]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm/kernel/smp.c
lib/decompress_unlz4.c: always set an error return code on failures
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49
50 /*
51 * as from 2.5, kernels no longer have an init_tasks structure
52 * so we need some other way of telling a new secondary core
53 * where to place its SVC stack
54 */
55 struct secondary_data secondary_data;
56
57 /*
58 * control for which core is the next to come out of the secondary
59 * boot "holding pen"
60 */
61 volatile int pen_release = -1;
62
63 enum ipi_msg_type {
64 IPI_WAKEUP,
65 IPI_TIMER,
66 IPI_RESCHEDULE,
67 IPI_CALL_FUNC,
68 IPI_CALL_FUNC_SINGLE,
69 IPI_CPU_STOP,
70 IPI_IRQ_WORK,
71 IPI_COMPLETION,
72 };
73
74 static DECLARE_COMPLETION(cpu_running);
75
76 static struct smp_operations smp_ops;
77
78 void __init smp_set_ops(struct smp_operations *ops)
79 {
80 if (ops)
81 smp_ops = *ops;
82 };
83
84 static unsigned long get_arch_pgd(pgd_t *pgd)
85 {
86 phys_addr_t pgdir = virt_to_idmap(pgd);
87 BUG_ON(pgdir & ARCH_PGD_MASK);
88 return pgdir >> ARCH_PGD_SHIFT;
89 }
90
91 int __cpu_up(unsigned int cpu, struct task_struct *idle)
92 {
93 int ret;
94
95 /*
96 * We need to tell the secondary core where to find
97 * its stack and the page tables.
98 */
99 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
100 #ifdef CONFIG_ARM_MPU
101 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
102 #endif
103
104 #ifdef CONFIG_MMU
105 secondary_data.pgdir = get_arch_pgd(idmap_pgd);
106 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
107 #endif
108 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
109 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
110
111 /*
112 * Now bring the CPU into our world.
113 */
114 ret = boot_secondary(cpu, idle);
115 if (ret == 0) {
116 /*
117 * CPU was successfully started, wait for it
118 * to come online or time out.
119 */
120 wait_for_completion_timeout(&cpu_running,
121 msecs_to_jiffies(1000));
122
123 if (!cpu_online(cpu)) {
124 pr_crit("CPU%u: failed to come online\n", cpu);
125 ret = -EIO;
126 }
127 } else {
128 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
129 }
130
131
132 memset(&secondary_data, 0, sizeof(secondary_data));
133 return ret;
134 }
135
136 /* platform specific SMP operations */
137 void __init smp_init_cpus(void)
138 {
139 if (smp_ops.smp_init_cpus)
140 smp_ops.smp_init_cpus();
141 }
142
143 int boot_secondary(unsigned int cpu, struct task_struct *idle)
144 {
145 if (smp_ops.smp_boot_secondary)
146 return smp_ops.smp_boot_secondary(cpu, idle);
147 return -ENOSYS;
148 }
149
150 int platform_can_cpu_hotplug(void)
151 {
152 #ifdef CONFIG_HOTPLUG_CPU
153 if (smp_ops.cpu_kill)
154 return 1;
155 #endif
156
157 return 0;
158 }
159
160 #ifdef CONFIG_HOTPLUG_CPU
161 static int platform_cpu_kill(unsigned int cpu)
162 {
163 if (smp_ops.cpu_kill)
164 return smp_ops.cpu_kill(cpu);
165 return 1;
166 }
167
168 static int platform_cpu_disable(unsigned int cpu)
169 {
170 if (smp_ops.cpu_disable)
171 return smp_ops.cpu_disable(cpu);
172
173 /*
174 * By default, allow disabling all CPUs except the first one,
175 * since this is special on a lot of platforms, e.g. because
176 * of clock tick interrupts.
177 */
178 return cpu == 0 ? -EPERM : 0;
179 }
180 /*
181 * __cpu_disable runs on the processor to be shutdown.
182 */
183 int __cpu_disable(void)
184 {
185 unsigned int cpu = smp_processor_id();
186 int ret;
187
188 ret = platform_cpu_disable(cpu);
189 if (ret)
190 return ret;
191
192 /*
193 * Take this CPU offline. Once we clear this, we can't return,
194 * and we must not schedule until we're ready to give up the cpu.
195 */
196 set_cpu_online(cpu, false);
197
198 /*
199 * OK - migrate IRQs away from this CPU
200 */
201 migrate_irqs();
202
203 /*
204 * Flush user cache and TLB mappings, and then remove this CPU
205 * from the vm mask set of all processes.
206 *
207 * Caches are flushed to the Level of Unification Inner Shareable
208 * to write-back dirty lines to unified caches shared by all CPUs.
209 */
210 flush_cache_louis();
211 local_flush_tlb_all();
212
213 clear_tasks_mm_cpumask(cpu);
214
215 return 0;
216 }
217
218 static DECLARE_COMPLETION(cpu_died);
219
220 /*
221 * called on the thread which is asking for a CPU to be shutdown -
222 * waits until shutdown has completed, or it is timed out.
223 */
224 void __cpu_die(unsigned int cpu)
225 {
226 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
227 pr_err("CPU%u: cpu didn't die\n", cpu);
228 return;
229 }
230 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
231
232 /*
233 * platform_cpu_kill() is generally expected to do the powering off
234 * and/or cutting of clocks to the dying CPU. Optionally, this may
235 * be done by the CPU which is dying in preference to supporting
236 * this call, but that means there is _no_ synchronisation between
237 * the requesting CPU and the dying CPU actually losing power.
238 */
239 if (!platform_cpu_kill(cpu))
240 printk("CPU%u: unable to kill\n", cpu);
241 }
242
243 /*
244 * Called from the idle thread for the CPU which has been shutdown.
245 *
246 * Note that we disable IRQs here, but do not re-enable them
247 * before returning to the caller. This is also the behaviour
248 * of the other hotplug-cpu capable cores, so presumably coming
249 * out of idle fixes this.
250 */
251 void __ref cpu_die(void)
252 {
253 unsigned int cpu = smp_processor_id();
254
255 idle_task_exit();
256
257 local_irq_disable();
258
259 /*
260 * Flush the data out of the L1 cache for this CPU. This must be
261 * before the completion to ensure that data is safely written out
262 * before platform_cpu_kill() gets called - which may disable
263 * *this* CPU and power down its cache.
264 */
265 flush_cache_louis();
266
267 /*
268 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
269 * this returns, power and/or clocks can be removed at any point
270 * from this CPU and its cache by platform_cpu_kill().
271 */
272 complete(&cpu_died);
273
274 /*
275 * Ensure that the cache lines associated with that completion are
276 * written out. This covers the case where _this_ CPU is doing the
277 * powering down, to ensure that the completion is visible to the
278 * CPU waiting for this one.
279 */
280 flush_cache_louis();
281
282 /*
283 * The actual CPU shutdown procedure is at least platform (if not
284 * CPU) specific. This may remove power, or it may simply spin.
285 *
286 * Platforms are generally expected *NOT* to return from this call,
287 * although there are some which do because they have no way to
288 * power down the CPU. These platforms are the _only_ reason we
289 * have a return path which uses the fragment of assembly below.
290 *
291 * The return path should not be used for platforms which can
292 * power off the CPU.
293 */
294 if (smp_ops.cpu_die)
295 smp_ops.cpu_die(cpu);
296
297 /*
298 * Do not return to the idle loop - jump back to the secondary
299 * cpu initialisation. There's some initialisation which needs
300 * to be repeated to undo the effects of taking the CPU offline.
301 */
302 __asm__("mov sp, %0\n"
303 " mov fp, #0\n"
304 " b secondary_start_kernel"
305 :
306 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
307 }
308 #endif /* CONFIG_HOTPLUG_CPU */
309
310 /*
311 * Called by both boot and secondaries to move global data into
312 * per-processor storage.
313 */
314 static void smp_store_cpu_info(unsigned int cpuid)
315 {
316 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
317
318 cpu_info->loops_per_jiffy = loops_per_jiffy;
319 cpu_info->cpuid = read_cpuid_id();
320
321 store_cpu_topology(cpuid);
322 }
323
324 /*
325 * This is the secondary CPU boot entry. We're using this CPUs
326 * idle thread stack, but a set of temporary page tables.
327 */
328 asmlinkage void secondary_start_kernel(void)
329 {
330 struct mm_struct *mm = &init_mm;
331 unsigned int cpu;
332
333 /*
334 * The identity mapping is uncached (strongly ordered), so
335 * switch away from it before attempting any exclusive accesses.
336 */
337 cpu_switch_mm(mm->pgd, mm);
338 local_flush_bp_all();
339 enter_lazy_tlb(mm, current);
340 local_flush_tlb_all();
341
342 /*
343 * All kernel threads share the same mm context; grab a
344 * reference and switch to it.
345 */
346 cpu = smp_processor_id();
347 atomic_inc(&mm->mm_count);
348 current->active_mm = mm;
349 cpumask_set_cpu(cpu, mm_cpumask(mm));
350
351 cpu_init();
352
353 printk("CPU%u: Booted secondary processor\n", cpu);
354
355 preempt_disable();
356 trace_hardirqs_off();
357
358 /*
359 * Give the platform a chance to do its own initialisation.
360 */
361 if (smp_ops.smp_secondary_init)
362 smp_ops.smp_secondary_init(cpu);
363
364 notify_cpu_starting(cpu);
365
366 calibrate_delay();
367
368 smp_store_cpu_info(cpu);
369
370 /*
371 * OK, now it's safe to let the boot CPU continue. Wait for
372 * the CPU migration code to notice that the CPU is online
373 * before we continue - which happens after __cpu_up returns.
374 */
375 set_cpu_online(cpu, true);
376 complete(&cpu_running);
377
378 local_irq_enable();
379 local_fiq_enable();
380
381 /*
382 * OK, it's off to the idle thread for us
383 */
384 cpu_startup_entry(CPUHP_ONLINE);
385 }
386
387 void __init smp_cpus_done(unsigned int max_cpus)
388 {
389 printk(KERN_INFO "SMP: Total of %d processors activated.\n",
390 num_online_cpus());
391
392 hyp_mode_check();
393 }
394
395 void __init smp_prepare_boot_cpu(void)
396 {
397 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
398 }
399
400 void __init smp_prepare_cpus(unsigned int max_cpus)
401 {
402 unsigned int ncores = num_possible_cpus();
403
404 init_cpu_topology();
405
406 smp_store_cpu_info(smp_processor_id());
407
408 /*
409 * are we trying to boot more cores than exist?
410 */
411 if (max_cpus > ncores)
412 max_cpus = ncores;
413 if (ncores > 1 && max_cpus) {
414 /*
415 * Initialise the present map, which describes the set of CPUs
416 * actually populated at the present time. A platform should
417 * re-initialize the map in the platforms smp_prepare_cpus()
418 * if present != possible (e.g. physical hotplug).
419 */
420 init_cpu_present(cpu_possible_mask);
421
422 /*
423 * Initialise the SCU if there are more than one CPU
424 * and let them know where to start.
425 */
426 if (smp_ops.smp_prepare_cpus)
427 smp_ops.smp_prepare_cpus(max_cpus);
428 }
429 }
430
431 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
432
433 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
434 {
435 if (!smp_cross_call)
436 smp_cross_call = fn;
437 }
438
439 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
440 {
441 smp_cross_call(mask, IPI_CALL_FUNC);
442 }
443
444 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
445 {
446 smp_cross_call(mask, IPI_WAKEUP);
447 }
448
449 void arch_send_call_function_single_ipi(int cpu)
450 {
451 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
452 }
453
454 #ifdef CONFIG_IRQ_WORK
455 void arch_irq_work_raise(void)
456 {
457 if (is_smp())
458 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
459 }
460 #endif
461
462 static const char *ipi_types[NR_IPI] = {
463 #define S(x,s) [x] = s
464 S(IPI_WAKEUP, "CPU wakeup interrupts"),
465 S(IPI_TIMER, "Timer broadcast interrupts"),
466 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
467 S(IPI_CALL_FUNC, "Function call interrupts"),
468 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
469 S(IPI_CPU_STOP, "CPU stop interrupts"),
470 S(IPI_IRQ_WORK, "IRQ work interrupts"),
471 S(IPI_COMPLETION, "completion interrupts"),
472 };
473
474 void show_ipi_list(struct seq_file *p, int prec)
475 {
476 unsigned int cpu, i;
477
478 for (i = 0; i < NR_IPI; i++) {
479 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
480
481 for_each_online_cpu(cpu)
482 seq_printf(p, "%10u ",
483 __get_irq_stat(cpu, ipi_irqs[i]));
484
485 seq_printf(p, " %s\n", ipi_types[i]);
486 }
487 }
488
489 u64 smp_irq_stat_cpu(unsigned int cpu)
490 {
491 u64 sum = 0;
492 int i;
493
494 for (i = 0; i < NR_IPI; i++)
495 sum += __get_irq_stat(cpu, ipi_irqs[i]);
496
497 return sum;
498 }
499
500 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
501 void tick_broadcast(const struct cpumask *mask)
502 {
503 smp_cross_call(mask, IPI_TIMER);
504 }
505 #endif
506
507 static DEFINE_RAW_SPINLOCK(stop_lock);
508
509 /*
510 * ipi_cpu_stop - handle IPI from smp_send_stop()
511 */
512 static void ipi_cpu_stop(unsigned int cpu)
513 {
514 if (system_state == SYSTEM_BOOTING ||
515 system_state == SYSTEM_RUNNING) {
516 raw_spin_lock(&stop_lock);
517 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
518 dump_stack();
519 raw_spin_unlock(&stop_lock);
520 }
521
522 set_cpu_online(cpu, false);
523
524 local_fiq_disable();
525 local_irq_disable();
526
527 while (1)
528 cpu_relax();
529 }
530
531 static DEFINE_PER_CPU(struct completion *, cpu_completion);
532
533 int register_ipi_completion(struct completion *completion, int cpu)
534 {
535 per_cpu(cpu_completion, cpu) = completion;
536 return IPI_COMPLETION;
537 }
538
539 static void ipi_complete(unsigned int cpu)
540 {
541 complete(per_cpu(cpu_completion, cpu));
542 }
543
544 /*
545 * Main handler for inter-processor interrupts
546 */
547 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
548 {
549 handle_IPI(ipinr, regs);
550 }
551
552 void handle_IPI(int ipinr, struct pt_regs *regs)
553 {
554 unsigned int cpu = smp_processor_id();
555 struct pt_regs *old_regs = set_irq_regs(regs);
556
557 if (ipinr < NR_IPI)
558 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
559
560 switch (ipinr) {
561 case IPI_WAKEUP:
562 break;
563
564 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
565 case IPI_TIMER:
566 irq_enter();
567 tick_receive_broadcast();
568 irq_exit();
569 break;
570 #endif
571
572 case IPI_RESCHEDULE:
573 scheduler_ipi();
574 break;
575
576 case IPI_CALL_FUNC:
577 irq_enter();
578 generic_smp_call_function_interrupt();
579 irq_exit();
580 break;
581
582 case IPI_CALL_FUNC_SINGLE:
583 irq_enter();
584 generic_smp_call_function_single_interrupt();
585 irq_exit();
586 break;
587
588 case IPI_CPU_STOP:
589 irq_enter();
590 ipi_cpu_stop(cpu);
591 irq_exit();
592 break;
593
594 #ifdef CONFIG_IRQ_WORK
595 case IPI_IRQ_WORK:
596 irq_enter();
597 irq_work_run();
598 irq_exit();
599 break;
600 #endif
601
602 case IPI_COMPLETION:
603 irq_enter();
604 ipi_complete(cpu);
605 irq_exit();
606 break;
607
608 default:
609 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
610 cpu, ipinr);
611 break;
612 }
613 set_irq_regs(old_regs);
614 }
615
616 void smp_send_reschedule(int cpu)
617 {
618 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
619 }
620
621 void smp_send_stop(void)
622 {
623 unsigned long timeout;
624 struct cpumask mask;
625
626 cpumask_copy(&mask, cpu_online_mask);
627 cpumask_clear_cpu(smp_processor_id(), &mask);
628 if (!cpumask_empty(&mask))
629 smp_cross_call(&mask, IPI_CPU_STOP);
630
631 /* Wait up to one second for other CPUs to stop */
632 timeout = USEC_PER_SEC;
633 while (num_online_cpus() > 1 && timeout--)
634 udelay(1);
635
636 if (num_online_cpus() > 1)
637 pr_warning("SMP: failed to stop secondary CPUs\n");
638 }
639
640 /*
641 * not supported here
642 */
643 int setup_profiling_timer(unsigned int multiplier)
644 {
645 return -EINVAL;
646 }
647
648 #ifdef CONFIG_CPU_FREQ
649
650 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
651 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
652 static unsigned long global_l_p_j_ref;
653 static unsigned long global_l_p_j_ref_freq;
654
655 static int cpufreq_callback(struct notifier_block *nb,
656 unsigned long val, void *data)
657 {
658 struct cpufreq_freqs *freq = data;
659 int cpu = freq->cpu;
660
661 if (freq->flags & CPUFREQ_CONST_LOOPS)
662 return NOTIFY_OK;
663
664 if (!per_cpu(l_p_j_ref, cpu)) {
665 per_cpu(l_p_j_ref, cpu) =
666 per_cpu(cpu_data, cpu).loops_per_jiffy;
667 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
668 if (!global_l_p_j_ref) {
669 global_l_p_j_ref = loops_per_jiffy;
670 global_l_p_j_ref_freq = freq->old;
671 }
672 }
673
674 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
675 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
676 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
677 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
678 global_l_p_j_ref_freq,
679 freq->new);
680 per_cpu(cpu_data, cpu).loops_per_jiffy =
681 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
682 per_cpu(l_p_j_ref_freq, cpu),
683 freq->new);
684 }
685 return NOTIFY_OK;
686 }
687
688 static struct notifier_block cpufreq_notifier = {
689 .notifier_call = cpufreq_callback,
690 };
691
692 static int __init register_cpufreq_notifier(void)
693 {
694 return cpufreq_register_notifier(&cpufreq_notifier,
695 CPUFREQ_TRANSITION_NOTIFIER);
696 }
697 core_initcall(register_cpufreq_notifier);
698
699 #endif