]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/platforms/cell/spufs/sched.c
powerpc/spufs: Fix multiple get_spu_context()
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / platforms / cell / spufs / sched.c
1 /* sched.c - SPU scheduler.
2 *
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
5 *
6 * 2006-03-31 NUMA domains added.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/stddef.h>
34 #include <linux/unistd.h>
35 #include <linux/numa.h>
36 #include <linux/mutex.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <linux/marker.h>
43
44 #include <asm/io.h>
45 #include <asm/mmu_context.h>
46 #include <asm/spu.h>
47 #include <asm/spu_csa.h>
48 #include <asm/spu_priv1.h>
49 #include "spufs.h"
50
51 struct spu_prio_array {
52 DECLARE_BITMAP(bitmap, MAX_PRIO);
53 struct list_head runq[MAX_PRIO];
54 spinlock_t runq_lock;
55 int nr_waiting;
56 };
57
58 static unsigned long spu_avenrun[3];
59 static struct spu_prio_array *spu_prio;
60 static struct task_struct *spusched_task;
61 static struct timer_list spusched_timer;
62 static struct timer_list spuloadavg_timer;
63
64 /*
65 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
66 */
67 #define NORMAL_PRIO 120
68
69 /*
70 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
71 * tick for every 10 CPU scheduler ticks.
72 */
73 #define SPUSCHED_TICK (10)
74
75 /*
76 * These are the 'tuning knobs' of the scheduler:
77 *
78 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
79 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
80 */
81 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
82 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
83
84 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
85 #define SCALE_PRIO(x, prio) \
86 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
87
88 /*
89 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
90 * [800ms ... 100ms ... 5ms]
91 *
92 * The higher a thread's priority, the bigger timeslices
93 * it gets during one round of execution. But even the lowest
94 * priority thread gets MIN_TIMESLICE worth of execution time.
95 */
96 void spu_set_timeslice(struct spu_context *ctx)
97 {
98 if (ctx->prio < NORMAL_PRIO)
99 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
100 else
101 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
102 }
103
104 /*
105 * Update scheduling information from the owning thread.
106 */
107 void __spu_update_sched_info(struct spu_context *ctx)
108 {
109 /*
110 * assert that the context is not on the runqueue, so it is safe
111 * to change its scheduling parameters.
112 */
113 BUG_ON(!list_empty(&ctx->rq));
114
115 /*
116 * 32-Bit assignments are atomic on powerpc, and we don't care about
117 * memory ordering here because retrieving the controlling thread is
118 * per definition racy.
119 */
120 ctx->tid = current->pid;
121
122 /*
123 * We do our own priority calculations, so we normally want
124 * ->static_prio to start with. Unfortunately this field
125 * contains junk for threads with a realtime scheduling
126 * policy so we have to look at ->prio in this case.
127 */
128 if (rt_prio(current->prio))
129 ctx->prio = current->prio;
130 else
131 ctx->prio = current->static_prio;
132 ctx->policy = current->policy;
133
134 /*
135 * TO DO: the context may be loaded, so we may need to activate
136 * it again on a different node. But it shouldn't hurt anything
137 * to update its parameters, because we know that the scheduler
138 * is not actively looking at this field, since it is not on the
139 * runqueue. The context will be rescheduled on the proper node
140 * if it is timesliced or preempted.
141 */
142 ctx->cpus_allowed = current->cpus_allowed;
143
144 /* Save the current cpu id for spu interrupt routing. */
145 ctx->last_ran = raw_smp_processor_id();
146 }
147
148 void spu_update_sched_info(struct spu_context *ctx)
149 {
150 int node;
151
152 if (ctx->state == SPU_STATE_RUNNABLE) {
153 node = ctx->spu->node;
154
155 /*
156 * Take list_mutex to sync with find_victim().
157 */
158 mutex_lock(&cbe_spu_info[node].list_mutex);
159 __spu_update_sched_info(ctx);
160 mutex_unlock(&cbe_spu_info[node].list_mutex);
161 } else {
162 __spu_update_sched_info(ctx);
163 }
164 }
165
166 static int __node_allowed(struct spu_context *ctx, int node)
167 {
168 if (nr_cpus_node(node)) {
169 cpumask_t mask = node_to_cpumask(node);
170
171 if (cpus_intersects(mask, ctx->cpus_allowed))
172 return 1;
173 }
174
175 return 0;
176 }
177
178 static int node_allowed(struct spu_context *ctx, int node)
179 {
180 int rval;
181
182 spin_lock(&spu_prio->runq_lock);
183 rval = __node_allowed(ctx, node);
184 spin_unlock(&spu_prio->runq_lock);
185
186 return rval;
187 }
188
189 void do_notify_spus_active(void)
190 {
191 int node;
192
193 /*
194 * Wake up the active spu_contexts.
195 *
196 * When the awakened processes see their "notify_active" flag is set,
197 * they will call spu_switch_notify().
198 */
199 for_each_online_node(node) {
200 struct spu *spu;
201
202 mutex_lock(&cbe_spu_info[node].list_mutex);
203 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
204 if (spu->alloc_state != SPU_FREE) {
205 struct spu_context *ctx = spu->ctx;
206 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
207 &ctx->sched_flags);
208 mb();
209 wake_up_all(&ctx->stop_wq);
210 }
211 }
212 mutex_unlock(&cbe_spu_info[node].list_mutex);
213 }
214 }
215
216 /**
217 * spu_bind_context - bind spu context to physical spu
218 * @spu: physical spu to bind to
219 * @ctx: context to bind
220 */
221 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
222 {
223 spu_context_trace(spu_bind_context__enter, ctx, spu);
224
225 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
226
227 if (ctx->flags & SPU_CREATE_NOSCHED)
228 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
229
230 ctx->stats.slb_flt_base = spu->stats.slb_flt;
231 ctx->stats.class2_intr_base = spu->stats.class2_intr;
232
233 spu_associate_mm(spu, ctx->owner);
234
235 spin_lock_irq(&spu->register_lock);
236 spu->ctx = ctx;
237 spu->flags = 0;
238 ctx->spu = spu;
239 ctx->ops = &spu_hw_ops;
240 spu->pid = current->pid;
241 spu->tgid = current->tgid;
242 spu->ibox_callback = spufs_ibox_callback;
243 spu->wbox_callback = spufs_wbox_callback;
244 spu->stop_callback = spufs_stop_callback;
245 spu->mfc_callback = spufs_mfc_callback;
246 spin_unlock_irq(&spu->register_lock);
247
248 spu_unmap_mappings(ctx);
249
250 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
251 spu_restore(&ctx->csa, spu);
252 spu->timestamp = jiffies;
253 spu_switch_notify(spu, ctx);
254 ctx->state = SPU_STATE_RUNNABLE;
255
256 spuctx_switch_state(ctx, SPU_UTIL_USER);
257 }
258
259 /*
260 * Must be used with the list_mutex held.
261 */
262 static inline int sched_spu(struct spu *spu)
263 {
264 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
265
266 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
267 }
268
269 static void aff_merge_remaining_ctxs(struct spu_gang *gang)
270 {
271 struct spu_context *ctx;
272
273 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
274 if (list_empty(&ctx->aff_list))
275 list_add(&ctx->aff_list, &gang->aff_list_head);
276 }
277 gang->aff_flags |= AFF_MERGED;
278 }
279
280 static void aff_set_offsets(struct spu_gang *gang)
281 {
282 struct spu_context *ctx;
283 int offset;
284
285 offset = -1;
286 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
287 aff_list) {
288 if (&ctx->aff_list == &gang->aff_list_head)
289 break;
290 ctx->aff_offset = offset--;
291 }
292
293 offset = 0;
294 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
295 if (&ctx->aff_list == &gang->aff_list_head)
296 break;
297 ctx->aff_offset = offset++;
298 }
299
300 gang->aff_flags |= AFF_OFFSETS_SET;
301 }
302
303 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
304 int group_size, int lowest_offset)
305 {
306 struct spu *spu;
307 int node, n;
308
309 /*
310 * TODO: A better algorithm could be used to find a good spu to be
311 * used as reference location for the ctxs chain.
312 */
313 node = cpu_to_node(raw_smp_processor_id());
314 for (n = 0; n < MAX_NUMNODES; n++, node++) {
315 int available_spus;
316
317 node = (node < MAX_NUMNODES) ? node : 0;
318 if (!node_allowed(ctx, node))
319 continue;
320
321 available_spus = 0;
322 mutex_lock(&cbe_spu_info[node].list_mutex);
323 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
324 if (spu->ctx && spu->ctx->gang
325 && spu->ctx->aff_offset == 0)
326 available_spus -=
327 (spu->ctx->gang->contexts - 1);
328 else
329 available_spus++;
330 }
331 if (available_spus < ctx->gang->contexts) {
332 mutex_unlock(&cbe_spu_info[node].list_mutex);
333 continue;
334 }
335
336 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
337 if ((!mem_aff || spu->has_mem_affinity) &&
338 sched_spu(spu)) {
339 mutex_unlock(&cbe_spu_info[node].list_mutex);
340 return spu;
341 }
342 }
343 mutex_unlock(&cbe_spu_info[node].list_mutex);
344 }
345 return NULL;
346 }
347
348 static void aff_set_ref_point_location(struct spu_gang *gang)
349 {
350 int mem_aff, gs, lowest_offset;
351 struct spu_context *ctx;
352 struct spu *tmp;
353
354 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
355 lowest_offset = 0;
356 gs = 0;
357
358 list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
359 gs++;
360
361 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
362 aff_list) {
363 if (&ctx->aff_list == &gang->aff_list_head)
364 break;
365 lowest_offset = ctx->aff_offset;
366 }
367
368 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
369 lowest_offset);
370 }
371
372 static struct spu *ctx_location(struct spu *ref, int offset, int node)
373 {
374 struct spu *spu;
375
376 spu = NULL;
377 if (offset >= 0) {
378 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
379 BUG_ON(spu->node != node);
380 if (offset == 0)
381 break;
382 if (sched_spu(spu))
383 offset--;
384 }
385 } else {
386 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
387 BUG_ON(spu->node != node);
388 if (offset == 0)
389 break;
390 if (sched_spu(spu))
391 offset++;
392 }
393 }
394
395 return spu;
396 }
397
398 /*
399 * affinity_check is called each time a context is going to be scheduled.
400 * It returns the spu ptr on which the context must run.
401 */
402 static int has_affinity(struct spu_context *ctx)
403 {
404 struct spu_gang *gang = ctx->gang;
405
406 if (list_empty(&ctx->aff_list))
407 return 0;
408
409 if (atomic_read(&ctx->gang->aff_sched_count) == 0)
410 ctx->gang->aff_ref_spu = NULL;
411
412 if (!gang->aff_ref_spu) {
413 if (!(gang->aff_flags & AFF_MERGED))
414 aff_merge_remaining_ctxs(gang);
415 if (!(gang->aff_flags & AFF_OFFSETS_SET))
416 aff_set_offsets(gang);
417 aff_set_ref_point_location(gang);
418 }
419
420 return gang->aff_ref_spu != NULL;
421 }
422
423 /**
424 * spu_unbind_context - unbind spu context from physical spu
425 * @spu: physical spu to unbind from
426 * @ctx: context to unbind
427 */
428 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
429 {
430 u32 status;
431
432 spu_context_trace(spu_unbind_context__enter, ctx, spu);
433
434 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
435
436 if (spu->ctx->flags & SPU_CREATE_NOSCHED)
437 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
438
439 if (ctx->gang)
440 atomic_dec_if_positive(&ctx->gang->aff_sched_count);
441
442 spu_switch_notify(spu, NULL);
443 spu_unmap_mappings(ctx);
444 spu_save(&ctx->csa, spu);
445 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
446
447 spin_lock_irq(&spu->register_lock);
448 spu->timestamp = jiffies;
449 ctx->state = SPU_STATE_SAVED;
450 spu->ibox_callback = NULL;
451 spu->wbox_callback = NULL;
452 spu->stop_callback = NULL;
453 spu->mfc_callback = NULL;
454 spu->pid = 0;
455 spu->tgid = 0;
456 ctx->ops = &spu_backing_ops;
457 spu->flags = 0;
458 spu->ctx = NULL;
459 spin_unlock_irq(&spu->register_lock);
460
461 spu_associate_mm(spu, NULL);
462
463 ctx->stats.slb_flt +=
464 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
465 ctx->stats.class2_intr +=
466 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
467
468 /* This maps the underlying spu state to idle */
469 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
470 ctx->spu = NULL;
471
472 if (spu_stopped(ctx, &status))
473 wake_up_all(&ctx->stop_wq);
474 }
475
476 /**
477 * spu_add_to_rq - add a context to the runqueue
478 * @ctx: context to add
479 */
480 static void __spu_add_to_rq(struct spu_context *ctx)
481 {
482 /*
483 * Unfortunately this code path can be called from multiple threads
484 * on behalf of a single context due to the way the problem state
485 * mmap support works.
486 *
487 * Fortunately we need to wake up all these threads at the same time
488 * and can simply skip the runqueue addition for every but the first
489 * thread getting into this codepath.
490 *
491 * It's still quite hacky, and long-term we should proxy all other
492 * threads through the owner thread so that spu_run is in control
493 * of all the scheduling activity for a given context.
494 */
495 if (list_empty(&ctx->rq)) {
496 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
497 set_bit(ctx->prio, spu_prio->bitmap);
498 if (!spu_prio->nr_waiting++)
499 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
500 }
501 }
502
503 static void spu_add_to_rq(struct spu_context *ctx)
504 {
505 spin_lock(&spu_prio->runq_lock);
506 __spu_add_to_rq(ctx);
507 spin_unlock(&spu_prio->runq_lock);
508 }
509
510 static void __spu_del_from_rq(struct spu_context *ctx)
511 {
512 int prio = ctx->prio;
513
514 if (!list_empty(&ctx->rq)) {
515 if (!--spu_prio->nr_waiting)
516 del_timer(&spusched_timer);
517 list_del_init(&ctx->rq);
518
519 if (list_empty(&spu_prio->runq[prio]))
520 clear_bit(prio, spu_prio->bitmap);
521 }
522 }
523
524 void spu_del_from_rq(struct spu_context *ctx)
525 {
526 spin_lock(&spu_prio->runq_lock);
527 __spu_del_from_rq(ctx);
528 spin_unlock(&spu_prio->runq_lock);
529 }
530
531 static void spu_prio_wait(struct spu_context *ctx)
532 {
533 DEFINE_WAIT(wait);
534
535 /*
536 * The caller must explicitly wait for a context to be loaded
537 * if the nosched flag is set. If NOSCHED is not set, the caller
538 * queues the context and waits for an spu event or error.
539 */
540 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
541
542 spin_lock(&spu_prio->runq_lock);
543 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
544 if (!signal_pending(current)) {
545 __spu_add_to_rq(ctx);
546 spin_unlock(&spu_prio->runq_lock);
547 mutex_unlock(&ctx->state_mutex);
548 schedule();
549 mutex_lock(&ctx->state_mutex);
550 spin_lock(&spu_prio->runq_lock);
551 __spu_del_from_rq(ctx);
552 }
553 spin_unlock(&spu_prio->runq_lock);
554 __set_current_state(TASK_RUNNING);
555 remove_wait_queue(&ctx->stop_wq, &wait);
556 }
557
558 static struct spu *spu_get_idle(struct spu_context *ctx)
559 {
560 struct spu *spu, *aff_ref_spu;
561 int node, n;
562
563 spu_context_nospu_trace(spu_get_idle__enter, ctx);
564
565 if (ctx->gang) {
566 mutex_lock(&ctx->gang->aff_mutex);
567 if (has_affinity(ctx)) {
568 aff_ref_spu = ctx->gang->aff_ref_spu;
569 atomic_inc(&ctx->gang->aff_sched_count);
570 mutex_unlock(&ctx->gang->aff_mutex);
571 node = aff_ref_spu->node;
572
573 mutex_lock(&cbe_spu_info[node].list_mutex);
574 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
575 if (spu && spu->alloc_state == SPU_FREE)
576 goto found;
577 mutex_unlock(&cbe_spu_info[node].list_mutex);
578
579 atomic_dec(&ctx->gang->aff_sched_count);
580 goto not_found;
581 }
582 mutex_unlock(&ctx->gang->aff_mutex);
583 }
584 node = cpu_to_node(raw_smp_processor_id());
585 for (n = 0; n < MAX_NUMNODES; n++, node++) {
586 node = (node < MAX_NUMNODES) ? node : 0;
587 if (!node_allowed(ctx, node))
588 continue;
589
590 mutex_lock(&cbe_spu_info[node].list_mutex);
591 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
592 if (spu->alloc_state == SPU_FREE)
593 goto found;
594 }
595 mutex_unlock(&cbe_spu_info[node].list_mutex);
596 }
597
598 not_found:
599 spu_context_nospu_trace(spu_get_idle__not_found, ctx);
600 return NULL;
601
602 found:
603 spu->alloc_state = SPU_USED;
604 mutex_unlock(&cbe_spu_info[node].list_mutex);
605 spu_context_trace(spu_get_idle__found, ctx, spu);
606 spu_init_channels(spu);
607 return spu;
608 }
609
610 /**
611 * find_victim - find a lower priority context to preempt
612 * @ctx: canidate context for running
613 *
614 * Returns the freed physical spu to run the new context on.
615 */
616 static struct spu *find_victim(struct spu_context *ctx)
617 {
618 struct spu_context *victim = NULL;
619 struct spu *spu;
620 int node, n;
621
622 spu_context_nospu_trace(spu_find_victim__enter, ctx);
623
624 /*
625 * Look for a possible preemption candidate on the local node first.
626 * If there is no candidate look at the other nodes. This isn't
627 * exactly fair, but so far the whole spu scheduler tries to keep
628 * a strong node affinity. We might want to fine-tune this in
629 * the future.
630 */
631 restart:
632 node = cpu_to_node(raw_smp_processor_id());
633 for (n = 0; n < MAX_NUMNODES; n++, node++) {
634 node = (node < MAX_NUMNODES) ? node : 0;
635 if (!node_allowed(ctx, node))
636 continue;
637
638 mutex_lock(&cbe_spu_info[node].list_mutex);
639 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
640 struct spu_context *tmp = spu->ctx;
641
642 if (tmp && tmp->prio > ctx->prio &&
643 !(tmp->flags & SPU_CREATE_NOSCHED) &&
644 (!victim || tmp->prio > victim->prio)) {
645 victim = spu->ctx;
646 }
647 }
648 if (victim)
649 get_spu_context(victim);
650 mutex_unlock(&cbe_spu_info[node].list_mutex);
651
652 if (victim) {
653 /*
654 * This nests ctx->state_mutex, but we always lock
655 * higher priority contexts before lower priority
656 * ones, so this is safe until we introduce
657 * priority inheritance schemes.
658 *
659 * XXX if the highest priority context is locked,
660 * this can loop a long time. Might be better to
661 * look at another context or give up after X retries.
662 */
663 if (!mutex_trylock(&victim->state_mutex)) {
664 put_spu_context(victim);
665 victim = NULL;
666 goto restart;
667 }
668
669 spu = victim->spu;
670 if (!spu || victim->prio <= ctx->prio) {
671 /*
672 * This race can happen because we've dropped
673 * the active list mutex. Not a problem, just
674 * restart the search.
675 */
676 mutex_unlock(&victim->state_mutex);
677 put_spu_context(victim);
678 victim = NULL;
679 goto restart;
680 }
681
682 spu_context_trace(__spu_deactivate__unload, ctx, spu);
683
684 mutex_lock(&cbe_spu_info[node].list_mutex);
685 cbe_spu_info[node].nr_active--;
686 spu_unbind_context(spu, victim);
687 mutex_unlock(&cbe_spu_info[node].list_mutex);
688
689 victim->stats.invol_ctx_switch++;
690 spu->stats.invol_ctx_switch++;
691 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
692 spu_add_to_rq(victim);
693
694 mutex_unlock(&victim->state_mutex);
695 put_spu_context(victim);
696
697 return spu;
698 }
699 }
700
701 return NULL;
702 }
703
704 static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
705 {
706 int node = spu->node;
707 int success = 0;
708
709 spu_set_timeslice(ctx);
710
711 mutex_lock(&cbe_spu_info[node].list_mutex);
712 if (spu->ctx == NULL) {
713 spu_bind_context(spu, ctx);
714 cbe_spu_info[node].nr_active++;
715 spu->alloc_state = SPU_USED;
716 success = 1;
717 }
718 mutex_unlock(&cbe_spu_info[node].list_mutex);
719
720 if (success)
721 wake_up_all(&ctx->run_wq);
722 else
723 spu_add_to_rq(ctx);
724 }
725
726 static void spu_schedule(struct spu *spu, struct spu_context *ctx)
727 {
728 /* not a candidate for interruptible because it's called either
729 from the scheduler thread or from spu_deactivate */
730 mutex_lock(&ctx->state_mutex);
731 __spu_schedule(spu, ctx);
732 spu_release(ctx);
733 }
734
735 static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
736 {
737 int node = spu->node;
738
739 mutex_lock(&cbe_spu_info[node].list_mutex);
740 cbe_spu_info[node].nr_active--;
741 spu->alloc_state = SPU_FREE;
742 spu_unbind_context(spu, ctx);
743 ctx->stats.invol_ctx_switch++;
744 spu->stats.invol_ctx_switch++;
745 mutex_unlock(&cbe_spu_info[node].list_mutex);
746 }
747
748 /**
749 * spu_activate - find a free spu for a context and execute it
750 * @ctx: spu context to schedule
751 * @flags: flags (currently ignored)
752 *
753 * Tries to find a free spu to run @ctx. If no free spu is available
754 * add the context to the runqueue so it gets woken up once an spu
755 * is available.
756 */
757 int spu_activate(struct spu_context *ctx, unsigned long flags)
758 {
759 struct spu *spu;
760
761 /*
762 * If there are multiple threads waiting for a single context
763 * only one actually binds the context while the others will
764 * only be able to acquire the state_mutex once the context
765 * already is in runnable state.
766 */
767 if (ctx->spu)
768 return 0;
769
770 spu_activate_top:
771 if (signal_pending(current))
772 return -ERESTARTSYS;
773
774 spu = spu_get_idle(ctx);
775 /*
776 * If this is a realtime thread we try to get it running by
777 * preempting a lower priority thread.
778 */
779 if (!spu && rt_prio(ctx->prio))
780 spu = find_victim(ctx);
781 if (spu) {
782 unsigned long runcntl;
783
784 runcntl = ctx->ops->runcntl_read(ctx);
785 __spu_schedule(spu, ctx);
786 if (runcntl & SPU_RUNCNTL_RUNNABLE)
787 spuctx_switch_state(ctx, SPU_UTIL_USER);
788
789 return 0;
790 }
791
792 if (ctx->flags & SPU_CREATE_NOSCHED) {
793 spu_prio_wait(ctx);
794 goto spu_activate_top;
795 }
796
797 spu_add_to_rq(ctx);
798
799 return 0;
800 }
801
802 /**
803 * grab_runnable_context - try to find a runnable context
804 *
805 * Remove the highest priority context on the runqueue and return it
806 * to the caller. Returns %NULL if no runnable context was found.
807 */
808 static struct spu_context *grab_runnable_context(int prio, int node)
809 {
810 struct spu_context *ctx;
811 int best;
812
813 spin_lock(&spu_prio->runq_lock);
814 best = find_first_bit(spu_prio->bitmap, prio);
815 while (best < prio) {
816 struct list_head *rq = &spu_prio->runq[best];
817
818 list_for_each_entry(ctx, rq, rq) {
819 /* XXX(hch): check for affinity here aswell */
820 if (__node_allowed(ctx, node)) {
821 __spu_del_from_rq(ctx);
822 goto found;
823 }
824 }
825 best++;
826 }
827 ctx = NULL;
828 found:
829 spin_unlock(&spu_prio->runq_lock);
830 return ctx;
831 }
832
833 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
834 {
835 struct spu *spu = ctx->spu;
836 struct spu_context *new = NULL;
837
838 if (spu) {
839 new = grab_runnable_context(max_prio, spu->node);
840 if (new || force) {
841 spu_unschedule(spu, ctx);
842 if (new) {
843 if (new->flags & SPU_CREATE_NOSCHED)
844 wake_up(&new->stop_wq);
845 else {
846 spu_release(ctx);
847 spu_schedule(spu, new);
848 /* this one can't easily be made
849 interruptible */
850 mutex_lock(&ctx->state_mutex);
851 }
852 }
853 }
854 }
855
856 return new != NULL;
857 }
858
859 /**
860 * spu_deactivate - unbind a context from it's physical spu
861 * @ctx: spu context to unbind
862 *
863 * Unbind @ctx from the physical spu it is running on and schedule
864 * the highest priority context to run on the freed physical spu.
865 */
866 void spu_deactivate(struct spu_context *ctx)
867 {
868 spu_context_nospu_trace(spu_deactivate__enter, ctx);
869 __spu_deactivate(ctx, 1, MAX_PRIO);
870 }
871
872 /**
873 * spu_yield - yield a physical spu if others are waiting
874 * @ctx: spu context to yield
875 *
876 * Check if there is a higher priority context waiting and if yes
877 * unbind @ctx from the physical spu and schedule the highest
878 * priority context to run on the freed physical spu instead.
879 */
880 void spu_yield(struct spu_context *ctx)
881 {
882 spu_context_nospu_trace(spu_yield__enter, ctx);
883 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
884 mutex_lock(&ctx->state_mutex);
885 __spu_deactivate(ctx, 0, MAX_PRIO);
886 mutex_unlock(&ctx->state_mutex);
887 }
888 }
889
890 static noinline void spusched_tick(struct spu_context *ctx)
891 {
892 struct spu_context *new = NULL;
893 struct spu *spu = NULL;
894
895 if (spu_acquire(ctx))
896 BUG(); /* a kernel thread never has signals pending */
897
898 if (ctx->state != SPU_STATE_RUNNABLE)
899 goto out;
900 if (ctx->flags & SPU_CREATE_NOSCHED)
901 goto out;
902 if (ctx->policy == SCHED_FIFO)
903 goto out;
904
905 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
906 goto out;
907
908 spu = ctx->spu;
909
910 spu_context_trace(spusched_tick__preempt, ctx, spu);
911
912 new = grab_runnable_context(ctx->prio + 1, spu->node);
913 if (new) {
914 spu_unschedule(spu, ctx);
915 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
916 spu_add_to_rq(ctx);
917 } else {
918 spu_context_nospu_trace(spusched_tick__newslice, ctx);
919 if (!ctx->time_slice)
920 ctx->time_slice++;
921 }
922 out:
923 spu_release(ctx);
924
925 if (new)
926 spu_schedule(spu, new);
927 }
928
929 /**
930 * count_active_contexts - count nr of active tasks
931 *
932 * Return the number of tasks currently running or waiting to run.
933 *
934 * Note that we don't take runq_lock / list_mutex here. Reading
935 * a single 32bit value is atomic on powerpc, and we don't care
936 * about memory ordering issues here.
937 */
938 static unsigned long count_active_contexts(void)
939 {
940 int nr_active = 0, node;
941
942 for (node = 0; node < MAX_NUMNODES; node++)
943 nr_active += cbe_spu_info[node].nr_active;
944 nr_active += spu_prio->nr_waiting;
945
946 return nr_active;
947 }
948
949 /**
950 * spu_calc_load - update the avenrun load estimates.
951 *
952 * No locking against reading these values from userspace, as for
953 * the CPU loadavg code.
954 */
955 static void spu_calc_load(void)
956 {
957 unsigned long active_tasks; /* fixed-point */
958
959 active_tasks = count_active_contexts() * FIXED_1;
960 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
961 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
962 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
963 }
964
965 static void spusched_wake(unsigned long data)
966 {
967 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
968 wake_up_process(spusched_task);
969 }
970
971 static void spuloadavg_wake(unsigned long data)
972 {
973 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
974 spu_calc_load();
975 }
976
977 static int spusched_thread(void *unused)
978 {
979 struct spu *spu;
980 int node;
981
982 while (!kthread_should_stop()) {
983 set_current_state(TASK_INTERRUPTIBLE);
984 schedule();
985 for (node = 0; node < MAX_NUMNODES; node++) {
986 struct mutex *mtx = &cbe_spu_info[node].list_mutex;
987
988 mutex_lock(mtx);
989 list_for_each_entry(spu, &cbe_spu_info[node].spus,
990 cbe_list) {
991 struct spu_context *ctx = spu->ctx;
992
993 if (ctx) {
994 get_spu_context(ctx);
995 mutex_unlock(mtx);
996 spusched_tick(ctx);
997 mutex_lock(mtx);
998 put_spu_context(ctx);
999 }
1000 }
1001 mutex_unlock(mtx);
1002 }
1003 }
1004
1005 return 0;
1006 }
1007
1008 void spuctx_switch_state(struct spu_context *ctx,
1009 enum spu_utilization_state new_state)
1010 {
1011 unsigned long long curtime;
1012 signed long long delta;
1013 struct timespec ts;
1014 struct spu *spu;
1015 enum spu_utilization_state old_state;
1016 int node;
1017
1018 ktime_get_ts(&ts);
1019 curtime = timespec_to_ns(&ts);
1020 delta = curtime - ctx->stats.tstamp;
1021
1022 WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1023 WARN_ON(delta < 0);
1024
1025 spu = ctx->spu;
1026 old_state = ctx->stats.util_state;
1027 ctx->stats.util_state = new_state;
1028 ctx->stats.tstamp = curtime;
1029
1030 /*
1031 * Update the physical SPU utilization statistics.
1032 */
1033 if (spu) {
1034 ctx->stats.times[old_state] += delta;
1035 spu->stats.times[old_state] += delta;
1036 spu->stats.util_state = new_state;
1037 spu->stats.tstamp = curtime;
1038 node = spu->node;
1039 if (old_state == SPU_UTIL_USER)
1040 atomic_dec(&cbe_spu_info[node].busy_spus);
1041 if (new_state == SPU_UTIL_USER)
1042 atomic_inc(&cbe_spu_info[node].busy_spus);
1043 }
1044 }
1045
1046 #define LOAD_INT(x) ((x) >> FSHIFT)
1047 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1048
1049 static int show_spu_loadavg(struct seq_file *s, void *private)
1050 {
1051 int a, b, c;
1052
1053 a = spu_avenrun[0] + (FIXED_1/200);
1054 b = spu_avenrun[1] + (FIXED_1/200);
1055 c = spu_avenrun[2] + (FIXED_1/200);
1056
1057 /*
1058 * Note that last_pid doesn't really make much sense for the
1059 * SPU loadavg (it even seems very odd on the CPU side...),
1060 * but we include it here to have a 100% compatible interface.
1061 */
1062 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1063 LOAD_INT(a), LOAD_FRAC(a),
1064 LOAD_INT(b), LOAD_FRAC(b),
1065 LOAD_INT(c), LOAD_FRAC(c),
1066 count_active_contexts(),
1067 atomic_read(&nr_spu_contexts),
1068 current->nsproxy->pid_ns->last_pid);
1069 return 0;
1070 }
1071
1072 static int spu_loadavg_open(struct inode *inode, struct file *file)
1073 {
1074 return single_open(file, show_spu_loadavg, NULL);
1075 }
1076
1077 static const struct file_operations spu_loadavg_fops = {
1078 .open = spu_loadavg_open,
1079 .read = seq_read,
1080 .llseek = seq_lseek,
1081 .release = single_release,
1082 };
1083
1084 int __init spu_sched_init(void)
1085 {
1086 struct proc_dir_entry *entry;
1087 int err = -ENOMEM, i;
1088
1089 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1090 if (!spu_prio)
1091 goto out;
1092
1093 for (i = 0; i < MAX_PRIO; i++) {
1094 INIT_LIST_HEAD(&spu_prio->runq[i]);
1095 __clear_bit(i, spu_prio->bitmap);
1096 }
1097 spin_lock_init(&spu_prio->runq_lock);
1098
1099 setup_timer(&spusched_timer, spusched_wake, 0);
1100 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1101
1102 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1103 if (IS_ERR(spusched_task)) {
1104 err = PTR_ERR(spusched_task);
1105 goto out_free_spu_prio;
1106 }
1107
1108 mod_timer(&spuloadavg_timer, 0);
1109
1110 entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1111 if (!entry)
1112 goto out_stop_kthread;
1113
1114 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1115 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1116 return 0;
1117
1118 out_stop_kthread:
1119 kthread_stop(spusched_task);
1120 out_free_spu_prio:
1121 kfree(spu_prio);
1122 out:
1123 return err;
1124 }
1125
1126 void spu_sched_exit(void)
1127 {
1128 struct spu *spu;
1129 int node;
1130
1131 remove_proc_entry("spu_loadavg", NULL);
1132
1133 del_timer_sync(&spusched_timer);
1134 del_timer_sync(&spuloadavg_timer);
1135 kthread_stop(spusched_task);
1136
1137 for (node = 0; node < MAX_NUMNODES; node++) {
1138 mutex_lock(&cbe_spu_info[node].list_mutex);
1139 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1140 if (spu->alloc_state != SPU_FREE)
1141 spu->alloc_state = SPU_FREE;
1142 mutex_unlock(&cbe_spu_info[node].list_mutex);
1143 }
1144 kfree(spu_prio);
1145 }