]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - softmmu_template.h
Merge remote-tracking branch 'remotes/kraxel/tags/pull-roms-20141217-1' into staging
[mirror_qemu.git] / softmmu_template.h
... / ...
CommitLineData
1/*
2 * Software MMU support
3 *
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
6 *
7 * Included from target op helpers and exec.c.
8 *
9 * Copyright (c) 2003 Fabrice Bellard
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 */
24#include "qemu/timer.h"
25#include "exec/address-spaces.h"
26#include "exec/memory.h"
27
28#define DATA_SIZE (1 << SHIFT)
29
30#if DATA_SIZE == 8
31#define SUFFIX q
32#define LSUFFIX q
33#define SDATA_TYPE int64_t
34#define DATA_TYPE uint64_t
35#elif DATA_SIZE == 4
36#define SUFFIX l
37#define LSUFFIX l
38#define SDATA_TYPE int32_t
39#define DATA_TYPE uint32_t
40#elif DATA_SIZE == 2
41#define SUFFIX w
42#define LSUFFIX uw
43#define SDATA_TYPE int16_t
44#define DATA_TYPE uint16_t
45#elif DATA_SIZE == 1
46#define SUFFIX b
47#define LSUFFIX ub
48#define SDATA_TYPE int8_t
49#define DATA_TYPE uint8_t
50#else
51#error unsupported data size
52#endif
53
54
55/* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61# define WORD_TYPE DATA_TYPE
62# define USUFFIX SUFFIX
63#else
64# define WORD_TYPE tcg_target_ulong
65# define USUFFIX glue(u, SUFFIX)
66# define SSUFFIX glue(s, SUFFIX)
67#endif
68
69#ifdef SOFTMMU_CODE_ACCESS
70#define READ_ACCESS_TYPE MMU_INST_FETCH
71#define ADDR_READ addr_code
72#else
73#define READ_ACCESS_TYPE MMU_DATA_LOAD
74#define ADDR_READ addr_read
75#endif
76
77#if DATA_SIZE == 8
78# define BSWAP(X) bswap64(X)
79#elif DATA_SIZE == 4
80# define BSWAP(X) bswap32(X)
81#elif DATA_SIZE == 2
82# define BSWAP(X) bswap16(X)
83#else
84# define BSWAP(X) (X)
85#endif
86
87#ifdef TARGET_WORDS_BIGENDIAN
88# define TGT_BE(X) (X)
89# define TGT_LE(X) BSWAP(X)
90#else
91# define TGT_BE(X) BSWAP(X)
92# define TGT_LE(X) (X)
93#endif
94
95#if DATA_SIZE == 1
96# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97# define helper_be_ld_name helper_le_ld_name
98# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99# define helper_be_lds_name helper_le_lds_name
100# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101# define helper_be_st_name helper_le_st_name
102#else
103# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
109#endif
110
111#ifdef TARGET_WORDS_BIGENDIAN
112# define helper_te_ld_name helper_be_ld_name
113# define helper_te_st_name helper_be_st_name
114#else
115# define helper_te_ld_name helper_le_ld_name
116# define helper_te_st_name helper_le_st_name
117#endif
118
119/* macro to check the victim tlb */
120#define VICTIM_TLB_HIT(ty) \
121({ \
122 /* we are about to do a page table walk. our last hope is the \
123 * victim tlb. try to refill from the victim tlb before walking the \
124 * page table. */ \
125 int vidx; \
126 hwaddr tmpiotlb; \
127 CPUTLBEntry tmptlb; \
128 for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \
129 if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\
130 /* found entry in victim tlb, swap tlb and iotlb */ \
131 tmptlb = env->tlb_table[mmu_idx][index]; \
132 env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \
133 env->tlb_v_table[mmu_idx][vidx] = tmptlb; \
134 tmpiotlb = env->iotlb[mmu_idx][index]; \
135 env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \
136 env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \
137 break; \
138 } \
139 } \
140 /* return true when there is a vtlb hit, i.e. vidx >=0 */ \
141 vidx >= 0; \
142})
143
144#ifndef SOFTMMU_CODE_ACCESS
145static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
146 hwaddr physaddr,
147 target_ulong addr,
148 uintptr_t retaddr)
149{
150 uint64_t val;
151 CPUState *cpu = ENV_GET_CPU(env);
152 MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
153
154 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
155 cpu->mem_io_pc = retaddr;
156 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
157 cpu_io_recompile(cpu, retaddr);
158 }
159
160 cpu->mem_io_vaddr = addr;
161 io_mem_read(mr, physaddr, &val, 1 << SHIFT);
162 return val;
163}
164#endif
165
166#ifdef SOFTMMU_CODE_ACCESS
167static __attribute__((unused))
168#endif
169WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
170 uintptr_t retaddr)
171{
172 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
173 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
174 uintptr_t haddr;
175 DATA_TYPE res;
176
177 /* Adjust the given return address. */
178 retaddr -= GETPC_ADJ;
179
180 /* If the TLB entry is for a different page, reload and try again. */
181 if ((addr & TARGET_PAGE_MASK)
182 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
183#ifdef ALIGNED_ONLY
184 if ((addr & (DATA_SIZE - 1)) != 0) {
185 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
186 mmu_idx, retaddr);
187 }
188#endif
189 if (!VICTIM_TLB_HIT(ADDR_READ)) {
190 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
191 mmu_idx, retaddr);
192 }
193 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
194 }
195
196 /* Handle an IO access. */
197 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
198 hwaddr ioaddr;
199 if ((addr & (DATA_SIZE - 1)) != 0) {
200 goto do_unaligned_access;
201 }
202 ioaddr = env->iotlb[mmu_idx][index];
203
204 /* ??? Note that the io helpers always read data in the target
205 byte ordering. We should push the LE/BE request down into io. */
206 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
207 res = TGT_LE(res);
208 return res;
209 }
210
211 /* Handle slow unaligned access (it spans two pages or IO). */
212 if (DATA_SIZE > 1
213 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
214 >= TARGET_PAGE_SIZE)) {
215 target_ulong addr1, addr2;
216 DATA_TYPE res1, res2;
217 unsigned shift;
218 do_unaligned_access:
219#ifdef ALIGNED_ONLY
220 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
221 mmu_idx, retaddr);
222#endif
223 addr1 = addr & ~(DATA_SIZE - 1);
224 addr2 = addr1 + DATA_SIZE;
225 /* Note the adjustment at the beginning of the function.
226 Undo that for the recursion. */
227 res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
228 res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
229 shift = (addr & (DATA_SIZE - 1)) * 8;
230
231 /* Little-endian combine. */
232 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
233 return res;
234 }
235
236 /* Handle aligned access or unaligned access in the same page. */
237#ifdef ALIGNED_ONLY
238 if ((addr & (DATA_SIZE - 1)) != 0) {
239 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
240 mmu_idx, retaddr);
241 }
242#endif
243
244 haddr = addr + env->tlb_table[mmu_idx][index].addend;
245#if DATA_SIZE == 1
246 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
247#else
248 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
249#endif
250 return res;
251}
252
253#if DATA_SIZE > 1
254#ifdef SOFTMMU_CODE_ACCESS
255static __attribute__((unused))
256#endif
257WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
258 uintptr_t retaddr)
259{
260 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
261 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
262 uintptr_t haddr;
263 DATA_TYPE res;
264
265 /* Adjust the given return address. */
266 retaddr -= GETPC_ADJ;
267
268 /* If the TLB entry is for a different page, reload and try again. */
269 if ((addr & TARGET_PAGE_MASK)
270 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
271#ifdef ALIGNED_ONLY
272 if ((addr & (DATA_SIZE - 1)) != 0) {
273 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
274 mmu_idx, retaddr);
275 }
276#endif
277 if (!VICTIM_TLB_HIT(ADDR_READ)) {
278 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
279 mmu_idx, retaddr);
280 }
281 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
282 }
283
284 /* Handle an IO access. */
285 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
286 hwaddr ioaddr;
287 if ((addr & (DATA_SIZE - 1)) != 0) {
288 goto do_unaligned_access;
289 }
290 ioaddr = env->iotlb[mmu_idx][index];
291
292 /* ??? Note that the io helpers always read data in the target
293 byte ordering. We should push the LE/BE request down into io. */
294 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
295 res = TGT_BE(res);
296 return res;
297 }
298
299 /* Handle slow unaligned access (it spans two pages or IO). */
300 if (DATA_SIZE > 1
301 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
302 >= TARGET_PAGE_SIZE)) {
303 target_ulong addr1, addr2;
304 DATA_TYPE res1, res2;
305 unsigned shift;
306 do_unaligned_access:
307#ifdef ALIGNED_ONLY
308 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
309 mmu_idx, retaddr);
310#endif
311 addr1 = addr & ~(DATA_SIZE - 1);
312 addr2 = addr1 + DATA_SIZE;
313 /* Note the adjustment at the beginning of the function.
314 Undo that for the recursion. */
315 res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
316 res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
317 shift = (addr & (DATA_SIZE - 1)) * 8;
318
319 /* Big-endian combine. */
320 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
321 return res;
322 }
323
324 /* Handle aligned access or unaligned access in the same page. */
325#ifdef ALIGNED_ONLY
326 if ((addr & (DATA_SIZE - 1)) != 0) {
327 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
328 mmu_idx, retaddr);
329 }
330#endif
331
332 haddr = addr + env->tlb_table[mmu_idx][index].addend;
333 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
334 return res;
335}
336#endif /* DATA_SIZE > 1 */
337
338DATA_TYPE
339glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
340 int mmu_idx)
341{
342 return helper_te_ld_name (env, addr, mmu_idx, GETRA());
343}
344
345#ifndef SOFTMMU_CODE_ACCESS
346
347/* Provide signed versions of the load routines as well. We can of course
348 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
349#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
350WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
351 int mmu_idx, uintptr_t retaddr)
352{
353 return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr);
354}
355
356# if DATA_SIZE > 1
357WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
358 int mmu_idx, uintptr_t retaddr)
359{
360 return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr);
361}
362# endif
363#endif
364
365static inline void glue(io_write, SUFFIX)(CPUArchState *env,
366 hwaddr physaddr,
367 DATA_TYPE val,
368 target_ulong addr,
369 uintptr_t retaddr)
370{
371 CPUState *cpu = ENV_GET_CPU(env);
372 MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
373
374 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
375 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
376 cpu_io_recompile(cpu, retaddr);
377 }
378
379 cpu->mem_io_vaddr = addr;
380 cpu->mem_io_pc = retaddr;
381 io_mem_write(mr, physaddr, val, 1 << SHIFT);
382}
383
384void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
385 int mmu_idx, uintptr_t retaddr)
386{
387 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
388 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
389 uintptr_t haddr;
390
391 /* Adjust the given return address. */
392 retaddr -= GETPC_ADJ;
393
394 /* If the TLB entry is for a different page, reload and try again. */
395 if ((addr & TARGET_PAGE_MASK)
396 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
397#ifdef ALIGNED_ONLY
398 if ((addr & (DATA_SIZE - 1)) != 0) {
399 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
400 mmu_idx, retaddr);
401 }
402#endif
403 if (!VICTIM_TLB_HIT(addr_write)) {
404 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
405 }
406 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
407 }
408
409 /* Handle an IO access. */
410 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
411 hwaddr ioaddr;
412 if ((addr & (DATA_SIZE - 1)) != 0) {
413 goto do_unaligned_access;
414 }
415 ioaddr = env->iotlb[mmu_idx][index];
416
417 /* ??? Note that the io helpers always read data in the target
418 byte ordering. We should push the LE/BE request down into io. */
419 val = TGT_LE(val);
420 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
421 return;
422 }
423
424 /* Handle slow unaligned access (it spans two pages or IO). */
425 if (DATA_SIZE > 1
426 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
427 >= TARGET_PAGE_SIZE)) {
428 int i;
429 do_unaligned_access:
430#ifdef ALIGNED_ONLY
431 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
432 mmu_idx, retaddr);
433#endif
434 /* XXX: not efficient, but simple */
435 /* Note: relies on the fact that tlb_fill() does not remove the
436 * previous page from the TLB cache. */
437 for (i = DATA_SIZE - 1; i >= 0; i--) {
438 /* Little-endian extract. */
439 uint8_t val8 = val >> (i * 8);
440 /* Note the adjustment at the beginning of the function.
441 Undo that for the recursion. */
442 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
443 mmu_idx, retaddr + GETPC_ADJ);
444 }
445 return;
446 }
447
448 /* Handle aligned access or unaligned access in the same page. */
449#ifdef ALIGNED_ONLY
450 if ((addr & (DATA_SIZE - 1)) != 0) {
451 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
452 mmu_idx, retaddr);
453 }
454#endif
455
456 haddr = addr + env->tlb_table[mmu_idx][index].addend;
457#if DATA_SIZE == 1
458 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
459#else
460 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
461#endif
462}
463
464#if DATA_SIZE > 1
465void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
466 int mmu_idx, uintptr_t retaddr)
467{
468 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
469 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
470 uintptr_t haddr;
471
472 /* Adjust the given return address. */
473 retaddr -= GETPC_ADJ;
474
475 /* If the TLB entry is for a different page, reload and try again. */
476 if ((addr & TARGET_PAGE_MASK)
477 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
478#ifdef ALIGNED_ONLY
479 if ((addr & (DATA_SIZE - 1)) != 0) {
480 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
481 mmu_idx, retaddr);
482 }
483#endif
484 if (!VICTIM_TLB_HIT(addr_write)) {
485 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
486 }
487 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
488 }
489
490 /* Handle an IO access. */
491 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
492 hwaddr ioaddr;
493 if ((addr & (DATA_SIZE - 1)) != 0) {
494 goto do_unaligned_access;
495 }
496 ioaddr = env->iotlb[mmu_idx][index];
497
498 /* ??? Note that the io helpers always read data in the target
499 byte ordering. We should push the LE/BE request down into io. */
500 val = TGT_BE(val);
501 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
502 return;
503 }
504
505 /* Handle slow unaligned access (it spans two pages or IO). */
506 if (DATA_SIZE > 1
507 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
508 >= TARGET_PAGE_SIZE)) {
509 int i;
510 do_unaligned_access:
511#ifdef ALIGNED_ONLY
512 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
513 mmu_idx, retaddr);
514#endif
515 /* XXX: not efficient, but simple */
516 /* Note: relies on the fact that tlb_fill() does not remove the
517 * previous page from the TLB cache. */
518 for (i = DATA_SIZE - 1; i >= 0; i--) {
519 /* Big-endian extract. */
520 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
521 /* Note the adjustment at the beginning of the function.
522 Undo that for the recursion. */
523 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
524 mmu_idx, retaddr + GETPC_ADJ);
525 }
526 return;
527 }
528
529 /* Handle aligned access or unaligned access in the same page. */
530#ifdef ALIGNED_ONLY
531 if ((addr & (DATA_SIZE - 1)) != 0) {
532 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
533 mmu_idx, retaddr);
534 }
535#endif
536
537 haddr = addr + env->tlb_table[mmu_idx][index].addend;
538 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
539}
540#endif /* DATA_SIZE > 1 */
541
542void
543glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
544 DATA_TYPE val, int mmu_idx)
545{
546 helper_te_st_name(env, addr, val, mmu_idx, GETRA());
547}
548
549#endif /* !defined(SOFTMMU_CODE_ACCESS) */
550
551#undef READ_ACCESS_TYPE
552#undef SHIFT
553#undef DATA_TYPE
554#undef SUFFIX
555#undef LSUFFIX
556#undef DATA_SIZE
557#undef ADDR_READ
558#undef WORD_TYPE
559#undef SDATA_TYPE
560#undef USUFFIX
561#undef SSUFFIX
562#undef BSWAP
563#undef TGT_BE
564#undef TGT_LE
565#undef CPU_BE
566#undef CPU_LE
567#undef helper_le_ld_name
568#undef helper_be_ld_name
569#undef helper_le_lds_name
570#undef helper_be_lds_name
571#undef helper_le_st_name
572#undef helper_be_st_name
573#undef helper_te_ld_name
574#undef helper_te_st_name