]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - target/arm/internals.h
nvic: Implement Security Attribution Unit registers
[mirror_qemu.git] / target / arm / internals.h
... / ...
CommitLineData
1/*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25#ifndef TARGET_ARM_INTERNALS_H
26#define TARGET_ARM_INTERNALS_H
27
28#include "hw/registerfields.h"
29
30/* register banks for CPU modes */
31#define BANK_USRSYS 0
32#define BANK_SVC 1
33#define BANK_ABT 2
34#define BANK_UND 3
35#define BANK_IRQ 4
36#define BANK_FIQ 5
37#define BANK_HYP 6
38#define BANK_MON 7
39
40static inline bool excp_is_internal(int excp)
41{
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
44 */
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
51 || excp == EXCP_SEMIHOST;
52}
53
54/* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
56 */
57#define GTIMER_SCALE 16
58
59/* Bit definitions for the v7M CONTROL register */
60FIELD(V7M_CONTROL, NPRIV, 0, 1)
61FIELD(V7M_CONTROL, SPSEL, 1, 1)
62FIELD(V7M_CONTROL, FPCA, 2, 1)
63
64/* Bit definitions for v7M exception return payload */
65FIELD(V7M_EXCRET, ES, 0, 1)
66FIELD(V7M_EXCRET, RES0, 1, 1)
67FIELD(V7M_EXCRET, SPSEL, 2, 1)
68FIELD(V7M_EXCRET, MODE, 3, 1)
69FIELD(V7M_EXCRET, FTYPE, 4, 1)
70FIELD(V7M_EXCRET, DCRS, 5, 1)
71FIELD(V7M_EXCRET, S, 6, 1)
72FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
73
74/*
75 * For AArch64, map a given EL to an index in the banked_spsr array.
76 * Note that this mapping and the AArch32 mapping defined in bank_number()
77 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
78 * mandated mapping between each other.
79 */
80static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
81{
82 static const unsigned int map[4] = {
83 [1] = BANK_SVC, /* EL1. */
84 [2] = BANK_HYP, /* EL2. */
85 [3] = BANK_MON, /* EL3. */
86 };
87 assert(el >= 1 && el <= 3);
88 return map[el];
89}
90
91/* Map CPU modes onto saved register banks. */
92static inline int bank_number(int mode)
93{
94 switch (mode) {
95 case ARM_CPU_MODE_USR:
96 case ARM_CPU_MODE_SYS:
97 return BANK_USRSYS;
98 case ARM_CPU_MODE_SVC:
99 return BANK_SVC;
100 case ARM_CPU_MODE_ABT:
101 return BANK_ABT;
102 case ARM_CPU_MODE_UND:
103 return BANK_UND;
104 case ARM_CPU_MODE_IRQ:
105 return BANK_IRQ;
106 case ARM_CPU_MODE_FIQ:
107 return BANK_FIQ;
108 case ARM_CPU_MODE_HYP:
109 return BANK_HYP;
110 case ARM_CPU_MODE_MON:
111 return BANK_MON;
112 }
113 g_assert_not_reached();
114}
115
116void switch_mode(CPUARMState *, int);
117void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
118void arm_translate_init(void);
119
120enum arm_fprounding {
121 FPROUNDING_TIEEVEN,
122 FPROUNDING_POSINF,
123 FPROUNDING_NEGINF,
124 FPROUNDING_ZERO,
125 FPROUNDING_TIEAWAY,
126 FPROUNDING_ODD
127};
128
129int arm_rmode_to_sf(int rmode);
130
131static inline void aarch64_save_sp(CPUARMState *env, int el)
132{
133 if (env->pstate & PSTATE_SP) {
134 env->sp_el[el] = env->xregs[31];
135 } else {
136 env->sp_el[0] = env->xregs[31];
137 }
138}
139
140static inline void aarch64_restore_sp(CPUARMState *env, int el)
141{
142 if (env->pstate & PSTATE_SP) {
143 env->xregs[31] = env->sp_el[el];
144 } else {
145 env->xregs[31] = env->sp_el[0];
146 }
147}
148
149static inline void update_spsel(CPUARMState *env, uint32_t imm)
150{
151 unsigned int cur_el = arm_current_el(env);
152 /* Update PSTATE SPSel bit; this requires us to update the
153 * working stack pointer in xregs[31].
154 */
155 if (!((imm ^ env->pstate) & PSTATE_SP)) {
156 return;
157 }
158 aarch64_save_sp(env, cur_el);
159 env->pstate = deposit32(env->pstate, 0, 1, imm);
160
161 /* We rely on illegal updates to SPsel from EL0 to get trapped
162 * at translation time.
163 */
164 assert(cur_el >= 1 && cur_el <= 3);
165 aarch64_restore_sp(env, cur_el);
166}
167
168/*
169 * arm_pamax
170 * @cpu: ARMCPU
171 *
172 * Returns the implementation defined bit-width of physical addresses.
173 * The ARMv8 reference manuals refer to this as PAMax().
174 */
175static inline unsigned int arm_pamax(ARMCPU *cpu)
176{
177 static const unsigned int pamax_map[] = {
178 [0] = 32,
179 [1] = 36,
180 [2] = 40,
181 [3] = 42,
182 [4] = 44,
183 [5] = 48,
184 };
185 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
186
187 /* id_aa64mmfr0 is a read-only register so values outside of the
188 * supported mappings can be considered an implementation error. */
189 assert(parange < ARRAY_SIZE(pamax_map));
190 return pamax_map[parange];
191}
192
193/* Return true if extended addresses are enabled.
194 * This is always the case if our translation regime is 64 bit,
195 * but depends on TTBCR.EAE for 32 bit.
196 */
197static inline bool extended_addresses_enabled(CPUARMState *env)
198{
199 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
200 return arm_el_is_aa64(env, 1) ||
201 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
202}
203
204/* Valid Syndrome Register EC field values */
205enum arm_exception_class {
206 EC_UNCATEGORIZED = 0x00,
207 EC_WFX_TRAP = 0x01,
208 EC_CP15RTTRAP = 0x03,
209 EC_CP15RRTTRAP = 0x04,
210 EC_CP14RTTRAP = 0x05,
211 EC_CP14DTTRAP = 0x06,
212 EC_ADVSIMDFPACCESSTRAP = 0x07,
213 EC_FPIDTRAP = 0x08,
214 EC_CP14RRTTRAP = 0x0c,
215 EC_ILLEGALSTATE = 0x0e,
216 EC_AA32_SVC = 0x11,
217 EC_AA32_HVC = 0x12,
218 EC_AA32_SMC = 0x13,
219 EC_AA64_SVC = 0x15,
220 EC_AA64_HVC = 0x16,
221 EC_AA64_SMC = 0x17,
222 EC_SYSTEMREGISTERTRAP = 0x18,
223 EC_INSNABORT = 0x20,
224 EC_INSNABORT_SAME_EL = 0x21,
225 EC_PCALIGNMENT = 0x22,
226 EC_DATAABORT = 0x24,
227 EC_DATAABORT_SAME_EL = 0x25,
228 EC_SPALIGNMENT = 0x26,
229 EC_AA32_FPTRAP = 0x28,
230 EC_AA64_FPTRAP = 0x2c,
231 EC_SERROR = 0x2f,
232 EC_BREAKPOINT = 0x30,
233 EC_BREAKPOINT_SAME_EL = 0x31,
234 EC_SOFTWARESTEP = 0x32,
235 EC_SOFTWARESTEP_SAME_EL = 0x33,
236 EC_WATCHPOINT = 0x34,
237 EC_WATCHPOINT_SAME_EL = 0x35,
238 EC_AA32_BKPT = 0x38,
239 EC_VECTORCATCH = 0x3a,
240 EC_AA64_BKPT = 0x3c,
241};
242
243#define ARM_EL_EC_SHIFT 26
244#define ARM_EL_IL_SHIFT 25
245#define ARM_EL_ISV_SHIFT 24
246#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
247#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
248
249/* Utility functions for constructing various kinds of syndrome value.
250 * Note that in general we follow the AArch64 syndrome values; in a
251 * few cases the value in HSR for exceptions taken to AArch32 Hyp
252 * mode differs slightly, so if we ever implemented Hyp mode then the
253 * syndrome value would need some massaging on exception entry.
254 * (One example of this is that AArch64 defaults to IL bit set for
255 * exceptions which don't specifically indicate information about the
256 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
257 */
258static inline uint32_t syn_uncategorized(void)
259{
260 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
261}
262
263static inline uint32_t syn_aa64_svc(uint32_t imm16)
264{
265 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
266}
267
268static inline uint32_t syn_aa64_hvc(uint32_t imm16)
269{
270 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
271}
272
273static inline uint32_t syn_aa64_smc(uint32_t imm16)
274{
275 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
276}
277
278static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
279{
280 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
281 | (is_16bit ? 0 : ARM_EL_IL);
282}
283
284static inline uint32_t syn_aa32_hvc(uint32_t imm16)
285{
286 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
287}
288
289static inline uint32_t syn_aa32_smc(void)
290{
291 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
292}
293
294static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
295{
296 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
297}
298
299static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
300{
301 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
302 | (is_16bit ? 0 : ARM_EL_IL);
303}
304
305static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
306 int crn, int crm, int rt,
307 int isread)
308{
309 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
310 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
311 | (crm << 1) | isread;
312}
313
314static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
315 int crn, int crm, int rt, int isread,
316 bool is_16bit)
317{
318 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
319 | (is_16bit ? 0 : ARM_EL_IL)
320 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
321 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
322}
323
324static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
325 int crn, int crm, int rt, int isread,
326 bool is_16bit)
327{
328 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
329 | (is_16bit ? 0 : ARM_EL_IL)
330 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
331 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
332}
333
334static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
335 int rt, int rt2, int isread,
336 bool is_16bit)
337{
338 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
339 | (is_16bit ? 0 : ARM_EL_IL)
340 | (cv << 24) | (cond << 20) | (opc1 << 16)
341 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
342}
343
344static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
345 int rt, int rt2, int isread,
346 bool is_16bit)
347{
348 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
349 | (is_16bit ? 0 : ARM_EL_IL)
350 | (cv << 24) | (cond << 20) | (opc1 << 16)
351 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
352}
353
354static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
355{
356 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
357 | (is_16bit ? 0 : ARM_EL_IL)
358 | (cv << 24) | (cond << 20);
359}
360
361static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
362{
363 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
364 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
365}
366
367static inline uint32_t syn_data_abort_no_iss(int same_el,
368 int ea, int cm, int s1ptw,
369 int wnr, int fsc)
370{
371 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
372 | ARM_EL_IL
373 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
374}
375
376static inline uint32_t syn_data_abort_with_iss(int same_el,
377 int sas, int sse, int srt,
378 int sf, int ar,
379 int ea, int cm, int s1ptw,
380 int wnr, int fsc,
381 bool is_16bit)
382{
383 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
384 | (is_16bit ? 0 : ARM_EL_IL)
385 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
386 | (sf << 15) | (ar << 14)
387 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
388}
389
390static inline uint32_t syn_swstep(int same_el, int isv, int ex)
391{
392 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
393 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
394}
395
396static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
397{
398 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
399 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
400}
401
402static inline uint32_t syn_breakpoint(int same_el)
403{
404 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
405 | ARM_EL_IL | 0x22;
406}
407
408static inline uint32_t syn_wfx(int cv, int cond, int ti)
409{
410 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
411 (cv << 24) | (cond << 20) | ti;
412}
413
414/* Update a QEMU watchpoint based on the information the guest has set in the
415 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
416 */
417void hw_watchpoint_update(ARMCPU *cpu, int n);
418/* Update the QEMU watchpoints for every guest watchpoint. This does a
419 * complete delete-and-reinstate of the QEMU watchpoint list and so is
420 * suitable for use after migration or on reset.
421 */
422void hw_watchpoint_update_all(ARMCPU *cpu);
423/* Update a QEMU breakpoint based on the information the guest has set in the
424 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
425 */
426void hw_breakpoint_update(ARMCPU *cpu, int n);
427/* Update the QEMU breakpoints for every guest breakpoint. This does a
428 * complete delete-and-reinstate of the QEMU breakpoint list and so is
429 * suitable for use after migration or on reset.
430 */
431void hw_breakpoint_update_all(ARMCPU *cpu);
432
433/* Callback function for checking if a watchpoint should trigger. */
434bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
435
436/* Adjust addresses (in BE32 mode) before testing against watchpoint
437 * addresses.
438 */
439vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
440
441/* Callback function for when a watchpoint or breakpoint triggers. */
442void arm_debug_excp_handler(CPUState *cs);
443
444#ifdef CONFIG_USER_ONLY
445static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
446{
447 return false;
448}
449#else
450/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
451bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
452/* Actually handle a PSCI call */
453void arm_handle_psci_call(ARMCPU *cpu);
454#endif
455
456/**
457 * arm_clear_exclusive: clear the exclusive monitor
458 * @env: CPU env
459 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
460 */
461static inline void arm_clear_exclusive(CPUARMState *env)
462{
463 env->exclusive_addr = -1;
464}
465
466/**
467 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
468 * @s2addr: Address that caused a fault at stage 2
469 * @stage2: True if we faulted at stage 2
470 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
471 * @ea: True if we should set the EA (external abort type) bit in syndrome
472 */
473typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
474struct ARMMMUFaultInfo {
475 target_ulong s2addr;
476 bool stage2;
477 bool s1ptw;
478 bool ea;
479};
480
481/* Do a page table walk and add page to TLB if possible */
482bool arm_tlb_fill(CPUState *cpu, vaddr address,
483 MMUAccessType access_type, int mmu_idx,
484 uint32_t *fsr, ARMMMUFaultInfo *fi);
485
486/* Return true if the stage 1 translation regime is using LPAE format page
487 * tables */
488bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
489
490/* Raise a data fault alignment exception for the specified virtual address */
491void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
492 MMUAccessType access_type,
493 int mmu_idx, uintptr_t retaddr);
494
495/* arm_cpu_do_transaction_failed: handle a memory system error response
496 * (eg "no device/memory present at address") by raising an external abort
497 * exception
498 */
499void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
500 vaddr addr, unsigned size,
501 MMUAccessType access_type,
502 int mmu_idx, MemTxAttrs attrs,
503 MemTxResult response, uintptr_t retaddr);
504
505/* Call the EL change hook if one has been registered */
506static inline void arm_call_el_change_hook(ARMCPU *cpu)
507{
508 if (cpu->el_change_hook) {
509 cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
510 }
511}
512
513/* Return true if this address translation regime is secure */
514static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
515{
516 switch (mmu_idx) {
517 case ARMMMUIdx_S12NSE0:
518 case ARMMMUIdx_S12NSE1:
519 case ARMMMUIdx_S1NSE0:
520 case ARMMMUIdx_S1NSE1:
521 case ARMMMUIdx_S1E2:
522 case ARMMMUIdx_S2NS:
523 case ARMMMUIdx_MPriv:
524 case ARMMMUIdx_MNegPri:
525 case ARMMMUIdx_MUser:
526 return false;
527 case ARMMMUIdx_S1E3:
528 case ARMMMUIdx_S1SE0:
529 case ARMMMUIdx_S1SE1:
530 case ARMMMUIdx_MSPriv:
531 case ARMMMUIdx_MSNegPri:
532 case ARMMMUIdx_MSUser:
533 return true;
534 default:
535 g_assert_not_reached();
536 }
537}
538
539#endif