]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/traps.c
powerpc/64s: Fix mce accounting for powernv
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/extable.h>
30 #include <linux/module.h> /* print_modules */
31 #include <linux/prctl.h>
32 #include <linux/delay.h>
33 #include <linux/kprobes.h>
34 #include <linux/kexec.h>
35 #include <linux/backlight.h>
36 #include <linux/bug.h>
37 #include <linux/kdebug.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
40
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/debugfs.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/hmi.h>
67 #include <sysdev/fsl_pci.h>
68 #include <asm/kprobes.h>
69
70 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
71 int (*__debugger)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
78
79 EXPORT_SYMBOL(__debugger);
80 EXPORT_SYMBOL(__debugger_ipi);
81 EXPORT_SYMBOL(__debugger_bpt);
82 EXPORT_SYMBOL(__debugger_sstep);
83 EXPORT_SYMBOL(__debugger_iabr_match);
84 EXPORT_SYMBOL(__debugger_break_match);
85 EXPORT_SYMBOL(__debugger_fault_handler);
86 #endif
87
88 /* Transactional Memory trap debug */
89 #ifdef TM_DEBUG_SW
90 #define TM_DEBUG(x...) printk(KERN_INFO x)
91 #else
92 #define TM_DEBUG(x...) do { } while(0)
93 #endif
94
95 /*
96 * Trap & Exception support
97 */
98
99 #ifdef CONFIG_PMAC_BACKLIGHT
100 static void pmac_backlight_unblank(void)
101 {
102 mutex_lock(&pmac_backlight_mutex);
103 if (pmac_backlight) {
104 struct backlight_properties *props;
105
106 props = &pmac_backlight->props;
107 props->brightness = props->max_brightness;
108 props->power = FB_BLANK_UNBLANK;
109 backlight_update_status(pmac_backlight);
110 }
111 mutex_unlock(&pmac_backlight_mutex);
112 }
113 #else
114 static inline void pmac_backlight_unblank(void) { }
115 #endif
116
117 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
118 static int die_owner = -1;
119 static unsigned int die_nest_count;
120 static int die_counter;
121
122 static unsigned long oops_begin(struct pt_regs *regs)
123 {
124 int cpu;
125 unsigned long flags;
126
127 oops_enter();
128
129 /* racy, but better than risking deadlock. */
130 raw_local_irq_save(flags);
131 cpu = smp_processor_id();
132 if (!arch_spin_trylock(&die_lock)) {
133 if (cpu == die_owner)
134 /* nested oops. should stop eventually */;
135 else
136 arch_spin_lock(&die_lock);
137 }
138 die_nest_count++;
139 die_owner = cpu;
140 console_verbose();
141 bust_spinlocks(1);
142 if (machine_is(powermac))
143 pmac_backlight_unblank();
144 return flags;
145 }
146 NOKPROBE_SYMBOL(oops_begin);
147
148 static void oops_end(unsigned long flags, struct pt_regs *regs,
149 int signr)
150 {
151 bust_spinlocks(0);
152 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
153 die_nest_count--;
154 oops_exit();
155 printk("\n");
156 if (!die_nest_count) {
157 /* Nest count reaches zero, release the lock. */
158 die_owner = -1;
159 arch_spin_unlock(&die_lock);
160 }
161 raw_local_irq_restore(flags);
162
163 crash_fadump(regs, "die oops");
164
165 /*
166 * A system reset (0x100) is a request to dump, so we always send
167 * it through the crashdump code.
168 */
169 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
170 crash_kexec(regs);
171
172 /*
173 * We aren't the primary crash CPU. We need to send it
174 * to a holding pattern to avoid it ending up in the panic
175 * code.
176 */
177 crash_kexec_secondary(regs);
178 }
179
180 if (!signr)
181 return;
182
183 /*
184 * While our oops output is serialised by a spinlock, output
185 * from panic() called below can race and corrupt it. If we
186 * know we are going to panic, delay for 1 second so we have a
187 * chance to get clean backtraces from all CPUs that are oopsing.
188 */
189 if (in_interrupt() || panic_on_oops || !current->pid ||
190 is_global_init(current)) {
191 mdelay(MSEC_PER_SEC);
192 }
193
194 if (in_interrupt())
195 panic("Fatal exception in interrupt");
196 if (panic_on_oops)
197 panic("Fatal exception");
198 do_exit(signr);
199 }
200 NOKPROBE_SYMBOL(oops_end);
201
202 static int __die(const char *str, struct pt_regs *regs, long err)
203 {
204 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
205 #ifdef CONFIG_PREEMPT
206 printk("PREEMPT ");
207 #endif
208 #ifdef CONFIG_SMP
209 printk("SMP NR_CPUS=%d ", NR_CPUS);
210 #endif
211 if (debug_pagealloc_enabled())
212 printk("DEBUG_PAGEALLOC ");
213 #ifdef CONFIG_NUMA
214 printk("NUMA ");
215 #endif
216 printk("%s\n", ppc_md.name ? ppc_md.name : "");
217
218 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
219 return 1;
220
221 print_modules();
222 show_regs(regs);
223
224 return 0;
225 }
226 NOKPROBE_SYMBOL(__die);
227
228 void die(const char *str, struct pt_regs *regs, long err)
229 {
230 unsigned long flags;
231
232 if (debugger(regs))
233 return;
234
235 flags = oops_begin(regs);
236 if (__die(str, regs, err))
237 err = 0;
238 oops_end(flags, regs, err);
239 }
240 NOKPROBE_SYMBOL(die);
241
242 void user_single_step_siginfo(struct task_struct *tsk,
243 struct pt_regs *regs, siginfo_t *info)
244 {
245 memset(info, 0, sizeof(*info));
246 info->si_signo = SIGTRAP;
247 info->si_code = TRAP_TRACE;
248 info->si_addr = (void __user *)regs->nip;
249 }
250
251 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
252 {
253 siginfo_t info;
254 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
255 "at %08lx nip %08lx lr %08lx code %x\n";
256 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
257 "at %016lx nip %016lx lr %016lx code %x\n";
258
259 if (!user_mode(regs)) {
260 die("Exception in kernel mode", regs, signr);
261 return;
262 }
263
264 if (show_unhandled_signals && unhandled_signal(current, signr)) {
265 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
266 current->comm, current->pid, signr,
267 addr, regs->nip, regs->link, code);
268 }
269
270 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
271 local_irq_enable();
272
273 current->thread.trap_nr = code;
274 memset(&info, 0, sizeof(info));
275 info.si_signo = signr;
276 info.si_code = code;
277 info.si_addr = (void __user *) addr;
278 force_sig_info(signr, &info, current);
279 }
280
281 void system_reset_exception(struct pt_regs *regs)
282 {
283 /*
284 * Avoid crashes in case of nested NMI exceptions. Recoverability
285 * is determined by RI and in_nmi
286 */
287 bool nested = in_nmi();
288 if (!nested)
289 nmi_enter();
290
291 /* See if any machine dependent calls */
292 if (ppc_md.system_reset_exception) {
293 if (ppc_md.system_reset_exception(regs))
294 goto out;
295 }
296
297 die("System Reset", regs, SIGABRT);
298
299 out:
300 #ifdef CONFIG_PPC_BOOK3S_64
301 BUG_ON(get_paca()->in_nmi == 0);
302 if (get_paca()->in_nmi > 1)
303 panic("Unrecoverable nested System Reset");
304 #endif
305 /* Must die if the interrupt is not recoverable */
306 if (!(regs->msr & MSR_RI))
307 panic("Unrecoverable System Reset");
308
309 if (!nested)
310 nmi_exit();
311
312 /* What should we do here? We could issue a shutdown or hard reset. */
313 }
314
315 #ifdef CONFIG_PPC64
316 /*
317 * This function is called in real mode. Strictly no printk's please.
318 *
319 * regs->nip and regs->msr contains srr0 and ssr1.
320 */
321 long machine_check_early(struct pt_regs *regs)
322 {
323 long handled = 0;
324
325 __this_cpu_inc(irq_stat.mce_exceptions);
326
327 if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
328 handled = cur_cpu_spec->machine_check_early(regs);
329 return handled;
330 }
331
332 long hmi_exception_realmode(struct pt_regs *regs)
333 {
334 __this_cpu_inc(irq_stat.hmi_exceptions);
335
336 wait_for_subcore_guest_exit();
337
338 if (ppc_md.hmi_exception_early)
339 ppc_md.hmi_exception_early(regs);
340
341 wait_for_tb_resync();
342
343 return 0;
344 }
345
346 #endif
347
348 /*
349 * I/O accesses can cause machine checks on powermacs.
350 * Check if the NIP corresponds to the address of a sync
351 * instruction for which there is an entry in the exception
352 * table.
353 * Note that the 601 only takes a machine check on TEA
354 * (transfer error ack) signal assertion, and does not
355 * set any of the top 16 bits of SRR1.
356 * -- paulus.
357 */
358 static inline int check_io_access(struct pt_regs *regs)
359 {
360 #ifdef CONFIG_PPC32
361 unsigned long msr = regs->msr;
362 const struct exception_table_entry *entry;
363 unsigned int *nip = (unsigned int *)regs->nip;
364
365 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
366 && (entry = search_exception_tables(regs->nip)) != NULL) {
367 /*
368 * Check that it's a sync instruction, or somewhere
369 * in the twi; isync; nop sequence that inb/inw/inl uses.
370 * As the address is in the exception table
371 * we should be able to read the instr there.
372 * For the debug message, we look at the preceding
373 * load or store.
374 */
375 if (*nip == PPC_INST_NOP)
376 nip -= 2;
377 else if (*nip == PPC_INST_ISYNC)
378 --nip;
379 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
380 unsigned int rb;
381
382 --nip;
383 rb = (*nip >> 11) & 0x1f;
384 printk(KERN_DEBUG "%s bad port %lx at %p\n",
385 (*nip & 0x100)? "OUT to": "IN from",
386 regs->gpr[rb] - _IO_BASE, nip);
387 regs->msr |= MSR_RI;
388 regs->nip = extable_fixup(entry);
389 return 1;
390 }
391 }
392 #endif /* CONFIG_PPC32 */
393 return 0;
394 }
395
396 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
397 /* On 4xx, the reason for the machine check or program exception
398 is in the ESR. */
399 #define get_reason(regs) ((regs)->dsisr)
400 #ifndef CONFIG_FSL_BOOKE
401 #define get_mc_reason(regs) ((regs)->dsisr)
402 #else
403 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
404 #endif
405 #define REASON_FP ESR_FP
406 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
407 #define REASON_PRIVILEGED ESR_PPR
408 #define REASON_TRAP ESR_PTR
409
410 /* single-step stuff */
411 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
412 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
413
414 #else
415 /* On non-4xx, the reason for the machine check or program
416 exception is in the MSR. */
417 #define get_reason(regs) ((regs)->msr)
418 #define get_mc_reason(regs) ((regs)->msr)
419 #define REASON_TM 0x200000
420 #define REASON_FP 0x100000
421 #define REASON_ILLEGAL 0x80000
422 #define REASON_PRIVILEGED 0x40000
423 #define REASON_TRAP 0x20000
424
425 #define single_stepping(regs) ((regs)->msr & MSR_SE)
426 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
427 #endif
428
429 #if defined(CONFIG_4xx)
430 int machine_check_4xx(struct pt_regs *regs)
431 {
432 unsigned long reason = get_mc_reason(regs);
433
434 if (reason & ESR_IMCP) {
435 printk("Instruction");
436 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
437 } else
438 printk("Data");
439 printk(" machine check in kernel mode.\n");
440
441 return 0;
442 }
443
444 int machine_check_440A(struct pt_regs *regs)
445 {
446 unsigned long reason = get_mc_reason(regs);
447
448 printk("Machine check in kernel mode.\n");
449 if (reason & ESR_IMCP){
450 printk("Instruction Synchronous Machine Check exception\n");
451 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
452 }
453 else {
454 u32 mcsr = mfspr(SPRN_MCSR);
455 if (mcsr & MCSR_IB)
456 printk("Instruction Read PLB Error\n");
457 if (mcsr & MCSR_DRB)
458 printk("Data Read PLB Error\n");
459 if (mcsr & MCSR_DWB)
460 printk("Data Write PLB Error\n");
461 if (mcsr & MCSR_TLBP)
462 printk("TLB Parity Error\n");
463 if (mcsr & MCSR_ICP){
464 flush_instruction_cache();
465 printk("I-Cache Parity Error\n");
466 }
467 if (mcsr & MCSR_DCSP)
468 printk("D-Cache Search Parity Error\n");
469 if (mcsr & MCSR_DCFP)
470 printk("D-Cache Flush Parity Error\n");
471 if (mcsr & MCSR_IMPE)
472 printk("Machine Check exception is imprecise\n");
473
474 /* Clear MCSR */
475 mtspr(SPRN_MCSR, mcsr);
476 }
477 return 0;
478 }
479
480 int machine_check_47x(struct pt_regs *regs)
481 {
482 unsigned long reason = get_mc_reason(regs);
483 u32 mcsr;
484
485 printk(KERN_ERR "Machine check in kernel mode.\n");
486 if (reason & ESR_IMCP) {
487 printk(KERN_ERR
488 "Instruction Synchronous Machine Check exception\n");
489 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
490 return 0;
491 }
492 mcsr = mfspr(SPRN_MCSR);
493 if (mcsr & MCSR_IB)
494 printk(KERN_ERR "Instruction Read PLB Error\n");
495 if (mcsr & MCSR_DRB)
496 printk(KERN_ERR "Data Read PLB Error\n");
497 if (mcsr & MCSR_DWB)
498 printk(KERN_ERR "Data Write PLB Error\n");
499 if (mcsr & MCSR_TLBP)
500 printk(KERN_ERR "TLB Parity Error\n");
501 if (mcsr & MCSR_ICP) {
502 flush_instruction_cache();
503 printk(KERN_ERR "I-Cache Parity Error\n");
504 }
505 if (mcsr & MCSR_DCSP)
506 printk(KERN_ERR "D-Cache Search Parity Error\n");
507 if (mcsr & PPC47x_MCSR_GPR)
508 printk(KERN_ERR "GPR Parity Error\n");
509 if (mcsr & PPC47x_MCSR_FPR)
510 printk(KERN_ERR "FPR Parity Error\n");
511 if (mcsr & PPC47x_MCSR_IPR)
512 printk(KERN_ERR "Machine Check exception is imprecise\n");
513
514 /* Clear MCSR */
515 mtspr(SPRN_MCSR, mcsr);
516
517 return 0;
518 }
519 #elif defined(CONFIG_E500)
520 int machine_check_e500mc(struct pt_regs *regs)
521 {
522 unsigned long mcsr = mfspr(SPRN_MCSR);
523 unsigned long reason = mcsr;
524 int recoverable = 1;
525
526 if (reason & MCSR_LD) {
527 recoverable = fsl_rio_mcheck_exception(regs);
528 if (recoverable == 1)
529 goto silent_out;
530 }
531
532 printk("Machine check in kernel mode.\n");
533 printk("Caused by (from MCSR=%lx): ", reason);
534
535 if (reason & MCSR_MCP)
536 printk("Machine Check Signal\n");
537
538 if (reason & MCSR_ICPERR) {
539 printk("Instruction Cache Parity Error\n");
540
541 /*
542 * This is recoverable by invalidating the i-cache.
543 */
544 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
545 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
546 ;
547
548 /*
549 * This will generally be accompanied by an instruction
550 * fetch error report -- only treat MCSR_IF as fatal
551 * if it wasn't due to an L1 parity error.
552 */
553 reason &= ~MCSR_IF;
554 }
555
556 if (reason & MCSR_DCPERR_MC) {
557 printk("Data Cache Parity Error\n");
558
559 /*
560 * In write shadow mode we auto-recover from the error, but it
561 * may still get logged and cause a machine check. We should
562 * only treat the non-write shadow case as non-recoverable.
563 */
564 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
565 recoverable = 0;
566 }
567
568 if (reason & MCSR_L2MMU_MHIT) {
569 printk("Hit on multiple TLB entries\n");
570 recoverable = 0;
571 }
572
573 if (reason & MCSR_NMI)
574 printk("Non-maskable interrupt\n");
575
576 if (reason & MCSR_IF) {
577 printk("Instruction Fetch Error Report\n");
578 recoverable = 0;
579 }
580
581 if (reason & MCSR_LD) {
582 printk("Load Error Report\n");
583 recoverable = 0;
584 }
585
586 if (reason & MCSR_ST) {
587 printk("Store Error Report\n");
588 recoverable = 0;
589 }
590
591 if (reason & MCSR_LDG) {
592 printk("Guarded Load Error Report\n");
593 recoverable = 0;
594 }
595
596 if (reason & MCSR_TLBSYNC)
597 printk("Simultaneous tlbsync operations\n");
598
599 if (reason & MCSR_BSL2_ERR) {
600 printk("Level 2 Cache Error\n");
601 recoverable = 0;
602 }
603
604 if (reason & MCSR_MAV) {
605 u64 addr;
606
607 addr = mfspr(SPRN_MCAR);
608 addr |= (u64)mfspr(SPRN_MCARU) << 32;
609
610 printk("Machine Check %s Address: %#llx\n",
611 reason & MCSR_MEA ? "Effective" : "Physical", addr);
612 }
613
614 silent_out:
615 mtspr(SPRN_MCSR, mcsr);
616 return mfspr(SPRN_MCSR) == 0 && recoverable;
617 }
618
619 int machine_check_e500(struct pt_regs *regs)
620 {
621 unsigned long reason = get_mc_reason(regs);
622
623 if (reason & MCSR_BUS_RBERR) {
624 if (fsl_rio_mcheck_exception(regs))
625 return 1;
626 if (fsl_pci_mcheck_exception(regs))
627 return 1;
628 }
629
630 printk("Machine check in kernel mode.\n");
631 printk("Caused by (from MCSR=%lx): ", reason);
632
633 if (reason & MCSR_MCP)
634 printk("Machine Check Signal\n");
635 if (reason & MCSR_ICPERR)
636 printk("Instruction Cache Parity Error\n");
637 if (reason & MCSR_DCP_PERR)
638 printk("Data Cache Push Parity Error\n");
639 if (reason & MCSR_DCPERR)
640 printk("Data Cache Parity Error\n");
641 if (reason & MCSR_BUS_IAERR)
642 printk("Bus - Instruction Address Error\n");
643 if (reason & MCSR_BUS_RAERR)
644 printk("Bus - Read Address Error\n");
645 if (reason & MCSR_BUS_WAERR)
646 printk("Bus - Write Address Error\n");
647 if (reason & MCSR_BUS_IBERR)
648 printk("Bus - Instruction Data Error\n");
649 if (reason & MCSR_BUS_RBERR)
650 printk("Bus - Read Data Bus Error\n");
651 if (reason & MCSR_BUS_WBERR)
652 printk("Bus - Write Data Bus Error\n");
653 if (reason & MCSR_BUS_IPERR)
654 printk("Bus - Instruction Parity Error\n");
655 if (reason & MCSR_BUS_RPERR)
656 printk("Bus - Read Parity Error\n");
657
658 return 0;
659 }
660
661 int machine_check_generic(struct pt_regs *regs)
662 {
663 return 0;
664 }
665 #elif defined(CONFIG_E200)
666 int machine_check_e200(struct pt_regs *regs)
667 {
668 unsigned long reason = get_mc_reason(regs);
669
670 printk("Machine check in kernel mode.\n");
671 printk("Caused by (from MCSR=%lx): ", reason);
672
673 if (reason & MCSR_MCP)
674 printk("Machine Check Signal\n");
675 if (reason & MCSR_CP_PERR)
676 printk("Cache Push Parity Error\n");
677 if (reason & MCSR_CPERR)
678 printk("Cache Parity Error\n");
679 if (reason & MCSR_EXCP_ERR)
680 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
681 if (reason & MCSR_BUS_IRERR)
682 printk("Bus - Read Bus Error on instruction fetch\n");
683 if (reason & MCSR_BUS_DRERR)
684 printk("Bus - Read Bus Error on data load\n");
685 if (reason & MCSR_BUS_WRERR)
686 printk("Bus - Write Bus Error on buffered store or cache line push\n");
687
688 return 0;
689 }
690 #elif defined(CONFIG_PPC_8xx)
691 int machine_check_8xx(struct pt_regs *regs)
692 {
693 unsigned long reason = get_mc_reason(regs);
694
695 pr_err("Machine check in kernel mode.\n");
696 pr_err("Caused by (from SRR1=%lx): ", reason);
697 if (reason & 0x40000000)
698 pr_err("Fetch error at address %lx\n", regs->nip);
699 else
700 pr_err("Data access error at address %lx\n", regs->dar);
701
702 #ifdef CONFIG_PCI
703 /* the qspan pci read routines can cause machine checks -- Cort
704 *
705 * yuck !!! that totally needs to go away ! There are better ways
706 * to deal with that than having a wart in the mcheck handler.
707 * -- BenH
708 */
709 bad_page_fault(regs, regs->dar, SIGBUS);
710 return 1;
711 #else
712 return 0;
713 #endif
714 }
715 #else
716 int machine_check_generic(struct pt_regs *regs)
717 {
718 unsigned long reason = get_mc_reason(regs);
719
720 printk("Machine check in kernel mode.\n");
721 printk("Caused by (from SRR1=%lx): ", reason);
722 switch (reason & 0x601F0000) {
723 case 0x80000:
724 printk("Machine check signal\n");
725 break;
726 case 0: /* for 601 */
727 case 0x40000:
728 case 0x140000: /* 7450 MSS error and TEA */
729 printk("Transfer error ack signal\n");
730 break;
731 case 0x20000:
732 printk("Data parity error signal\n");
733 break;
734 case 0x10000:
735 printk("Address parity error signal\n");
736 break;
737 case 0x20000000:
738 printk("L1 Data Cache error\n");
739 break;
740 case 0x40000000:
741 printk("L1 Instruction Cache error\n");
742 break;
743 case 0x00100000:
744 printk("L2 data cache parity error\n");
745 break;
746 default:
747 printk("Unknown values in msr\n");
748 }
749 return 0;
750 }
751 #endif /* everything else */
752
753 void machine_check_exception(struct pt_regs *regs)
754 {
755 enum ctx_state prev_state = exception_enter();
756 int recover = 0;
757
758 /* 64s accounts the mce in machine_check_early when in HVMODE */
759 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE))
760 __this_cpu_inc(irq_stat.mce_exceptions);
761
762 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
763
764 /* See if any machine dependent calls. In theory, we would want
765 * to call the CPU first, and call the ppc_md. one if the CPU
766 * one returns a positive number. However there is existing code
767 * that assumes the board gets a first chance, so let's keep it
768 * that way for now and fix things later. --BenH.
769 */
770 if (ppc_md.machine_check_exception)
771 recover = ppc_md.machine_check_exception(regs);
772 else if (cur_cpu_spec->machine_check)
773 recover = cur_cpu_spec->machine_check(regs);
774
775 if (recover > 0)
776 goto bail;
777
778 if (debugger_fault_handler(regs))
779 goto bail;
780
781 if (check_io_access(regs))
782 goto bail;
783
784 die("Machine check", regs, SIGBUS);
785
786 /* Must die if the interrupt is not recoverable */
787 if (!(regs->msr & MSR_RI))
788 panic("Unrecoverable Machine check");
789
790 bail:
791 exception_exit(prev_state);
792 }
793
794 void SMIException(struct pt_regs *regs)
795 {
796 die("System Management Interrupt", regs, SIGABRT);
797 }
798
799 void handle_hmi_exception(struct pt_regs *regs)
800 {
801 struct pt_regs *old_regs;
802
803 old_regs = set_irq_regs(regs);
804 irq_enter();
805
806 if (ppc_md.handle_hmi_exception)
807 ppc_md.handle_hmi_exception(regs);
808
809 irq_exit();
810 set_irq_regs(old_regs);
811 }
812
813 void unknown_exception(struct pt_regs *regs)
814 {
815 enum ctx_state prev_state = exception_enter();
816
817 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
818 regs->nip, regs->msr, regs->trap);
819
820 _exception(SIGTRAP, regs, 0, 0);
821
822 exception_exit(prev_state);
823 }
824
825 void instruction_breakpoint_exception(struct pt_regs *regs)
826 {
827 enum ctx_state prev_state = exception_enter();
828
829 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
830 5, SIGTRAP) == NOTIFY_STOP)
831 goto bail;
832 if (debugger_iabr_match(regs))
833 goto bail;
834 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
835
836 bail:
837 exception_exit(prev_state);
838 }
839
840 void RunModeException(struct pt_regs *regs)
841 {
842 _exception(SIGTRAP, regs, 0, 0);
843 }
844
845 void single_step_exception(struct pt_regs *regs)
846 {
847 enum ctx_state prev_state = exception_enter();
848
849 clear_single_step(regs);
850
851 if (kprobe_post_handler(regs))
852 return;
853
854 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
855 5, SIGTRAP) == NOTIFY_STOP)
856 goto bail;
857 if (debugger_sstep(regs))
858 goto bail;
859
860 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
861
862 bail:
863 exception_exit(prev_state);
864 }
865 NOKPROBE_SYMBOL(single_step_exception);
866
867 /*
868 * After we have successfully emulated an instruction, we have to
869 * check if the instruction was being single-stepped, and if so,
870 * pretend we got a single-step exception. This was pointed out
871 * by Kumar Gala. -- paulus
872 */
873 static void emulate_single_step(struct pt_regs *regs)
874 {
875 if (single_stepping(regs))
876 single_step_exception(regs);
877 }
878
879 static inline int __parse_fpscr(unsigned long fpscr)
880 {
881 int ret = 0;
882
883 /* Invalid operation */
884 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
885 ret = FPE_FLTINV;
886
887 /* Overflow */
888 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
889 ret = FPE_FLTOVF;
890
891 /* Underflow */
892 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
893 ret = FPE_FLTUND;
894
895 /* Divide by zero */
896 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
897 ret = FPE_FLTDIV;
898
899 /* Inexact result */
900 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
901 ret = FPE_FLTRES;
902
903 return ret;
904 }
905
906 static void parse_fpe(struct pt_regs *regs)
907 {
908 int code = 0;
909
910 flush_fp_to_thread(current);
911
912 code = __parse_fpscr(current->thread.fp_state.fpscr);
913
914 _exception(SIGFPE, regs, code, regs->nip);
915 }
916
917 /*
918 * Illegal instruction emulation support. Originally written to
919 * provide the PVR to user applications using the mfspr rd, PVR.
920 * Return non-zero if we can't emulate, or -EFAULT if the associated
921 * memory access caused an access fault. Return zero on success.
922 *
923 * There are a couple of ways to do this, either "decode" the instruction
924 * or directly match lots of bits. In this case, matching lots of
925 * bits is faster and easier.
926 *
927 */
928 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
929 {
930 u8 rT = (instword >> 21) & 0x1f;
931 u8 rA = (instword >> 16) & 0x1f;
932 u8 NB_RB = (instword >> 11) & 0x1f;
933 u32 num_bytes;
934 unsigned long EA;
935 int pos = 0;
936
937 /* Early out if we are an invalid form of lswx */
938 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
939 if ((rT == rA) || (rT == NB_RB))
940 return -EINVAL;
941
942 EA = (rA == 0) ? 0 : regs->gpr[rA];
943
944 switch (instword & PPC_INST_STRING_MASK) {
945 case PPC_INST_LSWX:
946 case PPC_INST_STSWX:
947 EA += NB_RB;
948 num_bytes = regs->xer & 0x7f;
949 break;
950 case PPC_INST_LSWI:
951 case PPC_INST_STSWI:
952 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
953 break;
954 default:
955 return -EINVAL;
956 }
957
958 while (num_bytes != 0)
959 {
960 u8 val;
961 u32 shift = 8 * (3 - (pos & 0x3));
962
963 /* if process is 32-bit, clear upper 32 bits of EA */
964 if ((regs->msr & MSR_64BIT) == 0)
965 EA &= 0xFFFFFFFF;
966
967 switch ((instword & PPC_INST_STRING_MASK)) {
968 case PPC_INST_LSWX:
969 case PPC_INST_LSWI:
970 if (get_user(val, (u8 __user *)EA))
971 return -EFAULT;
972 /* first time updating this reg,
973 * zero it out */
974 if (pos == 0)
975 regs->gpr[rT] = 0;
976 regs->gpr[rT] |= val << shift;
977 break;
978 case PPC_INST_STSWI:
979 case PPC_INST_STSWX:
980 val = regs->gpr[rT] >> shift;
981 if (put_user(val, (u8 __user *)EA))
982 return -EFAULT;
983 break;
984 }
985 /* move EA to next address */
986 EA += 1;
987 num_bytes--;
988
989 /* manage our position within the register */
990 if (++pos == 4) {
991 pos = 0;
992 if (++rT == 32)
993 rT = 0;
994 }
995 }
996
997 return 0;
998 }
999
1000 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1001 {
1002 u32 ra,rs;
1003 unsigned long tmp;
1004
1005 ra = (instword >> 16) & 0x1f;
1006 rs = (instword >> 21) & 0x1f;
1007
1008 tmp = regs->gpr[rs];
1009 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1010 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1011 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1012 regs->gpr[ra] = tmp;
1013
1014 return 0;
1015 }
1016
1017 static int emulate_isel(struct pt_regs *regs, u32 instword)
1018 {
1019 u8 rT = (instword >> 21) & 0x1f;
1020 u8 rA = (instword >> 16) & 0x1f;
1021 u8 rB = (instword >> 11) & 0x1f;
1022 u8 BC = (instword >> 6) & 0x1f;
1023 u8 bit;
1024 unsigned long tmp;
1025
1026 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1027 bit = (regs->ccr >> (31 - BC)) & 0x1;
1028
1029 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1030
1031 return 0;
1032 }
1033
1034 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1035 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1036 {
1037 /* If we're emulating a load/store in an active transaction, we cannot
1038 * emulate it as the kernel operates in transaction suspended context.
1039 * We need to abort the transaction. This creates a persistent TM
1040 * abort so tell the user what caused it with a new code.
1041 */
1042 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1043 tm_enable();
1044 tm_abort(cause);
1045 return true;
1046 }
1047 return false;
1048 }
1049 #else
1050 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1051 {
1052 return false;
1053 }
1054 #endif
1055
1056 static int emulate_instruction(struct pt_regs *regs)
1057 {
1058 u32 instword;
1059 u32 rd;
1060
1061 if (!user_mode(regs))
1062 return -EINVAL;
1063 CHECK_FULL_REGS(regs);
1064
1065 if (get_user(instword, (u32 __user *)(regs->nip)))
1066 return -EFAULT;
1067
1068 /* Emulate the mfspr rD, PVR. */
1069 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1070 PPC_WARN_EMULATED(mfpvr, regs);
1071 rd = (instword >> 21) & 0x1f;
1072 regs->gpr[rd] = mfspr(SPRN_PVR);
1073 return 0;
1074 }
1075
1076 /* Emulating the dcba insn is just a no-op. */
1077 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1078 PPC_WARN_EMULATED(dcba, regs);
1079 return 0;
1080 }
1081
1082 /* Emulate the mcrxr insn. */
1083 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1084 int shift = (instword >> 21) & 0x1c;
1085 unsigned long msk = 0xf0000000UL >> shift;
1086
1087 PPC_WARN_EMULATED(mcrxr, regs);
1088 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1089 regs->xer &= ~0xf0000000UL;
1090 return 0;
1091 }
1092
1093 /* Emulate load/store string insn. */
1094 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1095 if (tm_abort_check(regs,
1096 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1097 return -EINVAL;
1098 PPC_WARN_EMULATED(string, regs);
1099 return emulate_string_inst(regs, instword);
1100 }
1101
1102 /* Emulate the popcntb (Population Count Bytes) instruction. */
1103 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1104 PPC_WARN_EMULATED(popcntb, regs);
1105 return emulate_popcntb_inst(regs, instword);
1106 }
1107
1108 /* Emulate isel (Integer Select) instruction */
1109 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1110 PPC_WARN_EMULATED(isel, regs);
1111 return emulate_isel(regs, instword);
1112 }
1113
1114 /* Emulate sync instruction variants */
1115 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1116 PPC_WARN_EMULATED(sync, regs);
1117 asm volatile("sync");
1118 return 0;
1119 }
1120
1121 #ifdef CONFIG_PPC64
1122 /* Emulate the mfspr rD, DSCR. */
1123 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1124 PPC_INST_MFSPR_DSCR_USER) ||
1125 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1126 PPC_INST_MFSPR_DSCR)) &&
1127 cpu_has_feature(CPU_FTR_DSCR)) {
1128 PPC_WARN_EMULATED(mfdscr, regs);
1129 rd = (instword >> 21) & 0x1f;
1130 regs->gpr[rd] = mfspr(SPRN_DSCR);
1131 return 0;
1132 }
1133 /* Emulate the mtspr DSCR, rD. */
1134 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1135 PPC_INST_MTSPR_DSCR_USER) ||
1136 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1137 PPC_INST_MTSPR_DSCR)) &&
1138 cpu_has_feature(CPU_FTR_DSCR)) {
1139 PPC_WARN_EMULATED(mtdscr, regs);
1140 rd = (instword >> 21) & 0x1f;
1141 current->thread.dscr = regs->gpr[rd];
1142 current->thread.dscr_inherit = 1;
1143 mtspr(SPRN_DSCR, current->thread.dscr);
1144 return 0;
1145 }
1146 #endif
1147
1148 return -EINVAL;
1149 }
1150
1151 int is_valid_bugaddr(unsigned long addr)
1152 {
1153 return is_kernel_addr(addr);
1154 }
1155
1156 #ifdef CONFIG_MATH_EMULATION
1157 static int emulate_math(struct pt_regs *regs)
1158 {
1159 int ret;
1160 extern int do_mathemu(struct pt_regs *regs);
1161
1162 ret = do_mathemu(regs);
1163 if (ret >= 0)
1164 PPC_WARN_EMULATED(math, regs);
1165
1166 switch (ret) {
1167 case 0:
1168 emulate_single_step(regs);
1169 return 0;
1170 case 1: {
1171 int code = 0;
1172 code = __parse_fpscr(current->thread.fp_state.fpscr);
1173 _exception(SIGFPE, regs, code, regs->nip);
1174 return 0;
1175 }
1176 case -EFAULT:
1177 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1178 return 0;
1179 }
1180
1181 return -1;
1182 }
1183 #else
1184 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1185 #endif
1186
1187 void program_check_exception(struct pt_regs *regs)
1188 {
1189 enum ctx_state prev_state = exception_enter();
1190 unsigned int reason = get_reason(regs);
1191
1192 /* We can now get here via a FP Unavailable exception if the core
1193 * has no FPU, in that case the reason flags will be 0 */
1194
1195 if (reason & REASON_FP) {
1196 /* IEEE FP exception */
1197 parse_fpe(regs);
1198 goto bail;
1199 }
1200 if (reason & REASON_TRAP) {
1201 unsigned long bugaddr;
1202 /* Debugger is first in line to stop recursive faults in
1203 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1204 if (debugger_bpt(regs))
1205 goto bail;
1206
1207 if (kprobe_handler(regs))
1208 goto bail;
1209
1210 /* trap exception */
1211 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1212 == NOTIFY_STOP)
1213 goto bail;
1214
1215 bugaddr = regs->nip;
1216 /*
1217 * Fixup bugaddr for BUG_ON() in real mode
1218 */
1219 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1220 bugaddr += PAGE_OFFSET;
1221
1222 if (!(regs->msr & MSR_PR) && /* not user-mode */
1223 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1224 regs->nip += 4;
1225 goto bail;
1226 }
1227 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1228 goto bail;
1229 }
1230 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1231 if (reason & REASON_TM) {
1232 /* This is a TM "Bad Thing Exception" program check.
1233 * This occurs when:
1234 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1235 * transition in TM states.
1236 * - A trechkpt is attempted when transactional.
1237 * - A treclaim is attempted when non transactional.
1238 * - A tend is illegally attempted.
1239 * - writing a TM SPR when transactional.
1240 */
1241 if (!user_mode(regs) &&
1242 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1243 regs->nip += 4;
1244 goto bail;
1245 }
1246 /* If usermode caused this, it's done something illegal and
1247 * gets a SIGILL slap on the wrist. We call it an illegal
1248 * operand to distinguish from the instruction just being bad
1249 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1250 * illegal /placement/ of a valid instruction.
1251 */
1252 if (user_mode(regs)) {
1253 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1254 goto bail;
1255 } else {
1256 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1257 "at %lx (msr 0x%x)\n", regs->nip, reason);
1258 die("Unrecoverable exception", regs, SIGABRT);
1259 }
1260 }
1261 #endif
1262
1263 /*
1264 * If we took the program check in the kernel skip down to sending a
1265 * SIGILL. The subsequent cases all relate to emulating instructions
1266 * which we should only do for userspace. We also do not want to enable
1267 * interrupts for kernel faults because that might lead to further
1268 * faults, and loose the context of the original exception.
1269 */
1270 if (!user_mode(regs))
1271 goto sigill;
1272
1273 /* We restore the interrupt state now */
1274 if (!arch_irq_disabled_regs(regs))
1275 local_irq_enable();
1276
1277 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1278 * but there seems to be a hardware bug on the 405GP (RevD)
1279 * that means ESR is sometimes set incorrectly - either to
1280 * ESR_DST (!?) or 0. In the process of chasing this with the
1281 * hardware people - not sure if it can happen on any illegal
1282 * instruction or only on FP instructions, whether there is a
1283 * pattern to occurrences etc. -dgibson 31/Mar/2003
1284 */
1285 if (!emulate_math(regs))
1286 goto bail;
1287
1288 /* Try to emulate it if we should. */
1289 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1290 switch (emulate_instruction(regs)) {
1291 case 0:
1292 regs->nip += 4;
1293 emulate_single_step(regs);
1294 goto bail;
1295 case -EFAULT:
1296 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1297 goto bail;
1298 }
1299 }
1300
1301 sigill:
1302 if (reason & REASON_PRIVILEGED)
1303 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1304 else
1305 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1306
1307 bail:
1308 exception_exit(prev_state);
1309 }
1310 NOKPROBE_SYMBOL(program_check_exception);
1311
1312 /*
1313 * This occurs when running in hypervisor mode on POWER6 or later
1314 * and an illegal instruction is encountered.
1315 */
1316 void emulation_assist_interrupt(struct pt_regs *regs)
1317 {
1318 regs->msr |= REASON_ILLEGAL;
1319 program_check_exception(regs);
1320 }
1321 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1322
1323 void alignment_exception(struct pt_regs *regs)
1324 {
1325 enum ctx_state prev_state = exception_enter();
1326 int sig, code, fixed = 0;
1327
1328 /* We restore the interrupt state now */
1329 if (!arch_irq_disabled_regs(regs))
1330 local_irq_enable();
1331
1332 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1333 goto bail;
1334
1335 /* we don't implement logging of alignment exceptions */
1336 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1337 fixed = fix_alignment(regs);
1338
1339 if (fixed == 1) {
1340 regs->nip += 4; /* skip over emulated instruction */
1341 emulate_single_step(regs);
1342 goto bail;
1343 }
1344
1345 /* Operand address was bad */
1346 if (fixed == -EFAULT) {
1347 sig = SIGSEGV;
1348 code = SEGV_ACCERR;
1349 } else {
1350 sig = SIGBUS;
1351 code = BUS_ADRALN;
1352 }
1353 if (user_mode(regs))
1354 _exception(sig, regs, code, regs->dar);
1355 else
1356 bad_page_fault(regs, regs->dar, sig);
1357
1358 bail:
1359 exception_exit(prev_state);
1360 }
1361
1362 void slb_miss_bad_addr(struct pt_regs *regs)
1363 {
1364 enum ctx_state prev_state = exception_enter();
1365
1366 if (user_mode(regs))
1367 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1368 else
1369 bad_page_fault(regs, regs->dar, SIGSEGV);
1370
1371 exception_exit(prev_state);
1372 }
1373
1374 void StackOverflow(struct pt_regs *regs)
1375 {
1376 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1377 current, regs->gpr[1]);
1378 debugger(regs);
1379 show_regs(regs);
1380 panic("kernel stack overflow");
1381 }
1382
1383 void nonrecoverable_exception(struct pt_regs *regs)
1384 {
1385 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1386 regs->nip, regs->msr);
1387 debugger(regs);
1388 die("nonrecoverable exception", regs, SIGKILL);
1389 }
1390
1391 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1392 {
1393 enum ctx_state prev_state = exception_enter();
1394
1395 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1396 "%lx at %lx\n", regs->trap, regs->nip);
1397 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1398
1399 exception_exit(prev_state);
1400 }
1401
1402 void altivec_unavailable_exception(struct pt_regs *regs)
1403 {
1404 enum ctx_state prev_state = exception_enter();
1405
1406 if (user_mode(regs)) {
1407 /* A user program has executed an altivec instruction,
1408 but this kernel doesn't support altivec. */
1409 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1410 goto bail;
1411 }
1412
1413 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1414 "%lx at %lx\n", regs->trap, regs->nip);
1415 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1416
1417 bail:
1418 exception_exit(prev_state);
1419 }
1420
1421 void vsx_unavailable_exception(struct pt_regs *regs)
1422 {
1423 if (user_mode(regs)) {
1424 /* A user program has executed an vsx instruction,
1425 but this kernel doesn't support vsx. */
1426 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1427 return;
1428 }
1429
1430 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1431 "%lx at %lx\n", regs->trap, regs->nip);
1432 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1433 }
1434
1435 #ifdef CONFIG_PPC64
1436 static void tm_unavailable(struct pt_regs *regs)
1437 {
1438 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1439 if (user_mode(regs)) {
1440 current->thread.load_tm++;
1441 regs->msr |= MSR_TM;
1442 tm_enable();
1443 tm_restore_sprs(&current->thread);
1444 return;
1445 }
1446 #endif
1447 pr_emerg("Unrecoverable TM Unavailable Exception "
1448 "%lx at %lx\n", regs->trap, regs->nip);
1449 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1450 }
1451
1452 void facility_unavailable_exception(struct pt_regs *regs)
1453 {
1454 static char *facility_strings[] = {
1455 [FSCR_FP_LG] = "FPU",
1456 [FSCR_VECVSX_LG] = "VMX/VSX",
1457 [FSCR_DSCR_LG] = "DSCR",
1458 [FSCR_PM_LG] = "PMU SPRs",
1459 [FSCR_BHRB_LG] = "BHRB",
1460 [FSCR_TM_LG] = "TM",
1461 [FSCR_EBB_LG] = "EBB",
1462 [FSCR_TAR_LG] = "TAR",
1463 [FSCR_MSGP_LG] = "MSGP",
1464 [FSCR_SCV_LG] = "SCV",
1465 };
1466 char *facility = "unknown";
1467 u64 value;
1468 u32 instword, rd;
1469 u8 status;
1470 bool hv;
1471
1472 hv = (regs->trap == 0xf80);
1473 if (hv)
1474 value = mfspr(SPRN_HFSCR);
1475 else
1476 value = mfspr(SPRN_FSCR);
1477
1478 status = value >> 56;
1479 if (status == FSCR_DSCR_LG) {
1480 /*
1481 * User is accessing the DSCR register using the problem
1482 * state only SPR number (0x03) either through a mfspr or
1483 * a mtspr instruction. If it is a write attempt through
1484 * a mtspr, then we set the inherit bit. This also allows
1485 * the user to write or read the register directly in the
1486 * future by setting via the FSCR DSCR bit. But in case it
1487 * is a read DSCR attempt through a mfspr instruction, we
1488 * just emulate the instruction instead. This code path will
1489 * always emulate all the mfspr instructions till the user
1490 * has attempted at least one mtspr instruction. This way it
1491 * preserves the same behaviour when the user is accessing
1492 * the DSCR through privilege level only SPR number (0x11)
1493 * which is emulated through illegal instruction exception.
1494 * We always leave HFSCR DSCR set.
1495 */
1496 if (get_user(instword, (u32 __user *)(regs->nip))) {
1497 pr_err("Failed to fetch the user instruction\n");
1498 return;
1499 }
1500
1501 /* Write into DSCR (mtspr 0x03, RS) */
1502 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1503 == PPC_INST_MTSPR_DSCR_USER) {
1504 rd = (instword >> 21) & 0x1f;
1505 current->thread.dscr = regs->gpr[rd];
1506 current->thread.dscr_inherit = 1;
1507 current->thread.fscr |= FSCR_DSCR;
1508 mtspr(SPRN_FSCR, current->thread.fscr);
1509 }
1510
1511 /* Read from DSCR (mfspr RT, 0x03) */
1512 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1513 == PPC_INST_MFSPR_DSCR_USER) {
1514 if (emulate_instruction(regs)) {
1515 pr_err("DSCR based mfspr emulation failed\n");
1516 return;
1517 }
1518 regs->nip += 4;
1519 emulate_single_step(regs);
1520 }
1521 return;
1522 }
1523
1524 if (status == FSCR_TM_LG) {
1525 /*
1526 * If we're here then the hardware is TM aware because it
1527 * generated an exception with FSRM_TM set.
1528 *
1529 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1530 * told us not to do TM, or the kernel is not built with TM
1531 * support.
1532 *
1533 * If both of those things are true, then userspace can spam the
1534 * console by triggering the printk() below just by continually
1535 * doing tbegin (or any TM instruction). So in that case just
1536 * send the process a SIGILL immediately.
1537 */
1538 if (!cpu_has_feature(CPU_FTR_TM))
1539 goto out;
1540
1541 tm_unavailable(regs);
1542 return;
1543 }
1544
1545 if ((hv || status >= 2) &&
1546 (status < ARRAY_SIZE(facility_strings)) &&
1547 facility_strings[status])
1548 facility = facility_strings[status];
1549
1550 /* We restore the interrupt state now */
1551 if (!arch_irq_disabled_regs(regs))
1552 local_irq_enable();
1553
1554 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1555 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1556
1557 out:
1558 if (user_mode(regs)) {
1559 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1560 return;
1561 }
1562
1563 die("Unexpected facility unavailable exception", regs, SIGABRT);
1564 }
1565 #endif
1566
1567 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1568
1569 void fp_unavailable_tm(struct pt_regs *regs)
1570 {
1571 /* Note: This does not handle any kind of FP laziness. */
1572
1573 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1574 regs->nip, regs->msr);
1575
1576 /* We can only have got here if the task started using FP after
1577 * beginning the transaction. So, the transactional regs are just a
1578 * copy of the checkpointed ones. But, we still need to recheckpoint
1579 * as we're enabling FP for the process; it will return, abort the
1580 * transaction, and probably retry but now with FP enabled. So the
1581 * checkpointed FP registers need to be loaded.
1582 */
1583 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1584 /* Reclaim didn't save out any FPRs to transact_fprs. */
1585
1586 /* Enable FP for the task: */
1587 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1588
1589 /* This loads and recheckpoints the FP registers from
1590 * thread.fpr[]. They will remain in registers after the
1591 * checkpoint so we don't need to reload them after.
1592 * If VMX is in use, the VRs now hold checkpointed values,
1593 * so we don't want to load the VRs from the thread_struct.
1594 */
1595 tm_recheckpoint(&current->thread, MSR_FP);
1596
1597 /* If VMX is in use, get the transactional values back */
1598 if (regs->msr & MSR_VEC) {
1599 msr_check_and_set(MSR_VEC);
1600 load_vr_state(&current->thread.vr_state);
1601 /* At this point all the VSX state is loaded, so enable it */
1602 regs->msr |= MSR_VSX;
1603 }
1604 }
1605
1606 void altivec_unavailable_tm(struct pt_regs *regs)
1607 {
1608 /* See the comments in fp_unavailable_tm(). This function operates
1609 * the same way.
1610 */
1611
1612 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1613 "MSR=%lx\n",
1614 regs->nip, regs->msr);
1615 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1616 regs->msr |= MSR_VEC;
1617 tm_recheckpoint(&current->thread, MSR_VEC);
1618 current->thread.used_vr = 1;
1619
1620 if (regs->msr & MSR_FP) {
1621 msr_check_and_set(MSR_FP);
1622 load_fp_state(&current->thread.fp_state);
1623 regs->msr |= MSR_VSX;
1624 }
1625 }
1626
1627 void vsx_unavailable_tm(struct pt_regs *regs)
1628 {
1629 unsigned long orig_msr = regs->msr;
1630
1631 /* See the comments in fp_unavailable_tm(). This works similarly,
1632 * though we're loading both FP and VEC registers in here.
1633 *
1634 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1635 * regs. Either way, set MSR_VSX.
1636 */
1637
1638 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1639 "MSR=%lx\n",
1640 regs->nip, regs->msr);
1641
1642 current->thread.used_vsr = 1;
1643
1644 /* If FP and VMX are already loaded, we have all the state we need */
1645 if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1646 regs->msr |= MSR_VSX;
1647 return;
1648 }
1649
1650 /* This reclaims FP and/or VR regs if they're already enabled */
1651 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1652
1653 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1654 MSR_VSX;
1655
1656 /* This loads & recheckpoints FP and VRs; but we have
1657 * to be sure not to overwrite previously-valid state.
1658 */
1659 tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1660
1661 msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1662
1663 if (orig_msr & MSR_FP)
1664 load_fp_state(&current->thread.fp_state);
1665 if (orig_msr & MSR_VEC)
1666 load_vr_state(&current->thread.vr_state);
1667 }
1668 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1669
1670 void performance_monitor_exception(struct pt_regs *regs)
1671 {
1672 __this_cpu_inc(irq_stat.pmu_irqs);
1673
1674 perf_irq(regs);
1675 }
1676
1677 #ifdef CONFIG_8xx
1678 void SoftwareEmulation(struct pt_regs *regs)
1679 {
1680 CHECK_FULL_REGS(regs);
1681
1682 if (!user_mode(regs)) {
1683 debugger(regs);
1684 die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1685 regs, SIGFPE);
1686 }
1687
1688 if (!emulate_math(regs))
1689 return;
1690
1691 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1692 }
1693 #endif /* CONFIG_8xx */
1694
1695 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1696 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1697 {
1698 int changed = 0;
1699 /*
1700 * Determine the cause of the debug event, clear the
1701 * event flags and send a trap to the handler. Torez
1702 */
1703 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1704 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1705 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1706 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1707 #endif
1708 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1709 5);
1710 changed |= 0x01;
1711 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1712 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1713 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1714 6);
1715 changed |= 0x01;
1716 } else if (debug_status & DBSR_IAC1) {
1717 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1718 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1719 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1720 1);
1721 changed |= 0x01;
1722 } else if (debug_status & DBSR_IAC2) {
1723 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1724 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1725 2);
1726 changed |= 0x01;
1727 } else if (debug_status & DBSR_IAC3) {
1728 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1729 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1730 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1731 3);
1732 changed |= 0x01;
1733 } else if (debug_status & DBSR_IAC4) {
1734 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1735 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1736 4);
1737 changed |= 0x01;
1738 }
1739 /*
1740 * At the point this routine was called, the MSR(DE) was turned off.
1741 * Check all other debug flags and see if that bit needs to be turned
1742 * back on or not.
1743 */
1744 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1745 current->thread.debug.dbcr1))
1746 regs->msr |= MSR_DE;
1747 else
1748 /* Make sure the IDM flag is off */
1749 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1750
1751 if (changed & 0x01)
1752 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1753 }
1754
1755 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1756 {
1757 current->thread.debug.dbsr = debug_status;
1758
1759 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1760 * on server, it stops on the target of the branch. In order to simulate
1761 * the server behaviour, we thus restart right away with a single step
1762 * instead of stopping here when hitting a BT
1763 */
1764 if (debug_status & DBSR_BT) {
1765 regs->msr &= ~MSR_DE;
1766
1767 /* Disable BT */
1768 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1769 /* Clear the BT event */
1770 mtspr(SPRN_DBSR, DBSR_BT);
1771
1772 /* Do the single step trick only when coming from userspace */
1773 if (user_mode(regs)) {
1774 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1775 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1776 regs->msr |= MSR_DE;
1777 return;
1778 }
1779
1780 if (kprobe_post_handler(regs))
1781 return;
1782
1783 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1784 5, SIGTRAP) == NOTIFY_STOP) {
1785 return;
1786 }
1787 if (debugger_sstep(regs))
1788 return;
1789 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1790 regs->msr &= ~MSR_DE;
1791
1792 /* Disable instruction completion */
1793 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1794 /* Clear the instruction completion event */
1795 mtspr(SPRN_DBSR, DBSR_IC);
1796
1797 if (kprobe_post_handler(regs))
1798 return;
1799
1800 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1801 5, SIGTRAP) == NOTIFY_STOP) {
1802 return;
1803 }
1804
1805 if (debugger_sstep(regs))
1806 return;
1807
1808 if (user_mode(regs)) {
1809 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1810 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1811 current->thread.debug.dbcr1))
1812 regs->msr |= MSR_DE;
1813 else
1814 /* Make sure the IDM bit is off */
1815 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1816 }
1817
1818 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1819 } else
1820 handle_debug(regs, debug_status);
1821 }
1822 NOKPROBE_SYMBOL(DebugException);
1823 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1824
1825 #if !defined(CONFIG_TAU_INT)
1826 void TAUException(struct pt_regs *regs)
1827 {
1828 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1829 regs->nip, regs->msr, regs->trap, print_tainted());
1830 }
1831 #endif /* CONFIG_INT_TAU */
1832
1833 #ifdef CONFIG_ALTIVEC
1834 void altivec_assist_exception(struct pt_regs *regs)
1835 {
1836 int err;
1837
1838 if (!user_mode(regs)) {
1839 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1840 " at %lx\n", regs->nip);
1841 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1842 }
1843
1844 flush_altivec_to_thread(current);
1845
1846 PPC_WARN_EMULATED(altivec, regs);
1847 err = emulate_altivec(regs);
1848 if (err == 0) {
1849 regs->nip += 4; /* skip emulated instruction */
1850 emulate_single_step(regs);
1851 return;
1852 }
1853
1854 if (err == -EFAULT) {
1855 /* got an error reading the instruction */
1856 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1857 } else {
1858 /* didn't recognize the instruction */
1859 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1860 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1861 "in %s at %lx\n", current->comm, regs->nip);
1862 current->thread.vr_state.vscr.u[3] |= 0x10000;
1863 }
1864 }
1865 #endif /* CONFIG_ALTIVEC */
1866
1867 #ifdef CONFIG_FSL_BOOKE
1868 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1869 unsigned long error_code)
1870 {
1871 /* We treat cache locking instructions from the user
1872 * as priv ops, in the future we could try to do
1873 * something smarter
1874 */
1875 if (error_code & (ESR_DLK|ESR_ILK))
1876 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1877 return;
1878 }
1879 #endif /* CONFIG_FSL_BOOKE */
1880
1881 #ifdef CONFIG_SPE
1882 void SPEFloatingPointException(struct pt_regs *regs)
1883 {
1884 extern int do_spe_mathemu(struct pt_regs *regs);
1885 unsigned long spefscr;
1886 int fpexc_mode;
1887 int code = 0;
1888 int err;
1889
1890 flush_spe_to_thread(current);
1891
1892 spefscr = current->thread.spefscr;
1893 fpexc_mode = current->thread.fpexc_mode;
1894
1895 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1896 code = FPE_FLTOVF;
1897 }
1898 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1899 code = FPE_FLTUND;
1900 }
1901 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1902 code = FPE_FLTDIV;
1903 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1904 code = FPE_FLTINV;
1905 }
1906 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1907 code = FPE_FLTRES;
1908
1909 err = do_spe_mathemu(regs);
1910 if (err == 0) {
1911 regs->nip += 4; /* skip emulated instruction */
1912 emulate_single_step(regs);
1913 return;
1914 }
1915
1916 if (err == -EFAULT) {
1917 /* got an error reading the instruction */
1918 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1919 } else if (err == -EINVAL) {
1920 /* didn't recognize the instruction */
1921 printk(KERN_ERR "unrecognized spe instruction "
1922 "in %s at %lx\n", current->comm, regs->nip);
1923 } else {
1924 _exception(SIGFPE, regs, code, regs->nip);
1925 }
1926
1927 return;
1928 }
1929
1930 void SPEFloatingPointRoundException(struct pt_regs *regs)
1931 {
1932 extern int speround_handler(struct pt_regs *regs);
1933 int err;
1934
1935 preempt_disable();
1936 if (regs->msr & MSR_SPE)
1937 giveup_spe(current);
1938 preempt_enable();
1939
1940 regs->nip -= 4;
1941 err = speround_handler(regs);
1942 if (err == 0) {
1943 regs->nip += 4; /* skip emulated instruction */
1944 emulate_single_step(regs);
1945 return;
1946 }
1947
1948 if (err == -EFAULT) {
1949 /* got an error reading the instruction */
1950 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1951 } else if (err == -EINVAL) {
1952 /* didn't recognize the instruction */
1953 printk(KERN_ERR "unrecognized spe instruction "
1954 "in %s at %lx\n", current->comm, regs->nip);
1955 } else {
1956 _exception(SIGFPE, regs, 0, regs->nip);
1957 return;
1958 }
1959 }
1960 #endif
1961
1962 /*
1963 * We enter here if we get an unrecoverable exception, that is, one
1964 * that happened at a point where the RI (recoverable interrupt) bit
1965 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1966 * we therefore lost state by taking this exception.
1967 */
1968 void unrecoverable_exception(struct pt_regs *regs)
1969 {
1970 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1971 regs->trap, regs->nip);
1972 die("Unrecoverable exception", regs, SIGABRT);
1973 }
1974 NOKPROBE_SYMBOL(unrecoverable_exception);
1975
1976 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1977 /*
1978 * Default handler for a Watchdog exception,
1979 * spins until a reboot occurs
1980 */
1981 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1982 {
1983 /* Generic WatchdogHandler, implement your own */
1984 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1985 return;
1986 }
1987
1988 void WatchdogException(struct pt_regs *regs)
1989 {
1990 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1991 WatchdogHandler(regs);
1992 }
1993 #endif
1994
1995 /*
1996 * We enter here if we discover during exception entry that we are
1997 * running in supervisor mode with a userspace value in the stack pointer.
1998 */
1999 void kernel_bad_stack(struct pt_regs *regs)
2000 {
2001 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2002 regs->gpr[1], regs->nip);
2003 die("Bad kernel stack pointer", regs, SIGABRT);
2004 }
2005 NOKPROBE_SYMBOL(kernel_bad_stack);
2006
2007 void __init trap_init(void)
2008 {
2009 }
2010
2011
2012 #ifdef CONFIG_PPC_EMULATED_STATS
2013
2014 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2015
2016 struct ppc_emulated ppc_emulated = {
2017 #ifdef CONFIG_ALTIVEC
2018 WARN_EMULATED_SETUP(altivec),
2019 #endif
2020 WARN_EMULATED_SETUP(dcba),
2021 WARN_EMULATED_SETUP(dcbz),
2022 WARN_EMULATED_SETUP(fp_pair),
2023 WARN_EMULATED_SETUP(isel),
2024 WARN_EMULATED_SETUP(mcrxr),
2025 WARN_EMULATED_SETUP(mfpvr),
2026 WARN_EMULATED_SETUP(multiple),
2027 WARN_EMULATED_SETUP(popcntb),
2028 WARN_EMULATED_SETUP(spe),
2029 WARN_EMULATED_SETUP(string),
2030 WARN_EMULATED_SETUP(sync),
2031 WARN_EMULATED_SETUP(unaligned),
2032 #ifdef CONFIG_MATH_EMULATION
2033 WARN_EMULATED_SETUP(math),
2034 #endif
2035 #ifdef CONFIG_VSX
2036 WARN_EMULATED_SETUP(vsx),
2037 #endif
2038 #ifdef CONFIG_PPC64
2039 WARN_EMULATED_SETUP(mfdscr),
2040 WARN_EMULATED_SETUP(mtdscr),
2041 WARN_EMULATED_SETUP(lq_stq),
2042 #endif
2043 };
2044
2045 u32 ppc_warn_emulated;
2046
2047 void ppc_warn_emulated_print(const char *type)
2048 {
2049 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2050 type);
2051 }
2052
2053 static int __init ppc_warn_emulated_init(void)
2054 {
2055 struct dentry *dir, *d;
2056 unsigned int i;
2057 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2058
2059 if (!powerpc_debugfs_root)
2060 return -ENODEV;
2061
2062 dir = debugfs_create_dir("emulated_instructions",
2063 powerpc_debugfs_root);
2064 if (!dir)
2065 return -ENOMEM;
2066
2067 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
2068 &ppc_warn_emulated);
2069 if (!d)
2070 goto fail;
2071
2072 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2073 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
2074 (u32 *)&entries[i].val.counter);
2075 if (!d)
2076 goto fail;
2077 }
2078
2079 return 0;
2080
2081 fail:
2082 debugfs_remove_recursive(dir);
2083 return -ENOMEM;
2084 }
2085
2086 device_initcall(ppc_warn_emulated_init);
2087
2088 #endif /* CONFIG_PPC_EMULATED_STATS */