]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/ia64/mm/discontig.c
mm: replace all open encodings for NUMA_NO_NODE
[mirror_ubuntu-jammy-kernel.git] / arch / ia64 / mm / discontig.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
4 * Copyright (c) 2001 Intel Corp.
5 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
6 * Copyright (c) 2002 NEC Corp.
7 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
8 * Copyright (c) 2004 Silicon Graphics, Inc
9 * Russ Anderson <rja@sgi.com>
10 * Jesse Barnes <jbarnes@sgi.com>
11 * Jack Steiner <steiner@sgi.com>
12 */
13
14 /*
15 * Platform initialization for Discontig Memory
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
22 #include <linux/memblock.h>
23 #include <linux/acpi.h>
24 #include <linux/efi.h>
25 #include <linux/nodemask.h>
26 #include <linux/slab.h>
27 #include <asm/pgalloc.h>
28 #include <asm/tlb.h>
29 #include <asm/meminit.h>
30 #include <asm/numa.h>
31 #include <asm/sections.h>
32
33 /*
34 * Track per-node information needed to setup the boot memory allocator, the
35 * per-node areas, and the real VM.
36 */
37 struct early_node_data {
38 struct ia64_node_data *node_data;
39 unsigned long pernode_addr;
40 unsigned long pernode_size;
41 unsigned long min_pfn;
42 unsigned long max_pfn;
43 };
44
45 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
46 static nodemask_t memory_less_mask __initdata;
47
48 pg_data_t *pgdat_list[MAX_NUMNODES];
49
50 /*
51 * To prevent cache aliasing effects, align per-node structures so that they
52 * start at addresses that are strided by node number.
53 */
54 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
55 #define NODEDATA_ALIGN(addr, node) \
56 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
57 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
58
59 /**
60 * build_node_maps - callback to setup mem_data structs for each node
61 * @start: physical start of range
62 * @len: length of range
63 * @node: node where this range resides
64 *
65 * Detect extents of each piece of memory that we wish to
66 * treat as a virtually contiguous block (i.e. each node). Each such block
67 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
68 * if necessary. Any non-existent pages will simply be part of the virtual
69 * memmap.
70 */
71 static int __init build_node_maps(unsigned long start, unsigned long len,
72 int node)
73 {
74 unsigned long spfn, epfn, end = start + len;
75
76 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
77 spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
78
79 if (!mem_data[node].min_pfn) {
80 mem_data[node].min_pfn = spfn;
81 mem_data[node].max_pfn = epfn;
82 } else {
83 mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
84 mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
85 }
86
87 return 0;
88 }
89
90 /**
91 * early_nr_cpus_node - return number of cpus on a given node
92 * @node: node to check
93 *
94 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
95 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
96 * called yet. Note that node 0 will also count all non-existent cpus.
97 */
98 static int __meminit early_nr_cpus_node(int node)
99 {
100 int cpu, n = 0;
101
102 for_each_possible_early_cpu(cpu)
103 if (node == node_cpuid[cpu].nid)
104 n++;
105
106 return n;
107 }
108
109 /**
110 * compute_pernodesize - compute size of pernode data
111 * @node: the node id.
112 */
113 static unsigned long __meminit compute_pernodesize(int node)
114 {
115 unsigned long pernodesize = 0, cpus;
116
117 cpus = early_nr_cpus_node(node);
118 pernodesize += PERCPU_PAGE_SIZE * cpus;
119 pernodesize += node * L1_CACHE_BYTES;
120 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
121 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
122 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
123 pernodesize = PAGE_ALIGN(pernodesize);
124 return pernodesize;
125 }
126
127 /**
128 * per_cpu_node_setup - setup per-cpu areas on each node
129 * @cpu_data: per-cpu area on this node
130 * @node: node to setup
131 *
132 * Copy the static per-cpu data into the region we just set aside and then
133 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
134 * the end of the area.
135 */
136 static void *per_cpu_node_setup(void *cpu_data, int node)
137 {
138 #ifdef CONFIG_SMP
139 int cpu;
140
141 for_each_possible_early_cpu(cpu) {
142 void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
143
144 if (node != node_cpuid[cpu].nid)
145 continue;
146
147 memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
148 __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
149 __per_cpu_start;
150
151 /*
152 * percpu area for cpu0 is moved from the __init area
153 * which is setup by head.S and used till this point.
154 * Update ar.k3. This move is ensures that percpu
155 * area for cpu0 is on the correct node and its
156 * virtual address isn't insanely far from other
157 * percpu areas which is important for congruent
158 * percpu allocator.
159 */
160 if (cpu == 0)
161 ia64_set_kr(IA64_KR_PER_CPU_DATA,
162 (unsigned long)cpu_data -
163 (unsigned long)__per_cpu_start);
164
165 cpu_data += PERCPU_PAGE_SIZE;
166 }
167 #endif
168 return cpu_data;
169 }
170
171 #ifdef CONFIG_SMP
172 /**
173 * setup_per_cpu_areas - setup percpu areas
174 *
175 * Arch code has already allocated and initialized percpu areas. All
176 * this function has to do is to teach the determined layout to the
177 * dynamic percpu allocator, which happens to be more complex than
178 * creating whole new ones using helpers.
179 */
180 void __init setup_per_cpu_areas(void)
181 {
182 struct pcpu_alloc_info *ai;
183 struct pcpu_group_info *uninitialized_var(gi);
184 unsigned int *cpu_map;
185 void *base;
186 unsigned long base_offset;
187 unsigned int cpu;
188 ssize_t static_size, reserved_size, dyn_size;
189 int node, prev_node, unit, nr_units, rc;
190
191 ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
192 if (!ai)
193 panic("failed to allocate pcpu_alloc_info");
194 cpu_map = ai->groups[0].cpu_map;
195
196 /* determine base */
197 base = (void *)ULONG_MAX;
198 for_each_possible_cpu(cpu)
199 base = min(base,
200 (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
201 base_offset = (void *)__per_cpu_start - base;
202
203 /* build cpu_map, units are grouped by node */
204 unit = 0;
205 for_each_node(node)
206 for_each_possible_cpu(cpu)
207 if (node == node_cpuid[cpu].nid)
208 cpu_map[unit++] = cpu;
209 nr_units = unit;
210
211 /* set basic parameters */
212 static_size = __per_cpu_end - __per_cpu_start;
213 reserved_size = PERCPU_MODULE_RESERVE;
214 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
215 if (dyn_size < 0)
216 panic("percpu area overflow static=%zd reserved=%zd\n",
217 static_size, reserved_size);
218
219 ai->static_size = static_size;
220 ai->reserved_size = reserved_size;
221 ai->dyn_size = dyn_size;
222 ai->unit_size = PERCPU_PAGE_SIZE;
223 ai->atom_size = PAGE_SIZE;
224 ai->alloc_size = PERCPU_PAGE_SIZE;
225
226 /*
227 * CPUs are put into groups according to node. Walk cpu_map
228 * and create new groups at node boundaries.
229 */
230 prev_node = NUMA_NO_NODE;
231 ai->nr_groups = 0;
232 for (unit = 0; unit < nr_units; unit++) {
233 cpu = cpu_map[unit];
234 node = node_cpuid[cpu].nid;
235
236 if (node == prev_node) {
237 gi->nr_units++;
238 continue;
239 }
240 prev_node = node;
241
242 gi = &ai->groups[ai->nr_groups++];
243 gi->nr_units = 1;
244 gi->base_offset = __per_cpu_offset[cpu] + base_offset;
245 gi->cpu_map = &cpu_map[unit];
246 }
247
248 rc = pcpu_setup_first_chunk(ai, base);
249 if (rc)
250 panic("failed to setup percpu area (err=%d)", rc);
251
252 pcpu_free_alloc_info(ai);
253 }
254 #endif
255
256 /**
257 * fill_pernode - initialize pernode data.
258 * @node: the node id.
259 * @pernode: physical address of pernode data
260 * @pernodesize: size of the pernode data
261 */
262 static void __init fill_pernode(int node, unsigned long pernode,
263 unsigned long pernodesize)
264 {
265 void *cpu_data;
266 int cpus = early_nr_cpus_node(node);
267
268 mem_data[node].pernode_addr = pernode;
269 mem_data[node].pernode_size = pernodesize;
270 memset(__va(pernode), 0, pernodesize);
271
272 cpu_data = (void *)pernode;
273 pernode += PERCPU_PAGE_SIZE * cpus;
274 pernode += node * L1_CACHE_BYTES;
275
276 pgdat_list[node] = __va(pernode);
277 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
278
279 mem_data[node].node_data = __va(pernode);
280 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
281 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
282
283 cpu_data = per_cpu_node_setup(cpu_data, node);
284
285 return;
286 }
287
288 /**
289 * find_pernode_space - allocate memory for memory map and per-node structures
290 * @start: physical start of range
291 * @len: length of range
292 * @node: node where this range resides
293 *
294 * This routine reserves space for the per-cpu data struct, the list of
295 * pg_data_ts and the per-node data struct. Each node will have something like
296 * the following in the first chunk of addr. space large enough to hold it.
297 *
298 * ________________________
299 * | |
300 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
301 * | PERCPU_PAGE_SIZE * | start and length big enough
302 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
303 * |------------------------|
304 * | local pg_data_t * |
305 * |------------------------|
306 * | local ia64_node_data |
307 * |------------------------|
308 * | ??? |
309 * |________________________|
310 *
311 * Once this space has been set aside, the bootmem maps are initialized. We
312 * could probably move the allocation of the per-cpu and ia64_node_data space
313 * outside of this function and use alloc_bootmem_node(), but doing it here
314 * is straightforward and we get the alignments we want so...
315 */
316 static int __init find_pernode_space(unsigned long start, unsigned long len,
317 int node)
318 {
319 unsigned long spfn, epfn;
320 unsigned long pernodesize = 0, pernode;
321
322 spfn = start >> PAGE_SHIFT;
323 epfn = (start + len) >> PAGE_SHIFT;
324
325 /*
326 * Make sure this memory falls within this node's usable memory
327 * since we may have thrown some away in build_maps().
328 */
329 if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
330 return 0;
331
332 /* Don't setup this node's local space twice... */
333 if (mem_data[node].pernode_addr)
334 return 0;
335
336 /*
337 * Calculate total size needed, incl. what's necessary
338 * for good alignment and alias prevention.
339 */
340 pernodesize = compute_pernodesize(node);
341 pernode = NODEDATA_ALIGN(start, node);
342
343 /* Is this range big enough for what we want to store here? */
344 if (start + len > (pernode + pernodesize))
345 fill_pernode(node, pernode, pernodesize);
346
347 return 0;
348 }
349
350 /**
351 * reserve_pernode_space - reserve memory for per-node space
352 *
353 * Reserve the space used by the bootmem maps & per-node space in the boot
354 * allocator so that when we actually create the real mem maps we don't
355 * use their memory.
356 */
357 static void __init reserve_pernode_space(void)
358 {
359 unsigned long base, size;
360 int node;
361
362 for_each_online_node(node) {
363 if (node_isset(node, memory_less_mask))
364 continue;
365
366 /* Now the per-node space */
367 size = mem_data[node].pernode_size;
368 base = __pa(mem_data[node].pernode_addr);
369 memblock_reserve(base, size);
370 }
371 }
372
373 static void __meminit scatter_node_data(void)
374 {
375 pg_data_t **dst;
376 int node;
377
378 /*
379 * for_each_online_node() can't be used at here.
380 * node_online_map is not set for hot-added nodes at this time,
381 * because we are halfway through initialization of the new node's
382 * structures. If for_each_online_node() is used, a new node's
383 * pg_data_ptrs will be not initialized. Instead of using it,
384 * pgdat_list[] is checked.
385 */
386 for_each_node(node) {
387 if (pgdat_list[node]) {
388 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
389 memcpy(dst, pgdat_list, sizeof(pgdat_list));
390 }
391 }
392 }
393
394 /**
395 * initialize_pernode_data - fixup per-cpu & per-node pointers
396 *
397 * Each node's per-node area has a copy of the global pg_data_t list, so
398 * we copy that to each node here, as well as setting the per-cpu pointer
399 * to the local node data structure. The active_cpus field of the per-node
400 * structure gets setup by the platform_cpu_init() function later.
401 */
402 static void __init initialize_pernode_data(void)
403 {
404 int cpu, node;
405
406 scatter_node_data();
407
408 #ifdef CONFIG_SMP
409 /* Set the node_data pointer for each per-cpu struct */
410 for_each_possible_early_cpu(cpu) {
411 node = node_cpuid[cpu].nid;
412 per_cpu(ia64_cpu_info, cpu).node_data =
413 mem_data[node].node_data;
414 }
415 #else
416 {
417 struct cpuinfo_ia64 *cpu0_cpu_info;
418 cpu = 0;
419 node = node_cpuid[cpu].nid;
420 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
421 ((char *)&ia64_cpu_info - __per_cpu_start));
422 cpu0_cpu_info->node_data = mem_data[node].node_data;
423 }
424 #endif /* CONFIG_SMP */
425 }
426
427 /**
428 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
429 * node but fall back to any other node when __alloc_bootmem_node fails
430 * for best.
431 * @nid: node id
432 * @pernodesize: size of this node's pernode data
433 */
434 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
435 {
436 void *ptr = NULL;
437 u8 best = 0xff;
438 int bestnode = NUMA_NO_NODE, node, anynode = 0;
439
440 for_each_online_node(node) {
441 if (node_isset(node, memory_less_mask))
442 continue;
443 else if (node_distance(nid, node) < best) {
444 best = node_distance(nid, node);
445 bestnode = node;
446 }
447 anynode = node;
448 }
449
450 if (bestnode == NUMA_NO_NODE)
451 bestnode = anynode;
452
453 ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE,
454 __pa(MAX_DMA_ADDRESS),
455 MEMBLOCK_ALLOC_ACCESSIBLE,
456 bestnode);
457
458 return ptr;
459 }
460
461 /**
462 * memory_less_nodes - allocate and initialize CPU only nodes pernode
463 * information.
464 */
465 static void __init memory_less_nodes(void)
466 {
467 unsigned long pernodesize;
468 void *pernode;
469 int node;
470
471 for_each_node_mask(node, memory_less_mask) {
472 pernodesize = compute_pernodesize(node);
473 pernode = memory_less_node_alloc(node, pernodesize);
474 fill_pernode(node, __pa(pernode), pernodesize);
475 }
476
477 return;
478 }
479
480 /**
481 * find_memory - walk the EFI memory map and setup the bootmem allocator
482 *
483 * Called early in boot to setup the bootmem allocator, and to
484 * allocate the per-cpu and per-node structures.
485 */
486 void __init find_memory(void)
487 {
488 int node;
489
490 reserve_memory();
491 efi_memmap_walk(filter_memory, register_active_ranges);
492
493 if (num_online_nodes() == 0) {
494 printk(KERN_ERR "node info missing!\n");
495 node_set_online(0);
496 }
497
498 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
499 min_low_pfn = -1;
500 max_low_pfn = 0;
501
502 /* These actually end up getting called by call_pernode_memory() */
503 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
504 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
505 efi_memmap_walk(find_max_min_low_pfn, NULL);
506
507 for_each_online_node(node)
508 if (mem_data[node].min_pfn)
509 node_clear(node, memory_less_mask);
510
511 reserve_pernode_space();
512 memory_less_nodes();
513 initialize_pernode_data();
514
515 max_pfn = max_low_pfn;
516
517 find_initrd();
518 }
519
520 #ifdef CONFIG_SMP
521 /**
522 * per_cpu_init - setup per-cpu variables
523 *
524 * find_pernode_space() does most of this already, we just need to set
525 * local_per_cpu_offset
526 */
527 void *per_cpu_init(void)
528 {
529 int cpu;
530 static int first_time = 1;
531
532 if (first_time) {
533 first_time = 0;
534 for_each_possible_early_cpu(cpu)
535 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
536 }
537
538 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
539 }
540 #endif /* CONFIG_SMP */
541
542 /**
543 * call_pernode_memory - use SRAT to call callback functions with node info
544 * @start: physical start of range
545 * @len: length of range
546 * @arg: function to call for each range
547 *
548 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
549 * out to which node a block of memory belongs. Ignore memory that we cannot
550 * identify, and split blocks that run across multiple nodes.
551 *
552 * Take this opportunity to round the start address up and the end address
553 * down to page boundaries.
554 */
555 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
556 {
557 unsigned long rs, re, end = start + len;
558 void (*func)(unsigned long, unsigned long, int);
559 int i;
560
561 start = PAGE_ALIGN(start);
562 end &= PAGE_MASK;
563 if (start >= end)
564 return;
565
566 func = arg;
567
568 if (!num_node_memblks) {
569 /* No SRAT table, so assume one node (node 0) */
570 if (start < end)
571 (*func)(start, end - start, 0);
572 return;
573 }
574
575 for (i = 0; i < num_node_memblks; i++) {
576 rs = max(start, node_memblk[i].start_paddr);
577 re = min(end, node_memblk[i].start_paddr +
578 node_memblk[i].size);
579
580 if (rs < re)
581 (*func)(rs, re - rs, node_memblk[i].nid);
582
583 if (re == end)
584 break;
585 }
586 }
587
588 /**
589 * paging_init - setup page tables
590 *
591 * paging_init() sets up the page tables for each node of the system and frees
592 * the bootmem allocator memory for general use.
593 */
594 void __init paging_init(void)
595 {
596 unsigned long max_dma;
597 unsigned long pfn_offset = 0;
598 unsigned long max_pfn = 0;
599 int node;
600 unsigned long max_zone_pfns[MAX_NR_ZONES];
601
602 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
603
604 sparse_memory_present_with_active_regions(MAX_NUMNODES);
605 sparse_init();
606
607 #ifdef CONFIG_VIRTUAL_MEM_MAP
608 VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
609 sizeof(struct page));
610 vmem_map = (struct page *) VMALLOC_END;
611 efi_memmap_walk(create_mem_map_page_table, NULL);
612 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
613 #endif
614
615 for_each_online_node(node) {
616 pfn_offset = mem_data[node].min_pfn;
617
618 #ifdef CONFIG_VIRTUAL_MEM_MAP
619 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
620 #endif
621 if (mem_data[node].max_pfn > max_pfn)
622 max_pfn = mem_data[node].max_pfn;
623 }
624
625 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
626 #ifdef CONFIG_ZONE_DMA32
627 max_zone_pfns[ZONE_DMA32] = max_dma;
628 #endif
629 max_zone_pfns[ZONE_NORMAL] = max_pfn;
630 free_area_init_nodes(max_zone_pfns);
631
632 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
633 }
634
635 #ifdef CONFIG_MEMORY_HOTPLUG
636 pg_data_t *arch_alloc_nodedata(int nid)
637 {
638 unsigned long size = compute_pernodesize(nid);
639
640 return kzalloc(size, GFP_KERNEL);
641 }
642
643 void arch_free_nodedata(pg_data_t *pgdat)
644 {
645 kfree(pgdat);
646 }
647
648 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
649 {
650 pgdat_list[update_node] = update_pgdat;
651 scatter_node_data();
652 }
653 #endif
654
655 #ifdef CONFIG_SPARSEMEM_VMEMMAP
656 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
657 struct vmem_altmap *altmap)
658 {
659 return vmemmap_populate_basepages(start, end, node);
660 }
661
662 void vmemmap_free(unsigned long start, unsigned long end,
663 struct vmem_altmap *altmap)
664 {
665 }
666 #endif