]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm/kernel/setup.c
ARM: 8006/1: Remove redundant code
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kernel / setup.c
1 /*
2 * linux/arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_platform.h>
22 #include <linux/init.h>
23 #include <linux/kexec.h>
24 #include <linux/of_fdt.h>
25 #include <linux/cpu.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp.h>
28 #include <linux/proc_fs.h>
29 #include <linux/memblock.h>
30 #include <linux/bug.h>
31 #include <linux/compiler.h>
32 #include <linux/sort.h>
33
34 #include <asm/unified.h>
35 #include <asm/cp15.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/elf.h>
39 #include <asm/procinfo.h>
40 #include <asm/psci.h>
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 #include <asm/smp_plat.h>
44 #include <asm/mach-types.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cachetype.h>
47 #include <asm/tlbflush.h>
48
49 #include <asm/prom.h>
50 #include <asm/mach/arch.h>
51 #include <asm/mach/irq.h>
52 #include <asm/mach/time.h>
53 #include <asm/system_info.h>
54 #include <asm/system_misc.h>
55 #include <asm/traps.h>
56 #include <asm/unwind.h>
57 #include <asm/memblock.h>
58 #include <asm/virt.h>
59
60 #include "atags.h"
61
62
63 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
64 char fpe_type[8];
65
66 static int __init fpe_setup(char *line)
67 {
68 memcpy(fpe_type, line, 8);
69 return 1;
70 }
71
72 __setup("fpe=", fpe_setup);
73 #endif
74
75 extern void paging_init(const struct machine_desc *desc);
76 extern void early_paging_init(const struct machine_desc *,
77 struct proc_info_list *);
78 extern void sanity_check_meminfo(void);
79 extern enum reboot_mode reboot_mode;
80 extern void setup_dma_zone(const struct machine_desc *desc);
81
82 unsigned int processor_id;
83 EXPORT_SYMBOL(processor_id);
84 unsigned int __machine_arch_type __read_mostly;
85 EXPORT_SYMBOL(__machine_arch_type);
86 unsigned int cacheid __read_mostly;
87 EXPORT_SYMBOL(cacheid);
88
89 unsigned int __atags_pointer __initdata;
90
91 unsigned int system_rev;
92 EXPORT_SYMBOL(system_rev);
93
94 unsigned int system_serial_low;
95 EXPORT_SYMBOL(system_serial_low);
96
97 unsigned int system_serial_high;
98 EXPORT_SYMBOL(system_serial_high);
99
100 unsigned int elf_hwcap __read_mostly;
101 EXPORT_SYMBOL(elf_hwcap);
102
103
104 #ifdef MULTI_CPU
105 struct processor processor __read_mostly;
106 #endif
107 #ifdef MULTI_TLB
108 struct cpu_tlb_fns cpu_tlb __read_mostly;
109 #endif
110 #ifdef MULTI_USER
111 struct cpu_user_fns cpu_user __read_mostly;
112 #endif
113 #ifdef MULTI_CACHE
114 struct cpu_cache_fns cpu_cache __read_mostly;
115 #endif
116 #ifdef CONFIG_OUTER_CACHE
117 struct outer_cache_fns outer_cache __read_mostly;
118 EXPORT_SYMBOL(outer_cache);
119 #endif
120
121 /*
122 * Cached cpu_architecture() result for use by assembler code.
123 * C code should use the cpu_architecture() function instead of accessing this
124 * variable directly.
125 */
126 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
127
128 struct stack {
129 u32 irq[3];
130 u32 abt[3];
131 u32 und[3];
132 } ____cacheline_aligned;
133
134 #ifndef CONFIG_CPU_V7M
135 static struct stack stacks[NR_CPUS];
136 #endif
137
138 char elf_platform[ELF_PLATFORM_SIZE];
139 EXPORT_SYMBOL(elf_platform);
140
141 static const char *cpu_name;
142 static const char *machine_name;
143 static char __initdata cmd_line[COMMAND_LINE_SIZE];
144 const struct machine_desc *machine_desc __initdata;
145
146 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
147 #define ENDIANNESS ((char)endian_test.l)
148
149 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
150
151 /*
152 * Standard memory resources
153 */
154 static struct resource mem_res[] = {
155 {
156 .name = "Video RAM",
157 .start = 0,
158 .end = 0,
159 .flags = IORESOURCE_MEM
160 },
161 {
162 .name = "Kernel code",
163 .start = 0,
164 .end = 0,
165 .flags = IORESOURCE_MEM
166 },
167 {
168 .name = "Kernel data",
169 .start = 0,
170 .end = 0,
171 .flags = IORESOURCE_MEM
172 }
173 };
174
175 #define video_ram mem_res[0]
176 #define kernel_code mem_res[1]
177 #define kernel_data mem_res[2]
178
179 static struct resource io_res[] = {
180 {
181 .name = "reserved",
182 .start = 0x3bc,
183 .end = 0x3be,
184 .flags = IORESOURCE_IO | IORESOURCE_BUSY
185 },
186 {
187 .name = "reserved",
188 .start = 0x378,
189 .end = 0x37f,
190 .flags = IORESOURCE_IO | IORESOURCE_BUSY
191 },
192 {
193 .name = "reserved",
194 .start = 0x278,
195 .end = 0x27f,
196 .flags = IORESOURCE_IO | IORESOURCE_BUSY
197 }
198 };
199
200 #define lp0 io_res[0]
201 #define lp1 io_res[1]
202 #define lp2 io_res[2]
203
204 static const char *proc_arch[] = {
205 "undefined/unknown",
206 "3",
207 "4",
208 "4T",
209 "5",
210 "5T",
211 "5TE",
212 "5TEJ",
213 "6TEJ",
214 "7",
215 "7M",
216 "?(12)",
217 "?(13)",
218 "?(14)",
219 "?(15)",
220 "?(16)",
221 "?(17)",
222 };
223
224 #ifdef CONFIG_CPU_V7M
225 static int __get_cpu_architecture(void)
226 {
227 return CPU_ARCH_ARMv7M;
228 }
229 #else
230 static int __get_cpu_architecture(void)
231 {
232 int cpu_arch;
233
234 if ((read_cpuid_id() & 0x0008f000) == 0) {
235 cpu_arch = CPU_ARCH_UNKNOWN;
236 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
237 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
238 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
239 cpu_arch = (read_cpuid_id() >> 16) & 7;
240 if (cpu_arch)
241 cpu_arch += CPU_ARCH_ARMv3;
242 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
243 unsigned int mmfr0;
244
245 /* Revised CPUID format. Read the Memory Model Feature
246 * Register 0 and check for VMSAv7 or PMSAv7 */
247 asm("mrc p15, 0, %0, c0, c1, 4"
248 : "=r" (mmfr0));
249 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
250 (mmfr0 & 0x000000f0) >= 0x00000030)
251 cpu_arch = CPU_ARCH_ARMv7;
252 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
253 (mmfr0 & 0x000000f0) == 0x00000020)
254 cpu_arch = CPU_ARCH_ARMv6;
255 else
256 cpu_arch = CPU_ARCH_UNKNOWN;
257 } else
258 cpu_arch = CPU_ARCH_UNKNOWN;
259
260 return cpu_arch;
261 }
262 #endif
263
264 int __pure cpu_architecture(void)
265 {
266 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
267
268 return __cpu_architecture;
269 }
270
271 static int cpu_has_aliasing_icache(unsigned int arch)
272 {
273 int aliasing_icache;
274 unsigned int id_reg, num_sets, line_size;
275
276 /* PIPT caches never alias. */
277 if (icache_is_pipt())
278 return 0;
279
280 /* arch specifies the register format */
281 switch (arch) {
282 case CPU_ARCH_ARMv7:
283 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
284 : /* No output operands */
285 : "r" (1));
286 isb();
287 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
288 : "=r" (id_reg));
289 line_size = 4 << ((id_reg & 0x7) + 2);
290 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
291 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
292 break;
293 case CPU_ARCH_ARMv6:
294 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
295 break;
296 default:
297 /* I-cache aliases will be handled by D-cache aliasing code */
298 aliasing_icache = 0;
299 }
300
301 return aliasing_icache;
302 }
303
304 static void __init cacheid_init(void)
305 {
306 unsigned int arch = cpu_architecture();
307
308 if (arch == CPU_ARCH_ARMv7M) {
309 cacheid = 0;
310 } else if (arch >= CPU_ARCH_ARMv6) {
311 unsigned int cachetype = read_cpuid_cachetype();
312 if ((cachetype & (7 << 29)) == 4 << 29) {
313 /* ARMv7 register format */
314 arch = CPU_ARCH_ARMv7;
315 cacheid = CACHEID_VIPT_NONALIASING;
316 switch (cachetype & (3 << 14)) {
317 case (1 << 14):
318 cacheid |= CACHEID_ASID_TAGGED;
319 break;
320 case (3 << 14):
321 cacheid |= CACHEID_PIPT;
322 break;
323 }
324 } else {
325 arch = CPU_ARCH_ARMv6;
326 if (cachetype & (1 << 23))
327 cacheid = CACHEID_VIPT_ALIASING;
328 else
329 cacheid = CACHEID_VIPT_NONALIASING;
330 }
331 if (cpu_has_aliasing_icache(arch))
332 cacheid |= CACHEID_VIPT_I_ALIASING;
333 } else {
334 cacheid = CACHEID_VIVT;
335 }
336
337 printk("CPU: %s data cache, %s instruction cache\n",
338 cache_is_vivt() ? "VIVT" :
339 cache_is_vipt_aliasing() ? "VIPT aliasing" :
340 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
341 cache_is_vivt() ? "VIVT" :
342 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
343 icache_is_vipt_aliasing() ? "VIPT aliasing" :
344 icache_is_pipt() ? "PIPT" :
345 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
346 }
347
348 /*
349 * These functions re-use the assembly code in head.S, which
350 * already provide the required functionality.
351 */
352 extern struct proc_info_list *lookup_processor_type(unsigned int);
353
354 void __init early_print(const char *str, ...)
355 {
356 extern void printascii(const char *);
357 char buf[256];
358 va_list ap;
359
360 va_start(ap, str);
361 vsnprintf(buf, sizeof(buf), str, ap);
362 va_end(ap);
363
364 #ifdef CONFIG_DEBUG_LL
365 printascii(buf);
366 #endif
367 printk("%s", buf);
368 }
369
370 static void __init cpuid_init_hwcaps(void)
371 {
372 unsigned int divide_instrs, vmsa;
373
374 if (cpu_architecture() < CPU_ARCH_ARMv7)
375 return;
376
377 divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
378
379 switch (divide_instrs) {
380 case 2:
381 elf_hwcap |= HWCAP_IDIVA;
382 case 1:
383 elf_hwcap |= HWCAP_IDIVT;
384 }
385
386 /* LPAE implies atomic ldrd/strd instructions */
387 vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
388 if (vmsa >= 5)
389 elf_hwcap |= HWCAP_LPAE;
390 }
391
392 static void __init feat_v6_fixup(void)
393 {
394 int id = read_cpuid_id();
395
396 if ((id & 0xff0f0000) != 0x41070000)
397 return;
398
399 /*
400 * HWCAP_TLS is available only on 1136 r1p0 and later,
401 * see also kuser_get_tls_init.
402 */
403 if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
404 elf_hwcap &= ~HWCAP_TLS;
405 }
406
407 /*
408 * cpu_init - initialise one CPU.
409 *
410 * cpu_init sets up the per-CPU stacks.
411 */
412 void notrace cpu_init(void)
413 {
414 #ifndef CONFIG_CPU_V7M
415 unsigned int cpu = smp_processor_id();
416 struct stack *stk = &stacks[cpu];
417
418 if (cpu >= NR_CPUS) {
419 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
420 BUG();
421 }
422
423 /*
424 * This only works on resume and secondary cores. For booting on the
425 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
426 */
427 set_my_cpu_offset(per_cpu_offset(cpu));
428
429 cpu_proc_init();
430
431 /*
432 * Define the placement constraint for the inline asm directive below.
433 * In Thumb-2, msr with an immediate value is not allowed.
434 */
435 #ifdef CONFIG_THUMB2_KERNEL
436 #define PLC "r"
437 #else
438 #define PLC "I"
439 #endif
440
441 /*
442 * setup stacks for re-entrant exception handlers
443 */
444 __asm__ (
445 "msr cpsr_c, %1\n\t"
446 "add r14, %0, %2\n\t"
447 "mov sp, r14\n\t"
448 "msr cpsr_c, %3\n\t"
449 "add r14, %0, %4\n\t"
450 "mov sp, r14\n\t"
451 "msr cpsr_c, %5\n\t"
452 "add r14, %0, %6\n\t"
453 "mov sp, r14\n\t"
454 "msr cpsr_c, %7"
455 :
456 : "r" (stk),
457 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
458 "I" (offsetof(struct stack, irq[0])),
459 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
460 "I" (offsetof(struct stack, abt[0])),
461 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
462 "I" (offsetof(struct stack, und[0])),
463 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
464 : "r14");
465 #endif
466 }
467
468 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
469
470 void __init smp_setup_processor_id(void)
471 {
472 int i;
473 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
474 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
475
476 cpu_logical_map(0) = cpu;
477 for (i = 1; i < nr_cpu_ids; ++i)
478 cpu_logical_map(i) = i == cpu ? 0 : i;
479
480 /*
481 * clear __my_cpu_offset on boot CPU to avoid hang caused by
482 * using percpu variable early, for example, lockdep will
483 * access percpu variable inside lock_release
484 */
485 set_my_cpu_offset(0);
486
487 printk(KERN_INFO "Booting Linux on physical CPU 0x%x\n", mpidr);
488 }
489
490 struct mpidr_hash mpidr_hash;
491 #ifdef CONFIG_SMP
492 /**
493 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
494 * level in order to build a linear index from an
495 * MPIDR value. Resulting algorithm is a collision
496 * free hash carried out through shifting and ORing
497 */
498 static void __init smp_build_mpidr_hash(void)
499 {
500 u32 i, affinity;
501 u32 fs[3], bits[3], ls, mask = 0;
502 /*
503 * Pre-scan the list of MPIDRS and filter out bits that do
504 * not contribute to affinity levels, ie they never toggle.
505 */
506 for_each_possible_cpu(i)
507 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
508 pr_debug("mask of set bits 0x%x\n", mask);
509 /*
510 * Find and stash the last and first bit set at all affinity levels to
511 * check how many bits are required to represent them.
512 */
513 for (i = 0; i < 3; i++) {
514 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
515 /*
516 * Find the MSB bit and LSB bits position
517 * to determine how many bits are required
518 * to express the affinity level.
519 */
520 ls = fls(affinity);
521 fs[i] = affinity ? ffs(affinity) - 1 : 0;
522 bits[i] = ls - fs[i];
523 }
524 /*
525 * An index can be created from the MPIDR by isolating the
526 * significant bits at each affinity level and by shifting
527 * them in order to compress the 24 bits values space to a
528 * compressed set of values. This is equivalent to hashing
529 * the MPIDR through shifting and ORing. It is a collision free
530 * hash though not minimal since some levels might contain a number
531 * of CPUs that is not an exact power of 2 and their bit
532 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
533 */
534 mpidr_hash.shift_aff[0] = fs[0];
535 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
536 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
537 (bits[1] + bits[0]);
538 mpidr_hash.mask = mask;
539 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
540 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
541 mpidr_hash.shift_aff[0],
542 mpidr_hash.shift_aff[1],
543 mpidr_hash.shift_aff[2],
544 mpidr_hash.mask,
545 mpidr_hash.bits);
546 /*
547 * 4x is an arbitrary value used to warn on a hash table much bigger
548 * than expected on most systems.
549 */
550 if (mpidr_hash_size() > 4 * num_possible_cpus())
551 pr_warn("Large number of MPIDR hash buckets detected\n");
552 sync_cache_w(&mpidr_hash);
553 }
554 #endif
555
556 static void __init setup_processor(void)
557 {
558 struct proc_info_list *list;
559
560 /*
561 * locate processor in the list of supported processor
562 * types. The linker builds this table for us from the
563 * entries in arch/arm/mm/proc-*.S
564 */
565 list = lookup_processor_type(read_cpuid_id());
566 if (!list) {
567 printk("CPU configuration botched (ID %08x), unable "
568 "to continue.\n", read_cpuid_id());
569 while (1);
570 }
571
572 cpu_name = list->cpu_name;
573 __cpu_architecture = __get_cpu_architecture();
574
575 #ifdef MULTI_CPU
576 processor = *list->proc;
577 #endif
578 #ifdef MULTI_TLB
579 cpu_tlb = *list->tlb;
580 #endif
581 #ifdef MULTI_USER
582 cpu_user = *list->user;
583 #endif
584 #ifdef MULTI_CACHE
585 cpu_cache = *list->cache;
586 #endif
587
588 printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
589 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
590 proc_arch[cpu_architecture()], cr_alignment);
591
592 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
593 list->arch_name, ENDIANNESS);
594 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
595 list->elf_name, ENDIANNESS);
596 elf_hwcap = list->elf_hwcap;
597
598 cpuid_init_hwcaps();
599
600 #ifndef CONFIG_ARM_THUMB
601 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
602 #endif
603
604 erratum_a15_798181_init();
605
606 feat_v6_fixup();
607
608 cacheid_init();
609 cpu_init();
610 }
611
612 void __init dump_machine_table(void)
613 {
614 const struct machine_desc *p;
615
616 early_print("Available machine support:\n\nID (hex)\tNAME\n");
617 for_each_machine_desc(p)
618 early_print("%08x\t%s\n", p->nr, p->name);
619
620 early_print("\nPlease check your kernel config and/or bootloader.\n");
621
622 while (true)
623 /* can't use cpu_relax() here as it may require MMU setup */;
624 }
625
626 int __init arm_add_memory(u64 start, u64 size)
627 {
628 struct membank *bank = &meminfo.bank[meminfo.nr_banks];
629 u64 aligned_start;
630
631 if (meminfo.nr_banks >= NR_BANKS) {
632 printk(KERN_CRIT "NR_BANKS too low, "
633 "ignoring memory at 0x%08llx\n", (long long)start);
634 return -EINVAL;
635 }
636
637 /*
638 * Ensure that start/size are aligned to a page boundary.
639 * Size is appropriately rounded down, start is rounded up.
640 */
641 size -= start & ~PAGE_MASK;
642 aligned_start = PAGE_ALIGN(start);
643
644 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
645 if (aligned_start > ULONG_MAX) {
646 printk(KERN_CRIT "Ignoring memory at 0x%08llx outside "
647 "32-bit physical address space\n", (long long)start);
648 return -EINVAL;
649 }
650
651 if (aligned_start + size > ULONG_MAX) {
652 printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
653 "32-bit physical address space\n", (long long)start);
654 /*
655 * To ensure bank->start + bank->size is representable in
656 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
657 * This means we lose a page after masking.
658 */
659 size = ULONG_MAX - aligned_start;
660 }
661 #endif
662
663 bank->start = aligned_start;
664 bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
665
666 /*
667 * Check whether this memory region has non-zero size or
668 * invalid node number.
669 */
670 if (bank->size == 0)
671 return -EINVAL;
672
673 meminfo.nr_banks++;
674 return 0;
675 }
676
677 /*
678 * Pick out the memory size. We look for mem=size@start,
679 * where start and size are "size[KkMm]"
680 */
681 static int __init early_mem(char *p)
682 {
683 static int usermem __initdata = 0;
684 u64 size;
685 u64 start;
686 char *endp;
687
688 /*
689 * If the user specifies memory size, we
690 * blow away any automatically generated
691 * size.
692 */
693 if (usermem == 0) {
694 usermem = 1;
695 meminfo.nr_banks = 0;
696 }
697
698 start = PHYS_OFFSET;
699 size = memparse(p, &endp);
700 if (*endp == '@')
701 start = memparse(endp + 1, NULL);
702
703 arm_add_memory(start, size);
704
705 return 0;
706 }
707 early_param("mem", early_mem);
708
709 static void __init request_standard_resources(const struct machine_desc *mdesc)
710 {
711 struct memblock_region *region;
712 struct resource *res;
713
714 kernel_code.start = virt_to_phys(_text);
715 kernel_code.end = virt_to_phys(_etext - 1);
716 kernel_data.start = virt_to_phys(_sdata);
717 kernel_data.end = virt_to_phys(_end - 1);
718
719 for_each_memblock(memory, region) {
720 res = alloc_bootmem_low(sizeof(*res));
721 res->name = "System RAM";
722 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
723 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
724 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
725
726 request_resource(&iomem_resource, res);
727
728 if (kernel_code.start >= res->start &&
729 kernel_code.end <= res->end)
730 request_resource(res, &kernel_code);
731 if (kernel_data.start >= res->start &&
732 kernel_data.end <= res->end)
733 request_resource(res, &kernel_data);
734 }
735
736 if (mdesc->video_start) {
737 video_ram.start = mdesc->video_start;
738 video_ram.end = mdesc->video_end;
739 request_resource(&iomem_resource, &video_ram);
740 }
741
742 /*
743 * Some machines don't have the possibility of ever
744 * possessing lp0, lp1 or lp2
745 */
746 if (mdesc->reserve_lp0)
747 request_resource(&ioport_resource, &lp0);
748 if (mdesc->reserve_lp1)
749 request_resource(&ioport_resource, &lp1);
750 if (mdesc->reserve_lp2)
751 request_resource(&ioport_resource, &lp2);
752 }
753
754 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
755 struct screen_info screen_info = {
756 .orig_video_lines = 30,
757 .orig_video_cols = 80,
758 .orig_video_mode = 0,
759 .orig_video_ega_bx = 0,
760 .orig_video_isVGA = 1,
761 .orig_video_points = 8
762 };
763 #endif
764
765 static int __init customize_machine(void)
766 {
767 /*
768 * customizes platform devices, or adds new ones
769 * On DT based machines, we fall back to populating the
770 * machine from the device tree, if no callback is provided,
771 * otherwise we would always need an init_machine callback.
772 */
773 if (machine_desc->init_machine)
774 machine_desc->init_machine();
775 #ifdef CONFIG_OF
776 else
777 of_platform_populate(NULL, of_default_bus_match_table,
778 NULL, NULL);
779 #endif
780 return 0;
781 }
782 arch_initcall(customize_machine);
783
784 static int __init init_machine_late(void)
785 {
786 if (machine_desc->init_late)
787 machine_desc->init_late();
788 return 0;
789 }
790 late_initcall(init_machine_late);
791
792 #ifdef CONFIG_KEXEC
793 static inline unsigned long long get_total_mem(void)
794 {
795 unsigned long total;
796
797 total = max_low_pfn - min_low_pfn;
798 return total << PAGE_SHIFT;
799 }
800
801 /**
802 * reserve_crashkernel() - reserves memory are for crash kernel
803 *
804 * This function reserves memory area given in "crashkernel=" kernel command
805 * line parameter. The memory reserved is used by a dump capture kernel when
806 * primary kernel is crashing.
807 */
808 static void __init reserve_crashkernel(void)
809 {
810 unsigned long long crash_size, crash_base;
811 unsigned long long total_mem;
812 int ret;
813
814 total_mem = get_total_mem();
815 ret = parse_crashkernel(boot_command_line, total_mem,
816 &crash_size, &crash_base);
817 if (ret)
818 return;
819
820 ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
821 if (ret < 0) {
822 printk(KERN_WARNING "crashkernel reservation failed - "
823 "memory is in use (0x%lx)\n", (unsigned long)crash_base);
824 return;
825 }
826
827 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
828 "for crashkernel (System RAM: %ldMB)\n",
829 (unsigned long)(crash_size >> 20),
830 (unsigned long)(crash_base >> 20),
831 (unsigned long)(total_mem >> 20));
832
833 crashk_res.start = crash_base;
834 crashk_res.end = crash_base + crash_size - 1;
835 insert_resource(&iomem_resource, &crashk_res);
836 }
837 #else
838 static inline void reserve_crashkernel(void) {}
839 #endif /* CONFIG_KEXEC */
840
841 static int __init meminfo_cmp(const void *_a, const void *_b)
842 {
843 const struct membank *a = _a, *b = _b;
844 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
845 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
846 }
847
848 void __init hyp_mode_check(void)
849 {
850 #ifdef CONFIG_ARM_VIRT_EXT
851 sync_boot_mode();
852
853 if (is_hyp_mode_available()) {
854 pr_info("CPU: All CPU(s) started in HYP mode.\n");
855 pr_info("CPU: Virtualization extensions available.\n");
856 } else if (is_hyp_mode_mismatched()) {
857 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
858 __boot_cpu_mode & MODE_MASK);
859 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
860 } else
861 pr_info("CPU: All CPU(s) started in SVC mode.\n");
862 #endif
863 }
864
865 void __init setup_arch(char **cmdline_p)
866 {
867 const struct machine_desc *mdesc;
868
869 setup_processor();
870 mdesc = setup_machine_fdt(__atags_pointer);
871 if (!mdesc)
872 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
873 machine_desc = mdesc;
874 machine_name = mdesc->name;
875
876 setup_dma_zone(mdesc);
877
878 if (mdesc->reboot_mode != REBOOT_HARD)
879 reboot_mode = mdesc->reboot_mode;
880
881 init_mm.start_code = (unsigned long) _text;
882 init_mm.end_code = (unsigned long) _etext;
883 init_mm.end_data = (unsigned long) _edata;
884 init_mm.brk = (unsigned long) _end;
885
886 /* populate cmd_line too for later use, preserving boot_command_line */
887 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
888 *cmdline_p = cmd_line;
889
890 parse_early_param();
891
892 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
893
894 early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
895 sanity_check_meminfo();
896 arm_memblock_init(&meminfo, mdesc);
897
898 paging_init(mdesc);
899 request_standard_resources(mdesc);
900
901 if (mdesc->restart)
902 arm_pm_restart = mdesc->restart;
903
904 unflatten_device_tree();
905
906 arm_dt_init_cpu_maps();
907 psci_init();
908 #ifdef CONFIG_SMP
909 if (is_smp()) {
910 if (!mdesc->smp_init || !mdesc->smp_init()) {
911 if (psci_smp_available())
912 smp_set_ops(&psci_smp_ops);
913 else if (mdesc->smp)
914 smp_set_ops(mdesc->smp);
915 }
916 smp_init_cpus();
917 smp_build_mpidr_hash();
918 }
919 #endif
920
921 if (!is_smp())
922 hyp_mode_check();
923
924 reserve_crashkernel();
925
926 #ifdef CONFIG_MULTI_IRQ_HANDLER
927 handle_arch_irq = mdesc->handle_irq;
928 #endif
929
930 #ifdef CONFIG_VT
931 #if defined(CONFIG_VGA_CONSOLE)
932 conswitchp = &vga_con;
933 #elif defined(CONFIG_DUMMY_CONSOLE)
934 conswitchp = &dummy_con;
935 #endif
936 #endif
937
938 if (mdesc->init_early)
939 mdesc->init_early();
940 }
941
942
943 static int __init topology_init(void)
944 {
945 int cpu;
946
947 for_each_possible_cpu(cpu) {
948 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
949 cpuinfo->cpu.hotpluggable = 1;
950 register_cpu(&cpuinfo->cpu, cpu);
951 }
952
953 return 0;
954 }
955 subsys_initcall(topology_init);
956
957 #ifdef CONFIG_HAVE_PROC_CPU
958 static int __init proc_cpu_init(void)
959 {
960 struct proc_dir_entry *res;
961
962 res = proc_mkdir("cpu", NULL);
963 if (!res)
964 return -ENOMEM;
965 return 0;
966 }
967 fs_initcall(proc_cpu_init);
968 #endif
969
970 static const char *hwcap_str[] = {
971 "swp",
972 "half",
973 "thumb",
974 "26bit",
975 "fastmult",
976 "fpa",
977 "vfp",
978 "edsp",
979 "java",
980 "iwmmxt",
981 "crunch",
982 "thumbee",
983 "neon",
984 "vfpv3",
985 "vfpv3d16",
986 "tls",
987 "vfpv4",
988 "idiva",
989 "idivt",
990 "vfpd32",
991 "lpae",
992 "evtstrm",
993 NULL
994 };
995
996 static int c_show(struct seq_file *m, void *v)
997 {
998 int i, j;
999 u32 cpuid;
1000
1001 for_each_online_cpu(i) {
1002 /*
1003 * glibc reads /proc/cpuinfo to determine the number of
1004 * online processors, looking for lines beginning with
1005 * "processor". Give glibc what it expects.
1006 */
1007 seq_printf(m, "processor\t: %d\n", i);
1008 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1009 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1010 cpu_name, cpuid & 15, elf_platform);
1011
1012 /* dump out the processor features */
1013 seq_puts(m, "Features\t: ");
1014
1015 for (j = 0; hwcap_str[j]; j++)
1016 if (elf_hwcap & (1 << j))
1017 seq_printf(m, "%s ", hwcap_str[j]);
1018
1019 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1020 seq_printf(m, "CPU architecture: %s\n",
1021 proc_arch[cpu_architecture()]);
1022
1023 if ((cpuid & 0x0008f000) == 0x00000000) {
1024 /* pre-ARM7 */
1025 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1026 } else {
1027 if ((cpuid & 0x0008f000) == 0x00007000) {
1028 /* ARM7 */
1029 seq_printf(m, "CPU variant\t: 0x%02x\n",
1030 (cpuid >> 16) & 127);
1031 } else {
1032 /* post-ARM7 */
1033 seq_printf(m, "CPU variant\t: 0x%x\n",
1034 (cpuid >> 20) & 15);
1035 }
1036 seq_printf(m, "CPU part\t: 0x%03x\n",
1037 (cpuid >> 4) & 0xfff);
1038 }
1039 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1040 }
1041
1042 seq_printf(m, "Hardware\t: %s\n", machine_name);
1043 seq_printf(m, "Revision\t: %04x\n", system_rev);
1044 seq_printf(m, "Serial\t\t: %08x%08x\n",
1045 system_serial_high, system_serial_low);
1046
1047 return 0;
1048 }
1049
1050 static void *c_start(struct seq_file *m, loff_t *pos)
1051 {
1052 return *pos < 1 ? (void *)1 : NULL;
1053 }
1054
1055 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1056 {
1057 ++*pos;
1058 return NULL;
1059 }
1060
1061 static void c_stop(struct seq_file *m, void *v)
1062 {
1063 }
1064
1065 const struct seq_operations cpuinfo_op = {
1066 .start = c_start,
1067 .next = c_next,
1068 .stop = c_stop,
1069 .show = c_show
1070 };