]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/include/asm/book3s/64/mmu-hash.h
Merge tag 'm68k-for-v4.8-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / include / asm / book3s / 64 / mmu-hash.h
1 #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
2 #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
3 /*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17 #include <asm/bug.h>
18
19 /*
20 * This is necessary to get the definition of PGTABLE_RANGE which we
21 * need for various slices related matters. Note that this isn't the
22 * complete pgtable.h but only a portion of it.
23 */
24 #include <asm/book3s/64/pgtable.h>
25 #include <asm/bug.h>
26 #include <asm/processor.h>
27
28 /*
29 * SLB
30 */
31
32 #define SLB_NUM_BOLTED 3
33 #define SLB_CACHE_ENTRIES 8
34 #define SLB_MIN_SIZE 32
35
36 /* Bits in the SLB ESID word */
37 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
38
39 /* Bits in the SLB VSID word */
40 #define SLB_VSID_SHIFT 12
41 #define SLB_VSID_SHIFT_1T 24
42 #define SLB_VSID_SSIZE_SHIFT 62
43 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
44 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
45 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
46 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
47 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
48 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
49 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
50 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
51 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
52 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
53 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
54 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
55 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
56 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
57
58 #define SLB_VSID_KERNEL (SLB_VSID_KP)
59 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
60
61 #define SLBIE_C (0x08000000)
62 #define SLBIE_SSIZE_SHIFT 25
63
64 /*
65 * Hash table
66 */
67
68 #define HPTES_PER_GROUP 8
69
70 #define HPTE_V_SSIZE_SHIFT 62
71 #define HPTE_V_AVPN_SHIFT 7
72 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
73 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
74 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
75 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
76 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
77 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
78 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
79 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
80
81 /*
82 * ISA 3.0 have a different HPTE format.
83 */
84 #define HPTE_R_3_0_SSIZE_SHIFT 58
85 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
86 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
87 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
88 #define HPTE_R_RPN_SHIFT 12
89 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
90 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
91 #define HPTE_R_PPP ASM_CONST(0x8000000000000003)
92 #define HPTE_R_N ASM_CONST(0x0000000000000004)
93 #define HPTE_R_G ASM_CONST(0x0000000000000008)
94 #define HPTE_R_M ASM_CONST(0x0000000000000010)
95 #define HPTE_R_I ASM_CONST(0x0000000000000020)
96 #define HPTE_R_W ASM_CONST(0x0000000000000040)
97 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
98 #define HPTE_R_C ASM_CONST(0x0000000000000080)
99 #define HPTE_R_R ASM_CONST(0x0000000000000100)
100 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
101
102 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
103 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
104
105 /* Values for PP (assumes Ks=0, Kp=1) */
106 #define PP_RWXX 0 /* Supervisor read/write, User none */
107 #define PP_RWRX 1 /* Supervisor read/write, User read */
108 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
109 #define PP_RXRX 3 /* Supervisor read, User read */
110 #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
111
112 /* Fields for tlbiel instruction in architecture 2.06 */
113 #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
114 #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
115 #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
116 #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
117 #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
118 #define TLBIEL_INVAL_SET_SHIFT 12
119
120 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
121 #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
122 #define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
123 #define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
124
125 #ifndef __ASSEMBLY__
126
127 struct hash_pte {
128 __be64 v;
129 __be64 r;
130 };
131
132 extern struct hash_pte *htab_address;
133 extern unsigned long htab_size_bytes;
134 extern unsigned long htab_hash_mask;
135
136
137 static inline int shift_to_mmu_psize(unsigned int shift)
138 {
139 int psize;
140
141 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
142 if (mmu_psize_defs[psize].shift == shift)
143 return psize;
144 return -1;
145 }
146
147 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
148 {
149 if (mmu_psize_defs[mmu_psize].shift)
150 return mmu_psize_defs[mmu_psize].shift;
151 BUG();
152 }
153
154 #endif /* __ASSEMBLY__ */
155
156 /*
157 * Segment sizes.
158 * These are the values used by hardware in the B field of
159 * SLB entries and the first dword of MMU hashtable entries.
160 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
161 */
162 #define MMU_SEGSIZE_256M 0
163 #define MMU_SEGSIZE_1T 1
164
165 /*
166 * encode page number shift.
167 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
168 * 12 bits. This enable us to address upto 76 bit va.
169 * For hpt hash from a va we can ignore the page size bits of va and for
170 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
171 * we work in all cases including 4k page size.
172 */
173 #define VPN_SHIFT 12
174
175 /*
176 * HPTE Large Page (LP) details
177 */
178 #define LP_SHIFT 12
179 #define LP_BITS 8
180 #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
181
182 #ifndef __ASSEMBLY__
183
184 static inline int slb_vsid_shift(int ssize)
185 {
186 if (ssize == MMU_SEGSIZE_256M)
187 return SLB_VSID_SHIFT;
188 return SLB_VSID_SHIFT_1T;
189 }
190
191 static inline int segment_shift(int ssize)
192 {
193 if (ssize == MMU_SEGSIZE_256M)
194 return SID_SHIFT;
195 return SID_SHIFT_1T;
196 }
197
198 /*
199 * The current system page and segment sizes
200 */
201 extern int mmu_kernel_ssize;
202 extern int mmu_highuser_ssize;
203 extern u16 mmu_slb_size;
204 extern unsigned long tce_alloc_start, tce_alloc_end;
205
206 /*
207 * If the processor supports 64k normal pages but not 64k cache
208 * inhibited pages, we have to be prepared to switch processes
209 * to use 4k pages when they create cache-inhibited mappings.
210 * If this is the case, mmu_ci_restrictions will be set to 1.
211 */
212 extern int mmu_ci_restrictions;
213
214 /*
215 * This computes the AVPN and B fields of the first dword of a HPTE,
216 * for use when we want to match an existing PTE. The bottom 7 bits
217 * of the returned value are zero.
218 */
219 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
220 int ssize)
221 {
222 unsigned long v;
223 /*
224 * The AVA field omits the low-order 23 bits of the 78 bits VA.
225 * These bits are not needed in the PTE, because the
226 * low-order b of these bits are part of the byte offset
227 * into the virtual page and, if b < 23, the high-order
228 * 23-b of these bits are always used in selecting the
229 * PTEGs to be searched
230 */
231 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
232 v <<= HPTE_V_AVPN_SHIFT;
233 if (!cpu_has_feature(CPU_FTR_ARCH_300))
234 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
235 return v;
236 }
237
238 /*
239 * This function sets the AVPN and L fields of the HPTE appropriately
240 * using the base page size and actual page size.
241 */
242 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
243 int actual_psize, int ssize)
244 {
245 unsigned long v;
246 v = hpte_encode_avpn(vpn, base_psize, ssize);
247 if (actual_psize != MMU_PAGE_4K)
248 v |= HPTE_V_LARGE;
249 return v;
250 }
251
252 /*
253 * This function sets the ARPN, and LP fields of the HPTE appropriately
254 * for the page size. We assume the pa is already "clean" that is properly
255 * aligned for the requested page size
256 */
257 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
258 int actual_psize, int ssize)
259 {
260
261 if (cpu_has_feature(CPU_FTR_ARCH_300))
262 pa |= ((unsigned long) ssize) << HPTE_R_3_0_SSIZE_SHIFT;
263
264 /* A 4K page needs no special encoding */
265 if (actual_psize == MMU_PAGE_4K)
266 return pa & HPTE_R_RPN;
267 else {
268 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
269 unsigned int shift = mmu_psize_defs[actual_psize].shift;
270 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
271 }
272 }
273
274 /*
275 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
276 */
277 static inline unsigned long hpt_vpn(unsigned long ea,
278 unsigned long vsid, int ssize)
279 {
280 unsigned long mask;
281 int s_shift = segment_shift(ssize);
282
283 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
284 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
285 }
286
287 /*
288 * This hashes a virtual address
289 */
290 static inline unsigned long hpt_hash(unsigned long vpn,
291 unsigned int shift, int ssize)
292 {
293 int mask;
294 unsigned long hash, vsid;
295
296 /* VPN_SHIFT can be atmost 12 */
297 if (ssize == MMU_SEGSIZE_256M) {
298 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
299 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
300 ((vpn & mask) >> (shift - VPN_SHIFT));
301 } else {
302 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
303 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
304 hash = vsid ^ (vsid << 25) ^
305 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
306 }
307 return hash & 0x7fffffffffUL;
308 }
309
310 #define HPTE_LOCAL_UPDATE 0x1
311 #define HPTE_NOHPTE_UPDATE 0x2
312
313 extern int __hash_page_4K(unsigned long ea, unsigned long access,
314 unsigned long vsid, pte_t *ptep, unsigned long trap,
315 unsigned long flags, int ssize, int subpage_prot);
316 extern int __hash_page_64K(unsigned long ea, unsigned long access,
317 unsigned long vsid, pte_t *ptep, unsigned long trap,
318 unsigned long flags, int ssize);
319 struct mm_struct;
320 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
321 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
322 unsigned long access, unsigned long trap,
323 unsigned long flags);
324 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
325 unsigned long dsisr);
326 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
327 pte_t *ptep, unsigned long trap, unsigned long flags,
328 int ssize, unsigned int shift, unsigned int mmu_psize);
329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
330 extern int __hash_page_thp(unsigned long ea, unsigned long access,
331 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
332 unsigned long flags, int ssize, unsigned int psize);
333 #else
334 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
335 unsigned long vsid, pmd_t *pmdp,
336 unsigned long trap, unsigned long flags,
337 int ssize, unsigned int psize)
338 {
339 BUG();
340 return -1;
341 }
342 #endif
343 extern void hash_failure_debug(unsigned long ea, unsigned long access,
344 unsigned long vsid, unsigned long trap,
345 int ssize, int psize, int lpsize,
346 unsigned long pte);
347 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
348 unsigned long pstart, unsigned long prot,
349 int psize, int ssize);
350 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
351 int psize, int ssize);
352 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
353 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
354
355 extern void hpte_init_native(void);
356 extern void hpte_init_lpar(void);
357 extern void hpte_init_beat(void);
358 extern void hpte_init_beat_v3(void);
359
360 extern void slb_initialize(void);
361 extern void slb_flush_and_rebolt(void);
362
363 extern void slb_vmalloc_update(void);
364 extern void slb_set_size(u16 size);
365 #endif /* __ASSEMBLY__ */
366
367 /*
368 * VSID allocation (256MB segment)
369 *
370 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
371 * from mmu context id and effective segment id of the address.
372 *
373 * For user processes max context id is limited to ((1ul << 19) - 5)
374 * for kernel space, we use the top 4 context ids to map address as below
375 * NOTE: each context only support 64TB now.
376 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
377 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
378 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
379 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
380 *
381 * The proto-VSIDs are then scrambled into real VSIDs with the
382 * multiplicative hash:
383 *
384 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
385 *
386 * VSID_MULTIPLIER is prime, so in particular it is
387 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
388 * Because the modulus is 2^n-1 we can compute it efficiently without
389 * a divide or extra multiply (see below). The scramble function gives
390 * robust scattering in the hash table (at least based on some initial
391 * results).
392 *
393 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
394 * bad address. This enables us to consolidate bad address handling in
395 * hash_page.
396 *
397 * We also need to avoid the last segment of the last context, because that
398 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
399 * because of the modulo operation in vsid scramble. But the vmemmap
400 * (which is what uses region 0xf) will never be close to 64TB in size
401 * (it's 56 bytes per page of system memory).
402 */
403
404 #define CONTEXT_BITS 19
405 #define ESID_BITS 18
406 #define ESID_BITS_1T 6
407
408 /*
409 * 256MB segment
410 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
411 * available for user + kernel mapping. The top 4 contexts are used for
412 * kernel mapping. Each segment contains 2^28 bytes. Each
413 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
414 * (19 == 37 + 28 - 46).
415 */
416 #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
417
418 /*
419 * This should be computed such that protovosid * vsid_mulitplier
420 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
421 */
422 #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
423 #define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
424 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
425
426 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
427 #define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
428 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
429
430
431 #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
432
433 /*
434 * This macro generates asm code to compute the VSID scramble
435 * function. Used in slb_allocate() and do_stab_bolted. The function
436 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
437 *
438 * rt = register continaing the proto-VSID and into which the
439 * VSID will be stored
440 * rx = scratch register (clobbered)
441 *
442 * - rt and rx must be different registers
443 * - The answer will end up in the low VSID_BITS bits of rt. The higher
444 * bits may contain other garbage, so you may need to mask the
445 * result.
446 */
447 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
448 lis rx,VSID_MULTIPLIER_##size@h; \
449 ori rx,rx,VSID_MULTIPLIER_##size@l; \
450 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
451 \
452 srdi rx,rt,VSID_BITS_##size; \
453 clrldi rt,rt,(64-VSID_BITS_##size); \
454 add rt,rt,rx; /* add high and low bits */ \
455 /* NOTE: explanation based on VSID_BITS_##size = 36 \
456 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
457 * 2^36-1+2^28-1. That in particular means that if r3 >= \
458 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
459 * the bit clear, r3 already has the answer we want, if it \
460 * doesn't, the answer is the low 36 bits of r3+1. So in all \
461 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
462 addi rx,rt,1; \
463 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
464 add rt,rt,rx
465
466 /* 4 bits per slice and we have one slice per 1TB */
467 #define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
468
469 #ifndef __ASSEMBLY__
470
471 #ifdef CONFIG_PPC_SUBPAGE_PROT
472 /*
473 * For the sub-page protection option, we extend the PGD with one of
474 * these. Basically we have a 3-level tree, with the top level being
475 * the protptrs array. To optimize speed and memory consumption when
476 * only addresses < 4GB are being protected, pointers to the first
477 * four pages of sub-page protection words are stored in the low_prot
478 * array.
479 * Each page of sub-page protection words protects 1GB (4 bytes
480 * protects 64k). For the 3-level tree, each page of pointers then
481 * protects 8TB.
482 */
483 struct subpage_prot_table {
484 unsigned long maxaddr; /* only addresses < this are protected */
485 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
486 unsigned int *low_prot[4];
487 };
488
489 #define SBP_L1_BITS (PAGE_SHIFT - 2)
490 #define SBP_L2_BITS (PAGE_SHIFT - 3)
491 #define SBP_L1_COUNT (1 << SBP_L1_BITS)
492 #define SBP_L2_COUNT (1 << SBP_L2_BITS)
493 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
494 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
495
496 extern void subpage_prot_free(struct mm_struct *mm);
497 extern void subpage_prot_init_new_context(struct mm_struct *mm);
498 #else
499 static inline void subpage_prot_free(struct mm_struct *mm) {}
500 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
501 #endif /* CONFIG_PPC_SUBPAGE_PROT */
502
503 #if 0
504 /*
505 * The code below is equivalent to this function for arguments
506 * < 2^VSID_BITS, which is all this should ever be called
507 * with. However gcc is not clever enough to compute the
508 * modulus (2^n-1) without a second multiply.
509 */
510 #define vsid_scramble(protovsid, size) \
511 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
512
513 #else /* 1 */
514 #define vsid_scramble(protovsid, size) \
515 ({ \
516 unsigned long x; \
517 x = (protovsid) * VSID_MULTIPLIER_##size; \
518 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
519 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
520 })
521 #endif /* 1 */
522
523 /* Returns the segment size indicator for a user address */
524 static inline int user_segment_size(unsigned long addr)
525 {
526 /* Use 1T segments if possible for addresses >= 1T */
527 if (addr >= (1UL << SID_SHIFT_1T))
528 return mmu_highuser_ssize;
529 return MMU_SEGSIZE_256M;
530 }
531
532 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
533 int ssize)
534 {
535 /*
536 * Bad address. We return VSID 0 for that
537 */
538 if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
539 return 0;
540
541 if (ssize == MMU_SEGSIZE_256M)
542 return vsid_scramble((context << ESID_BITS)
543 | (ea >> SID_SHIFT), 256M);
544 return vsid_scramble((context << ESID_BITS_1T)
545 | (ea >> SID_SHIFT_1T), 1T);
546 }
547
548 /*
549 * This is only valid for addresses >= PAGE_OFFSET
550 *
551 * For kernel space, we use the top 4 context ids to map address as below
552 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
553 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
554 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
555 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
556 */
557 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
558 {
559 unsigned long context;
560
561 /*
562 * kernel take the top 4 context from the available range
563 */
564 context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
565 return get_vsid(context, ea, ssize);
566 }
567
568 unsigned htab_shift_for_mem_size(unsigned long mem_size);
569
570 #endif /* __ASSEMBLY__ */
571
572 #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */