]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kvm/powerpc.c
KVM: const-ify uses of struct kvm_userspace_memory_region
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <asm/cputable.h>
31 #include <asm/uaccess.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cputhreads.h>
35 #include <asm/irqflags.h>
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51 return !!(v->arch.pending_exceptions) ||
52 v->requests;
53 }
54
55 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
56 {
57 return 1;
58 }
59
60 /*
61 * Common checks before entering the guest world. Call with interrupts
62 * disabled.
63 *
64 * returns:
65 *
66 * == 1 if we're ready to go into guest state
67 * <= 0 if we need to go back to the host with return value
68 */
69 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
70 {
71 int r;
72
73 WARN_ON(irqs_disabled());
74 hard_irq_disable();
75
76 while (true) {
77 if (need_resched()) {
78 local_irq_enable();
79 cond_resched();
80 hard_irq_disable();
81 continue;
82 }
83
84 if (signal_pending(current)) {
85 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
86 vcpu->run->exit_reason = KVM_EXIT_INTR;
87 r = -EINTR;
88 break;
89 }
90
91 vcpu->mode = IN_GUEST_MODE;
92
93 /*
94 * Reading vcpu->requests must happen after setting vcpu->mode,
95 * so we don't miss a request because the requester sees
96 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
97 * before next entering the guest (and thus doesn't IPI).
98 */
99 smp_mb();
100
101 if (vcpu->requests) {
102 /* Make sure we process requests preemptable */
103 local_irq_enable();
104 trace_kvm_check_requests(vcpu);
105 r = kvmppc_core_check_requests(vcpu);
106 hard_irq_disable();
107 if (r > 0)
108 continue;
109 break;
110 }
111
112 if (kvmppc_core_prepare_to_enter(vcpu)) {
113 /* interrupts got enabled in between, so we
114 are back at square 1 */
115 continue;
116 }
117
118 __kvm_guest_enter();
119 return 1;
120 }
121
122 /* return to host */
123 local_irq_enable();
124 return r;
125 }
126 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
127
128 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
129 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
130 {
131 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
132 int i;
133
134 shared->sprg0 = swab64(shared->sprg0);
135 shared->sprg1 = swab64(shared->sprg1);
136 shared->sprg2 = swab64(shared->sprg2);
137 shared->sprg3 = swab64(shared->sprg3);
138 shared->srr0 = swab64(shared->srr0);
139 shared->srr1 = swab64(shared->srr1);
140 shared->dar = swab64(shared->dar);
141 shared->msr = swab64(shared->msr);
142 shared->dsisr = swab32(shared->dsisr);
143 shared->int_pending = swab32(shared->int_pending);
144 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
145 shared->sr[i] = swab32(shared->sr[i]);
146 }
147 #endif
148
149 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
150 {
151 int nr = kvmppc_get_gpr(vcpu, 11);
152 int r;
153 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
154 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
155 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
156 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
157 unsigned long r2 = 0;
158
159 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
160 /* 32 bit mode */
161 param1 &= 0xffffffff;
162 param2 &= 0xffffffff;
163 param3 &= 0xffffffff;
164 param4 &= 0xffffffff;
165 }
166
167 switch (nr) {
168 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
169 {
170 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
171 /* Book3S can be little endian, find it out here */
172 int shared_big_endian = true;
173 if (vcpu->arch.intr_msr & MSR_LE)
174 shared_big_endian = false;
175 if (shared_big_endian != vcpu->arch.shared_big_endian)
176 kvmppc_swab_shared(vcpu);
177 vcpu->arch.shared_big_endian = shared_big_endian;
178 #endif
179
180 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
181 /*
182 * Older versions of the Linux magic page code had
183 * a bug where they would map their trampoline code
184 * NX. If that's the case, remove !PR NX capability.
185 */
186 vcpu->arch.disable_kernel_nx = true;
187 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
188 }
189
190 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
191 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
192
193 #ifdef CONFIG_PPC_64K_PAGES
194 /*
195 * Make sure our 4k magic page is in the same window of a 64k
196 * page within the guest and within the host's page.
197 */
198 if ((vcpu->arch.magic_page_pa & 0xf000) !=
199 ((ulong)vcpu->arch.shared & 0xf000)) {
200 void *old_shared = vcpu->arch.shared;
201 ulong shared = (ulong)vcpu->arch.shared;
202 void *new_shared;
203
204 shared &= PAGE_MASK;
205 shared |= vcpu->arch.magic_page_pa & 0xf000;
206 new_shared = (void*)shared;
207 memcpy(new_shared, old_shared, 0x1000);
208 vcpu->arch.shared = new_shared;
209 }
210 #endif
211
212 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
213
214 r = EV_SUCCESS;
215 break;
216 }
217 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
218 r = EV_SUCCESS;
219 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
220 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
221 #endif
222
223 /* Second return value is in r4 */
224 break;
225 case EV_HCALL_TOKEN(EV_IDLE):
226 r = EV_SUCCESS;
227 kvm_vcpu_block(vcpu);
228 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
229 break;
230 default:
231 r = EV_UNIMPLEMENTED;
232 break;
233 }
234
235 kvmppc_set_gpr(vcpu, 4, r2);
236
237 return r;
238 }
239 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
240
241 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
242 {
243 int r = false;
244
245 /* We have to know what CPU to virtualize */
246 if (!vcpu->arch.pvr)
247 goto out;
248
249 /* PAPR only works with book3s_64 */
250 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
251 goto out;
252
253 /* HV KVM can only do PAPR mode for now */
254 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
255 goto out;
256
257 #ifdef CONFIG_KVM_BOOKE_HV
258 if (!cpu_has_feature(CPU_FTR_EMB_HV))
259 goto out;
260 #endif
261
262 r = true;
263
264 out:
265 vcpu->arch.sane = r;
266 return r ? 0 : -EINVAL;
267 }
268 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
269
270 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
271 {
272 enum emulation_result er;
273 int r;
274
275 er = kvmppc_emulate_loadstore(vcpu);
276 switch (er) {
277 case EMULATE_DONE:
278 /* Future optimization: only reload non-volatiles if they were
279 * actually modified. */
280 r = RESUME_GUEST_NV;
281 break;
282 case EMULATE_AGAIN:
283 r = RESUME_GUEST;
284 break;
285 case EMULATE_DO_MMIO:
286 run->exit_reason = KVM_EXIT_MMIO;
287 /* We must reload nonvolatiles because "update" load/store
288 * instructions modify register state. */
289 /* Future optimization: only reload non-volatiles if they were
290 * actually modified. */
291 r = RESUME_HOST_NV;
292 break;
293 case EMULATE_FAIL:
294 {
295 u32 last_inst;
296
297 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
298 /* XXX Deliver Program interrupt to guest. */
299 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
300 r = RESUME_HOST;
301 break;
302 }
303 default:
304 WARN_ON(1);
305 r = RESUME_GUEST;
306 }
307
308 return r;
309 }
310 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
311
312 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
313 bool data)
314 {
315 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
316 struct kvmppc_pte pte;
317 int r;
318
319 vcpu->stat.st++;
320
321 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
322 XLATE_WRITE, &pte);
323 if (r < 0)
324 return r;
325
326 *eaddr = pte.raddr;
327
328 if (!pte.may_write)
329 return -EPERM;
330
331 /* Magic page override */
332 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
333 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
334 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
335 void *magic = vcpu->arch.shared;
336 magic += pte.eaddr & 0xfff;
337 memcpy(magic, ptr, size);
338 return EMULATE_DONE;
339 }
340
341 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
342 return EMULATE_DO_MMIO;
343
344 return EMULATE_DONE;
345 }
346 EXPORT_SYMBOL_GPL(kvmppc_st);
347
348 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
349 bool data)
350 {
351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
352 struct kvmppc_pte pte;
353 int rc;
354
355 vcpu->stat.ld++;
356
357 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
358 XLATE_READ, &pte);
359 if (rc)
360 return rc;
361
362 *eaddr = pte.raddr;
363
364 if (!pte.may_read)
365 return -EPERM;
366
367 if (!data && !pte.may_execute)
368 return -ENOEXEC;
369
370 /* Magic page override */
371 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
372 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
373 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
374 void *magic = vcpu->arch.shared;
375 magic += pte.eaddr & 0xfff;
376 memcpy(ptr, magic, size);
377 return EMULATE_DONE;
378 }
379
380 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
381 return EMULATE_DO_MMIO;
382
383 return EMULATE_DONE;
384 }
385 EXPORT_SYMBOL_GPL(kvmppc_ld);
386
387 int kvm_arch_hardware_enable(void)
388 {
389 return 0;
390 }
391
392 int kvm_arch_hardware_setup(void)
393 {
394 return 0;
395 }
396
397 void kvm_arch_check_processor_compat(void *rtn)
398 {
399 *(int *)rtn = kvmppc_core_check_processor_compat();
400 }
401
402 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
403 {
404 struct kvmppc_ops *kvm_ops = NULL;
405 /*
406 * if we have both HV and PR enabled, default is HV
407 */
408 if (type == 0) {
409 if (kvmppc_hv_ops)
410 kvm_ops = kvmppc_hv_ops;
411 else
412 kvm_ops = kvmppc_pr_ops;
413 if (!kvm_ops)
414 goto err_out;
415 } else if (type == KVM_VM_PPC_HV) {
416 if (!kvmppc_hv_ops)
417 goto err_out;
418 kvm_ops = kvmppc_hv_ops;
419 } else if (type == KVM_VM_PPC_PR) {
420 if (!kvmppc_pr_ops)
421 goto err_out;
422 kvm_ops = kvmppc_pr_ops;
423 } else
424 goto err_out;
425
426 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
427 return -ENOENT;
428
429 kvm->arch.kvm_ops = kvm_ops;
430 return kvmppc_core_init_vm(kvm);
431 err_out:
432 return -EINVAL;
433 }
434
435 void kvm_arch_destroy_vm(struct kvm *kvm)
436 {
437 unsigned int i;
438 struct kvm_vcpu *vcpu;
439
440 kvm_for_each_vcpu(i, vcpu, kvm)
441 kvm_arch_vcpu_free(vcpu);
442
443 mutex_lock(&kvm->lock);
444 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
445 kvm->vcpus[i] = NULL;
446
447 atomic_set(&kvm->online_vcpus, 0);
448
449 kvmppc_core_destroy_vm(kvm);
450
451 mutex_unlock(&kvm->lock);
452
453 /* drop the module reference */
454 module_put(kvm->arch.kvm_ops->owner);
455 }
456
457 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
458 {
459 int r;
460 /* Assume we're using HV mode when the HV module is loaded */
461 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
462
463 if (kvm) {
464 /*
465 * Hooray - we know which VM type we're running on. Depend on
466 * that rather than the guess above.
467 */
468 hv_enabled = is_kvmppc_hv_enabled(kvm);
469 }
470
471 switch (ext) {
472 #ifdef CONFIG_BOOKE
473 case KVM_CAP_PPC_BOOKE_SREGS:
474 case KVM_CAP_PPC_BOOKE_WATCHDOG:
475 case KVM_CAP_PPC_EPR:
476 #else
477 case KVM_CAP_PPC_SEGSTATE:
478 case KVM_CAP_PPC_HIOR:
479 case KVM_CAP_PPC_PAPR:
480 #endif
481 case KVM_CAP_PPC_UNSET_IRQ:
482 case KVM_CAP_PPC_IRQ_LEVEL:
483 case KVM_CAP_ENABLE_CAP:
484 case KVM_CAP_ENABLE_CAP_VM:
485 case KVM_CAP_ONE_REG:
486 case KVM_CAP_IOEVENTFD:
487 case KVM_CAP_DEVICE_CTRL:
488 r = 1;
489 break;
490 case KVM_CAP_PPC_PAIRED_SINGLES:
491 case KVM_CAP_PPC_OSI:
492 case KVM_CAP_PPC_GET_PVINFO:
493 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
494 case KVM_CAP_SW_TLB:
495 #endif
496 /* We support this only for PR */
497 r = !hv_enabled;
498 break;
499 #ifdef CONFIG_KVM_MMIO
500 case KVM_CAP_COALESCED_MMIO:
501 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
502 break;
503 #endif
504 #ifdef CONFIG_KVM_MPIC
505 case KVM_CAP_IRQ_MPIC:
506 r = 1;
507 break;
508 #endif
509
510 #ifdef CONFIG_PPC_BOOK3S_64
511 case KVM_CAP_SPAPR_TCE:
512 case KVM_CAP_PPC_ALLOC_HTAB:
513 case KVM_CAP_PPC_RTAS:
514 case KVM_CAP_PPC_FIXUP_HCALL:
515 case KVM_CAP_PPC_ENABLE_HCALL:
516 #ifdef CONFIG_KVM_XICS
517 case KVM_CAP_IRQ_XICS:
518 #endif
519 r = 1;
520 break;
521 #endif /* CONFIG_PPC_BOOK3S_64 */
522 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
523 case KVM_CAP_PPC_SMT:
524 if (hv_enabled)
525 r = threads_per_subcore;
526 else
527 r = 0;
528 break;
529 case KVM_CAP_PPC_RMA:
530 r = 0;
531 break;
532 case KVM_CAP_PPC_HWRNG:
533 r = kvmppc_hwrng_present();
534 break;
535 #endif
536 case KVM_CAP_SYNC_MMU:
537 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
538 r = hv_enabled;
539 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
540 r = 1;
541 #else
542 r = 0;
543 #endif
544 break;
545 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
546 case KVM_CAP_PPC_HTAB_FD:
547 r = hv_enabled;
548 break;
549 #endif
550 case KVM_CAP_NR_VCPUS:
551 /*
552 * Recommending a number of CPUs is somewhat arbitrary; we
553 * return the number of present CPUs for -HV (since a host
554 * will have secondary threads "offline"), and for other KVM
555 * implementations just count online CPUs.
556 */
557 if (hv_enabled)
558 r = num_present_cpus();
559 else
560 r = num_online_cpus();
561 break;
562 case KVM_CAP_MAX_VCPUS:
563 r = KVM_MAX_VCPUS;
564 break;
565 #ifdef CONFIG_PPC_BOOK3S_64
566 case KVM_CAP_PPC_GET_SMMU_INFO:
567 r = 1;
568 break;
569 #endif
570 default:
571 r = 0;
572 break;
573 }
574 return r;
575
576 }
577
578 long kvm_arch_dev_ioctl(struct file *filp,
579 unsigned int ioctl, unsigned long arg)
580 {
581 return -EINVAL;
582 }
583
584 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
585 struct kvm_memory_slot *dont)
586 {
587 kvmppc_core_free_memslot(kvm, free, dont);
588 }
589
590 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
591 unsigned long npages)
592 {
593 return kvmppc_core_create_memslot(kvm, slot, npages);
594 }
595
596 int kvm_arch_prepare_memory_region(struct kvm *kvm,
597 struct kvm_memory_slot *memslot,
598 const struct kvm_userspace_memory_region *mem,
599 enum kvm_mr_change change)
600 {
601 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
602 }
603
604 void kvm_arch_commit_memory_region(struct kvm *kvm,
605 const struct kvm_userspace_memory_region *mem,
606 const struct kvm_memory_slot *old,
607 enum kvm_mr_change change)
608 {
609 kvmppc_core_commit_memory_region(kvm, mem, old);
610 }
611
612 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
613 struct kvm_memory_slot *slot)
614 {
615 kvmppc_core_flush_memslot(kvm, slot);
616 }
617
618 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
619 {
620 struct kvm_vcpu *vcpu;
621 vcpu = kvmppc_core_vcpu_create(kvm, id);
622 if (!IS_ERR(vcpu)) {
623 vcpu->arch.wqp = &vcpu->wq;
624 kvmppc_create_vcpu_debugfs(vcpu, id);
625 }
626 return vcpu;
627 }
628
629 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
630 {
631 }
632
633 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
634 {
635 /* Make sure we're not using the vcpu anymore */
636 hrtimer_cancel(&vcpu->arch.dec_timer);
637
638 kvmppc_remove_vcpu_debugfs(vcpu);
639
640 switch (vcpu->arch.irq_type) {
641 case KVMPPC_IRQ_MPIC:
642 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
643 break;
644 case KVMPPC_IRQ_XICS:
645 kvmppc_xics_free_icp(vcpu);
646 break;
647 }
648
649 kvmppc_core_vcpu_free(vcpu);
650 }
651
652 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
653 {
654 kvm_arch_vcpu_free(vcpu);
655 }
656
657 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
658 {
659 return kvmppc_core_pending_dec(vcpu);
660 }
661
662 enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
663 {
664 struct kvm_vcpu *vcpu;
665
666 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
667 kvmppc_decrementer_func(vcpu);
668
669 return HRTIMER_NORESTART;
670 }
671
672 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
673 {
674 int ret;
675
676 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
677 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
678 vcpu->arch.dec_expires = ~(u64)0;
679
680 #ifdef CONFIG_KVM_EXIT_TIMING
681 mutex_init(&vcpu->arch.exit_timing_lock);
682 #endif
683 ret = kvmppc_subarch_vcpu_init(vcpu);
684 return ret;
685 }
686
687 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
688 {
689 kvmppc_mmu_destroy(vcpu);
690 kvmppc_subarch_vcpu_uninit(vcpu);
691 }
692
693 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
694 {
695 #ifdef CONFIG_BOOKE
696 /*
697 * vrsave (formerly usprg0) isn't used by Linux, but may
698 * be used by the guest.
699 *
700 * On non-booke this is associated with Altivec and
701 * is handled by code in book3s.c.
702 */
703 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
704 #endif
705 kvmppc_core_vcpu_load(vcpu, cpu);
706 }
707
708 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
709 {
710 kvmppc_core_vcpu_put(vcpu);
711 #ifdef CONFIG_BOOKE
712 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
713 #endif
714 }
715
716 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
717 struct kvm_run *run)
718 {
719 u64 uninitialized_var(gpr);
720
721 if (run->mmio.len > sizeof(gpr)) {
722 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
723 return;
724 }
725
726 if (!vcpu->arch.mmio_host_swabbed) {
727 switch (run->mmio.len) {
728 case 8: gpr = *(u64 *)run->mmio.data; break;
729 case 4: gpr = *(u32 *)run->mmio.data; break;
730 case 2: gpr = *(u16 *)run->mmio.data; break;
731 case 1: gpr = *(u8 *)run->mmio.data; break;
732 }
733 } else {
734 switch (run->mmio.len) {
735 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
736 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
737 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
738 case 1: gpr = *(u8 *)run->mmio.data; break;
739 }
740 }
741
742 if (vcpu->arch.mmio_sign_extend) {
743 switch (run->mmio.len) {
744 #ifdef CONFIG_PPC64
745 case 4:
746 gpr = (s64)(s32)gpr;
747 break;
748 #endif
749 case 2:
750 gpr = (s64)(s16)gpr;
751 break;
752 case 1:
753 gpr = (s64)(s8)gpr;
754 break;
755 }
756 }
757
758 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
759
760 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
761 case KVM_MMIO_REG_GPR:
762 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
763 break;
764 case KVM_MMIO_REG_FPR:
765 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
766 break;
767 #ifdef CONFIG_PPC_BOOK3S
768 case KVM_MMIO_REG_QPR:
769 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
770 break;
771 case KVM_MMIO_REG_FQPR:
772 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
773 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
774 break;
775 #endif
776 default:
777 BUG();
778 }
779 }
780
781 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
782 unsigned int rt, unsigned int bytes,
783 int is_default_endian)
784 {
785 int idx, ret;
786 bool host_swabbed;
787
788 /* Pity C doesn't have a logical XOR operator */
789 if (kvmppc_need_byteswap(vcpu)) {
790 host_swabbed = is_default_endian;
791 } else {
792 host_swabbed = !is_default_endian;
793 }
794
795 if (bytes > sizeof(run->mmio.data)) {
796 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
797 run->mmio.len);
798 }
799
800 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
801 run->mmio.len = bytes;
802 run->mmio.is_write = 0;
803
804 vcpu->arch.io_gpr = rt;
805 vcpu->arch.mmio_host_swabbed = host_swabbed;
806 vcpu->mmio_needed = 1;
807 vcpu->mmio_is_write = 0;
808 vcpu->arch.mmio_sign_extend = 0;
809
810 idx = srcu_read_lock(&vcpu->kvm->srcu);
811
812 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
813 bytes, &run->mmio.data);
814
815 srcu_read_unlock(&vcpu->kvm->srcu, idx);
816
817 if (!ret) {
818 kvmppc_complete_mmio_load(vcpu, run);
819 vcpu->mmio_needed = 0;
820 return EMULATE_DONE;
821 }
822
823 return EMULATE_DO_MMIO;
824 }
825 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
826
827 /* Same as above, but sign extends */
828 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
829 unsigned int rt, unsigned int bytes,
830 int is_default_endian)
831 {
832 int r;
833
834 vcpu->arch.mmio_sign_extend = 1;
835 r = kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian);
836
837 return r;
838 }
839
840 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
841 u64 val, unsigned int bytes, int is_default_endian)
842 {
843 void *data = run->mmio.data;
844 int idx, ret;
845 bool host_swabbed;
846
847 /* Pity C doesn't have a logical XOR operator */
848 if (kvmppc_need_byteswap(vcpu)) {
849 host_swabbed = is_default_endian;
850 } else {
851 host_swabbed = !is_default_endian;
852 }
853
854 if (bytes > sizeof(run->mmio.data)) {
855 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
856 run->mmio.len);
857 }
858
859 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
860 run->mmio.len = bytes;
861 run->mmio.is_write = 1;
862 vcpu->mmio_needed = 1;
863 vcpu->mmio_is_write = 1;
864
865 /* Store the value at the lowest bytes in 'data'. */
866 if (!host_swabbed) {
867 switch (bytes) {
868 case 8: *(u64 *)data = val; break;
869 case 4: *(u32 *)data = val; break;
870 case 2: *(u16 *)data = val; break;
871 case 1: *(u8 *)data = val; break;
872 }
873 } else {
874 switch (bytes) {
875 case 8: *(u64 *)data = swab64(val); break;
876 case 4: *(u32 *)data = swab32(val); break;
877 case 2: *(u16 *)data = swab16(val); break;
878 case 1: *(u8 *)data = val; break;
879 }
880 }
881
882 idx = srcu_read_lock(&vcpu->kvm->srcu);
883
884 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
885 bytes, &run->mmio.data);
886
887 srcu_read_unlock(&vcpu->kvm->srcu, idx);
888
889 if (!ret) {
890 vcpu->mmio_needed = 0;
891 return EMULATE_DONE;
892 }
893
894 return EMULATE_DO_MMIO;
895 }
896 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
897
898 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
899 {
900 int r = 0;
901 union kvmppc_one_reg val;
902 int size;
903
904 size = one_reg_size(reg->id);
905 if (size > sizeof(val))
906 return -EINVAL;
907
908 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
909 if (r == -EINVAL) {
910 r = 0;
911 switch (reg->id) {
912 #ifdef CONFIG_ALTIVEC
913 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
914 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
915 r = -ENXIO;
916 break;
917 }
918 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
919 break;
920 case KVM_REG_PPC_VSCR:
921 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
922 r = -ENXIO;
923 break;
924 }
925 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
926 break;
927 case KVM_REG_PPC_VRSAVE:
928 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
929 r = -ENXIO;
930 break;
931 }
932 vcpu->arch.vrsave = set_reg_val(reg->id, val);
933 break;
934 #endif /* CONFIG_ALTIVEC */
935 default:
936 r = -EINVAL;
937 break;
938 }
939 }
940
941 if (r)
942 return r;
943
944 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
945 r = -EFAULT;
946
947 return r;
948 }
949
950 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
951 {
952 int r;
953 union kvmppc_one_reg val;
954 int size;
955
956 size = one_reg_size(reg->id);
957 if (size > sizeof(val))
958 return -EINVAL;
959
960 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
961 return -EFAULT;
962
963 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
964 if (r == -EINVAL) {
965 r = 0;
966 switch (reg->id) {
967 #ifdef CONFIG_ALTIVEC
968 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
969 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
970 r = -ENXIO;
971 break;
972 }
973 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
974 break;
975 case KVM_REG_PPC_VSCR:
976 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
977 r = -ENXIO;
978 break;
979 }
980 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
981 break;
982 case KVM_REG_PPC_VRSAVE:
983 val = get_reg_val(reg->id, vcpu->arch.vrsave);
984 break;
985 #endif /* CONFIG_ALTIVEC */
986 default:
987 r = -EINVAL;
988 break;
989 }
990 }
991
992 return r;
993 }
994
995 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
996 {
997 int r;
998 sigset_t sigsaved;
999
1000 if (vcpu->sigset_active)
1001 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1002
1003 if (vcpu->mmio_needed) {
1004 if (!vcpu->mmio_is_write)
1005 kvmppc_complete_mmio_load(vcpu, run);
1006 vcpu->mmio_needed = 0;
1007 } else if (vcpu->arch.osi_needed) {
1008 u64 *gprs = run->osi.gprs;
1009 int i;
1010
1011 for (i = 0; i < 32; i++)
1012 kvmppc_set_gpr(vcpu, i, gprs[i]);
1013 vcpu->arch.osi_needed = 0;
1014 } else if (vcpu->arch.hcall_needed) {
1015 int i;
1016
1017 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1018 for (i = 0; i < 9; ++i)
1019 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1020 vcpu->arch.hcall_needed = 0;
1021 #ifdef CONFIG_BOOKE
1022 } else if (vcpu->arch.epr_needed) {
1023 kvmppc_set_epr(vcpu, run->epr.epr);
1024 vcpu->arch.epr_needed = 0;
1025 #endif
1026 }
1027
1028 r = kvmppc_vcpu_run(run, vcpu);
1029
1030 if (vcpu->sigset_active)
1031 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1032
1033 return r;
1034 }
1035
1036 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1037 {
1038 if (irq->irq == KVM_INTERRUPT_UNSET) {
1039 kvmppc_core_dequeue_external(vcpu);
1040 return 0;
1041 }
1042
1043 kvmppc_core_queue_external(vcpu, irq);
1044
1045 kvm_vcpu_kick(vcpu);
1046
1047 return 0;
1048 }
1049
1050 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1051 struct kvm_enable_cap *cap)
1052 {
1053 int r;
1054
1055 if (cap->flags)
1056 return -EINVAL;
1057
1058 switch (cap->cap) {
1059 case KVM_CAP_PPC_OSI:
1060 r = 0;
1061 vcpu->arch.osi_enabled = true;
1062 break;
1063 case KVM_CAP_PPC_PAPR:
1064 r = 0;
1065 vcpu->arch.papr_enabled = true;
1066 break;
1067 case KVM_CAP_PPC_EPR:
1068 r = 0;
1069 if (cap->args[0])
1070 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1071 else
1072 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1073 break;
1074 #ifdef CONFIG_BOOKE
1075 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1076 r = 0;
1077 vcpu->arch.watchdog_enabled = true;
1078 break;
1079 #endif
1080 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1081 case KVM_CAP_SW_TLB: {
1082 struct kvm_config_tlb cfg;
1083 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1084
1085 r = -EFAULT;
1086 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1087 break;
1088
1089 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1090 break;
1091 }
1092 #endif
1093 #ifdef CONFIG_KVM_MPIC
1094 case KVM_CAP_IRQ_MPIC: {
1095 struct fd f;
1096 struct kvm_device *dev;
1097
1098 r = -EBADF;
1099 f = fdget(cap->args[0]);
1100 if (!f.file)
1101 break;
1102
1103 r = -EPERM;
1104 dev = kvm_device_from_filp(f.file);
1105 if (dev)
1106 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1107
1108 fdput(f);
1109 break;
1110 }
1111 #endif
1112 #ifdef CONFIG_KVM_XICS
1113 case KVM_CAP_IRQ_XICS: {
1114 struct fd f;
1115 struct kvm_device *dev;
1116
1117 r = -EBADF;
1118 f = fdget(cap->args[0]);
1119 if (!f.file)
1120 break;
1121
1122 r = -EPERM;
1123 dev = kvm_device_from_filp(f.file);
1124 if (dev)
1125 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1126
1127 fdput(f);
1128 break;
1129 }
1130 #endif /* CONFIG_KVM_XICS */
1131 default:
1132 r = -EINVAL;
1133 break;
1134 }
1135
1136 if (!r)
1137 r = kvmppc_sanity_check(vcpu);
1138
1139 return r;
1140 }
1141
1142 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1143 struct kvm_mp_state *mp_state)
1144 {
1145 return -EINVAL;
1146 }
1147
1148 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1149 struct kvm_mp_state *mp_state)
1150 {
1151 return -EINVAL;
1152 }
1153
1154 long kvm_arch_vcpu_ioctl(struct file *filp,
1155 unsigned int ioctl, unsigned long arg)
1156 {
1157 struct kvm_vcpu *vcpu = filp->private_data;
1158 void __user *argp = (void __user *)arg;
1159 long r;
1160
1161 switch (ioctl) {
1162 case KVM_INTERRUPT: {
1163 struct kvm_interrupt irq;
1164 r = -EFAULT;
1165 if (copy_from_user(&irq, argp, sizeof(irq)))
1166 goto out;
1167 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1168 goto out;
1169 }
1170
1171 case KVM_ENABLE_CAP:
1172 {
1173 struct kvm_enable_cap cap;
1174 r = -EFAULT;
1175 if (copy_from_user(&cap, argp, sizeof(cap)))
1176 goto out;
1177 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1178 break;
1179 }
1180
1181 case KVM_SET_ONE_REG:
1182 case KVM_GET_ONE_REG:
1183 {
1184 struct kvm_one_reg reg;
1185 r = -EFAULT;
1186 if (copy_from_user(&reg, argp, sizeof(reg)))
1187 goto out;
1188 if (ioctl == KVM_SET_ONE_REG)
1189 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1190 else
1191 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1192 break;
1193 }
1194
1195 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1196 case KVM_DIRTY_TLB: {
1197 struct kvm_dirty_tlb dirty;
1198 r = -EFAULT;
1199 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1200 goto out;
1201 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1202 break;
1203 }
1204 #endif
1205 default:
1206 r = -EINVAL;
1207 }
1208
1209 out:
1210 return r;
1211 }
1212
1213 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1214 {
1215 return VM_FAULT_SIGBUS;
1216 }
1217
1218 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1219 {
1220 u32 inst_nop = 0x60000000;
1221 #ifdef CONFIG_KVM_BOOKE_HV
1222 u32 inst_sc1 = 0x44000022;
1223 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1224 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1225 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1226 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1227 #else
1228 u32 inst_lis = 0x3c000000;
1229 u32 inst_ori = 0x60000000;
1230 u32 inst_sc = 0x44000002;
1231 u32 inst_imm_mask = 0xffff;
1232
1233 /*
1234 * The hypercall to get into KVM from within guest context is as
1235 * follows:
1236 *
1237 * lis r0, r0, KVM_SC_MAGIC_R0@h
1238 * ori r0, KVM_SC_MAGIC_R0@l
1239 * sc
1240 * nop
1241 */
1242 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1243 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1244 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1245 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1246 #endif
1247
1248 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1249
1250 return 0;
1251 }
1252
1253 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1254 bool line_status)
1255 {
1256 if (!irqchip_in_kernel(kvm))
1257 return -ENXIO;
1258
1259 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1260 irq_event->irq, irq_event->level,
1261 line_status);
1262 return 0;
1263 }
1264
1265
1266 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1267 struct kvm_enable_cap *cap)
1268 {
1269 int r;
1270
1271 if (cap->flags)
1272 return -EINVAL;
1273
1274 switch (cap->cap) {
1275 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1276 case KVM_CAP_PPC_ENABLE_HCALL: {
1277 unsigned long hcall = cap->args[0];
1278
1279 r = -EINVAL;
1280 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1281 cap->args[1] > 1)
1282 break;
1283 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1284 break;
1285 if (cap->args[1])
1286 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1287 else
1288 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1289 r = 0;
1290 break;
1291 }
1292 #endif
1293 default:
1294 r = -EINVAL;
1295 break;
1296 }
1297
1298 return r;
1299 }
1300
1301 long kvm_arch_vm_ioctl(struct file *filp,
1302 unsigned int ioctl, unsigned long arg)
1303 {
1304 struct kvm *kvm __maybe_unused = filp->private_data;
1305 void __user *argp = (void __user *)arg;
1306 long r;
1307
1308 switch (ioctl) {
1309 case KVM_PPC_GET_PVINFO: {
1310 struct kvm_ppc_pvinfo pvinfo;
1311 memset(&pvinfo, 0, sizeof(pvinfo));
1312 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1313 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1314 r = -EFAULT;
1315 goto out;
1316 }
1317
1318 break;
1319 }
1320 case KVM_ENABLE_CAP:
1321 {
1322 struct kvm_enable_cap cap;
1323 r = -EFAULT;
1324 if (copy_from_user(&cap, argp, sizeof(cap)))
1325 goto out;
1326 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1327 break;
1328 }
1329 #ifdef CONFIG_PPC_BOOK3S_64
1330 case KVM_CREATE_SPAPR_TCE: {
1331 struct kvm_create_spapr_tce create_tce;
1332
1333 r = -EFAULT;
1334 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1335 goto out;
1336 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce);
1337 goto out;
1338 }
1339 case KVM_PPC_GET_SMMU_INFO: {
1340 struct kvm_ppc_smmu_info info;
1341 struct kvm *kvm = filp->private_data;
1342
1343 memset(&info, 0, sizeof(info));
1344 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1345 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1346 r = -EFAULT;
1347 break;
1348 }
1349 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1350 struct kvm *kvm = filp->private_data;
1351
1352 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1353 break;
1354 }
1355 default: {
1356 struct kvm *kvm = filp->private_data;
1357 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1358 }
1359 #else /* CONFIG_PPC_BOOK3S_64 */
1360 default:
1361 r = -ENOTTY;
1362 #endif
1363 }
1364 out:
1365 return r;
1366 }
1367
1368 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1369 static unsigned long nr_lpids;
1370
1371 long kvmppc_alloc_lpid(void)
1372 {
1373 long lpid;
1374
1375 do {
1376 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1377 if (lpid >= nr_lpids) {
1378 pr_err("%s: No LPIDs free\n", __func__);
1379 return -ENOMEM;
1380 }
1381 } while (test_and_set_bit(lpid, lpid_inuse));
1382
1383 return lpid;
1384 }
1385 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1386
1387 void kvmppc_claim_lpid(long lpid)
1388 {
1389 set_bit(lpid, lpid_inuse);
1390 }
1391 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1392
1393 void kvmppc_free_lpid(long lpid)
1394 {
1395 clear_bit(lpid, lpid_inuse);
1396 }
1397 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1398
1399 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1400 {
1401 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1402 memset(lpid_inuse, 0, sizeof(lpid_inuse));
1403 }
1404 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1405
1406 int kvm_arch_init(void *opaque)
1407 {
1408 return 0;
1409 }
1410
1411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);