]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/i386/kernel/traps.c
[PATCH] i386: Split multi-line printk in oops output.
[mirror_ubuntu-artful-kernel.git] / arch / i386 / kernel / traps.c
1 /*
2 * linux/arch/i386/traps.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
13 */
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/errno.h>
18 #include <linux/timer.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/highmem.h>
25 #include <linux/kallsyms.h>
26 #include <linux/ptrace.h>
27 #include <linux/utsname.h>
28 #include <linux/kprobes.h>
29 #include <linux/kexec.h>
30 #include <linux/unwind.h>
31
32 #ifdef CONFIG_EISA
33 #include <linux/ioport.h>
34 #include <linux/eisa.h>
35 #endif
36
37 #ifdef CONFIG_MCA
38 #include <linux/mca.h>
39 #endif
40
41 #include <asm/processor.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/atomic.h>
46 #include <asm/debugreg.h>
47 #include <asm/desc.h>
48 #include <asm/i387.h>
49 #include <asm/nmi.h>
50 #include <asm/unwind.h>
51 #include <asm/smp.h>
52 #include <asm/arch_hooks.h>
53 #include <asm/kdebug.h>
54 #include <asm/stacktrace.h>
55
56 #include <linux/module.h>
57
58 #include "mach_traps.h"
59
60 asmlinkage int system_call(void);
61
62 struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
63 { 0, 0 }, { 0, 0 } };
64
65 /* Do we ignore FPU interrupts ? */
66 char ignore_fpu_irq = 0;
67
68 /*
69 * The IDT has to be page-aligned to simplify the Pentium
70 * F0 0F bug workaround.. We have a special link segment
71 * for this.
72 */
73 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
74
75 asmlinkage void divide_error(void);
76 asmlinkage void debug(void);
77 asmlinkage void nmi(void);
78 asmlinkage void int3(void);
79 asmlinkage void overflow(void);
80 asmlinkage void bounds(void);
81 asmlinkage void invalid_op(void);
82 asmlinkage void device_not_available(void);
83 asmlinkage void coprocessor_segment_overrun(void);
84 asmlinkage void invalid_TSS(void);
85 asmlinkage void segment_not_present(void);
86 asmlinkage void stack_segment(void);
87 asmlinkage void general_protection(void);
88 asmlinkage void page_fault(void);
89 asmlinkage void coprocessor_error(void);
90 asmlinkage void simd_coprocessor_error(void);
91 asmlinkage void alignment_check(void);
92 asmlinkage void spurious_interrupt_bug(void);
93 asmlinkage void machine_check(void);
94
95 static int kstack_depth_to_print = 24;
96 #ifdef CONFIG_STACK_UNWIND
97 static int call_trace = 1;
98 #else
99 #define call_trace (-1)
100 #endif
101 ATOMIC_NOTIFIER_HEAD(i386die_chain);
102
103 int register_die_notifier(struct notifier_block *nb)
104 {
105 vmalloc_sync_all();
106 return atomic_notifier_chain_register(&i386die_chain, nb);
107 }
108 EXPORT_SYMBOL(register_die_notifier); /* used modular by kdb */
109
110 int unregister_die_notifier(struct notifier_block *nb)
111 {
112 return atomic_notifier_chain_unregister(&i386die_chain, nb);
113 }
114 EXPORT_SYMBOL(unregister_die_notifier); /* used modular by kdb */
115
116 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
117 {
118 return p > (void *)tinfo &&
119 p < (void *)tinfo + THREAD_SIZE - 3;
120 }
121
122 static inline unsigned long print_context_stack(struct thread_info *tinfo,
123 unsigned long *stack, unsigned long ebp,
124 struct stacktrace_ops *ops, void *data)
125 {
126 unsigned long addr;
127
128 #ifdef CONFIG_FRAME_POINTER
129 while (valid_stack_ptr(tinfo, (void *)ebp)) {
130 addr = *(unsigned long *)(ebp + 4);
131 ops->address(data, addr);
132 /*
133 * break out of recursive entries (such as
134 * end_of_stack_stop_unwind_function):
135 */
136 if (ebp == *(unsigned long *)ebp)
137 break;
138 ebp = *(unsigned long *)ebp;
139 }
140 #else
141 while (valid_stack_ptr(tinfo, stack)) {
142 addr = *stack++;
143 if (__kernel_text_address(addr))
144 ops->address(data, addr);
145 }
146 #endif
147 return ebp;
148 }
149
150 struct ops_and_data {
151 struct stacktrace_ops *ops;
152 void *data;
153 };
154
155 static asmlinkage int
156 dump_trace_unwind(struct unwind_frame_info *info, void *data)
157 {
158 struct ops_and_data *oad = (struct ops_and_data *)data;
159 int n = 0;
160
161 while (unwind(info) == 0 && UNW_PC(info)) {
162 n++;
163 oad->ops->address(oad->data, UNW_PC(info));
164 if (arch_unw_user_mode(info))
165 break;
166 }
167 return n;
168 }
169
170 void dump_trace(struct task_struct *task, struct pt_regs *regs,
171 unsigned long *stack,
172 struct stacktrace_ops *ops, void *data)
173 {
174 unsigned long ebp = 0;
175
176 if (!task)
177 task = current;
178
179 if (call_trace >= 0) {
180 int unw_ret = 0;
181 struct unwind_frame_info info;
182 struct ops_and_data oad = { .ops = ops, .data = data };
183
184 if (regs) {
185 if (unwind_init_frame_info(&info, task, regs) == 0)
186 unw_ret = dump_trace_unwind(&info, &oad);
187 } else if (task == current)
188 unw_ret = unwind_init_running(&info, dump_trace_unwind, &oad);
189 else {
190 if (unwind_init_blocked(&info, task) == 0)
191 unw_ret = dump_trace_unwind(&info, &oad);
192 }
193 if (unw_ret > 0) {
194 if (call_trace == 1 && !arch_unw_user_mode(&info)) {
195 ops->warning_symbol(data, "DWARF2 unwinder stuck at %s\n",
196 UNW_PC(&info));
197 if (UNW_SP(&info) >= PAGE_OFFSET) {
198 ops->warning(data, "Leftover inexact backtrace:\n");
199 stack = (void *)UNW_SP(&info);
200 if (!stack)
201 return;
202 ebp = UNW_FP(&info);
203 } else
204 ops->warning(data, "Full inexact backtrace again:\n");
205 } else if (call_trace >= 1)
206 return;
207 else
208 ops->warning(data, "Full inexact backtrace again:\n");
209 } else
210 ops->warning(data, "Inexact backtrace:\n");
211 }
212 if (!stack) {
213 unsigned long dummy;
214 stack = &dummy;
215 if (task && task != current)
216 stack = (unsigned long *)task->thread.esp;
217 }
218
219 #ifdef CONFIG_FRAME_POINTER
220 if (!ebp) {
221 if (task == current) {
222 /* Grab ebp right from our regs */
223 asm ("movl %%ebp, %0" : "=r" (ebp) : );
224 } else {
225 /* ebp is the last reg pushed by switch_to */
226 ebp = *(unsigned long *) task->thread.esp;
227 }
228 }
229 #endif
230
231 while (1) {
232 struct thread_info *context;
233 context = (struct thread_info *)
234 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
235 ebp = print_context_stack(context, stack, ebp, ops, data);
236 /* Should be after the line below, but somewhere
237 in early boot context comes out corrupted and we
238 can't reference it -AK */
239 if (ops->stack(data, "IRQ") < 0)
240 break;
241 stack = (unsigned long*)context->previous_esp;
242 if (!stack)
243 break;
244 }
245 }
246 EXPORT_SYMBOL(dump_trace);
247
248 static void
249 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
250 {
251 printk(data);
252 print_symbol(msg, symbol);
253 printk("\n");
254 }
255
256 static void print_trace_warning(void *data, char *msg)
257 {
258 printk("%s%s\n", (char *)data, msg);
259 }
260
261 static int print_trace_stack(void *data, char *name)
262 {
263 return 0;
264 }
265
266 /*
267 * Print one address/symbol entries per line.
268 */
269 static void print_trace_address(void *data, unsigned long addr)
270 {
271 printk("%s [<%08lx>] ", (char *)data, addr);
272 print_symbol("%s\n", addr);
273 }
274
275 static struct stacktrace_ops print_trace_ops = {
276 .warning = print_trace_warning,
277 .warning_symbol = print_trace_warning_symbol,
278 .stack = print_trace_stack,
279 .address = print_trace_address,
280 };
281
282 static void
283 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
284 unsigned long * stack, char *log_lvl)
285 {
286 dump_trace(task, regs, stack, &print_trace_ops, log_lvl);
287 printk("%s =======================\n", log_lvl);
288 }
289
290 void show_trace(struct task_struct *task, struct pt_regs *regs,
291 unsigned long * stack)
292 {
293 show_trace_log_lvl(task, regs, stack, "");
294 }
295
296 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
297 unsigned long *esp, char *log_lvl)
298 {
299 unsigned long *stack;
300 int i;
301
302 if (esp == NULL) {
303 if (task)
304 esp = (unsigned long*)task->thread.esp;
305 else
306 esp = (unsigned long *)&esp;
307 }
308
309 stack = esp;
310 for(i = 0; i < kstack_depth_to_print; i++) {
311 if (kstack_end(stack))
312 break;
313 if (i && ((i % 8) == 0))
314 printk("\n%s ", log_lvl);
315 printk("%08lx ", *stack++);
316 }
317 printk("\n%sCall Trace:\n", log_lvl);
318 show_trace_log_lvl(task, regs, esp, log_lvl);
319 }
320
321 void show_stack(struct task_struct *task, unsigned long *esp)
322 {
323 printk(" ");
324 show_stack_log_lvl(task, NULL, esp, "");
325 }
326
327 /*
328 * The architecture-independent dump_stack generator
329 */
330 void dump_stack(void)
331 {
332 unsigned long stack;
333
334 show_trace(current, NULL, &stack);
335 }
336
337 EXPORT_SYMBOL(dump_stack);
338
339 void show_registers(struct pt_regs *regs)
340 {
341 int i;
342 int in_kernel = 1;
343 unsigned long esp;
344 unsigned short ss;
345
346 esp = (unsigned long) (&regs->esp);
347 savesegment(ss, ss);
348 if (user_mode_vm(regs)) {
349 in_kernel = 0;
350 esp = regs->esp;
351 ss = regs->xss & 0xffff;
352 }
353 print_modules();
354 printk(KERN_EMERG "CPU: %d\n"
355 KERN_EMERG "EIP: %04x:[<%08lx>] %s VLI\n"
356 KERN_EMERG "EFLAGS: %08lx (%s %.*s)\n",
357 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
358 print_tainted(), regs->eflags, system_utsname.release,
359 (int)strcspn(system_utsname.version, " "),
360 system_utsname.version);
361 print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
362 printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
363 regs->eax, regs->ebx, regs->ecx, regs->edx);
364 printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
365 regs->esi, regs->edi, regs->ebp, esp);
366 printk(KERN_EMERG "ds: %04x es: %04x ss: %04x\n",
367 regs->xds & 0xffff, regs->xes & 0xffff, ss);
368 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
369 TASK_COMM_LEN, current->comm, current->pid,
370 current_thread_info(), current, current->thread_info);
371 /*
372 * When in-kernel, we also print out the stack and code at the
373 * time of the fault..
374 */
375 if (in_kernel) {
376 u8 __user *eip;
377
378 printk("\n" KERN_EMERG "Stack: ");
379 show_stack_log_lvl(NULL, regs, (unsigned long *)esp, KERN_EMERG);
380
381 printk(KERN_EMERG "Code: ");
382
383 eip = (u8 __user *)regs->eip - 43;
384 for (i = 0; i < 64; i++, eip++) {
385 unsigned char c;
386
387 if (eip < (u8 __user *)PAGE_OFFSET || __get_user(c, eip)) {
388 printk(" Bad EIP value.");
389 break;
390 }
391 if (eip == (u8 __user *)regs->eip)
392 printk("<%02x> ", c);
393 else
394 printk("%02x ", c);
395 }
396 }
397 printk("\n");
398 }
399
400 static void handle_BUG(struct pt_regs *regs)
401 {
402 unsigned long eip = regs->eip;
403 unsigned short ud2;
404
405 if (eip < PAGE_OFFSET)
406 return;
407 if (__get_user(ud2, (unsigned short __user *)eip))
408 return;
409 if (ud2 != 0x0b0f)
410 return;
411
412 printk(KERN_EMERG "------------[ cut here ]------------\n");
413
414 #ifdef CONFIG_DEBUG_BUGVERBOSE
415 do {
416 unsigned short line;
417 char *file;
418 char c;
419
420 if (__get_user(line, (unsigned short __user *)(eip + 2)))
421 break;
422 if (__get_user(file, (char * __user *)(eip + 4)) ||
423 (unsigned long)file < PAGE_OFFSET || __get_user(c, file))
424 file = "<bad filename>";
425
426 printk(KERN_EMERG "kernel BUG at %s:%d!\n", file, line);
427 return;
428 } while (0);
429 #endif
430 printk(KERN_EMERG "Kernel BUG at [verbose debug info unavailable]\n");
431 }
432
433 /* This is gone through when something in the kernel
434 * has done something bad and is about to be terminated.
435 */
436 void die(const char * str, struct pt_regs * regs, long err)
437 {
438 static struct {
439 spinlock_t lock;
440 u32 lock_owner;
441 int lock_owner_depth;
442 } die = {
443 .lock = SPIN_LOCK_UNLOCKED,
444 .lock_owner = -1,
445 .lock_owner_depth = 0
446 };
447 static int die_counter;
448 unsigned long flags;
449
450 oops_enter();
451
452 if (die.lock_owner != raw_smp_processor_id()) {
453 console_verbose();
454 spin_lock_irqsave(&die.lock, flags);
455 die.lock_owner = smp_processor_id();
456 die.lock_owner_depth = 0;
457 bust_spinlocks(1);
458 }
459 else
460 local_save_flags(flags);
461
462 if (++die.lock_owner_depth < 3) {
463 int nl = 0;
464 unsigned long esp;
465 unsigned short ss;
466
467 handle_BUG(regs);
468 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
469 #ifdef CONFIG_PREEMPT
470 printk(KERN_EMERG "PREEMPT ");
471 nl = 1;
472 #endif
473 #ifdef CONFIG_SMP
474 if (!nl)
475 printk(KERN_EMERG);
476 printk("SMP ");
477 nl = 1;
478 #endif
479 #ifdef CONFIG_DEBUG_PAGEALLOC
480 if (!nl)
481 printk(KERN_EMERG);
482 printk("DEBUG_PAGEALLOC");
483 nl = 1;
484 #endif
485 if (nl)
486 printk("\n");
487 if (notify_die(DIE_OOPS, str, regs, err,
488 current->thread.trap_no, SIGSEGV) !=
489 NOTIFY_STOP) {
490 show_registers(regs);
491 /* Executive summary in case the oops scrolled away */
492 esp = (unsigned long) (&regs->esp);
493 savesegment(ss, ss);
494 if (user_mode(regs)) {
495 esp = regs->esp;
496 ss = regs->xss & 0xffff;
497 }
498 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
499 print_symbol("%s", regs->eip);
500 printk(" SS:ESP %04x:%08lx\n", ss, esp);
501 }
502 else
503 regs = NULL;
504 } else
505 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
506
507 bust_spinlocks(0);
508 die.lock_owner = -1;
509 spin_unlock_irqrestore(&die.lock, flags);
510
511 if (!regs)
512 return;
513
514 if (kexec_should_crash(current))
515 crash_kexec(regs);
516
517 if (in_interrupt())
518 panic("Fatal exception in interrupt");
519
520 if (panic_on_oops)
521 panic("Fatal exception");
522
523 oops_exit();
524 do_exit(SIGSEGV);
525 }
526
527 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
528 {
529 if (!user_mode_vm(regs))
530 die(str, regs, err);
531 }
532
533 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
534 struct pt_regs * regs, long error_code,
535 siginfo_t *info)
536 {
537 struct task_struct *tsk = current;
538 tsk->thread.error_code = error_code;
539 tsk->thread.trap_no = trapnr;
540
541 if (regs->eflags & VM_MASK) {
542 if (vm86)
543 goto vm86_trap;
544 goto trap_signal;
545 }
546
547 if (!user_mode(regs))
548 goto kernel_trap;
549
550 trap_signal: {
551 if (info)
552 force_sig_info(signr, info, tsk);
553 else
554 force_sig(signr, tsk);
555 return;
556 }
557
558 kernel_trap: {
559 if (!fixup_exception(regs))
560 die(str, regs, error_code);
561 return;
562 }
563
564 vm86_trap: {
565 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
566 if (ret) goto trap_signal;
567 return;
568 }
569 }
570
571 #define DO_ERROR(trapnr, signr, str, name) \
572 fastcall void do_##name(struct pt_regs * regs, long error_code) \
573 { \
574 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
575 == NOTIFY_STOP) \
576 return; \
577 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
578 }
579
580 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
581 fastcall void do_##name(struct pt_regs * regs, long error_code) \
582 { \
583 siginfo_t info; \
584 info.si_signo = signr; \
585 info.si_errno = 0; \
586 info.si_code = sicode; \
587 info.si_addr = (void __user *)siaddr; \
588 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
589 == NOTIFY_STOP) \
590 return; \
591 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
592 }
593
594 #define DO_VM86_ERROR(trapnr, signr, str, name) \
595 fastcall void do_##name(struct pt_regs * regs, long error_code) \
596 { \
597 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
598 == NOTIFY_STOP) \
599 return; \
600 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
601 }
602
603 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
604 fastcall void do_##name(struct pt_regs * regs, long error_code) \
605 { \
606 siginfo_t info; \
607 info.si_signo = signr; \
608 info.si_errno = 0; \
609 info.si_code = sicode; \
610 info.si_addr = (void __user *)siaddr; \
611 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
612 == NOTIFY_STOP) \
613 return; \
614 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
615 }
616
617 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
618 #ifndef CONFIG_KPROBES
619 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
620 #endif
621 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
622 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
623 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip)
624 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
625 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
626 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
627 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
628 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
629 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
630
631 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
632 long error_code)
633 {
634 int cpu = get_cpu();
635 struct tss_struct *tss = &per_cpu(init_tss, cpu);
636 struct thread_struct *thread = &current->thread;
637
638 /*
639 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
640 * invalid offset set (the LAZY one) and the faulting thread has
641 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
642 * and we set the offset field correctly. Then we let the CPU to
643 * restart the faulting instruction.
644 */
645 if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
646 thread->io_bitmap_ptr) {
647 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
648 thread->io_bitmap_max);
649 /*
650 * If the previously set map was extending to higher ports
651 * than the current one, pad extra space with 0xff (no access).
652 */
653 if (thread->io_bitmap_max < tss->io_bitmap_max)
654 memset((char *) tss->io_bitmap +
655 thread->io_bitmap_max, 0xff,
656 tss->io_bitmap_max - thread->io_bitmap_max);
657 tss->io_bitmap_max = thread->io_bitmap_max;
658 tss->io_bitmap_base = IO_BITMAP_OFFSET;
659 tss->io_bitmap_owner = thread;
660 put_cpu();
661 return;
662 }
663 put_cpu();
664
665 current->thread.error_code = error_code;
666 current->thread.trap_no = 13;
667
668 if (regs->eflags & VM_MASK)
669 goto gp_in_vm86;
670
671 if (!user_mode(regs))
672 goto gp_in_kernel;
673
674 current->thread.error_code = error_code;
675 current->thread.trap_no = 13;
676 force_sig(SIGSEGV, current);
677 return;
678
679 gp_in_vm86:
680 local_irq_enable();
681 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
682 return;
683
684 gp_in_kernel:
685 if (!fixup_exception(regs)) {
686 if (notify_die(DIE_GPF, "general protection fault", regs,
687 error_code, 13, SIGSEGV) == NOTIFY_STOP)
688 return;
689 die("general protection fault", regs, error_code);
690 }
691 }
692
693 static __kprobes void
694 mem_parity_error(unsigned char reason, struct pt_regs * regs)
695 {
696 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
697 "CPU %d.\n", reason, smp_processor_id());
698 printk(KERN_EMERG "You probably have a hardware problem with your RAM "
699 "chips\n");
700 if (panic_on_unrecovered_nmi)
701 panic("NMI: Not continuing");
702
703 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
704
705 /* Clear and disable the memory parity error line. */
706 clear_mem_error(reason);
707 }
708
709 static __kprobes void
710 io_check_error(unsigned char reason, struct pt_regs * regs)
711 {
712 unsigned long i;
713
714 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
715 show_registers(regs);
716
717 /* Re-enable the IOCK line, wait for a few seconds */
718 reason = (reason & 0xf) | 8;
719 outb(reason, 0x61);
720 i = 2000;
721 while (--i) udelay(1000);
722 reason &= ~8;
723 outb(reason, 0x61);
724 }
725
726 static __kprobes void
727 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
728 {
729 #ifdef CONFIG_MCA
730 /* Might actually be able to figure out what the guilty party
731 * is. */
732 if( MCA_bus ) {
733 mca_handle_nmi();
734 return;
735 }
736 #endif
737 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
738 "CPU %d.\n", reason, smp_processor_id());
739 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
740 if (panic_on_unrecovered_nmi)
741 panic("NMI: Not continuing");
742
743 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
744 }
745
746 static DEFINE_SPINLOCK(nmi_print_lock);
747
748 void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
749 {
750 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
751 NOTIFY_STOP)
752 return;
753
754 spin_lock(&nmi_print_lock);
755 /*
756 * We are in trouble anyway, lets at least try
757 * to get a message out.
758 */
759 bust_spinlocks(1);
760 printk(KERN_EMERG "%s", msg);
761 printk(" on CPU%d, eip %08lx, registers:\n",
762 smp_processor_id(), regs->eip);
763 show_registers(regs);
764 printk(KERN_EMERG "console shuts up ...\n");
765 console_silent();
766 spin_unlock(&nmi_print_lock);
767 bust_spinlocks(0);
768
769 /* If we are in kernel we are probably nested up pretty bad
770 * and might aswell get out now while we still can.
771 */
772 if (!user_mode_vm(regs)) {
773 current->thread.trap_no = 2;
774 crash_kexec(regs);
775 }
776
777 do_exit(SIGSEGV);
778 }
779
780 static __kprobes void default_do_nmi(struct pt_regs * regs)
781 {
782 unsigned char reason = 0;
783
784 /* Only the BSP gets external NMIs from the system. */
785 if (!smp_processor_id())
786 reason = get_nmi_reason();
787
788 if (!(reason & 0xc0)) {
789 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
790 == NOTIFY_STOP)
791 return;
792 #ifdef CONFIG_X86_LOCAL_APIC
793 /*
794 * Ok, so this is none of the documented NMI sources,
795 * so it must be the NMI watchdog.
796 */
797 if (nmi_watchdog_tick(regs, reason))
798 return;
799 if (!do_nmi_callback(regs, smp_processor_id()))
800 #endif
801 unknown_nmi_error(reason, regs);
802
803 return;
804 }
805 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
806 return;
807 if (reason & 0x80)
808 mem_parity_error(reason, regs);
809 if (reason & 0x40)
810 io_check_error(reason, regs);
811 /*
812 * Reassert NMI in case it became active meanwhile
813 * as it's edge-triggered.
814 */
815 reassert_nmi();
816 }
817
818 fastcall __kprobes void do_nmi(struct pt_regs * regs, long error_code)
819 {
820 int cpu;
821
822 nmi_enter();
823
824 cpu = smp_processor_id();
825
826 ++nmi_count(cpu);
827
828 default_do_nmi(regs);
829
830 nmi_exit();
831 }
832
833 #ifdef CONFIG_KPROBES
834 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
835 {
836 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
837 == NOTIFY_STOP)
838 return;
839 /* This is an interrupt gate, because kprobes wants interrupts
840 disabled. Normal trap handlers don't. */
841 restore_interrupts(regs);
842 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
843 }
844 #endif
845
846 /*
847 * Our handling of the processor debug registers is non-trivial.
848 * We do not clear them on entry and exit from the kernel. Therefore
849 * it is possible to get a watchpoint trap here from inside the kernel.
850 * However, the code in ./ptrace.c has ensured that the user can
851 * only set watchpoints on userspace addresses. Therefore the in-kernel
852 * watchpoint trap can only occur in code which is reading/writing
853 * from user space. Such code must not hold kernel locks (since it
854 * can equally take a page fault), therefore it is safe to call
855 * force_sig_info even though that claims and releases locks.
856 *
857 * Code in ./signal.c ensures that the debug control register
858 * is restored before we deliver any signal, and therefore that
859 * user code runs with the correct debug control register even though
860 * we clear it here.
861 *
862 * Being careful here means that we don't have to be as careful in a
863 * lot of more complicated places (task switching can be a bit lazy
864 * about restoring all the debug state, and ptrace doesn't have to
865 * find every occurrence of the TF bit that could be saved away even
866 * by user code)
867 */
868 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
869 {
870 unsigned int condition;
871 struct task_struct *tsk = current;
872
873 get_debugreg(condition, 6);
874
875 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
876 SIGTRAP) == NOTIFY_STOP)
877 return;
878 /* It's safe to allow irq's after DR6 has been saved */
879 if (regs->eflags & X86_EFLAGS_IF)
880 local_irq_enable();
881
882 /* Mask out spurious debug traps due to lazy DR7 setting */
883 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
884 if (!tsk->thread.debugreg[7])
885 goto clear_dr7;
886 }
887
888 if (regs->eflags & VM_MASK)
889 goto debug_vm86;
890
891 /* Save debug status register where ptrace can see it */
892 tsk->thread.debugreg[6] = condition;
893
894 /*
895 * Single-stepping through TF: make sure we ignore any events in
896 * kernel space (but re-enable TF when returning to user mode).
897 */
898 if (condition & DR_STEP) {
899 /*
900 * We already checked v86 mode above, so we can
901 * check for kernel mode by just checking the CPL
902 * of CS.
903 */
904 if (!user_mode(regs))
905 goto clear_TF_reenable;
906 }
907
908 /* Ok, finally something we can handle */
909 send_sigtrap(tsk, regs, error_code);
910
911 /* Disable additional traps. They'll be re-enabled when
912 * the signal is delivered.
913 */
914 clear_dr7:
915 set_debugreg(0, 7);
916 return;
917
918 debug_vm86:
919 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
920 return;
921
922 clear_TF_reenable:
923 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
924 regs->eflags &= ~TF_MASK;
925 return;
926 }
927
928 /*
929 * Note that we play around with the 'TS' bit in an attempt to get
930 * the correct behaviour even in the presence of the asynchronous
931 * IRQ13 behaviour
932 */
933 void math_error(void __user *eip)
934 {
935 struct task_struct * task;
936 siginfo_t info;
937 unsigned short cwd, swd;
938
939 /*
940 * Save the info for the exception handler and clear the error.
941 */
942 task = current;
943 save_init_fpu(task);
944 task->thread.trap_no = 16;
945 task->thread.error_code = 0;
946 info.si_signo = SIGFPE;
947 info.si_errno = 0;
948 info.si_code = __SI_FAULT;
949 info.si_addr = eip;
950 /*
951 * (~cwd & swd) will mask out exceptions that are not set to unmasked
952 * status. 0x3f is the exception bits in these regs, 0x200 is the
953 * C1 reg you need in case of a stack fault, 0x040 is the stack
954 * fault bit. We should only be taking one exception at a time,
955 * so if this combination doesn't produce any single exception,
956 * then we have a bad program that isn't syncronizing its FPU usage
957 * and it will suffer the consequences since we won't be able to
958 * fully reproduce the context of the exception
959 */
960 cwd = get_fpu_cwd(task);
961 swd = get_fpu_swd(task);
962 switch (swd & ~cwd & 0x3f) {
963 case 0x000: /* No unmasked exception */
964 return;
965 default: /* Multiple exceptions */
966 break;
967 case 0x001: /* Invalid Op */
968 /*
969 * swd & 0x240 == 0x040: Stack Underflow
970 * swd & 0x240 == 0x240: Stack Overflow
971 * User must clear the SF bit (0x40) if set
972 */
973 info.si_code = FPE_FLTINV;
974 break;
975 case 0x002: /* Denormalize */
976 case 0x010: /* Underflow */
977 info.si_code = FPE_FLTUND;
978 break;
979 case 0x004: /* Zero Divide */
980 info.si_code = FPE_FLTDIV;
981 break;
982 case 0x008: /* Overflow */
983 info.si_code = FPE_FLTOVF;
984 break;
985 case 0x020: /* Precision */
986 info.si_code = FPE_FLTRES;
987 break;
988 }
989 force_sig_info(SIGFPE, &info, task);
990 }
991
992 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
993 {
994 ignore_fpu_irq = 1;
995 math_error((void __user *)regs->eip);
996 }
997
998 static void simd_math_error(void __user *eip)
999 {
1000 struct task_struct * task;
1001 siginfo_t info;
1002 unsigned short mxcsr;
1003
1004 /*
1005 * Save the info for the exception handler and clear the error.
1006 */
1007 task = current;
1008 save_init_fpu(task);
1009 task->thread.trap_no = 19;
1010 task->thread.error_code = 0;
1011 info.si_signo = SIGFPE;
1012 info.si_errno = 0;
1013 info.si_code = __SI_FAULT;
1014 info.si_addr = eip;
1015 /*
1016 * The SIMD FPU exceptions are handled a little differently, as there
1017 * is only a single status/control register. Thus, to determine which
1018 * unmasked exception was caught we must mask the exception mask bits
1019 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1020 */
1021 mxcsr = get_fpu_mxcsr(task);
1022 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1023 case 0x000:
1024 default:
1025 break;
1026 case 0x001: /* Invalid Op */
1027 info.si_code = FPE_FLTINV;
1028 break;
1029 case 0x002: /* Denormalize */
1030 case 0x010: /* Underflow */
1031 info.si_code = FPE_FLTUND;
1032 break;
1033 case 0x004: /* Zero Divide */
1034 info.si_code = FPE_FLTDIV;
1035 break;
1036 case 0x008: /* Overflow */
1037 info.si_code = FPE_FLTOVF;
1038 break;
1039 case 0x020: /* Precision */
1040 info.si_code = FPE_FLTRES;
1041 break;
1042 }
1043 force_sig_info(SIGFPE, &info, task);
1044 }
1045
1046 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
1047 long error_code)
1048 {
1049 if (cpu_has_xmm) {
1050 /* Handle SIMD FPU exceptions on PIII+ processors. */
1051 ignore_fpu_irq = 1;
1052 simd_math_error((void __user *)regs->eip);
1053 } else {
1054 /*
1055 * Handle strange cache flush from user space exception
1056 * in all other cases. This is undocumented behaviour.
1057 */
1058 if (regs->eflags & VM_MASK) {
1059 handle_vm86_fault((struct kernel_vm86_regs *)regs,
1060 error_code);
1061 return;
1062 }
1063 current->thread.trap_no = 19;
1064 current->thread.error_code = error_code;
1065 die_if_kernel("cache flush denied", regs, error_code);
1066 force_sig(SIGSEGV, current);
1067 }
1068 }
1069
1070 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
1071 long error_code)
1072 {
1073 #if 0
1074 /* No need to warn about this any longer. */
1075 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1076 #endif
1077 }
1078
1079 fastcall void setup_x86_bogus_stack(unsigned char * stk)
1080 {
1081 unsigned long *switch16_ptr, *switch32_ptr;
1082 struct pt_regs *regs;
1083 unsigned long stack_top, stack_bot;
1084 unsigned short iret_frame16_off;
1085 int cpu = smp_processor_id();
1086 /* reserve the space on 32bit stack for the magic switch16 pointer */
1087 memmove(stk, stk + 8, sizeof(struct pt_regs));
1088 switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs));
1089 regs = (struct pt_regs *)stk;
1090 /* now the switch32 on 16bit stack */
1091 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
1092 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
1093 switch32_ptr = (unsigned long *)(stack_top - 8);
1094 iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20;
1095 /* copy iret frame on 16bit stack */
1096 memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20);
1097 /* fill in the switch pointers */
1098 switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off;
1099 switch16_ptr[1] = __ESPFIX_SS;
1100 switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) +
1101 8 - CPU_16BIT_STACK_SIZE;
1102 switch32_ptr[1] = __KERNEL_DS;
1103 }
1104
1105 fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp)
1106 {
1107 unsigned long *switch32_ptr;
1108 unsigned char *stack16, *stack32;
1109 unsigned long stack_top, stack_bot;
1110 int len;
1111 int cpu = smp_processor_id();
1112 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
1113 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
1114 switch32_ptr = (unsigned long *)(stack_top - 8);
1115 /* copy the data from 16bit stack to 32bit stack */
1116 len = CPU_16BIT_STACK_SIZE - 8 - sp;
1117 stack16 = (unsigned char *)(stack_bot + sp);
1118 stack32 = (unsigned char *)
1119 (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len);
1120 memcpy(stack32, stack16, len);
1121 return stack32;
1122 }
1123
1124 /*
1125 * 'math_state_restore()' saves the current math information in the
1126 * old math state array, and gets the new ones from the current task
1127 *
1128 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1129 * Don't touch unless you *really* know how it works.
1130 *
1131 * Must be called with kernel preemption disabled (in this case,
1132 * local interrupts are disabled at the call-site in entry.S).
1133 */
1134 asmlinkage void math_state_restore(struct pt_regs regs)
1135 {
1136 struct thread_info *thread = current_thread_info();
1137 struct task_struct *tsk = thread->task;
1138
1139 clts(); /* Allow maths ops (or we recurse) */
1140 if (!tsk_used_math(tsk))
1141 init_fpu(tsk);
1142 restore_fpu(tsk);
1143 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1144 }
1145
1146 #ifndef CONFIG_MATH_EMULATION
1147
1148 asmlinkage void math_emulate(long arg)
1149 {
1150 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1151 printk(KERN_EMERG "killing %s.\n",current->comm);
1152 force_sig(SIGFPE,current);
1153 schedule();
1154 }
1155
1156 #endif /* CONFIG_MATH_EMULATION */
1157
1158 #ifdef CONFIG_X86_F00F_BUG
1159 void __init trap_init_f00f_bug(void)
1160 {
1161 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
1162
1163 /*
1164 * Update the IDT descriptor and reload the IDT so that
1165 * it uses the read-only mapped virtual address.
1166 */
1167 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
1168 load_idt(&idt_descr);
1169 }
1170 #endif
1171
1172 /*
1173 * This needs to use 'idt_table' rather than 'idt', and
1174 * thus use the _nonmapped_ version of the IDT, as the
1175 * Pentium F0 0F bugfix can have resulted in the mapped
1176 * IDT being write-protected.
1177 */
1178 void set_intr_gate(unsigned int n, void *addr)
1179 {
1180 _set_gate(n, DESCTYPE_INT, addr, __KERNEL_CS);
1181 }
1182
1183 /*
1184 * This routine sets up an interrupt gate at directory privilege level 3.
1185 */
1186 static inline void set_system_intr_gate(unsigned int n, void *addr)
1187 {
1188 _set_gate(n, DESCTYPE_INT | DESCTYPE_DPL3, addr, __KERNEL_CS);
1189 }
1190
1191 static void __init set_trap_gate(unsigned int n, void *addr)
1192 {
1193 _set_gate(n, DESCTYPE_TRAP, addr, __KERNEL_CS);
1194 }
1195
1196 static void __init set_system_gate(unsigned int n, void *addr)
1197 {
1198 _set_gate(n, DESCTYPE_TRAP | DESCTYPE_DPL3, addr, __KERNEL_CS);
1199 }
1200
1201 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1202 {
1203 _set_gate(n, DESCTYPE_TASK, (void *)0, (gdt_entry<<3));
1204 }
1205
1206
1207 void __init trap_init(void)
1208 {
1209 #ifdef CONFIG_EISA
1210 void __iomem *p = ioremap(0x0FFFD9, 4);
1211 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1212 EISA_bus = 1;
1213 }
1214 iounmap(p);
1215 #endif
1216
1217 #ifdef CONFIG_X86_LOCAL_APIC
1218 init_apic_mappings();
1219 #endif
1220
1221 set_trap_gate(0,&divide_error);
1222 set_intr_gate(1,&debug);
1223 set_intr_gate(2,&nmi);
1224 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1225 set_system_gate(4,&overflow);
1226 set_trap_gate(5,&bounds);
1227 set_trap_gate(6,&invalid_op);
1228 set_trap_gate(7,&device_not_available);
1229 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1230 set_trap_gate(9,&coprocessor_segment_overrun);
1231 set_trap_gate(10,&invalid_TSS);
1232 set_trap_gate(11,&segment_not_present);
1233 set_trap_gate(12,&stack_segment);
1234 set_trap_gate(13,&general_protection);
1235 set_intr_gate(14,&page_fault);
1236 set_trap_gate(15,&spurious_interrupt_bug);
1237 set_trap_gate(16,&coprocessor_error);
1238 set_trap_gate(17,&alignment_check);
1239 #ifdef CONFIG_X86_MCE
1240 set_trap_gate(18,&machine_check);
1241 #endif
1242 set_trap_gate(19,&simd_coprocessor_error);
1243
1244 if (cpu_has_fxsr) {
1245 /*
1246 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1247 * Generates a compile-time "error: zero width for bit-field" if
1248 * the alignment is wrong.
1249 */
1250 struct fxsrAlignAssert {
1251 int _:!(offsetof(struct task_struct,
1252 thread.i387.fxsave) & 15);
1253 };
1254
1255 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1256 set_in_cr4(X86_CR4_OSFXSR);
1257 printk("done.\n");
1258 }
1259 if (cpu_has_xmm) {
1260 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1261 "support... ");
1262 set_in_cr4(X86_CR4_OSXMMEXCPT);
1263 printk("done.\n");
1264 }
1265
1266 set_system_gate(SYSCALL_VECTOR,&system_call);
1267
1268 /*
1269 * Should be a barrier for any external CPU state.
1270 */
1271 cpu_init();
1272
1273 trap_init_hook();
1274 }
1275
1276 static int __init kstack_setup(char *s)
1277 {
1278 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1279 return 1;
1280 }
1281 __setup("kstack=", kstack_setup);
1282
1283 #ifdef CONFIG_STACK_UNWIND
1284 static int __init call_trace_setup(char *s)
1285 {
1286 if (strcmp(s, "old") == 0)
1287 call_trace = -1;
1288 else if (strcmp(s, "both") == 0)
1289 call_trace = 0;
1290 else if (strcmp(s, "newfallback") == 0)
1291 call_trace = 1;
1292 else if (strcmp(s, "new") == 2)
1293 call_trace = 2;
1294 return 1;
1295 }
1296 __setup("call_trace=", call_trace_setup);
1297 #endif