]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/kernel/head.S
ASoC: cs42xx8: fix the noise in the right dac channel with mono playback
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / kernel / head.S
1 /*
2 * Low-level CPU initialisation
3 * Based on arch/arm/kernel/head.S
4 *
5 * Copyright (C) 1994-2002 Russell King
6 * Copyright (C) 2003-2012 ARM Ltd.
7 * Authors: Catalin Marinas <catalin.marinas@arm.com>
8 * Will Deacon <will.deacon@arm.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #include <linux/linkage.h>
24 #include <linux/init.h>
25 #include <linux/irqchip/arm-gic-v3.h>
26
27 #include <asm/assembler.h>
28 #include <asm/ptrace.h>
29 #include <asm/asm-offsets.h>
30 #include <asm/cache.h>
31 #include <asm/cputype.h>
32 #include <asm/kernel-pgtable.h>
33 #include <asm/memory.h>
34 #include <asm/pgtable-hwdef.h>
35 #include <asm/pgtable.h>
36 #include <asm/page.h>
37 #include <asm/sysreg.h>
38 #include <asm/thread_info.h>
39 #include <asm/virt.h>
40
41 #define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET)
42
43 #if (TEXT_OFFSET & 0xfff) != 0
44 #error TEXT_OFFSET must be at least 4KB aligned
45 #elif (PAGE_OFFSET & 0x1fffff) != 0
46 #error PAGE_OFFSET must be at least 2MB aligned
47 #elif TEXT_OFFSET > 0x1fffff
48 #error TEXT_OFFSET must be less than 2MB
49 #endif
50
51 #define KERNEL_START _text
52 #define KERNEL_END _end
53
54 /*
55 * Kernel startup entry point.
56 * ---------------------------
57 *
58 * The requirements are:
59 * MMU = off, D-cache = off, I-cache = on or off,
60 * x0 = physical address to the FDT blob.
61 *
62 * This code is mostly position independent so you call this at
63 * __pa(PAGE_OFFSET + TEXT_OFFSET).
64 *
65 * Note that the callee-saved registers are used for storing variables
66 * that are useful before the MMU is enabled. The allocations are described
67 * in the entry routines.
68 */
69 __HEAD
70
71 /*
72 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
73 */
74 #ifdef CONFIG_EFI
75 efi_head:
76 /*
77 * This add instruction has no meaningful effect except that
78 * its opcode forms the magic "MZ" signature required by UEFI.
79 */
80 add x13, x18, #0x16
81 b stext
82 #else
83 b stext // branch to kernel start, magic
84 .long 0 // reserved
85 #endif
86 .quad _kernel_offset_le // Image load offset from start of RAM, little-endian
87 .quad _kernel_size_le // Effective size of kernel image, little-endian
88 .quad _kernel_flags_le // Informative flags, little-endian
89 .quad 0 // reserved
90 .quad 0 // reserved
91 .quad 0 // reserved
92 .byte 0x41 // Magic number, "ARM\x64"
93 .byte 0x52
94 .byte 0x4d
95 .byte 0x64
96 #ifdef CONFIG_EFI
97 .long pe_header - efi_head // Offset to the PE header.
98 #else
99 .word 0 // reserved
100 #endif
101
102 #ifdef CONFIG_EFI
103 .globl __efistub_stext_offset
104 .set __efistub_stext_offset, stext - efi_head
105 .align 3
106 pe_header:
107 .ascii "PE"
108 .short 0
109 coff_header:
110 .short 0xaa64 // AArch64
111 .short 2 // nr_sections
112 .long 0 // TimeDateStamp
113 .long 0 // PointerToSymbolTable
114 .long 1 // NumberOfSymbols
115 .short section_table - optional_header // SizeOfOptionalHeader
116 .short 0x206 // Characteristics.
117 // IMAGE_FILE_DEBUG_STRIPPED |
118 // IMAGE_FILE_EXECUTABLE_IMAGE |
119 // IMAGE_FILE_LINE_NUMS_STRIPPED
120 optional_header:
121 .short 0x20b // PE32+ format
122 .byte 0x02 // MajorLinkerVersion
123 .byte 0x14 // MinorLinkerVersion
124 .long _end - stext // SizeOfCode
125 .long 0 // SizeOfInitializedData
126 .long 0 // SizeOfUninitializedData
127 .long __efistub_entry - efi_head // AddressOfEntryPoint
128 .long __efistub_stext_offset // BaseOfCode
129
130 extra_header_fields:
131 .quad 0 // ImageBase
132 .long 0x1000 // SectionAlignment
133 .long PECOFF_FILE_ALIGNMENT // FileAlignment
134 .short 0 // MajorOperatingSystemVersion
135 .short 0 // MinorOperatingSystemVersion
136 .short 0 // MajorImageVersion
137 .short 0 // MinorImageVersion
138 .short 0 // MajorSubsystemVersion
139 .short 0 // MinorSubsystemVersion
140 .long 0 // Win32VersionValue
141
142 .long _end - efi_head // SizeOfImage
143
144 // Everything before the kernel image is considered part of the header
145 .long __efistub_stext_offset // SizeOfHeaders
146 .long 0 // CheckSum
147 .short 0xa // Subsystem (EFI application)
148 .short 0 // DllCharacteristics
149 .quad 0 // SizeOfStackReserve
150 .quad 0 // SizeOfStackCommit
151 .quad 0 // SizeOfHeapReserve
152 .quad 0 // SizeOfHeapCommit
153 .long 0 // LoaderFlags
154 .long 0x6 // NumberOfRvaAndSizes
155
156 .quad 0 // ExportTable
157 .quad 0 // ImportTable
158 .quad 0 // ResourceTable
159 .quad 0 // ExceptionTable
160 .quad 0 // CertificationTable
161 .quad 0 // BaseRelocationTable
162
163 // Section table
164 section_table:
165
166 /*
167 * The EFI application loader requires a relocation section
168 * because EFI applications must be relocatable. This is a
169 * dummy section as far as we are concerned.
170 */
171 .ascii ".reloc"
172 .byte 0
173 .byte 0 // end of 0 padding of section name
174 .long 0
175 .long 0
176 .long 0 // SizeOfRawData
177 .long 0 // PointerToRawData
178 .long 0 // PointerToRelocations
179 .long 0 // PointerToLineNumbers
180 .short 0 // NumberOfRelocations
181 .short 0 // NumberOfLineNumbers
182 .long 0x42100040 // Characteristics (section flags)
183
184
185 .ascii ".text"
186 .byte 0
187 .byte 0
188 .byte 0 // end of 0 padding of section name
189 .long _end - stext // VirtualSize
190 .long __efistub_stext_offset // VirtualAddress
191 .long _edata - stext // SizeOfRawData
192 .long __efistub_stext_offset // PointerToRawData
193
194 .long 0 // PointerToRelocations (0 for executables)
195 .long 0 // PointerToLineNumbers (0 for executables)
196 .short 0 // NumberOfRelocations (0 for executables)
197 .short 0 // NumberOfLineNumbers (0 for executables)
198 .long 0xe0500020 // Characteristics (section flags)
199
200 /*
201 * EFI will load stext onwards at the 4k section alignment
202 * described in the PE/COFF header. To ensure that instruction
203 * sequences using an adrp and a :lo12: immediate will function
204 * correctly at this alignment, we must ensure that stext is
205 * placed at a 4k boundary in the Image to begin with.
206 */
207 .align 12
208 #endif
209
210 ENTRY(stext)
211 bl preserve_boot_args
212 bl el2_setup // Drop to EL1, w20=cpu_boot_mode
213 adrp x24, __PHYS_OFFSET
214 bl set_cpu_boot_mode_flag
215 bl __create_page_tables // x25=TTBR0, x26=TTBR1
216 /*
217 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
218 * details.
219 * On return, the CPU will be ready for the MMU to be turned on and
220 * the TCR will have been set.
221 */
222 ldr x27, =__mmap_switched // address to jump to after
223 // MMU has been enabled
224 adr_l lr, __enable_mmu // return (PIC) address
225 b __cpu_setup // initialise processor
226 ENDPROC(stext)
227
228 /*
229 * Preserve the arguments passed by the bootloader in x0 .. x3
230 */
231 preserve_boot_args:
232 mov x21, x0 // x21=FDT
233
234 adr_l x0, boot_args // record the contents of
235 stp x21, x1, [x0] // x0 .. x3 at kernel entry
236 stp x2, x3, [x0, #16]
237
238 dmb sy // needed before dc ivac with
239 // MMU off
240
241 add x1, x0, #0x20 // 4 x 8 bytes
242 b __inval_cache_range // tail call
243 ENDPROC(preserve_boot_args)
244
245 /*
246 * Macro to create a table entry to the next page.
247 *
248 * tbl: page table address
249 * virt: virtual address
250 * shift: #imm page table shift
251 * ptrs: #imm pointers per table page
252 *
253 * Preserves: virt
254 * Corrupts: tmp1, tmp2
255 * Returns: tbl -> next level table page address
256 */
257 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
258 lsr \tmp1, \virt, #\shift
259 and \tmp1, \tmp1, #\ptrs - 1 // table index
260 add \tmp2, \tbl, #PAGE_SIZE
261 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type
262 str \tmp2, [\tbl, \tmp1, lsl #3]
263 add \tbl, \tbl, #PAGE_SIZE // next level table page
264 .endm
265
266 /*
267 * Macro to populate the PGD (and possibily PUD) for the corresponding
268 * block entry in the next level (tbl) for the given virtual address.
269 *
270 * Preserves: tbl, next, virt
271 * Corrupts: tmp1, tmp2
272 */
273 .macro create_pgd_entry, tbl, virt, tmp1, tmp2
274 create_table_entry \tbl, \virt, PGDIR_SHIFT, PTRS_PER_PGD, \tmp1, \tmp2
275 #if SWAPPER_PGTABLE_LEVELS > 3
276 create_table_entry \tbl, \virt, PUD_SHIFT, PTRS_PER_PUD, \tmp1, \tmp2
277 #endif
278 #if SWAPPER_PGTABLE_LEVELS > 2
279 create_table_entry \tbl, \virt, SWAPPER_TABLE_SHIFT, PTRS_PER_PTE, \tmp1, \tmp2
280 #endif
281 .endm
282
283 /*
284 * Macro to populate block entries in the page table for the start..end
285 * virtual range (inclusive).
286 *
287 * Preserves: tbl, flags
288 * Corrupts: phys, start, end, pstate
289 */
290 .macro create_block_map, tbl, flags, phys, start, end
291 lsr \phys, \phys, #SWAPPER_BLOCK_SHIFT
292 lsr \start, \start, #SWAPPER_BLOCK_SHIFT
293 and \start, \start, #PTRS_PER_PTE - 1 // table index
294 orr \phys, \flags, \phys, lsl #SWAPPER_BLOCK_SHIFT // table entry
295 lsr \end, \end, #SWAPPER_BLOCK_SHIFT
296 and \end, \end, #PTRS_PER_PTE - 1 // table end index
297 9999: str \phys, [\tbl, \start, lsl #3] // store the entry
298 add \start, \start, #1 // next entry
299 add \phys, \phys, #SWAPPER_BLOCK_SIZE // next block
300 cmp \start, \end
301 b.ls 9999b
302 .endm
303
304 /*
305 * Setup the initial page tables. We only setup the barest amount which is
306 * required to get the kernel running. The following sections are required:
307 * - identity mapping to enable the MMU (low address, TTBR0)
308 * - first few MB of the kernel linear mapping to jump to once the MMU has
309 * been enabled
310 */
311 __create_page_tables:
312 adrp x25, idmap_pg_dir
313 adrp x26, swapper_pg_dir
314 mov x27, lr
315
316 /*
317 * Invalidate the idmap and swapper page tables to avoid potential
318 * dirty cache lines being evicted.
319 */
320 mov x0, x25
321 add x1, x26, #SWAPPER_DIR_SIZE
322 bl __inval_cache_range
323
324 /*
325 * Clear the idmap and swapper page tables.
326 */
327 mov x0, x25
328 add x6, x26, #SWAPPER_DIR_SIZE
329 1: stp xzr, xzr, [x0], #16
330 stp xzr, xzr, [x0], #16
331 stp xzr, xzr, [x0], #16
332 stp xzr, xzr, [x0], #16
333 cmp x0, x6
334 b.lo 1b
335
336 ldr x7, =SWAPPER_MM_MMUFLAGS
337
338 /*
339 * Create the identity mapping.
340 */
341 mov x0, x25 // idmap_pg_dir
342 adrp x3, __idmap_text_start // __pa(__idmap_text_start)
343
344 #ifndef CONFIG_ARM64_VA_BITS_48
345 #define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
346 #define EXTRA_PTRS (1 << (48 - EXTRA_SHIFT))
347
348 /*
349 * If VA_BITS < 48, it may be too small to allow for an ID mapping to be
350 * created that covers system RAM if that is located sufficiently high
351 * in the physical address space. So for the ID map, use an extended
352 * virtual range in that case, by configuring an additional translation
353 * level.
354 * First, we have to verify our assumption that the current value of
355 * VA_BITS was chosen such that all translation levels are fully
356 * utilised, and that lowering T0SZ will always result in an additional
357 * translation level to be configured.
358 */
359 #if VA_BITS != EXTRA_SHIFT
360 #error "Mismatch between VA_BITS and page size/number of translation levels"
361 #endif
362
363 /*
364 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
365 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
366 * this number conveniently equals the number of leading zeroes in
367 * the physical address of __idmap_text_end.
368 */
369 adrp x5, __idmap_text_end
370 clz x5, x5
371 cmp x5, TCR_T0SZ(VA_BITS) // default T0SZ small enough?
372 b.ge 1f // .. then skip additional level
373
374 adr_l x6, idmap_t0sz
375 str x5, [x6]
376 dmb sy
377 dc ivac, x6 // Invalidate potentially stale cache line
378
379 create_table_entry x0, x3, EXTRA_SHIFT, EXTRA_PTRS, x5, x6
380 1:
381 #endif
382
383 create_pgd_entry x0, x3, x5, x6
384 mov x5, x3 // __pa(__idmap_text_start)
385 adr_l x6, __idmap_text_end // __pa(__idmap_text_end)
386 create_block_map x0, x7, x3, x5, x6
387
388 /*
389 * Map the kernel image (starting with PHYS_OFFSET).
390 */
391 mov x0, x26 // swapper_pg_dir
392 mov x5, #PAGE_OFFSET
393 create_pgd_entry x0, x5, x3, x6
394 ldr x6, =KERNEL_END // __va(KERNEL_END)
395 mov x3, x24 // phys offset
396 create_block_map x0, x7, x3, x5, x6
397
398 /*
399 * Since the page tables have been populated with non-cacheable
400 * accesses (MMU disabled), invalidate the idmap and swapper page
401 * tables again to remove any speculatively loaded cache lines.
402 */
403 mov x0, x25
404 add x1, x26, #SWAPPER_DIR_SIZE
405 dmb sy
406 bl __inval_cache_range
407
408 mov lr, x27
409 ret
410 ENDPROC(__create_page_tables)
411 .ltorg
412
413 /*
414 * The following fragment of code is executed with the MMU enabled.
415 */
416 .set initial_sp, init_thread_union + THREAD_START_SP
417 __mmap_switched:
418 // Clear BSS
419 adr_l x0, __bss_start
420 mov x1, xzr
421 adr_l x2, __bss_stop
422 sub x2, x2, x0
423 bl __pi_memset
424
425 adr_l sp, initial_sp, x4
426 mov x4, sp
427 and x4, x4, #~(THREAD_SIZE - 1)
428 msr sp_el0, x4 // Save thread_info
429 str_l x21, __fdt_pointer, x5 // Save FDT pointer
430 str_l x24, memstart_addr, x6 // Save PHYS_OFFSET
431 mov x29, #0
432 #ifdef CONFIG_KASAN
433 bl kasan_early_init
434 #endif
435 b start_kernel
436 ENDPROC(__mmap_switched)
437
438 /*
439 * end early head section, begin head code that is also used for
440 * hotplug and needs to have the same protections as the text region
441 */
442 .section ".text","ax"
443 /*
444 * If we're fortunate enough to boot at EL2, ensure that the world is
445 * sane before dropping to EL1.
446 *
447 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x20 if
448 * booted in EL1 or EL2 respectively.
449 */
450 ENTRY(el2_setup)
451 mrs x0, CurrentEL
452 cmp x0, #CurrentEL_EL2
453 b.ne 1f
454 mrs x0, sctlr_el2
455 CPU_BE( orr x0, x0, #(1 << 25) ) // Set the EE bit for EL2
456 CPU_LE( bic x0, x0, #(1 << 25) ) // Clear the EE bit for EL2
457 msr sctlr_el2, x0
458 b 2f
459 1: mrs x0, sctlr_el1
460 CPU_BE( orr x0, x0, #(3 << 24) ) // Set the EE and E0E bits for EL1
461 CPU_LE( bic x0, x0, #(3 << 24) ) // Clear the EE and E0E bits for EL1
462 msr sctlr_el1, x0
463 mov w20, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1
464 isb
465 ret
466
467 /* Hyp configuration. */
468 2: mov x0, #(1 << 31) // 64-bit EL1
469 msr hcr_el2, x0
470
471 /* Generic timers. */
472 mrs x0, cnthctl_el2
473 orr x0, x0, #3 // Enable EL1 physical timers
474 msr cnthctl_el2, x0
475 msr cntvoff_el2, xzr // Clear virtual offset
476
477 #ifdef CONFIG_ARM_GIC_V3
478 /* GICv3 system register access */
479 mrs x0, id_aa64pfr0_el1
480 ubfx x0, x0, #24, #4
481 cmp x0, #1
482 b.ne 3f
483
484 mrs_s x0, ICC_SRE_EL2
485 orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1
486 orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1
487 msr_s ICC_SRE_EL2, x0
488 isb // Make sure SRE is now set
489 mrs_s x0, ICC_SRE_EL2 // Read SRE back,
490 tbz x0, #0, 3f // and check that it sticks
491 msr_s ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults
492
493 3:
494 #endif
495
496 /* Populate ID registers. */
497 mrs x0, midr_el1
498 mrs x1, mpidr_el1
499 msr vpidr_el2, x0
500 msr vmpidr_el2, x1
501
502 /* sctlr_el1 */
503 mov x0, #0x0800 // Set/clear RES{1,0} bits
504 CPU_BE( movk x0, #0x33d0, lsl #16 ) // Set EE and E0E on BE systems
505 CPU_LE( movk x0, #0x30d0, lsl #16 ) // Clear EE and E0E on LE systems
506 msr sctlr_el1, x0
507
508 /* Coprocessor traps. */
509 mov x0, #0x33ff
510 msr cptr_el2, x0 // Disable copro. traps to EL2
511
512 #ifdef CONFIG_COMPAT
513 msr hstr_el2, xzr // Disable CP15 traps to EL2
514 #endif
515
516 /* EL2 debug */
517 mrs x0, pmcr_el0 // Disable debug access traps
518 ubfx x0, x0, #11, #5 // to EL2 and allow access to
519 msr mdcr_el2, x0 // all PMU counters from EL1
520
521 /* Stage-2 translation */
522 msr vttbr_el2, xzr
523
524 /* Hypervisor stub */
525 adrp x0, __hyp_stub_vectors
526 add x0, x0, #:lo12:__hyp_stub_vectors
527 msr vbar_el2, x0
528
529 /* spsr */
530 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
531 PSR_MODE_EL1h)
532 msr spsr_el2, x0
533 msr elr_el2, lr
534 mov w20, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
535 eret
536 ENDPROC(el2_setup)
537
538 /*
539 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
540 * in x20. See arch/arm64/include/asm/virt.h for more info.
541 */
542 ENTRY(set_cpu_boot_mode_flag)
543 adr_l x1, __boot_cpu_mode
544 cmp w20, #BOOT_CPU_MODE_EL2
545 b.ne 1f
546 add x1, x1, #4
547 1: str w20, [x1] // This CPU has booted in EL1
548 dmb sy
549 dc ivac, x1 // Invalidate potentially stale cache line
550 ret
551 ENDPROC(set_cpu_boot_mode_flag)
552
553 /*
554 * We need to find out the CPU boot mode long after boot, so we need to
555 * store it in a writable variable.
556 *
557 * This is not in .bss, because we set it sufficiently early that the boot-time
558 * zeroing of .bss would clobber it.
559 */
560 .pushsection .data..cacheline_aligned
561 .align L1_CACHE_SHIFT
562 ENTRY(__boot_cpu_mode)
563 .long BOOT_CPU_MODE_EL2
564 .long BOOT_CPU_MODE_EL1
565 .popsection
566
567 /*
568 * This provides a "holding pen" for platforms to hold all secondary
569 * cores are held until we're ready for them to initialise.
570 */
571 ENTRY(secondary_holding_pen)
572 bl el2_setup // Drop to EL1, w20=cpu_boot_mode
573 bl set_cpu_boot_mode_flag
574 mrs x0, mpidr_el1
575 ldr x1, =MPIDR_HWID_BITMASK
576 and x0, x0, x1
577 adr_l x3, secondary_holding_pen_release
578 pen: ldr x4, [x3]
579 cmp x4, x0
580 b.eq secondary_startup
581 wfe
582 b pen
583 ENDPROC(secondary_holding_pen)
584
585 /*
586 * Secondary entry point that jumps straight into the kernel. Only to
587 * be used where CPUs are brought online dynamically by the kernel.
588 */
589 ENTRY(secondary_entry)
590 bl el2_setup // Drop to EL1
591 bl set_cpu_boot_mode_flag
592 b secondary_startup
593 ENDPROC(secondary_entry)
594
595 ENTRY(secondary_startup)
596 /*
597 * Common entry point for secondary CPUs.
598 */
599 adrp x25, idmap_pg_dir
600 adrp x26, swapper_pg_dir
601 bl __cpu_setup // initialise processor
602
603 ldr x21, =secondary_data
604 ldr x27, =__secondary_switched // address to jump to after enabling the MMU
605 b __enable_mmu
606 ENDPROC(secondary_startup)
607
608 ENTRY(__secondary_switched)
609 ldr x0, [x21] // get secondary_data.stack
610 mov sp, x0
611 and x0, x0, #~(THREAD_SIZE - 1)
612 msr sp_el0, x0 // save thread_info
613 mov x29, #0
614 b secondary_start_kernel
615 ENDPROC(__secondary_switched)
616
617 /*
618 * Enable the MMU.
619 *
620 * x0 = SCTLR_EL1 value for turning on the MMU.
621 * x27 = *virtual* address to jump to upon completion
622 *
623 * Other registers depend on the function called upon completion.
624 *
625 * Checks if the selected granule size is supported by the CPU.
626 * If it isn't, park the CPU
627 */
628 .section ".idmap.text", "ax"
629 __enable_mmu:
630 mrs x1, ID_AA64MMFR0_EL1
631 ubfx x2, x1, #ID_AA64MMFR0_TGRAN_SHIFT, 4
632 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
633 b.ne __no_granule_support
634 ldr x5, =vectors
635 msr vbar_el1, x5
636 msr ttbr0_el1, x25 // load TTBR0
637 msr ttbr1_el1, x26 // load TTBR1
638 isb
639 msr sctlr_el1, x0
640 isb
641 /*
642 * Invalidate the local I-cache so that any instructions fetched
643 * speculatively from the PoC are discarded, since they may have
644 * been dynamically patched at the PoU.
645 */
646 ic iallu
647 dsb nsh
648 isb
649 br x27
650 ENDPROC(__enable_mmu)
651
652 __no_granule_support:
653 wfe
654 b __no_granule_support
655 ENDPROC(__no_granule_support)