -EFAULT;
830 if (copy_to_user(buf, rq->buf + rp->offset, count))
831 goto out;
832 rp->offset += count;
833 if (rp->offset >= rq->len) {
834 rp->offset = 0;
835 spin_lock(&queue_lock);
836 list_move(&rp->q.list, &rq->q.list);
837 spin_unlock(&queue_lock);
838 }
839 err = 0;
840 }
841 out:
842 if (rp->offset == 0) {
843 /* need to release rq */
844 spin_lock(&queue_lock);
845 rq->readers--;
846 if (rq->readers == 0 &&
847 !test_bit(CACHE_PENDING, &rq->item->flags)) {
848 list_del(&rq->q.list);
849 spin_unlock(&queue_lock);
850 cache_put(rq->item, cd);
851 kfree(rq->buf);
852 kfree(rq);
853 } else
854 spin_unlock(&queue_lock);
855 }
856 if (err == -EAGAIN)
857 goto again;
858 inode_unlock(inode);
859 return err ? err : count;
860}
861
862static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
863 size_t count, struct cache_detail *cd)
864{
865 ssize_t ret;
866
867 if (count == 0)
868 return -EINVAL;
869 if (copy_from_user(kaddr, buf, count))
870 return -EFAULT;
871 kaddr[count] = '\0';
872 ret = cd->cache_parse(cd, kaddr, count);
873 if (!ret)
874 ret = count;
875 return ret;
876}
877
878static ssize_t cache_slow_downcall(const char __user *buf,
879 size_t count, struct cache_detail *cd)
880{
881 static char write_buf[8192]; /* protected by queue_io_mutex */
882 ssize_t ret = -EINVAL;
883
884 if (count >= sizeof(write_buf))
885 goto out;
886 mutex_lock(&queue_io_mutex);
887 ret = cache_do_downcall(write_buf, buf, count, cd);
888 mutex_unlock(&queue_io_mutex);
889out:
890 return ret;
891}
892
893static ssize_t cache_downcall(struct address_space *mapping,
894 const char __user *buf,
895 size_t count, struct cache_detail *cd)
896{
897 struct page *page;
898 char *kaddr;
899 ssize_t ret = -ENOMEM;
900
901 if (count >= PAGE_SIZE)
902 goto out_slow;
903
904 page = find_or_create_page(mapping, 0, GFP_KERNEL);
905 if (!page)
906 goto out_slow;
907
908 kaddr = kmap(page);
909 ret = cache_do_downcall(kaddr, buf, count, cd);
910 kunmap(page);
911 unlock_page(page);
912 put_page(page);
913 return ret;
914out_slow:
915 return cache_slow_downcall(buf, count, cd);
916}
917
918static ssize_t cache_write(struct file *filp, const char __user *buf,
919 size_t count, loff_t *ppos,
920 struct cache_detail *cd)
921{
922 struct address_space *mapping = filp->f_mapping;
923 struct inode *inode = file_inode(filp);
924 ssize_t ret = -EINVAL;
925
926 if (!cd->cache_parse)
927 goto out;
928
929 inode_lock(inode);
930 ret = cache_downcall(mapping, buf, count, cd);
931 inode_unlock(inode);
932out:
933 return ret;
934}
935
936static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
937
938static unsigned int cache_poll(struct file *filp, poll_table *wait,
939 struct cache_detail *cd)
940{
941 unsigned int mask;
942 struct cache_reader *rp = filp->private_data;
943 struct cache_queue *cq;
944
945 poll_wait(filp, &queue_wait, wait);
946
947 /* alway allow write */
948 mask = POLLOUT | POLLWRNORM;
949
950 if (!rp)
951 return mask;
952
953 spin_lock(&queue_lock);
954
955 for (cq= &rp->q; &cq->list != &cd->queue;
956 cq = list_entry(cq->list.next, struct cache_queue, list))
957 if (!cq->reader) {
958 mask |= POLLIN | POLLRDNORM;
959 break;
960 }
961 spin_unlock(&queue_lock);
962 return mask;
963}
964
965static int cache_ioctl(struct inode *ino, struct file *filp,
966 unsigned int cmd, unsigned long arg,
967 struct cache_detail *cd)
968{
969 int len = 0;
970 struct cache_reader *rp = filp->private_data;
971 struct cache_queue *cq;
972
973 if (cmd != FIONREAD || !rp)
974 return -EINVAL;
975
976 spin_lock(&queue_lock);
977
978 /* only find the length remaining in current request,
979 * or the length of the next request
980 */
981 for (cq= &rp->q; &cq->list != &cd->queue;
982 cq = list_entry(cq->list.next, struct cache_queue, list))
983 if (!cq->reader) {
984 struct cache_request *cr =
985 container_of(cq, struct cache_request, q);
986 len = cr->len - rp->offset;
987 break;
988 }
989 spin_unlock(&queue_lock);
990
991 return put_user(len, (int __user *)arg);
992}
993
994static int cache_open(struct inode *inode, struct file *filp,
995 struct cache_detail *cd)
996{
997 struct cache_reader *rp = NULL;
998
999 if (!cd || !try_module_get(cd->owner))
1000 return -EACCES;
1001 nonseekable_open(inode, filp);
1002 if (filp->f_mode & FMODE_READ) {
1003 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1004 if (!rp) {
1005 module_put(cd->owner);
1006 return -ENOMEM;
1007 }
1008 rp->offset = 0;
1009 rp->q.reader = 1;
1010 atomic_inc(&cd->readers);
1011 spin_lock(&queue_lock);
1012 list_add(&rp->q.list, &cd->queue);
1013 spin_unlock(&queue_lock);
1014 }
1015 filp->private_data = rp;
1016 return 0;
1017}
1018
1019static int cache_release(struct inode *inode, struct file *filp,
1020 struct cache_detail *cd)
1021{
1022 struct cache_reader *rp = filp->private_data;
1023
1024 if (rp) {
1025 spin_lock(&queue_lock);
1026 if (rp->offset) {
1027 struct cache_queue *cq;
1028 for (cq= &rp->q; &cq->list != &cd->queue;
1029 cq = list_entry(cq->list.next, struct cache_queue, list))
1030 if (!cq->reader) {
1031 container_of(cq, struct cache_request, q)
1032 ->readers--;
1033 break;
1034 }
1035 rp->offset = 0;
1036 }
1037 list_del(&rp->q.list);
1038 spin_unlock(&queue_lock);
1039
1040 filp->private_data = NULL;
1041 kfree(rp);
1042
1043 cd->last_close = seconds_since_boot();
1044 atomic_dec(&cd->readers);
1045 }
1046 module_put(cd->owner);
1047 return 0;
1048}
1049
1050
1051
1052static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1053{
1054 struct cache_queue *cq, *tmp;
1055 struct cache_request *cr;
1056 struct list_head dequeued;
1057
1058 INIT_LIST_HEAD(&dequeued);
1059 spin_lock(&queue_lock);
1060 list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1061 if (!cq->reader) {
1062 cr = container_of(cq, struct cache_request, q);
1063 if (cr->item != ch)
1064 continue;
1065 if (test_bit(CACHE_PENDING, &ch->flags))
1066 /* Lost a race and it is pending again */
1067 break;
1068 if (cr->readers != 0)
1069 continue;
1070 list_move(&cr->q.list, &dequeued);
1071 }
1072 spin_unlock(&queue_lock);
1073 while (!list_empty(&dequeued)) {
1074 cr = list_entry(dequeued.next, struct cache_request, q.list);
1075 list_del(&cr->q.list);
1076 cache_put(cr->item, detail);
1077 kfree(cr->buf);
1078 kfree(cr);
1079 }
1080}
1081
1082/*
1083 * Support routines for text-based upcalls.
1084 * Fields are separated by spaces.
1085 * Fields are either mangled to quote space tab newline slosh with slosh
1086 * or a hexified with a leading \x
1087 * Record is terminated with newline.
1088 *
1089 */
1090
1091void qword_add(char **bpp, int *lp, char *str)
1092{
1093 char *bp = *bpp;
1094 int len = *lp;
1095 int ret;
1096
1097 if (len < 0) return;
1098
1099 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1100 if (ret >= len) {
1101 bp += len;
1102 len = -1;
1103 } else {
1104 bp += ret;
1105 len -= ret;
1106 *bp++ = ' ';
1107 len--;
1108 }
1109 *bpp = bp;
1110 *lp = len;
1111}
1112EXPORT_SYMBOL_GPL(qword_add);
1113
1114void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1115{
1116 char *bp = *bpp;
1117 int len = *lp;
1118
1119 if (len < 0) return;
1120
1121 if (len > 2) {
1122 *bp++ = '\\';
1123 *bp++ = 'x';
1124 len -= 2;
1125 while (blen && len >= 2) {
1126 bp = hex_byte_pack(bp, *buf++);
1127 len -= 2;
1128 blen--;
1129 }
1130 }
1131 if (blen || len<1) len = -1;
1132 else {
1133 *bp++ = ' ';
1134 len--;
1135 }
1136 *bpp = bp;
1137 *lp = len;
1138}
1139EXPORT_SYMBOL_GPL(qword_addhex);
1140
1141static void warn_no_listener(struct cache_detail *detail)
1142{
1143 if (detail->last_warn != detail->last_close) {
1144 detail->last_warn = detail->last_close;
1145 if (detail->warn_no_listener)
1146 detail->warn_no_listener(detail, detail->last_close != 0);
1147 }
1148}
1149
1150static bool cache_listeners_exist(struct cache_detail *detail)
1151{
1152 if (atomic_read(&detail->readers))
1153 return true;
1154 if (detail->last_close == 0)
1155 /* This cache was never opened */
1156 return false;
1157 if (detail->last_close < seconds_since_boot() - 30)
1158 /*
1159 * We allow for the possibility that someone might
1160 * restart a userspace daemon without restarting the
1161 * server; but after 30 seconds, we give up.
1162 */
1163 return false;
1164 return true;
1165}
1166
1167/*
1168 * register an upcall request to user-space and queue it up for read() by the
1169 * upcall daemon.
1170 *
1171 * Each request is at most one page long.
1172 */
1173int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1174{
1175
1176 char *buf;
1177 struct cache_request *crq;
1178 int ret = 0;
1179
1180 if (!detail->cache_request)
1181 return -EINVAL;
1182
1183 if (!cache_listeners_exist(detail)) {
1184 warn_no_listener(detail);
1185 return -EINVAL;
1186 }
1187 if (test_bit(CACHE_CLEANED, &h->flags))
1188 /* Too late to make an upcall */
1189 return -EAGAIN;
1190
1191 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1192 if (!buf)
1193 return -EAGAIN;
1194
1195 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1196 if (!crq) {
1197 kfree(buf);
1198 return -EAGAIN;
1199 }
1200
1201 crq->q.reader = 0;
1202 crq->buf = buf;
1203 crq->len = 0;
1204 crq->readers = 0;
1205 spin_lock(&queue_lock);
1206 if (test_bit(CACHE_PENDING, &h->flags)) {
1207 crq->item = cache_get(h);
1208 list_add_tail(&crq->q.list, &detail->queue);
1209 } else
1210 /* Lost a race, no longer PENDING, so don't enqueue */
1211 ret = -EAGAIN;
1212 spin_unlock(&queue_lock);
1213 wake_up(&queue_wait);
1214 if (ret == -EAGAIN) {
1215 kfree(buf);
1216 kfree(crq);
1217 }
1218 return ret;
1219}
1220EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1221
1222/*
1223 * parse a message from user-space and pass it
1224 * to an appropriate cache
1225 * Messages are, like requests, separated into fields by
1226 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1227 *
1228 * Message is
1229 * reply cachename expiry key ... content....
1230 *
1231 * key and content are both parsed by cache
1232 */
1233
1234int qword_get(char **bpp, char *dest, int bufsize)
1235{
1236 /* return bytes copied, or -1 on error */
1237 char *bp = *bpp;
1238 int len = 0;
1239
1240 while (*bp == ' ') bp++;
1241
1242 if (bp[0] == '\\' && bp[1] == 'x') {
1243 /* HEX STRING */
1244 bp += 2;
1245 while (len < bufsize - 1) {
1246 int h, l;
1247
1248 h = hex_to_bin(bp[0]);
1249 if (h < 0)
1250 break;
1251
1252 l = hex_to_bin(bp[1]);
1253 if (l < 0)
1254 break;
1255
1256 *dest++ = (h << 4) | l;
1257 bp += 2;
1258 len++;
1259 }
1260 } else {
1261 /* text with \nnn octal quoting */
1262 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1263 if (*bp == '\\' &&
1264 isodigit(bp[1]) && (bp[1] <= '3') &&
1265 isodigit(bp[2]) &&
1266 isodigit(bp[3])) {
1267 int byte = (*++bp -'0');
1268 bp++;
1269 byte = (byte << 3) | (*bp++ - '0');
1270 byte = (byte << 3) | (*bp++ - '0');
1271 *dest++ = byte;
1272 len++;
1273 } else {
1274 *dest++ = *bp++;
1275 len++;
1276 }
1277 }
1278 }
1279
1280 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1281 return -1;
1282 while (*bp == ' ') bp++;
1283 *bpp = bp;
1284 *dest = '\0';
1285 return len;
1286}
1287EXPORT_SYMBOL_GPL(qword_get);
1288
1289
1290/*
1291 * support /proc/net/rpc/$CACHENAME/content
1292 * as a seqfile.
1293 * We call ->cache_show passing NULL for the item to
1294 * get a header, then pass each real item in the cache
1295 */
1296
1297void *cache_seq_start(struct seq_file *m, loff_t *pos)
1298 __acquires(cd->hash_lock)
1299{
1300 loff_t n = *pos;
1301 unsigned int hash, entry;
1302 struct cache_head *ch;
1303 struct cache_detail *cd = m->private;
1304
1305 read_lock(&cd->hash_lock);
1306 if (!n--)
1307 return SEQ_START_TOKEN;
1308 hash = n >> 32;
1309 entry = n & ((1LL<<32) - 1);
1310
1311 hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list)
1312 if (!entry--)
1313 return ch;
1314 n &= ~((1LL<<32) - 1);
1315 do {
1316 hash++;
1317 n += 1LL<<32;
1318 } while(hash < cd->hash_size &&
1319 hlist_empty(&cd->hash_table[hash]));
1320 if (hash >= cd->hash_size)
1321 return NULL;
1322 *pos = n+1;
1323 return hlist_entry_safe(cd->hash_table[hash].first,
1324 struct cache_head, cache_list);
1325}
1326EXPORT_SYMBOL_GPL(cache_seq_start);
1327
1328void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1329{
1330 struct cache_head *ch = p;
1331 int hash = (*pos >> 32);
1332 struct cache_detail *cd = m->private;
1333
1334 if (p == SEQ_START_TOKEN)
1335 hash = 0;
1336 else if (ch->cache_list.next == NULL) {
1337 hash++;
1338 *pos += 1LL<<32;
1339 } else {
1340 ++*pos;
1341 return hlist_entry_safe(ch->cache_list.next,
1342 struct cache_head, cache_list);
1343 }
1344 *pos &= ~((1LL<<32) - 1);
1345 while (hash < cd->hash_size &&
1346 hlist_empty(&cd->hash_table[hash])) {
1347 hash++;
1348 *pos += 1LL<<32;
1349 }
1350 if (hash >= cd->hash_size)
1351 return NULL;
1352 ++*pos;
1353 return hlist_entry_safe(cd->hash_table[hash].first,
1354 struct cache_head, cache_list);
1355}
1356EXPORT_SYMBOL_GPL(cache_seq_next);
1357
1358void cache_seq_stop(struct seq_file *m, void *p)
1359 __releases(cd->hash_lock)
1360{
1361 struct cache_detail *cd = m->private;
1362 read_unlock(&cd->hash_lock);
1363}
1364EXPORT_SYMBOL_GPL(cache_seq_stop);
1365
1366static int c_show(struct seq_file *m, void *p)
1367{
1368 struct cache_head *cp = p;
1369 struct cache_detail *cd = m->private;
1370
1371 if (p == SEQ_START_TOKEN)
1372 return cd->cache_show(m, cd, NULL);
1373
1374 ifdebug(CACHE)
1375 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1376 convert_to_wallclock(cp->expiry_time),
1377 kref_read(&cp->ref), cp->flags);
1378 cache_get(cp);
1379 if (cache_check(cd, cp, NULL))
1380 /* cache_check does a cache_put on failure */
1381 seq_printf(m, "# ");
1382 else {
1383 if (cache_is_expired(cd, cp))
1384 seq_printf(m, "# ");
1385 cache_put(cp, cd);
1386 }
1387
1388 return cd->cache_show(m, cd, cp);
1389}
1390
1391static const struct seq_operations cache_content_op = {
1392 .start = cache_seq_start,
1393 .next = cache_seq_next,
1394 .stop = cache_seq_stop,
1395 .show = c_show,
1396};
1397
1398static int content_open(struct inode *inode, struct file *file,
1399 struct cache_detail *cd)
1400{
1401 struct seq_file *seq;
1402 int err;
1403
1404 if (!cd || !try_module_get(cd->owner))
1405 return -EACCES;
1406
1407 err = seq_open(file, &cache_content_op);
1408 if (err) {
1409 module_put(cd->owner);
1410 return err;
1411 }
1412
1413 seq = file->private_data;
1414 seq->private = cd;
1415 return 0;
1416}
1417
1418static int content_release(struct inode *inode, struct file *file,
1419 struct cache_detail *cd)
1420{
1421 int ret = seq_release(inode, file);
1422 module_put(cd->owner);
1423 return ret;
1424}
1425
1426static int open_flush(struct inode *inode, struct file *file,
1427 struct cache_detail *cd)
1428{
1429 if (!cd || !try_module_get(cd->owner))
1430 return -EACCES;
1431 return nonseekable_open(inode, file);
1432}
1433
1434static int release_flush(struct inode *inode, struct file *file,
1435 struct cache_detail *cd)
1436{
1437 module_put(cd->owner);
1438 return 0;
1439}
1440
1441static ssize_t read_flush(struct file *file, char __user *buf,
1442 size_t count, loff_t *ppos,
1443 struct cache_detail *cd)
1444{
1445 char tbuf[22];
1446 size_t len;
1447
1448 len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1449 convert_to_wallclock(cd->flush_time));
1450 return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1451}
1452
1453static ssize_t write_flush(struct file *file, const char __user *buf,
1454 size_t count, loff_t *ppos,
1455 struct cache_detail *cd)
1456{
1457 char tbuf[20];
1458 char *bp, *ep;
1459 time_t then, now;
1460
1461 if (*ppos || count > sizeof(tbuf)-1)
1462 return -EINVAL;
1463 if (copy_from_user(tbuf, buf, count))
1464 return -EFAULT;
1465 tbuf[count] = 0;
1466 simple_strtoul(tbuf, &ep, 0);
1467 if (*ep && *ep != '\n')
1468 return -EINVAL;
1469
1470 bp = tbuf;
1471 then = get_expiry(&bp);
1472 now = seconds_since_boot();
1473 cd->nextcheck = now;
1474 /* Can only set flush_time to 1 second beyond "now", or
1475 * possibly 1 second beyond flushtime. This is because
1476 * flush_time never goes backwards so it mustn't get too far
1477 * ahead of time.
1478 */
1479 if (then >= now) {
1480 /* Want to flush everything, so behave like cache_purge() */
1481 if (cd->flush_time >= now)
1482 now = cd->flush_time + 1;
1483 then = now;
1484 }
1485
1486 cd->flush_time = then;
1487 cache_flush();
1488
1489 *ppos += count;
1490 return count;
1491}
1492
1493static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1494 size_t count, loff_t *ppos)
1495{
1496 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1497
1498 return cache_read(filp, buf, count, ppos, cd);
1499}
1500
1501static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1502 size_t count, loff_t *ppos)
1503{
1504 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1505
1506 return cache_write(filp, buf, count, ppos, cd);
1507}
1508
1509static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1510{
1511 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1512
1513 return cache_poll(filp, wait, cd);
1514}
1515
1516static long cache_ioctl_procfs(struct file *filp,
1517 unsigned int cmd, unsigned long arg)
1518{
1519 struct inode *inode = file_inode(filp);
1520 struct cache_detail *cd = PDE_DATA(inode);
1521
1522 return cache_ioctl(inode, filp, cmd, arg, cd);
1523}
1524
1525static int cache_open_procfs(struct inode *inode, struct file *filp)
1526{
1527 struct cache_detail *cd = PDE_DATA(inode);
1528
1529 return cache_open(inode, filp, cd);
1530}
1531
1532static int cache_release_procfs(struct inode *inode, struct file *filp)
1533{
1534 struct cache_detail *cd = PDE_DATA(inode);
1535
1536 return cache_release(inode, filp, cd);
1537}
1538
1539static const struct file_operations cache_file_operations_procfs = {
1540 .owner = THIS_MODULE,
1541 .llseek = no_llseek,
1542 .read = cache_read_procfs,
1543 .write = cache_write_procfs,
1544 .poll = cache_poll_procfs,
1545 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1546 .open = cache_open_procfs,
1547 .release = cache_release_procfs,
1548};
1549
1550static int content_open_procfs(struct inode *inode, struct file *filp)
1551{
1552 struct cache_detail *cd = PDE_DATA(inode);
1553
1554 return content_open(inode, filp, cd);
1555}
1556
1557static int content_release_procfs(struct inode *inode, struct file *filp)
1558{
1559 struct cache_detail *cd = PDE_DATA(inode);
1560
1561 return content_release(inode, filp, cd);
1562}
1563
1564static const struct file_operations content_file_operations_procfs = {
1565 .open = content_open_procfs,
1566 .read = seq_read,
1567 .llseek = seq_lseek,
1568 .release = content_release_procfs,
1569};
1570
1571static int open_flush_procfs(struct inode *inode, struct file *filp)
1572{
1573 struct cache_detail *cd = PDE_DATA(inode);
1574
1575 return open_flush(inode, filp, cd);
1576}
1577
1578static int release_flush_procfs(struct inode *inode, struct file *filp)
1579{
1580 struct cache_detail *cd = PDE_DATA(inode);
1581
1582 return release_flush(inode, filp, cd);
1583}
1584
1585static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1586 size_t count, loff_t *ppos)
1587{
1588 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1589
1590 return read_flush(filp, buf, count, ppos, cd);
1591}
1592
1593static ssize_t write_flush_procfs(struct file *filp,
1594 const char __user *buf,
1595 size_t count, loff_t *ppos)
1596{
1597 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1598
1599 return write_flush(filp, buf, count, ppos, cd);
1600}
1601
1602static const struct file_operations cache_flush_operations_procfs = {
1603 .open = open_flush_procfs,
1604 .read = read_flush_procfs,
1605 .write = write_flush_procfs,
1606 .release = release_flush_procfs,
1607 .llseek = no_llseek,
1608};
1609
1610static void remove_cache_proc_entries(struct cache_detail *cd)
1611{
1612 if (cd->procfs) {
1613 proc_remove(cd->procfs);
1614 cd->procfs = NULL;
1615 }
1616}
1617
1618#ifdef CONFIG_PROC_FS
1619static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1620{
1621 struct proc_dir_entry *p;
1622 struct sunrpc_net *sn;
1623
1624 sn = net_generic(net, sunrpc_net_id);
1625 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1626 if (cd->procfs == NULL)
1627 goto out_nomem;
1628
1629 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1630 cd->procfs, &cache_flush_operations_procfs, cd);
1631 if (p == NULL)
1632 goto out_nomem;
1633
1634 if (cd->cache_request || cd->cache_parse) {
1635 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1636 cd->procfs, &cache_file_operations_procfs, cd);
1637 if (p == NULL)
1638 goto out_nomem;
1639 }
1640 if (cd->cache_show) {
1641 p = proc_create_data("content", S_IFREG|S_IRUSR,
1642 cd->procfs, &content_file_operations_procfs, cd);
1643 if (p == NULL)
1644 goto out_nomem;
1645 }
1646 return 0;
1647out_nomem:
1648 remove_cache_proc_entries(cd);
1649 return -ENOMEM;
1650}
1651#else /* CONFIG_PROC_FS */
1652static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1653{
1654 return 0;
1655}
1656#endif
1657
1658void __init cache_initialize(void)
1659{
1660 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1661}
1662
1663int cache_register_net(struct cache_detail *cd, struct net *net)
1664{
1665 int ret;
1666
1667 sunrpc_init_cache_detail(cd);
1668 ret = create_cache_proc_entries(cd, net);
1669 if (ret)
1670 sunrpc_destroy_cache_detail(cd);
1671 return ret;
1672}
1673EXPORT_SYMBOL_GPL(cache_register_net);
1674
1675void cache_unregister_net(struct cache_detail *cd, struct net *net)
1676{
1677 remove_cache_proc_entries(cd);
1678 sunrpc_destroy_cache_detail(cd);
1679}
1680EXPORT_SYMBOL_GPL(cache_unregister_net);
1681
1682struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1683{
1684 struct cache_detail *cd;
1685 int i;
1686
1687 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1688 if (cd == NULL)
1689 return ERR_PTR(-ENOMEM);
1690
1691 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head),
1692 GFP_KERNEL);
1693 if (cd->hash_table == NULL) {
1694 kfree(cd);
1695 return ERR_PTR(-ENOMEM);
1696 }
1697
1698 for (i = 0; i < cd->hash_size; i++)
1699 INIT_HLIST_HEAD(&cd->hash_table[i]);
1700 cd->net = net;
1701 return cd;
1702}
1703EXPORT_SYMBOL_GPL(cache_create_net);
1704
1705void cache_destroy_net(struct cache_detail *cd, struct net *net)
1706{
1707 kfree(cd->hash_table);
1708 kfree(cd);
1709}
1710EXPORT_SYMBOL_GPL(cache_destroy_net);
1711
1712static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1713 size_t count, loff_t *ppos)
1714{
1715 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1716
1717 return cache_read(filp, buf, count, ppos, cd);
1718}
1719
1720static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1721 size_t count, loff_t *ppos)
1722{
1723 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1724
1725 return cache_write(filp, buf, count, ppos, cd);
1726}
1727
1728static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1729{
1730 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1731
1732 return cache_poll(filp, wait, cd);
1733}
1734
1735static long cache_ioctl_pipefs(struct file *filp,
1736 unsigned int cmd, unsigned long arg)
1737{
1738 struct inode *inode = file_inode(filp);
1739 struct cache_detail *cd = RPC_I(inode)->private;
1740
1741 return cache_ioctl(inode, filp, cmd, arg, cd);
1742}
1743
1744static int cache_open_pipefs(struct inode *inode, struct file *filp)
1745{
1746 struct cache_detail *cd = RPC_I(inode)->private;
1747
1748 return cache_open(inode, filp, cd);
1749}
1750
1751static int cache_release_pipefs(struct inode *inode, struct file *filp)
1752{
1753 struct cache_detail *cd = RPC_I(inode)->private;
1754
1755 return cache_release(inode, filp, cd);
1756}
1757
1758const struct file_operations cache_file_operations_pipefs = {
1759 .owner = THIS_MODULE,
1760 .llseek = no_llseek,
1761 .read = cache_read_pipefs,
1762 .write = cache_write_pipefs,
1763 .poll = cache_poll_pipefs,
1764 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1765 .open = cache_open_pipefs,
1766 .release = cache_release_pipefs,
1767};
1768
1769static int content_open_pipefs(struct inode *inode, struct file *filp)
1770{
1771 struct cache_detail *cd = RPC_I(inode)->private;
1772
1773 return content_open(inode, filp, cd);
1774}
1775
1776static int content_release_pipefs(struct inode *inode, struct file *filp)
1777{
1778 struct cache_detail *cd = RPC_I(inode)->private;
1779
1780 return content_release(inode, filp, cd);
1781}
1782
1783const struct file_operations content_file_operations_pipefs = {
1784 .open = content_open_pipefs,
1785 .read = seq_read,
1786 .llseek = seq_lseek,
1787 .release = content_release_pipefs,
1788};
1789
1790static int open_flush_pipefs(struct inode *inode, struct file *filp)
1791{
1792 struct cache_detail *cd = RPC_I(inode)->private;
1793
1794 return open_flush(inode, filp, cd);
1795}
1796
1797static int release_flush_pipefs(struct inode *inode, struct file *filp)
1798{
1799 struct cache_detail *cd = RPC_I(inode)->private;
1800
1801 return release_flush(inode, filp, cd);
1802}
1803
1804static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1805 size_t count, loff_t *ppos)
1806{
1807 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1808
1809 return read_flush(filp, buf, count, ppos, cd);
1810}
1811
1812static ssize_t write_flush_pipefs(struct file *filp,
1813 const char __user *buf,
1814 size_t count, loff_t *ppos)
1815{
1816 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1817
1818 return write_flush(filp, buf, count, ppos, cd);
1819}
1820
1821const struct file_operations cache_flush_operations_pipefs = {
1822 .open = open_flush_pipefs,
1823 .read = read_flush_pipefs,
1824 .write = write_flush_pipefs,
1825 .release = release_flush_pipefs,
1826 .llseek = no_llseek,
1827};
1828
1829int sunrpc_cache_register_pipefs(struct dentry *parent,
1830 const char *name, umode_t umode,
1831 struct cache_detail *cd)
1832{
1833 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1834 if (IS_ERR(dir))
1835 return PTR_ERR(dir);
1836 cd->pipefs = dir;
1837 return 0;
1838}
1839EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1840
1841void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1842{
1843 if (cd->pipefs) {
1844 rpc_remove_cache_dir(cd->pipefs);
1845 cd->pipefs = NULL;
1846 }
1847}
1848EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1849
1850void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1851{
1852 write_lock(&cd->hash_lock);
1853 if (!hlist_unhashed(&h->cache_list)){
1854 hlist_del_init(&h->cache_list);
1855 cd->entries--;
1856 write_unlock(&cd->hash_lock);
1857 cache_put(h, cd);
1858 } else
1859 write_unlock(&cd->hash_lock);
1860}
1861EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);