]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/process.c
Merge tag 'trace-v4.15-rc4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rosted...
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81 * Are we running in "Suspend disabled" mode? If so we have to block any
82 * sigreturn that would get us into suspended state, and we also warn in some
83 * other paths that we should never reach with suspend disabled.
84 */
85 bool tm_suspend_disabled __ro_after_init = false;
86
87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89 /*
90 * If we are saving the current thread's registers, and the
91 * thread is in a transactional state, set the TIF_RESTORE_TM
92 * bit so that we know to restore the registers before
93 * returning to userspace.
94 */
95 if (tsk == current && tsk->thread.regs &&
96 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97 !test_thread_flag(TIF_RESTORE_TM)) {
98 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99 set_thread_flag(TIF_RESTORE_TM);
100 }
101 }
102
103 static inline bool msr_tm_active(unsigned long msr)
104 {
105 return MSR_TM_ACTIVE(msr);
106 }
107
108 static bool tm_active_with_fp(struct task_struct *tsk)
109 {
110 return msr_tm_active(tsk->thread.regs->msr) &&
111 (tsk->thread.ckpt_regs.msr & MSR_FP);
112 }
113
114 static bool tm_active_with_altivec(struct task_struct *tsk)
115 {
116 return msr_tm_active(tsk->thread.regs->msr) &&
117 (tsk->thread.ckpt_regs.msr & MSR_VEC);
118 }
119 #else
120 static inline bool msr_tm_active(unsigned long msr) { return false; }
121 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
122 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
123 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
124 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
125
126 bool strict_msr_control;
127 EXPORT_SYMBOL(strict_msr_control);
128
129 static int __init enable_strict_msr_control(char *str)
130 {
131 strict_msr_control = true;
132 pr_info("Enabling strict facility control\n");
133
134 return 0;
135 }
136 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
137
138 unsigned long msr_check_and_set(unsigned long bits)
139 {
140 unsigned long oldmsr = mfmsr();
141 unsigned long newmsr;
142
143 newmsr = oldmsr | bits;
144
145 #ifdef CONFIG_VSX
146 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147 newmsr |= MSR_VSX;
148 #endif
149
150 if (oldmsr != newmsr)
151 mtmsr_isync(newmsr);
152
153 return newmsr;
154 }
155
156 void __msr_check_and_clear(unsigned long bits)
157 {
158 unsigned long oldmsr = mfmsr();
159 unsigned long newmsr;
160
161 newmsr = oldmsr & ~bits;
162
163 #ifdef CONFIG_VSX
164 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
165 newmsr &= ~MSR_VSX;
166 #endif
167
168 if (oldmsr != newmsr)
169 mtmsr_isync(newmsr);
170 }
171 EXPORT_SYMBOL(__msr_check_and_clear);
172
173 #ifdef CONFIG_PPC_FPU
174 void __giveup_fpu(struct task_struct *tsk)
175 {
176 unsigned long msr;
177
178 save_fpu(tsk);
179 msr = tsk->thread.regs->msr;
180 msr &= ~MSR_FP;
181 #ifdef CONFIG_VSX
182 if (cpu_has_feature(CPU_FTR_VSX))
183 msr &= ~MSR_VSX;
184 #endif
185 tsk->thread.regs->msr = msr;
186 }
187
188 void giveup_fpu(struct task_struct *tsk)
189 {
190 check_if_tm_restore_required(tsk);
191
192 msr_check_and_set(MSR_FP);
193 __giveup_fpu(tsk);
194 msr_check_and_clear(MSR_FP);
195 }
196 EXPORT_SYMBOL(giveup_fpu);
197
198 /*
199 * Make sure the floating-point register state in the
200 * the thread_struct is up to date for task tsk.
201 */
202 void flush_fp_to_thread(struct task_struct *tsk)
203 {
204 if (tsk->thread.regs) {
205 /*
206 * We need to disable preemption here because if we didn't,
207 * another process could get scheduled after the regs->msr
208 * test but before we have finished saving the FP registers
209 * to the thread_struct. That process could take over the
210 * FPU, and then when we get scheduled again we would store
211 * bogus values for the remaining FP registers.
212 */
213 preempt_disable();
214 if (tsk->thread.regs->msr & MSR_FP) {
215 /*
216 * This should only ever be called for current or
217 * for a stopped child process. Since we save away
218 * the FP register state on context switch,
219 * there is something wrong if a stopped child appears
220 * to still have its FP state in the CPU registers.
221 */
222 BUG_ON(tsk != current);
223 giveup_fpu(tsk);
224 }
225 preempt_enable();
226 }
227 }
228 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
229
230 void enable_kernel_fp(void)
231 {
232 unsigned long cpumsr;
233
234 WARN_ON(preemptible());
235
236 cpumsr = msr_check_and_set(MSR_FP);
237
238 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
239 check_if_tm_restore_required(current);
240 /*
241 * If a thread has already been reclaimed then the
242 * checkpointed registers are on the CPU but have definitely
243 * been saved by the reclaim code. Don't need to and *cannot*
244 * giveup as this would save to the 'live' structure not the
245 * checkpointed structure.
246 */
247 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
248 return;
249 __giveup_fpu(current);
250 }
251 }
252 EXPORT_SYMBOL(enable_kernel_fp);
253
254 static int restore_fp(struct task_struct *tsk)
255 {
256 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
257 load_fp_state(&current->thread.fp_state);
258 current->thread.load_fp++;
259 return 1;
260 }
261 return 0;
262 }
263 #else
264 static int restore_fp(struct task_struct *tsk) { return 0; }
265 #endif /* CONFIG_PPC_FPU */
266
267 #ifdef CONFIG_ALTIVEC
268 #define loadvec(thr) ((thr).load_vec)
269
270 static void __giveup_altivec(struct task_struct *tsk)
271 {
272 unsigned long msr;
273
274 save_altivec(tsk);
275 msr = tsk->thread.regs->msr;
276 msr &= ~MSR_VEC;
277 #ifdef CONFIG_VSX
278 if (cpu_has_feature(CPU_FTR_VSX))
279 msr &= ~MSR_VSX;
280 #endif
281 tsk->thread.regs->msr = msr;
282 }
283
284 void giveup_altivec(struct task_struct *tsk)
285 {
286 check_if_tm_restore_required(tsk);
287
288 msr_check_and_set(MSR_VEC);
289 __giveup_altivec(tsk);
290 msr_check_and_clear(MSR_VEC);
291 }
292 EXPORT_SYMBOL(giveup_altivec);
293
294 void enable_kernel_altivec(void)
295 {
296 unsigned long cpumsr;
297
298 WARN_ON(preemptible());
299
300 cpumsr = msr_check_and_set(MSR_VEC);
301
302 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
303 check_if_tm_restore_required(current);
304 /*
305 * If a thread has already been reclaimed then the
306 * checkpointed registers are on the CPU but have definitely
307 * been saved by the reclaim code. Don't need to and *cannot*
308 * giveup as this would save to the 'live' structure not the
309 * checkpointed structure.
310 */
311 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
312 return;
313 __giveup_altivec(current);
314 }
315 }
316 EXPORT_SYMBOL(enable_kernel_altivec);
317
318 /*
319 * Make sure the VMX/Altivec register state in the
320 * the thread_struct is up to date for task tsk.
321 */
322 void flush_altivec_to_thread(struct task_struct *tsk)
323 {
324 if (tsk->thread.regs) {
325 preempt_disable();
326 if (tsk->thread.regs->msr & MSR_VEC) {
327 BUG_ON(tsk != current);
328 giveup_altivec(tsk);
329 }
330 preempt_enable();
331 }
332 }
333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
334
335 static int restore_altivec(struct task_struct *tsk)
336 {
337 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
338 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
339 load_vr_state(&tsk->thread.vr_state);
340 tsk->thread.used_vr = 1;
341 tsk->thread.load_vec++;
342
343 return 1;
344 }
345 return 0;
346 }
347 #else
348 #define loadvec(thr) 0
349 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
350 #endif /* CONFIG_ALTIVEC */
351
352 #ifdef CONFIG_VSX
353 static void __giveup_vsx(struct task_struct *tsk)
354 {
355 unsigned long msr = tsk->thread.regs->msr;
356
357 /*
358 * We should never be ssetting MSR_VSX without also setting
359 * MSR_FP and MSR_VEC
360 */
361 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
362
363 /* __giveup_fpu will clear MSR_VSX */
364 if (msr & MSR_FP)
365 __giveup_fpu(tsk);
366 if (msr & MSR_VEC)
367 __giveup_altivec(tsk);
368 }
369
370 static void giveup_vsx(struct task_struct *tsk)
371 {
372 check_if_tm_restore_required(tsk);
373
374 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
375 __giveup_vsx(tsk);
376 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
377 }
378
379 void enable_kernel_vsx(void)
380 {
381 unsigned long cpumsr;
382
383 WARN_ON(preemptible());
384
385 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
386
387 if (current->thread.regs &&
388 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
389 check_if_tm_restore_required(current);
390 /*
391 * If a thread has already been reclaimed then the
392 * checkpointed registers are on the CPU but have definitely
393 * been saved by the reclaim code. Don't need to and *cannot*
394 * giveup as this would save to the 'live' structure not the
395 * checkpointed structure.
396 */
397 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
398 return;
399 __giveup_vsx(current);
400 }
401 }
402 EXPORT_SYMBOL(enable_kernel_vsx);
403
404 void flush_vsx_to_thread(struct task_struct *tsk)
405 {
406 if (tsk->thread.regs) {
407 preempt_disable();
408 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
409 BUG_ON(tsk != current);
410 giveup_vsx(tsk);
411 }
412 preempt_enable();
413 }
414 }
415 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
416
417 static int restore_vsx(struct task_struct *tsk)
418 {
419 if (cpu_has_feature(CPU_FTR_VSX)) {
420 tsk->thread.used_vsr = 1;
421 return 1;
422 }
423
424 return 0;
425 }
426 #else
427 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
428 #endif /* CONFIG_VSX */
429
430 #ifdef CONFIG_SPE
431 void giveup_spe(struct task_struct *tsk)
432 {
433 check_if_tm_restore_required(tsk);
434
435 msr_check_and_set(MSR_SPE);
436 __giveup_spe(tsk);
437 msr_check_and_clear(MSR_SPE);
438 }
439 EXPORT_SYMBOL(giveup_spe);
440
441 void enable_kernel_spe(void)
442 {
443 WARN_ON(preemptible());
444
445 msr_check_and_set(MSR_SPE);
446
447 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
448 check_if_tm_restore_required(current);
449 __giveup_spe(current);
450 }
451 }
452 EXPORT_SYMBOL(enable_kernel_spe);
453
454 void flush_spe_to_thread(struct task_struct *tsk)
455 {
456 if (tsk->thread.regs) {
457 preempt_disable();
458 if (tsk->thread.regs->msr & MSR_SPE) {
459 BUG_ON(tsk != current);
460 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
461 giveup_spe(tsk);
462 }
463 preempt_enable();
464 }
465 }
466 #endif /* CONFIG_SPE */
467
468 static unsigned long msr_all_available;
469
470 static int __init init_msr_all_available(void)
471 {
472 #ifdef CONFIG_PPC_FPU
473 msr_all_available |= MSR_FP;
474 #endif
475 #ifdef CONFIG_ALTIVEC
476 if (cpu_has_feature(CPU_FTR_ALTIVEC))
477 msr_all_available |= MSR_VEC;
478 #endif
479 #ifdef CONFIG_VSX
480 if (cpu_has_feature(CPU_FTR_VSX))
481 msr_all_available |= MSR_VSX;
482 #endif
483 #ifdef CONFIG_SPE
484 if (cpu_has_feature(CPU_FTR_SPE))
485 msr_all_available |= MSR_SPE;
486 #endif
487
488 return 0;
489 }
490 early_initcall(init_msr_all_available);
491
492 void giveup_all(struct task_struct *tsk)
493 {
494 unsigned long usermsr;
495
496 if (!tsk->thread.regs)
497 return;
498
499 usermsr = tsk->thread.regs->msr;
500
501 if ((usermsr & msr_all_available) == 0)
502 return;
503
504 msr_check_and_set(msr_all_available);
505 check_if_tm_restore_required(tsk);
506
507 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
508
509 #ifdef CONFIG_PPC_FPU
510 if (usermsr & MSR_FP)
511 __giveup_fpu(tsk);
512 #endif
513 #ifdef CONFIG_ALTIVEC
514 if (usermsr & MSR_VEC)
515 __giveup_altivec(tsk);
516 #endif
517 #ifdef CONFIG_SPE
518 if (usermsr & MSR_SPE)
519 __giveup_spe(tsk);
520 #endif
521
522 msr_check_and_clear(msr_all_available);
523 }
524 EXPORT_SYMBOL(giveup_all);
525
526 void restore_math(struct pt_regs *regs)
527 {
528 unsigned long msr;
529
530 if (!msr_tm_active(regs->msr) &&
531 !current->thread.load_fp && !loadvec(current->thread))
532 return;
533
534 msr = regs->msr;
535 msr_check_and_set(msr_all_available);
536
537 /*
538 * Only reload if the bit is not set in the user MSR, the bit BEING set
539 * indicates that the registers are hot
540 */
541 if ((!(msr & MSR_FP)) && restore_fp(current))
542 msr |= MSR_FP | current->thread.fpexc_mode;
543
544 if ((!(msr & MSR_VEC)) && restore_altivec(current))
545 msr |= MSR_VEC;
546
547 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
548 restore_vsx(current)) {
549 msr |= MSR_VSX;
550 }
551
552 msr_check_and_clear(msr_all_available);
553
554 regs->msr = msr;
555 }
556
557 void save_all(struct task_struct *tsk)
558 {
559 unsigned long usermsr;
560
561 if (!tsk->thread.regs)
562 return;
563
564 usermsr = tsk->thread.regs->msr;
565
566 if ((usermsr & msr_all_available) == 0)
567 return;
568
569 msr_check_and_set(msr_all_available);
570
571 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
572
573 if (usermsr & MSR_FP)
574 save_fpu(tsk);
575
576 if (usermsr & MSR_VEC)
577 save_altivec(tsk);
578
579 if (usermsr & MSR_SPE)
580 __giveup_spe(tsk);
581
582 msr_check_and_clear(msr_all_available);
583 }
584
585 void flush_all_to_thread(struct task_struct *tsk)
586 {
587 if (tsk->thread.regs) {
588 preempt_disable();
589 BUG_ON(tsk != current);
590 save_all(tsk);
591
592 #ifdef CONFIG_SPE
593 if (tsk->thread.regs->msr & MSR_SPE)
594 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
595 #endif
596
597 preempt_enable();
598 }
599 }
600 EXPORT_SYMBOL(flush_all_to_thread);
601
602 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
603 void do_send_trap(struct pt_regs *regs, unsigned long address,
604 unsigned long error_code, int signal_code, int breakpt)
605 {
606 siginfo_t info;
607
608 current->thread.trap_nr = signal_code;
609 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610 11, SIGSEGV) == NOTIFY_STOP)
611 return;
612
613 /* Deliver the signal to userspace */
614 info.si_signo = SIGTRAP;
615 info.si_errno = breakpt; /* breakpoint or watchpoint id */
616 info.si_code = signal_code;
617 info.si_addr = (void __user *)address;
618 force_sig_info(SIGTRAP, &info, current);
619 }
620 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
621 void do_break (struct pt_regs *regs, unsigned long address,
622 unsigned long error_code)
623 {
624 siginfo_t info;
625
626 current->thread.trap_nr = TRAP_HWBKPT;
627 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
628 11, SIGSEGV) == NOTIFY_STOP)
629 return;
630
631 if (debugger_break_match(regs))
632 return;
633
634 /* Clear the breakpoint */
635 hw_breakpoint_disable();
636
637 /* Deliver the signal to userspace */
638 info.si_signo = SIGTRAP;
639 info.si_errno = 0;
640 info.si_code = TRAP_HWBKPT;
641 info.si_addr = (void __user *)address;
642 force_sig_info(SIGTRAP, &info, current);
643 }
644 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
645
646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647
648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
649 /*
650 * Set the debug registers back to their default "safe" values.
651 */
652 static void set_debug_reg_defaults(struct thread_struct *thread)
653 {
654 thread->debug.iac1 = thread->debug.iac2 = 0;
655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
656 thread->debug.iac3 = thread->debug.iac4 = 0;
657 #endif
658 thread->debug.dac1 = thread->debug.dac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660 thread->debug.dvc1 = thread->debug.dvc2 = 0;
661 #endif
662 thread->debug.dbcr0 = 0;
663 #ifdef CONFIG_BOOKE
664 /*
665 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666 */
667 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668 DBCR1_IAC3US | DBCR1_IAC4US;
669 /*
670 * Force Data Address Compare User/Supervisor bits to be User-only
671 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672 */
673 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674 #else
675 thread->debug.dbcr1 = 0;
676 #endif
677 }
678
679 static void prime_debug_regs(struct debug_reg *debug)
680 {
681 /*
682 * We could have inherited MSR_DE from userspace, since
683 * it doesn't get cleared on exception entry. Make sure
684 * MSR_DE is clear before we enable any debug events.
685 */
686 mtmsr(mfmsr() & ~MSR_DE);
687
688 mtspr(SPRN_IAC1, debug->iac1);
689 mtspr(SPRN_IAC2, debug->iac2);
690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
691 mtspr(SPRN_IAC3, debug->iac3);
692 mtspr(SPRN_IAC4, debug->iac4);
693 #endif
694 mtspr(SPRN_DAC1, debug->dac1);
695 mtspr(SPRN_DAC2, debug->dac2);
696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697 mtspr(SPRN_DVC1, debug->dvc1);
698 mtspr(SPRN_DVC2, debug->dvc2);
699 #endif
700 mtspr(SPRN_DBCR0, debug->dbcr0);
701 mtspr(SPRN_DBCR1, debug->dbcr1);
702 #ifdef CONFIG_BOOKE
703 mtspr(SPRN_DBCR2, debug->dbcr2);
704 #endif
705 }
706 /*
707 * Unless neither the old or new thread are making use of the
708 * debug registers, set the debug registers from the values
709 * stored in the new thread.
710 */
711 void switch_booke_debug_regs(struct debug_reg *new_debug)
712 {
713 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714 || (new_debug->dbcr0 & DBCR0_IDM))
715 prime_debug_regs(new_debug);
716 }
717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
719 #ifndef CONFIG_HAVE_HW_BREAKPOINT
720 static void set_debug_reg_defaults(struct thread_struct *thread)
721 {
722 thread->hw_brk.address = 0;
723 thread->hw_brk.type = 0;
724 set_breakpoint(&thread->hw_brk);
725 }
726 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
727 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
728
729 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
730 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
731 {
732 mtspr(SPRN_DAC1, dabr);
733 #ifdef CONFIG_PPC_47x
734 isync();
735 #endif
736 return 0;
737 }
738 #elif defined(CONFIG_PPC_BOOK3S)
739 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
740 {
741 mtspr(SPRN_DABR, dabr);
742 if (cpu_has_feature(CPU_FTR_DABRX))
743 mtspr(SPRN_DABRX, dabrx);
744 return 0;
745 }
746 #elif defined(CONFIG_PPC_8xx)
747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748 {
749 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
750 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
751 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
752
753 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
754 lctrl1 |= 0xa0000;
755 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
756 lctrl1 |= 0xf0000;
757 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
758 lctrl2 = 0;
759
760 mtspr(SPRN_LCTRL2, 0);
761 mtspr(SPRN_CMPE, addr);
762 mtspr(SPRN_CMPF, addr + 4);
763 mtspr(SPRN_LCTRL1, lctrl1);
764 mtspr(SPRN_LCTRL2, lctrl2);
765
766 return 0;
767 }
768 #else
769 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
770 {
771 return -EINVAL;
772 }
773 #endif
774
775 static inline int set_dabr(struct arch_hw_breakpoint *brk)
776 {
777 unsigned long dabr, dabrx;
778
779 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
780 dabrx = ((brk->type >> 3) & 0x7);
781
782 if (ppc_md.set_dabr)
783 return ppc_md.set_dabr(dabr, dabrx);
784
785 return __set_dabr(dabr, dabrx);
786 }
787
788 static inline int set_dawr(struct arch_hw_breakpoint *brk)
789 {
790 unsigned long dawr, dawrx, mrd;
791
792 dawr = brk->address;
793
794 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
795 << (63 - 58); //* read/write bits */
796 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
797 << (63 - 59); //* translate */
798 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
799 >> 3; //* PRIM bits */
800 /* dawr length is stored in field MDR bits 48:53. Matches range in
801 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
802 0b111111=64DW.
803 brk->len is in bytes.
804 This aligns up to double word size, shifts and does the bias.
805 */
806 mrd = ((brk->len + 7) >> 3) - 1;
807 dawrx |= (mrd & 0x3f) << (63 - 53);
808
809 if (ppc_md.set_dawr)
810 return ppc_md.set_dawr(dawr, dawrx);
811 mtspr(SPRN_DAWR, dawr);
812 mtspr(SPRN_DAWRX, dawrx);
813 return 0;
814 }
815
816 void __set_breakpoint(struct arch_hw_breakpoint *brk)
817 {
818 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
819
820 if (cpu_has_feature(CPU_FTR_DAWR))
821 set_dawr(brk);
822 else
823 set_dabr(brk);
824 }
825
826 void set_breakpoint(struct arch_hw_breakpoint *brk)
827 {
828 preempt_disable();
829 __set_breakpoint(brk);
830 preempt_enable();
831 }
832
833 #ifdef CONFIG_PPC64
834 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
835 #endif
836
837 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
838 struct arch_hw_breakpoint *b)
839 {
840 if (a->address != b->address)
841 return false;
842 if (a->type != b->type)
843 return false;
844 if (a->len != b->len)
845 return false;
846 return true;
847 }
848
849 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
850
851 static inline bool tm_enabled(struct task_struct *tsk)
852 {
853 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
854 }
855
856 static void tm_reclaim_thread(struct thread_struct *thr,
857 struct thread_info *ti, uint8_t cause)
858 {
859 /*
860 * Use the current MSR TM suspended bit to track if we have
861 * checkpointed state outstanding.
862 * On signal delivery, we'd normally reclaim the checkpointed
863 * state to obtain stack pointer (see:get_tm_stackpointer()).
864 * This will then directly return to userspace without going
865 * through __switch_to(). However, if the stack frame is bad,
866 * we need to exit this thread which calls __switch_to() which
867 * will again attempt to reclaim the already saved tm state.
868 * Hence we need to check that we've not already reclaimed
869 * this state.
870 * We do this using the current MSR, rather tracking it in
871 * some specific thread_struct bit, as it has the additional
872 * benefit of checking for a potential TM bad thing exception.
873 */
874 if (!MSR_TM_SUSPENDED(mfmsr()))
875 return;
876
877 giveup_all(container_of(thr, struct task_struct, thread));
878
879 tm_reclaim(thr, cause);
880
881 /*
882 * If we are in a transaction and FP is off then we can't have
883 * used FP inside that transaction. Hence the checkpointed
884 * state is the same as the live state. We need to copy the
885 * live state to the checkpointed state so that when the
886 * transaction is restored, the checkpointed state is correct
887 * and the aborted transaction sees the correct state. We use
888 * ckpt_regs.msr here as that's what tm_reclaim will use to
889 * determine if it's going to write the checkpointed state or
890 * not. So either this will write the checkpointed registers,
891 * or reclaim will. Similarly for VMX.
892 */
893 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
894 memcpy(&thr->ckfp_state, &thr->fp_state,
895 sizeof(struct thread_fp_state));
896 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
897 memcpy(&thr->ckvr_state, &thr->vr_state,
898 sizeof(struct thread_vr_state));
899 }
900
901 void tm_reclaim_current(uint8_t cause)
902 {
903 tm_enable();
904 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
905 }
906
907 static inline void tm_reclaim_task(struct task_struct *tsk)
908 {
909 /* We have to work out if we're switching from/to a task that's in the
910 * middle of a transaction.
911 *
912 * In switching we need to maintain a 2nd register state as
913 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
914 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
915 * ckvr_state
916 *
917 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
918 */
919 struct thread_struct *thr = &tsk->thread;
920
921 if (!thr->regs)
922 return;
923
924 if (!MSR_TM_ACTIVE(thr->regs->msr))
925 goto out_and_saveregs;
926
927 WARN_ON(tm_suspend_disabled);
928
929 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
930 "ccr=%lx, msr=%lx, trap=%lx)\n",
931 tsk->pid, thr->regs->nip,
932 thr->regs->ccr, thr->regs->msr,
933 thr->regs->trap);
934
935 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
936
937 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
938 tsk->pid);
939
940 out_and_saveregs:
941 /* Always save the regs here, even if a transaction's not active.
942 * This context-switches a thread's TM info SPRs. We do it here to
943 * be consistent with the restore path (in recheckpoint) which
944 * cannot happen later in _switch().
945 */
946 tm_save_sprs(thr);
947 }
948
949 extern void __tm_recheckpoint(struct thread_struct *thread);
950
951 void tm_recheckpoint(struct thread_struct *thread)
952 {
953 unsigned long flags;
954
955 if (!(thread->regs->msr & MSR_TM))
956 return;
957
958 /* We really can't be interrupted here as the TEXASR registers can't
959 * change and later in the trecheckpoint code, we have a userspace R1.
960 * So let's hard disable over this region.
961 */
962 local_irq_save(flags);
963 hard_irq_disable();
964
965 /* The TM SPRs are restored here, so that TEXASR.FS can be set
966 * before the trecheckpoint and no explosion occurs.
967 */
968 tm_restore_sprs(thread);
969
970 __tm_recheckpoint(thread);
971
972 local_irq_restore(flags);
973 }
974
975 static inline void tm_recheckpoint_new_task(struct task_struct *new)
976 {
977 if (!cpu_has_feature(CPU_FTR_TM))
978 return;
979
980 /* Recheckpoint the registers of the thread we're about to switch to.
981 *
982 * If the task was using FP, we non-lazily reload both the original and
983 * the speculative FP register states. This is because the kernel
984 * doesn't see if/when a TM rollback occurs, so if we take an FP
985 * unavailable later, we are unable to determine which set of FP regs
986 * need to be restored.
987 */
988 if (!tm_enabled(new))
989 return;
990
991 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
992 tm_restore_sprs(&new->thread);
993 return;
994 }
995 /* Recheckpoint to restore original checkpointed register state. */
996 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
997 new->pid, new->thread.regs->msr);
998
999 tm_recheckpoint(&new->thread);
1000
1001 /*
1002 * The checkpointed state has been restored but the live state has
1003 * not, ensure all the math functionality is turned off to trigger
1004 * restore_math() to reload.
1005 */
1006 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1007
1008 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1009 "(kernel msr 0x%lx)\n",
1010 new->pid, mfmsr());
1011 }
1012
1013 static inline void __switch_to_tm(struct task_struct *prev,
1014 struct task_struct *new)
1015 {
1016 if (cpu_has_feature(CPU_FTR_TM)) {
1017 if (tm_enabled(prev) || tm_enabled(new))
1018 tm_enable();
1019
1020 if (tm_enabled(prev)) {
1021 prev->thread.load_tm++;
1022 tm_reclaim_task(prev);
1023 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1024 prev->thread.regs->msr &= ~MSR_TM;
1025 }
1026
1027 tm_recheckpoint_new_task(new);
1028 }
1029 }
1030
1031 /*
1032 * This is called if we are on the way out to userspace and the
1033 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1034 * FP and/or vector state and does so if necessary.
1035 * If userspace is inside a transaction (whether active or
1036 * suspended) and FP/VMX/VSX instructions have ever been enabled
1037 * inside that transaction, then we have to keep them enabled
1038 * and keep the FP/VMX/VSX state loaded while ever the transaction
1039 * continues. The reason is that if we didn't, and subsequently
1040 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1041 * we don't know whether it's the same transaction, and thus we
1042 * don't know which of the checkpointed state and the transactional
1043 * state to use.
1044 */
1045 void restore_tm_state(struct pt_regs *regs)
1046 {
1047 unsigned long msr_diff;
1048
1049 /*
1050 * This is the only moment we should clear TIF_RESTORE_TM as
1051 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1052 * again, anything else could lead to an incorrect ckpt_msr being
1053 * saved and therefore incorrect signal contexts.
1054 */
1055 clear_thread_flag(TIF_RESTORE_TM);
1056 if (!MSR_TM_ACTIVE(regs->msr))
1057 return;
1058
1059 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1060 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1061
1062 /* Ensure that restore_math() will restore */
1063 if (msr_diff & MSR_FP)
1064 current->thread.load_fp = 1;
1065 #ifdef CONFIG_ALTIVEC
1066 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1067 current->thread.load_vec = 1;
1068 #endif
1069 restore_math(regs);
1070
1071 regs->msr |= msr_diff;
1072 }
1073
1074 #else
1075 #define tm_recheckpoint_new_task(new)
1076 #define __switch_to_tm(prev, new)
1077 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1078
1079 static inline void save_sprs(struct thread_struct *t)
1080 {
1081 #ifdef CONFIG_ALTIVEC
1082 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1083 t->vrsave = mfspr(SPRN_VRSAVE);
1084 #endif
1085 #ifdef CONFIG_PPC_BOOK3S_64
1086 if (cpu_has_feature(CPU_FTR_DSCR))
1087 t->dscr = mfspr(SPRN_DSCR);
1088
1089 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1090 t->bescr = mfspr(SPRN_BESCR);
1091 t->ebbhr = mfspr(SPRN_EBBHR);
1092 t->ebbrr = mfspr(SPRN_EBBRR);
1093
1094 t->fscr = mfspr(SPRN_FSCR);
1095
1096 /*
1097 * Note that the TAR is not available for use in the kernel.
1098 * (To provide this, the TAR should be backed up/restored on
1099 * exception entry/exit instead, and be in pt_regs. FIXME,
1100 * this should be in pt_regs anyway (for debug).)
1101 */
1102 t->tar = mfspr(SPRN_TAR);
1103 }
1104 #endif
1105 }
1106
1107 static inline void restore_sprs(struct thread_struct *old_thread,
1108 struct thread_struct *new_thread)
1109 {
1110 #ifdef CONFIG_ALTIVEC
1111 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1112 old_thread->vrsave != new_thread->vrsave)
1113 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1114 #endif
1115 #ifdef CONFIG_PPC_BOOK3S_64
1116 if (cpu_has_feature(CPU_FTR_DSCR)) {
1117 u64 dscr = get_paca()->dscr_default;
1118 if (new_thread->dscr_inherit)
1119 dscr = new_thread->dscr;
1120
1121 if (old_thread->dscr != dscr)
1122 mtspr(SPRN_DSCR, dscr);
1123 }
1124
1125 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1126 if (old_thread->bescr != new_thread->bescr)
1127 mtspr(SPRN_BESCR, new_thread->bescr);
1128 if (old_thread->ebbhr != new_thread->ebbhr)
1129 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1130 if (old_thread->ebbrr != new_thread->ebbrr)
1131 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1132
1133 if (old_thread->fscr != new_thread->fscr)
1134 mtspr(SPRN_FSCR, new_thread->fscr);
1135
1136 if (old_thread->tar != new_thread->tar)
1137 mtspr(SPRN_TAR, new_thread->tar);
1138 }
1139
1140 if (cpu_has_feature(CPU_FTR_ARCH_300) &&
1141 old_thread->tidr != new_thread->tidr)
1142 mtspr(SPRN_TIDR, new_thread->tidr);
1143 #endif
1144 }
1145
1146 #ifdef CONFIG_PPC_BOOK3S_64
1147 #define CP_SIZE 128
1148 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1149 #endif
1150
1151 struct task_struct *__switch_to(struct task_struct *prev,
1152 struct task_struct *new)
1153 {
1154 struct thread_struct *new_thread, *old_thread;
1155 struct task_struct *last;
1156 #ifdef CONFIG_PPC_BOOK3S_64
1157 struct ppc64_tlb_batch *batch;
1158 #endif
1159
1160 new_thread = &new->thread;
1161 old_thread = &current->thread;
1162
1163 WARN_ON(!irqs_disabled());
1164
1165 #ifdef CONFIG_PPC64
1166 /*
1167 * Collect processor utilization data per process
1168 */
1169 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1170 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1171 long unsigned start_tb, current_tb;
1172 start_tb = old_thread->start_tb;
1173 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1174 old_thread->accum_tb += (current_tb - start_tb);
1175 new_thread->start_tb = current_tb;
1176 }
1177 #endif /* CONFIG_PPC64 */
1178
1179 #ifdef CONFIG_PPC_BOOK3S_64
1180 batch = this_cpu_ptr(&ppc64_tlb_batch);
1181 if (batch->active) {
1182 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1183 if (batch->index)
1184 __flush_tlb_pending(batch);
1185 batch->active = 0;
1186 }
1187 #endif /* CONFIG_PPC_BOOK3S_64 */
1188
1189 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1190 switch_booke_debug_regs(&new->thread.debug);
1191 #else
1192 /*
1193 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1194 * schedule DABR
1195 */
1196 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1197 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1198 __set_breakpoint(&new->thread.hw_brk);
1199 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1200 #endif
1201
1202 /*
1203 * We need to save SPRs before treclaim/trecheckpoint as these will
1204 * change a number of them.
1205 */
1206 save_sprs(&prev->thread);
1207
1208 /* Save FPU, Altivec, VSX and SPE state */
1209 giveup_all(prev);
1210
1211 __switch_to_tm(prev, new);
1212
1213 if (!radix_enabled()) {
1214 /*
1215 * We can't take a PMU exception inside _switch() since there
1216 * is a window where the kernel stack SLB and the kernel stack
1217 * are out of sync. Hard disable here.
1218 */
1219 hard_irq_disable();
1220 }
1221
1222 /*
1223 * Call restore_sprs() before calling _switch(). If we move it after
1224 * _switch() then we miss out on calling it for new tasks. The reason
1225 * for this is we manually create a stack frame for new tasks that
1226 * directly returns through ret_from_fork() or
1227 * ret_from_kernel_thread(). See copy_thread() for details.
1228 */
1229 restore_sprs(old_thread, new_thread);
1230
1231 last = _switch(old_thread, new_thread);
1232
1233 #ifdef CONFIG_PPC_BOOK3S_64
1234 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1235 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1236 batch = this_cpu_ptr(&ppc64_tlb_batch);
1237 batch->active = 1;
1238 }
1239
1240 if (current_thread_info()->task->thread.regs) {
1241 restore_math(current_thread_info()->task->thread.regs);
1242
1243 /*
1244 * The copy-paste buffer can only store into foreign real
1245 * addresses, so unprivileged processes can not see the
1246 * data or use it in any way unless they have foreign real
1247 * mappings. If the new process has the foreign real address
1248 * mappings, we must issue a cp_abort to clear any state and
1249 * prevent snooping, corruption or a covert channel.
1250 *
1251 * DD1 allows paste into normal system memory so we do an
1252 * unpaired copy, rather than cp_abort, to clear the buffer,
1253 * since cp_abort is quite expensive.
1254 */
1255 if (current_thread_info()->task->thread.used_vas) {
1256 asm volatile(PPC_CP_ABORT);
1257 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1258 asm volatile(PPC_COPY(%0, %1)
1259 : : "r"(dummy_copy_buffer), "r"(0));
1260 }
1261 }
1262 #endif /* CONFIG_PPC_BOOK3S_64 */
1263
1264 return last;
1265 }
1266
1267 static int instructions_to_print = 16;
1268
1269 static void show_instructions(struct pt_regs *regs)
1270 {
1271 int i;
1272 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1273 sizeof(int));
1274
1275 printk("Instruction dump:");
1276
1277 for (i = 0; i < instructions_to_print; i++) {
1278 int instr;
1279
1280 if (!(i % 8))
1281 pr_cont("\n");
1282
1283 #if !defined(CONFIG_BOOKE)
1284 /* If executing with the IMMU off, adjust pc rather
1285 * than print XXXXXXXX.
1286 */
1287 if (!(regs->msr & MSR_IR))
1288 pc = (unsigned long)phys_to_virt(pc);
1289 #endif
1290
1291 if (!__kernel_text_address(pc) ||
1292 probe_kernel_address((unsigned int __user *)pc, instr)) {
1293 pr_cont("XXXXXXXX ");
1294 } else {
1295 if (regs->nip == pc)
1296 pr_cont("<%08x> ", instr);
1297 else
1298 pr_cont("%08x ", instr);
1299 }
1300
1301 pc += sizeof(int);
1302 }
1303
1304 pr_cont("\n");
1305 }
1306
1307 struct regbit {
1308 unsigned long bit;
1309 const char *name;
1310 };
1311
1312 static struct regbit msr_bits[] = {
1313 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1314 {MSR_SF, "SF"},
1315 {MSR_HV, "HV"},
1316 #endif
1317 {MSR_VEC, "VEC"},
1318 {MSR_VSX, "VSX"},
1319 #ifdef CONFIG_BOOKE
1320 {MSR_CE, "CE"},
1321 #endif
1322 {MSR_EE, "EE"},
1323 {MSR_PR, "PR"},
1324 {MSR_FP, "FP"},
1325 {MSR_ME, "ME"},
1326 #ifdef CONFIG_BOOKE
1327 {MSR_DE, "DE"},
1328 #else
1329 {MSR_SE, "SE"},
1330 {MSR_BE, "BE"},
1331 #endif
1332 {MSR_IR, "IR"},
1333 {MSR_DR, "DR"},
1334 {MSR_PMM, "PMM"},
1335 #ifndef CONFIG_BOOKE
1336 {MSR_RI, "RI"},
1337 {MSR_LE, "LE"},
1338 #endif
1339 {0, NULL}
1340 };
1341
1342 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1343 {
1344 const char *s = "";
1345
1346 for (; bits->bit; ++bits)
1347 if (val & bits->bit) {
1348 pr_cont("%s%s", s, bits->name);
1349 s = sep;
1350 }
1351 }
1352
1353 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1354 static struct regbit msr_tm_bits[] = {
1355 {MSR_TS_T, "T"},
1356 {MSR_TS_S, "S"},
1357 {MSR_TM, "E"},
1358 {0, NULL}
1359 };
1360
1361 static void print_tm_bits(unsigned long val)
1362 {
1363 /*
1364 * This only prints something if at least one of the TM bit is set.
1365 * Inside the TM[], the output means:
1366 * E: Enabled (bit 32)
1367 * S: Suspended (bit 33)
1368 * T: Transactional (bit 34)
1369 */
1370 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1371 pr_cont(",TM[");
1372 print_bits(val, msr_tm_bits, "");
1373 pr_cont("]");
1374 }
1375 }
1376 #else
1377 static void print_tm_bits(unsigned long val) {}
1378 #endif
1379
1380 static void print_msr_bits(unsigned long val)
1381 {
1382 pr_cont("<");
1383 print_bits(val, msr_bits, ",");
1384 print_tm_bits(val);
1385 pr_cont(">");
1386 }
1387
1388 #ifdef CONFIG_PPC64
1389 #define REG "%016lx"
1390 #define REGS_PER_LINE 4
1391 #define LAST_VOLATILE 13
1392 #else
1393 #define REG "%08lx"
1394 #define REGS_PER_LINE 8
1395 #define LAST_VOLATILE 12
1396 #endif
1397
1398 void show_regs(struct pt_regs * regs)
1399 {
1400 int i, trap;
1401
1402 show_regs_print_info(KERN_DEFAULT);
1403
1404 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1405 regs->nip, regs->link, regs->ctr);
1406 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1407 regs, regs->trap, print_tainted(), init_utsname()->release);
1408 printk("MSR: "REG" ", regs->msr);
1409 print_msr_bits(regs->msr);
1410 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1411 trap = TRAP(regs);
1412 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1413 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1414 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1415 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1416 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1417 #else
1418 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1419 #endif
1420 #ifdef CONFIG_PPC64
1421 pr_cont("SOFTE: %ld ", regs->softe);
1422 #endif
1423 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1424 if (MSR_TM_ACTIVE(regs->msr))
1425 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1426 #endif
1427
1428 for (i = 0; i < 32; i++) {
1429 if ((i % REGS_PER_LINE) == 0)
1430 pr_cont("\nGPR%02d: ", i);
1431 pr_cont(REG " ", regs->gpr[i]);
1432 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1433 break;
1434 }
1435 pr_cont("\n");
1436 #ifdef CONFIG_KALLSYMS
1437 /*
1438 * Lookup NIP late so we have the best change of getting the
1439 * above info out without failing
1440 */
1441 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1442 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1443 #endif
1444 show_stack(current, (unsigned long *) regs->gpr[1]);
1445 if (!user_mode(regs))
1446 show_instructions(regs);
1447 }
1448
1449 void flush_thread(void)
1450 {
1451 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1452 flush_ptrace_hw_breakpoint(current);
1453 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1454 set_debug_reg_defaults(&current->thread);
1455 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1456 }
1457
1458 int set_thread_uses_vas(void)
1459 {
1460 #ifdef CONFIG_PPC_BOOK3S_64
1461 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1462 return -EINVAL;
1463
1464 current->thread.used_vas = 1;
1465
1466 /*
1467 * Even a process that has no foreign real address mapping can use
1468 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1469 * to clear any pending COPY and prevent a covert channel.
1470 *
1471 * __switch_to() will issue CP_ABORT on future context switches.
1472 */
1473 asm volatile(PPC_CP_ABORT);
1474
1475 #endif /* CONFIG_PPC_BOOK3S_64 */
1476 return 0;
1477 }
1478
1479 #ifdef CONFIG_PPC64
1480 static DEFINE_SPINLOCK(vas_thread_id_lock);
1481 static DEFINE_IDA(vas_thread_ida);
1482
1483 /*
1484 * We need to assign a unique thread id to each thread in a process.
1485 *
1486 * This thread id, referred to as TIDR, and separate from the Linux's tgid,
1487 * is intended to be used to direct an ASB_Notify from the hardware to the
1488 * thread, when a suitable event occurs in the system.
1489 *
1490 * One such event is a "paste" instruction in the context of Fast Thread
1491 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
1492 * (VAS) in POWER9.
1493 *
1494 * To get a unique TIDR per process we could simply reuse task_pid_nr() but
1495 * the problem is that task_pid_nr() is not yet available copy_thread() is
1496 * called. Fixing that would require changing more intrusive arch-neutral
1497 * code in code path in copy_process()?.
1498 *
1499 * Further, to assign unique TIDRs within each process, we need an atomic
1500 * field (or an IDR) in task_struct, which again intrudes into the arch-
1501 * neutral code. So try to assign globally unique TIDRs for now.
1502 *
1503 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
1504 * For now, only threads that expect to be notified by the VAS
1505 * hardware need a TIDR value and we assign values > 0 for those.
1506 */
1507 #define MAX_THREAD_CONTEXT ((1 << 16) - 1)
1508 static int assign_thread_tidr(void)
1509 {
1510 int index;
1511 int err;
1512
1513 again:
1514 if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
1515 return -ENOMEM;
1516
1517 spin_lock(&vas_thread_id_lock);
1518 err = ida_get_new_above(&vas_thread_ida, 1, &index);
1519 spin_unlock(&vas_thread_id_lock);
1520
1521 if (err == -EAGAIN)
1522 goto again;
1523 else if (err)
1524 return err;
1525
1526 if (index > MAX_THREAD_CONTEXT) {
1527 spin_lock(&vas_thread_id_lock);
1528 ida_remove(&vas_thread_ida, index);
1529 spin_unlock(&vas_thread_id_lock);
1530 return -ENOMEM;
1531 }
1532
1533 return index;
1534 }
1535
1536 static void free_thread_tidr(int id)
1537 {
1538 spin_lock(&vas_thread_id_lock);
1539 ida_remove(&vas_thread_ida, id);
1540 spin_unlock(&vas_thread_id_lock);
1541 }
1542
1543 /*
1544 * Clear any TIDR value assigned to this thread.
1545 */
1546 void clear_thread_tidr(struct task_struct *t)
1547 {
1548 if (!t->thread.tidr)
1549 return;
1550
1551 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1552 WARN_ON_ONCE(1);
1553 return;
1554 }
1555
1556 mtspr(SPRN_TIDR, 0);
1557 free_thread_tidr(t->thread.tidr);
1558 t->thread.tidr = 0;
1559 }
1560
1561 void arch_release_task_struct(struct task_struct *t)
1562 {
1563 clear_thread_tidr(t);
1564 }
1565
1566 /*
1567 * Assign a unique TIDR (thread id) for task @t and set it in the thread
1568 * structure. For now, we only support setting TIDR for 'current' task.
1569 */
1570 int set_thread_tidr(struct task_struct *t)
1571 {
1572 int rc;
1573
1574 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1575 return -EINVAL;
1576
1577 if (t != current)
1578 return -EINVAL;
1579
1580 if (t->thread.tidr)
1581 return 0;
1582
1583 rc = assign_thread_tidr();
1584 if (rc < 0)
1585 return rc;
1586
1587 t->thread.tidr = rc;
1588 mtspr(SPRN_TIDR, t->thread.tidr);
1589
1590 return 0;
1591 }
1592
1593 #endif /* CONFIG_PPC64 */
1594
1595 void
1596 release_thread(struct task_struct *t)
1597 {
1598 }
1599
1600 /*
1601 * this gets called so that we can store coprocessor state into memory and
1602 * copy the current task into the new thread.
1603 */
1604 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1605 {
1606 flush_all_to_thread(src);
1607 /*
1608 * Flush TM state out so we can copy it. __switch_to_tm() does this
1609 * flush but it removes the checkpointed state from the current CPU and
1610 * transitions the CPU out of TM mode. Hence we need to call
1611 * tm_recheckpoint_new_task() (on the same task) to restore the
1612 * checkpointed state back and the TM mode.
1613 *
1614 * Can't pass dst because it isn't ready. Doesn't matter, passing
1615 * dst is only important for __switch_to()
1616 */
1617 __switch_to_tm(src, src);
1618
1619 *dst = *src;
1620
1621 clear_task_ebb(dst);
1622
1623 return 0;
1624 }
1625
1626 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1627 {
1628 #ifdef CONFIG_PPC_BOOK3S_64
1629 unsigned long sp_vsid;
1630 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1631
1632 if (radix_enabled())
1633 return;
1634
1635 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1636 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1637 << SLB_VSID_SHIFT_1T;
1638 else
1639 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1640 << SLB_VSID_SHIFT;
1641 sp_vsid |= SLB_VSID_KERNEL | llp;
1642 p->thread.ksp_vsid = sp_vsid;
1643 #endif
1644 }
1645
1646 /*
1647 * Copy a thread..
1648 */
1649
1650 /*
1651 * Copy architecture-specific thread state
1652 */
1653 int copy_thread(unsigned long clone_flags, unsigned long usp,
1654 unsigned long kthread_arg, struct task_struct *p)
1655 {
1656 struct pt_regs *childregs, *kregs;
1657 extern void ret_from_fork(void);
1658 extern void ret_from_kernel_thread(void);
1659 void (*f)(void);
1660 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1661 struct thread_info *ti = task_thread_info(p);
1662
1663 klp_init_thread_info(ti);
1664
1665 /* Copy registers */
1666 sp -= sizeof(struct pt_regs);
1667 childregs = (struct pt_regs *) sp;
1668 if (unlikely(p->flags & PF_KTHREAD)) {
1669 /* kernel thread */
1670 memset(childregs, 0, sizeof(struct pt_regs));
1671 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1672 /* function */
1673 if (usp)
1674 childregs->gpr[14] = ppc_function_entry((void *)usp);
1675 #ifdef CONFIG_PPC64
1676 clear_tsk_thread_flag(p, TIF_32BIT);
1677 childregs->softe = 1;
1678 #endif
1679 childregs->gpr[15] = kthread_arg;
1680 p->thread.regs = NULL; /* no user register state */
1681 ti->flags |= _TIF_RESTOREALL;
1682 f = ret_from_kernel_thread;
1683 } else {
1684 /* user thread */
1685 struct pt_regs *regs = current_pt_regs();
1686 CHECK_FULL_REGS(regs);
1687 *childregs = *regs;
1688 if (usp)
1689 childregs->gpr[1] = usp;
1690 p->thread.regs = childregs;
1691 childregs->gpr[3] = 0; /* Result from fork() */
1692 if (clone_flags & CLONE_SETTLS) {
1693 #ifdef CONFIG_PPC64
1694 if (!is_32bit_task())
1695 childregs->gpr[13] = childregs->gpr[6];
1696 else
1697 #endif
1698 childregs->gpr[2] = childregs->gpr[6];
1699 }
1700
1701 f = ret_from_fork;
1702 }
1703 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1704 sp -= STACK_FRAME_OVERHEAD;
1705
1706 /*
1707 * The way this works is that at some point in the future
1708 * some task will call _switch to switch to the new task.
1709 * That will pop off the stack frame created below and start
1710 * the new task running at ret_from_fork. The new task will
1711 * do some house keeping and then return from the fork or clone
1712 * system call, using the stack frame created above.
1713 */
1714 ((unsigned long *)sp)[0] = 0;
1715 sp -= sizeof(struct pt_regs);
1716 kregs = (struct pt_regs *) sp;
1717 sp -= STACK_FRAME_OVERHEAD;
1718 p->thread.ksp = sp;
1719 #ifdef CONFIG_PPC32
1720 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1721 _ALIGN_UP(sizeof(struct thread_info), 16);
1722 #endif
1723 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1724 p->thread.ptrace_bps[0] = NULL;
1725 #endif
1726
1727 p->thread.fp_save_area = NULL;
1728 #ifdef CONFIG_ALTIVEC
1729 p->thread.vr_save_area = NULL;
1730 #endif
1731
1732 setup_ksp_vsid(p, sp);
1733
1734 #ifdef CONFIG_PPC64
1735 if (cpu_has_feature(CPU_FTR_DSCR)) {
1736 p->thread.dscr_inherit = current->thread.dscr_inherit;
1737 p->thread.dscr = mfspr(SPRN_DSCR);
1738 }
1739 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1740 p->thread.ppr = INIT_PPR;
1741
1742 p->thread.tidr = 0;
1743 #endif
1744 kregs->nip = ppc_function_entry(f);
1745 return 0;
1746 }
1747
1748 /*
1749 * Set up a thread for executing a new program
1750 */
1751 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1752 {
1753 #ifdef CONFIG_PPC64
1754 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1755 #endif
1756
1757 /*
1758 * If we exec out of a kernel thread then thread.regs will not be
1759 * set. Do it now.
1760 */
1761 if (!current->thread.regs) {
1762 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1763 current->thread.regs = regs - 1;
1764 }
1765
1766 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1767 /*
1768 * Clear any transactional state, we're exec()ing. The cause is
1769 * not important as there will never be a recheckpoint so it's not
1770 * user visible.
1771 */
1772 if (MSR_TM_SUSPENDED(mfmsr()))
1773 tm_reclaim_current(0);
1774 #endif
1775
1776 memset(regs->gpr, 0, sizeof(regs->gpr));
1777 regs->ctr = 0;
1778 regs->link = 0;
1779 regs->xer = 0;
1780 regs->ccr = 0;
1781 regs->gpr[1] = sp;
1782
1783 /*
1784 * We have just cleared all the nonvolatile GPRs, so make
1785 * FULL_REGS(regs) return true. This is necessary to allow
1786 * ptrace to examine the thread immediately after exec.
1787 */
1788 regs->trap &= ~1UL;
1789
1790 #ifdef CONFIG_PPC32
1791 regs->mq = 0;
1792 regs->nip = start;
1793 regs->msr = MSR_USER;
1794 #else
1795 if (!is_32bit_task()) {
1796 unsigned long entry;
1797
1798 if (is_elf2_task()) {
1799 /* Look ma, no function descriptors! */
1800 entry = start;
1801
1802 /*
1803 * Ulrich says:
1804 * The latest iteration of the ABI requires that when
1805 * calling a function (at its global entry point),
1806 * the caller must ensure r12 holds the entry point
1807 * address (so that the function can quickly
1808 * establish addressability).
1809 */
1810 regs->gpr[12] = start;
1811 /* Make sure that's restored on entry to userspace. */
1812 set_thread_flag(TIF_RESTOREALL);
1813 } else {
1814 unsigned long toc;
1815
1816 /* start is a relocated pointer to the function
1817 * descriptor for the elf _start routine. The first
1818 * entry in the function descriptor is the entry
1819 * address of _start and the second entry is the TOC
1820 * value we need to use.
1821 */
1822 __get_user(entry, (unsigned long __user *)start);
1823 __get_user(toc, (unsigned long __user *)start+1);
1824
1825 /* Check whether the e_entry function descriptor entries
1826 * need to be relocated before we can use them.
1827 */
1828 if (load_addr != 0) {
1829 entry += load_addr;
1830 toc += load_addr;
1831 }
1832 regs->gpr[2] = toc;
1833 }
1834 regs->nip = entry;
1835 regs->msr = MSR_USER64;
1836 } else {
1837 regs->nip = start;
1838 regs->gpr[2] = 0;
1839 regs->msr = MSR_USER32;
1840 }
1841 #endif
1842 #ifdef CONFIG_VSX
1843 current->thread.used_vsr = 0;
1844 #endif
1845 current->thread.load_fp = 0;
1846 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1847 current->thread.fp_save_area = NULL;
1848 #ifdef CONFIG_ALTIVEC
1849 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1850 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1851 current->thread.vr_save_area = NULL;
1852 current->thread.vrsave = 0;
1853 current->thread.used_vr = 0;
1854 current->thread.load_vec = 0;
1855 #endif /* CONFIG_ALTIVEC */
1856 #ifdef CONFIG_SPE
1857 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1858 current->thread.acc = 0;
1859 current->thread.spefscr = 0;
1860 current->thread.used_spe = 0;
1861 #endif /* CONFIG_SPE */
1862 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1863 current->thread.tm_tfhar = 0;
1864 current->thread.tm_texasr = 0;
1865 current->thread.tm_tfiar = 0;
1866 current->thread.load_tm = 0;
1867 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1868 }
1869 EXPORT_SYMBOL(start_thread);
1870
1871 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1872 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1873
1874 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1875 {
1876 struct pt_regs *regs = tsk->thread.regs;
1877
1878 /* This is a bit hairy. If we are an SPE enabled processor
1879 * (have embedded fp) we store the IEEE exception enable flags in
1880 * fpexc_mode. fpexc_mode is also used for setting FP exception
1881 * mode (asyn, precise, disabled) for 'Classic' FP. */
1882 if (val & PR_FP_EXC_SW_ENABLE) {
1883 #ifdef CONFIG_SPE
1884 if (cpu_has_feature(CPU_FTR_SPE)) {
1885 /*
1886 * When the sticky exception bits are set
1887 * directly by userspace, it must call prctl
1888 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1889 * in the existing prctl settings) or
1890 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1891 * the bits being set). <fenv.h> functions
1892 * saving and restoring the whole
1893 * floating-point environment need to do so
1894 * anyway to restore the prctl settings from
1895 * the saved environment.
1896 */
1897 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1898 tsk->thread.fpexc_mode = val &
1899 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1900 return 0;
1901 } else {
1902 return -EINVAL;
1903 }
1904 #else
1905 return -EINVAL;
1906 #endif
1907 }
1908
1909 /* on a CONFIG_SPE this does not hurt us. The bits that
1910 * __pack_fe01 use do not overlap with bits used for
1911 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1912 * on CONFIG_SPE implementations are reserved so writing to
1913 * them does not change anything */
1914 if (val > PR_FP_EXC_PRECISE)
1915 return -EINVAL;
1916 tsk->thread.fpexc_mode = __pack_fe01(val);
1917 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1918 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1919 | tsk->thread.fpexc_mode;
1920 return 0;
1921 }
1922
1923 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1924 {
1925 unsigned int val;
1926
1927 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1928 #ifdef CONFIG_SPE
1929 if (cpu_has_feature(CPU_FTR_SPE)) {
1930 /*
1931 * When the sticky exception bits are set
1932 * directly by userspace, it must call prctl
1933 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1934 * in the existing prctl settings) or
1935 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1936 * the bits being set). <fenv.h> functions
1937 * saving and restoring the whole
1938 * floating-point environment need to do so
1939 * anyway to restore the prctl settings from
1940 * the saved environment.
1941 */
1942 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1943 val = tsk->thread.fpexc_mode;
1944 } else
1945 return -EINVAL;
1946 #else
1947 return -EINVAL;
1948 #endif
1949 else
1950 val = __unpack_fe01(tsk->thread.fpexc_mode);
1951 return put_user(val, (unsigned int __user *) adr);
1952 }
1953
1954 int set_endian(struct task_struct *tsk, unsigned int val)
1955 {
1956 struct pt_regs *regs = tsk->thread.regs;
1957
1958 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1959 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1960 return -EINVAL;
1961
1962 if (regs == NULL)
1963 return -EINVAL;
1964
1965 if (val == PR_ENDIAN_BIG)
1966 regs->msr &= ~MSR_LE;
1967 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1968 regs->msr |= MSR_LE;
1969 else
1970 return -EINVAL;
1971
1972 return 0;
1973 }
1974
1975 int get_endian(struct task_struct *tsk, unsigned long adr)
1976 {
1977 struct pt_regs *regs = tsk->thread.regs;
1978 unsigned int val;
1979
1980 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1981 !cpu_has_feature(CPU_FTR_REAL_LE))
1982 return -EINVAL;
1983
1984 if (regs == NULL)
1985 return -EINVAL;
1986
1987 if (regs->msr & MSR_LE) {
1988 if (cpu_has_feature(CPU_FTR_REAL_LE))
1989 val = PR_ENDIAN_LITTLE;
1990 else
1991 val = PR_ENDIAN_PPC_LITTLE;
1992 } else
1993 val = PR_ENDIAN_BIG;
1994
1995 return put_user(val, (unsigned int __user *)adr);
1996 }
1997
1998 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1999 {
2000 tsk->thread.align_ctl = val;
2001 return 0;
2002 }
2003
2004 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2005 {
2006 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2007 }
2008
2009 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2010 unsigned long nbytes)
2011 {
2012 unsigned long stack_page;
2013 unsigned long cpu = task_cpu(p);
2014
2015 /*
2016 * Avoid crashing if the stack has overflowed and corrupted
2017 * task_cpu(p), which is in the thread_info struct.
2018 */
2019 if (cpu < NR_CPUS && cpu_possible(cpu)) {
2020 stack_page = (unsigned long) hardirq_ctx[cpu];
2021 if (sp >= stack_page + sizeof(struct thread_struct)
2022 && sp <= stack_page + THREAD_SIZE - nbytes)
2023 return 1;
2024
2025 stack_page = (unsigned long) softirq_ctx[cpu];
2026 if (sp >= stack_page + sizeof(struct thread_struct)
2027 && sp <= stack_page + THREAD_SIZE - nbytes)
2028 return 1;
2029 }
2030 return 0;
2031 }
2032
2033 int validate_sp(unsigned long sp, struct task_struct *p,
2034 unsigned long nbytes)
2035 {
2036 unsigned long stack_page = (unsigned long)task_stack_page(p);
2037
2038 if (sp >= stack_page + sizeof(struct thread_struct)
2039 && sp <= stack_page + THREAD_SIZE - nbytes)
2040 return 1;
2041
2042 return valid_irq_stack(sp, p, nbytes);
2043 }
2044
2045 EXPORT_SYMBOL(validate_sp);
2046
2047 unsigned long get_wchan(struct task_struct *p)
2048 {
2049 unsigned long ip, sp;
2050 int count = 0;
2051
2052 if (!p || p == current || p->state == TASK_RUNNING)
2053 return 0;
2054
2055 sp = p->thread.ksp;
2056 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2057 return 0;
2058
2059 do {
2060 sp = *(unsigned long *)sp;
2061 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2062 p->state == TASK_RUNNING)
2063 return 0;
2064 if (count > 0) {
2065 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2066 if (!in_sched_functions(ip))
2067 return ip;
2068 }
2069 } while (count++ < 16);
2070 return 0;
2071 }
2072
2073 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2074
2075 void show_stack(struct task_struct *tsk, unsigned long *stack)
2076 {
2077 unsigned long sp, ip, lr, newsp;
2078 int count = 0;
2079 int firstframe = 1;
2080 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2081 int curr_frame = current->curr_ret_stack;
2082 extern void return_to_handler(void);
2083 unsigned long rth = (unsigned long)return_to_handler;
2084 #endif
2085
2086 sp = (unsigned long) stack;
2087 if (tsk == NULL)
2088 tsk = current;
2089 if (sp == 0) {
2090 if (tsk == current)
2091 sp = current_stack_pointer();
2092 else
2093 sp = tsk->thread.ksp;
2094 }
2095
2096 lr = 0;
2097 printk("Call Trace:\n");
2098 do {
2099 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2100 return;
2101
2102 stack = (unsigned long *) sp;
2103 newsp = stack[0];
2104 ip = stack[STACK_FRAME_LR_SAVE];
2105 if (!firstframe || ip != lr) {
2106 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2107 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2108 if ((ip == rth) && curr_frame >= 0) {
2109 pr_cont(" (%pS)",
2110 (void *)current->ret_stack[curr_frame].ret);
2111 curr_frame--;
2112 }
2113 #endif
2114 if (firstframe)
2115 pr_cont(" (unreliable)");
2116 pr_cont("\n");
2117 }
2118 firstframe = 0;
2119
2120 /*
2121 * See if this is an exception frame.
2122 * We look for the "regshere" marker in the current frame.
2123 */
2124 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2125 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2126 struct pt_regs *regs = (struct pt_regs *)
2127 (sp + STACK_FRAME_OVERHEAD);
2128 lr = regs->link;
2129 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
2130 regs->trap, (void *)regs->nip, (void *)lr);
2131 firstframe = 1;
2132 }
2133
2134 sp = newsp;
2135 } while (count++ < kstack_depth_to_print);
2136 }
2137
2138 #ifdef CONFIG_PPC64
2139 /* Called with hard IRQs off */
2140 void notrace __ppc64_runlatch_on(void)
2141 {
2142 struct thread_info *ti = current_thread_info();
2143
2144 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2145 /*
2146 * Least significant bit (RUN) is the only writable bit of
2147 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2148 * earliest ISA where this is the case, but it's convenient.
2149 */
2150 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2151 } else {
2152 unsigned long ctrl;
2153
2154 /*
2155 * Some architectures (e.g., Cell) have writable fields other
2156 * than RUN, so do the read-modify-write.
2157 */
2158 ctrl = mfspr(SPRN_CTRLF);
2159 ctrl |= CTRL_RUNLATCH;
2160 mtspr(SPRN_CTRLT, ctrl);
2161 }
2162
2163 ti->local_flags |= _TLF_RUNLATCH;
2164 }
2165
2166 /* Called with hard IRQs off */
2167 void notrace __ppc64_runlatch_off(void)
2168 {
2169 struct thread_info *ti = current_thread_info();
2170
2171 ti->local_flags &= ~_TLF_RUNLATCH;
2172
2173 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2174 mtspr(SPRN_CTRLT, 0);
2175 } else {
2176 unsigned long ctrl;
2177
2178 ctrl = mfspr(SPRN_CTRLF);
2179 ctrl &= ~CTRL_RUNLATCH;
2180 mtspr(SPRN_CTRLT, ctrl);
2181 }
2182 }
2183 #endif /* CONFIG_PPC64 */
2184
2185 unsigned long arch_align_stack(unsigned long sp)
2186 {
2187 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2188 sp -= get_random_int() & ~PAGE_MASK;
2189 return sp & ~0xf;
2190 }
2191
2192 static inline unsigned long brk_rnd(void)
2193 {
2194 unsigned long rnd = 0;
2195
2196 /* 8MB for 32bit, 1GB for 64bit */
2197 if (is_32bit_task())
2198 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2199 else
2200 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2201
2202 return rnd << PAGE_SHIFT;
2203 }
2204
2205 unsigned long arch_randomize_brk(struct mm_struct *mm)
2206 {
2207 unsigned long base = mm->brk;
2208 unsigned long ret;
2209
2210 #ifdef CONFIG_PPC_BOOK3S_64
2211 /*
2212 * If we are using 1TB segments and we are allowed to randomise
2213 * the heap, we can put it above 1TB so it is backed by a 1TB
2214 * segment. Otherwise the heap will be in the bottom 1TB
2215 * which always uses 256MB segments and this may result in a
2216 * performance penalty. We don't need to worry about radix. For
2217 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2218 */
2219 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2220 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2221 #endif
2222
2223 ret = PAGE_ALIGN(base + brk_rnd());
2224
2225 if (ret < mm->brk)
2226 return mm->brk;
2227
2228 return ret;
2229 }
2230