]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/platforms/pseries/eeh.c
Merge branch 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / platforms / pseries / eeh.c
1 /*
2 * eeh.c
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/pci.h>
28 #include <linux/proc_fs.h>
29 #include <linux/rbtree.h>
30 #include <linux/seq_file.h>
31 #include <linux/spinlock.h>
32 #include <linux/of.h>
33
34 #include <asm/atomic.h>
35 #include <asm/eeh.h>
36 #include <asm/eeh_event.h>
37 #include <asm/io.h>
38 #include <asm/machdep.h>
39 #include <asm/ppc-pci.h>
40 #include <asm/rtas.h>
41
42
43 /** Overview:
44 * EEH, or "Extended Error Handling" is a PCI bridge technology for
45 * dealing with PCI bus errors that can't be dealt with within the
46 * usual PCI framework, except by check-stopping the CPU. Systems
47 * that are designed for high-availability/reliability cannot afford
48 * to crash due to a "mere" PCI error, thus the need for EEH.
49 * An EEH-capable bridge operates by converting a detected error
50 * into a "slot freeze", taking the PCI adapter off-line, making
51 * the slot behave, from the OS'es point of view, as if the slot
52 * were "empty": all reads return 0xff's and all writes are silently
53 * ignored. EEH slot isolation events can be triggered by parity
54 * errors on the address or data busses (e.g. during posted writes),
55 * which in turn might be caused by low voltage on the bus, dust,
56 * vibration, humidity, radioactivity or plain-old failed hardware.
57 *
58 * Note, however, that one of the leading causes of EEH slot
59 * freeze events are buggy device drivers, buggy device microcode,
60 * or buggy device hardware. This is because any attempt by the
61 * device to bus-master data to a memory address that is not
62 * assigned to the device will trigger a slot freeze. (The idea
63 * is to prevent devices-gone-wild from corrupting system memory).
64 * Buggy hardware/drivers will have a miserable time co-existing
65 * with EEH.
66 *
67 * Ideally, a PCI device driver, when suspecting that an isolation
68 * event has occured (e.g. by reading 0xff's), will then ask EEH
69 * whether this is the case, and then take appropriate steps to
70 * reset the PCI slot, the PCI device, and then resume operations.
71 * However, until that day, the checking is done here, with the
72 * eeh_check_failure() routine embedded in the MMIO macros. If
73 * the slot is found to be isolated, an "EEH Event" is synthesized
74 * and sent out for processing.
75 */
76
77 /* If a device driver keeps reading an MMIO register in an interrupt
78 * handler after a slot isolation event has occurred, we assume it
79 * is broken and panic. This sets the threshold for how many read
80 * attempts we allow before panicking.
81 */
82 #define EEH_MAX_FAILS 2100000
83
84 /* Time to wait for a PCI slot to report status, in milliseconds */
85 #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
86
87 /* RTAS tokens */
88 static int ibm_set_eeh_option;
89 static int ibm_set_slot_reset;
90 static int ibm_read_slot_reset_state;
91 static int ibm_read_slot_reset_state2;
92 static int ibm_slot_error_detail;
93 static int ibm_get_config_addr_info;
94 static int ibm_get_config_addr_info2;
95 static int ibm_configure_bridge;
96
97 int eeh_subsystem_enabled;
98 EXPORT_SYMBOL(eeh_subsystem_enabled);
99
100 /* Lock to avoid races due to multiple reports of an error */
101 static DEFINE_SPINLOCK(confirm_error_lock);
102
103 /* Buffer for reporting slot-error-detail rtas calls. Its here
104 * in BSS, and not dynamically alloced, so that it ends up in
105 * RMO where RTAS can access it.
106 */
107 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
108 static DEFINE_SPINLOCK(slot_errbuf_lock);
109 static int eeh_error_buf_size;
110
111 /* Buffer for reporting pci register dumps. Its here in BSS, and
112 * not dynamically alloced, so that it ends up in RMO where RTAS
113 * can access it.
114 */
115 #define EEH_PCI_REGS_LOG_LEN 4096
116 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
117
118 /* System monitoring statistics */
119 static unsigned long no_device;
120 static unsigned long no_dn;
121 static unsigned long no_cfg_addr;
122 static unsigned long ignored_check;
123 static unsigned long total_mmio_ffs;
124 static unsigned long false_positives;
125 static unsigned long slot_resets;
126
127 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
128
129 /* --------------------------------------------------------------- */
130 /* Below lies the EEH event infrastructure */
131
132 static void rtas_slot_error_detail(struct pci_dn *pdn, int severity,
133 char *driver_log, size_t loglen)
134 {
135 int config_addr;
136 unsigned long flags;
137 int rc;
138
139 /* Log the error with the rtas logger */
140 spin_lock_irqsave(&slot_errbuf_lock, flags);
141 memset(slot_errbuf, 0, eeh_error_buf_size);
142
143 /* Use PE configuration address, if present */
144 config_addr = pdn->eeh_config_addr;
145 if (pdn->eeh_pe_config_addr)
146 config_addr = pdn->eeh_pe_config_addr;
147
148 rc = rtas_call(ibm_slot_error_detail,
149 8, 1, NULL, config_addr,
150 BUID_HI(pdn->phb->buid),
151 BUID_LO(pdn->phb->buid),
152 virt_to_phys(driver_log), loglen,
153 virt_to_phys(slot_errbuf),
154 eeh_error_buf_size,
155 severity);
156
157 if (rc == 0)
158 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
159 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
160 }
161
162 /**
163 * gather_pci_data - copy assorted PCI config space registers to buff
164 * @pdn: device to report data for
165 * @buf: point to buffer in which to log
166 * @len: amount of room in buffer
167 *
168 * This routine captures assorted PCI configuration space data,
169 * and puts them into a buffer for RTAS error logging.
170 */
171 static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
172 {
173 struct pci_dev *dev = pdn->pcidev;
174 u32 cfg;
175 int cap, i;
176 int n = 0;
177
178 n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name);
179 printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name);
180
181 rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
182 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
183 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
184
185 rtas_read_config(pdn, PCI_COMMAND, 4, &cfg);
186 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
187 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
188
189 if (!dev) {
190 printk(KERN_WARNING "EEH: no PCI device for this of node\n");
191 return n;
192 }
193
194 /* Gather bridge-specific registers */
195 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
196 rtas_read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
197 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
198 printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
199
200 rtas_read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
201 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
202 printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
203 }
204
205 /* Dump out the PCI-X command and status regs */
206 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
207 if (cap) {
208 rtas_read_config(pdn, cap, 4, &cfg);
209 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
210 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
211
212 rtas_read_config(pdn, cap+4, 4, &cfg);
213 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
214 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
215 }
216
217 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
218 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
219 if (cap) {
220 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
221 printk(KERN_WARNING
222 "EEH: PCI-E capabilities and status follow:\n");
223
224 for (i=0; i<=8; i++) {
225 rtas_read_config(pdn, cap+4*i, 4, &cfg);
226 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
227 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
228 }
229
230 cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
231 if (cap) {
232 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
233 printk(KERN_WARNING
234 "EEH: PCI-E AER capability register set follows:\n");
235
236 for (i=0; i<14; i++) {
237 rtas_read_config(pdn, cap+4*i, 4, &cfg);
238 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
239 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
240 }
241 }
242 }
243
244 /* Gather status on devices under the bridge */
245 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
246 struct device_node *dn;
247
248 for_each_child_of_node(pdn->node, dn) {
249 pdn = PCI_DN(dn);
250 if (pdn)
251 n += gather_pci_data(pdn, buf+n, len-n);
252 }
253 }
254
255 return n;
256 }
257
258 void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
259 {
260 size_t loglen = 0;
261 pci_regs_buf[0] = 0;
262
263 rtas_pci_enable(pdn, EEH_THAW_MMIO);
264 loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
265
266 rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
267 }
268
269 /**
270 * read_slot_reset_state - Read the reset state of a device node's slot
271 * @dn: device node to read
272 * @rets: array to return results in
273 */
274 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
275 {
276 int token, outputs;
277 int config_addr;
278
279 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
280 token = ibm_read_slot_reset_state2;
281 outputs = 4;
282 } else {
283 token = ibm_read_slot_reset_state;
284 rets[2] = 0; /* fake PE Unavailable info */
285 outputs = 3;
286 }
287
288 /* Use PE configuration address, if present */
289 config_addr = pdn->eeh_config_addr;
290 if (pdn->eeh_pe_config_addr)
291 config_addr = pdn->eeh_pe_config_addr;
292
293 return rtas_call(token, 3, outputs, rets, config_addr,
294 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
295 }
296
297 /**
298 * eeh_wait_for_slot_status - returns error status of slot
299 * @pdn pci device node
300 * @max_wait_msecs maximum number to millisecs to wait
301 *
302 * Return negative value if a permanent error, else return
303 * Partition Endpoint (PE) status value.
304 *
305 * If @max_wait_msecs is positive, then this routine will
306 * sleep until a valid status can be obtained, or until
307 * the max allowed wait time is exceeded, in which case
308 * a -2 is returned.
309 */
310 int
311 eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
312 {
313 int rc;
314 int rets[3];
315 int mwait;
316
317 while (1) {
318 rc = read_slot_reset_state(pdn, rets);
319 if (rc) return rc;
320 if (rets[1] == 0) return -1; /* EEH is not supported */
321
322 if (rets[0] != 5) return rets[0]; /* return actual status */
323
324 if (rets[2] == 0) return -1; /* permanently unavailable */
325
326 if (max_wait_msecs <= 0) break;
327
328 mwait = rets[2];
329 if (mwait <= 0) {
330 printk (KERN_WARNING
331 "EEH: Firmware returned bad wait value=%d\n", mwait);
332 mwait = 1000;
333 } else if (mwait > 300*1000) {
334 printk (KERN_WARNING
335 "EEH: Firmware is taking too long, time=%d\n", mwait);
336 mwait = 300*1000;
337 }
338 max_wait_msecs -= mwait;
339 msleep (mwait);
340 }
341
342 printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
343 return -2;
344 }
345
346 /**
347 * eeh_token_to_phys - convert EEH address token to phys address
348 * @token i/o token, should be address in the form 0xA....
349 */
350 static inline unsigned long eeh_token_to_phys(unsigned long token)
351 {
352 pte_t *ptep;
353 unsigned long pa;
354
355 ptep = find_linux_pte(init_mm.pgd, token);
356 if (!ptep)
357 return token;
358 pa = pte_pfn(*ptep) << PAGE_SHIFT;
359
360 return pa | (token & (PAGE_SIZE-1));
361 }
362
363 /**
364 * Return the "partitionable endpoint" (pe) under which this device lies
365 */
366 struct device_node * find_device_pe(struct device_node *dn)
367 {
368 while ((dn->parent) && PCI_DN(dn->parent) &&
369 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
370 dn = dn->parent;
371 }
372 return dn;
373 }
374
375 /** Mark all devices that are children of this device as failed.
376 * Mark the device driver too, so that it can see the failure
377 * immediately; this is critical, since some drivers poll
378 * status registers in interrupts ... If a driver is polling,
379 * and the slot is frozen, then the driver can deadlock in
380 * an interrupt context, which is bad.
381 */
382
383 static void __eeh_mark_slot(struct device_node *parent, int mode_flag)
384 {
385 struct device_node *dn;
386
387 for_each_child_of_node(parent, dn) {
388 if (PCI_DN(dn)) {
389 /* Mark the pci device driver too */
390 struct pci_dev *dev = PCI_DN(dn)->pcidev;
391
392 PCI_DN(dn)->eeh_mode |= mode_flag;
393
394 if (dev && dev->driver)
395 dev->error_state = pci_channel_io_frozen;
396
397 __eeh_mark_slot(dn, mode_flag);
398 }
399 }
400 }
401
402 void eeh_mark_slot (struct device_node *dn, int mode_flag)
403 {
404 struct pci_dev *dev;
405 dn = find_device_pe (dn);
406
407 /* Back up one, since config addrs might be shared */
408 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
409 dn = dn->parent;
410
411 PCI_DN(dn)->eeh_mode |= mode_flag;
412
413 /* Mark the pci device too */
414 dev = PCI_DN(dn)->pcidev;
415 if (dev)
416 dev->error_state = pci_channel_io_frozen;
417
418 __eeh_mark_slot(dn, mode_flag);
419 }
420
421 static void __eeh_clear_slot(struct device_node *parent, int mode_flag)
422 {
423 struct device_node *dn;
424
425 for_each_child_of_node(parent, dn) {
426 if (PCI_DN(dn)) {
427 PCI_DN(dn)->eeh_mode &= ~mode_flag;
428 PCI_DN(dn)->eeh_check_count = 0;
429 __eeh_clear_slot(dn, mode_flag);
430 }
431 }
432 }
433
434 void eeh_clear_slot (struct device_node *dn, int mode_flag)
435 {
436 unsigned long flags;
437 spin_lock_irqsave(&confirm_error_lock, flags);
438
439 dn = find_device_pe (dn);
440
441 /* Back up one, since config addrs might be shared */
442 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
443 dn = dn->parent;
444
445 PCI_DN(dn)->eeh_mode &= ~mode_flag;
446 PCI_DN(dn)->eeh_check_count = 0;
447 __eeh_clear_slot(dn, mode_flag);
448 spin_unlock_irqrestore(&confirm_error_lock, flags);
449 }
450
451 /**
452 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
453 * @dn device node
454 * @dev pci device, if known
455 *
456 * Check for an EEH failure for the given device node. Call this
457 * routine if the result of a read was all 0xff's and you want to
458 * find out if this is due to an EEH slot freeze. This routine
459 * will query firmware for the EEH status.
460 *
461 * Returns 0 if there has not been an EEH error; otherwise returns
462 * a non-zero value and queues up a slot isolation event notification.
463 *
464 * It is safe to call this routine in an interrupt context.
465 */
466 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
467 {
468 int ret;
469 int rets[3];
470 unsigned long flags;
471 struct pci_dn *pdn;
472 int rc = 0;
473
474 total_mmio_ffs++;
475
476 if (!eeh_subsystem_enabled)
477 return 0;
478
479 if (!dn) {
480 no_dn++;
481 return 0;
482 }
483 dn = find_device_pe(dn);
484 pdn = PCI_DN(dn);
485
486 /* Access to IO BARs might get this far and still not want checking. */
487 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
488 pdn->eeh_mode & EEH_MODE_NOCHECK) {
489 ignored_check++;
490 #ifdef DEBUG
491 printk ("EEH:ignored check (%x) for %s %s\n",
492 pdn->eeh_mode, pci_name (dev), dn->full_name);
493 #endif
494 return 0;
495 }
496
497 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
498 no_cfg_addr++;
499 return 0;
500 }
501
502 /* If we already have a pending isolation event for this
503 * slot, we know it's bad already, we don't need to check.
504 * Do this checking under a lock; as multiple PCI devices
505 * in one slot might report errors simultaneously, and we
506 * only want one error recovery routine running.
507 */
508 spin_lock_irqsave(&confirm_error_lock, flags);
509 rc = 1;
510 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
511 pdn->eeh_check_count ++;
512 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
513 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
514 pdn->eeh_check_count);
515 dump_stack();
516 msleep(5000);
517
518 /* re-read the slot reset state */
519 if (read_slot_reset_state(pdn, rets) != 0)
520 rets[0] = -1; /* reset state unknown */
521
522 /* If we are here, then we hit an infinite loop. Stop. */
523 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
524 }
525 goto dn_unlock;
526 }
527
528 /*
529 * Now test for an EEH failure. This is VERY expensive.
530 * Note that the eeh_config_addr may be a parent device
531 * in the case of a device behind a bridge, or it may be
532 * function zero of a multi-function device.
533 * In any case they must share a common PHB.
534 */
535 ret = read_slot_reset_state(pdn, rets);
536
537 /* If the call to firmware failed, punt */
538 if (ret != 0) {
539 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
540 ret, dn->full_name);
541 false_positives++;
542 pdn->eeh_false_positives ++;
543 rc = 0;
544 goto dn_unlock;
545 }
546
547 /* Note that config-io to empty slots may fail;
548 * they are empty when they don't have children. */
549 if ((rets[0] == 5) && (rets[2] == 0) && (dn->child == NULL)) {
550 false_positives++;
551 pdn->eeh_false_positives ++;
552 rc = 0;
553 goto dn_unlock;
554 }
555
556 /* If EEH is not supported on this device, punt. */
557 if (rets[1] != 1) {
558 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
559 ret, dn->full_name);
560 false_positives++;
561 pdn->eeh_false_positives ++;
562 rc = 0;
563 goto dn_unlock;
564 }
565
566 /* If not the kind of error we know about, punt. */
567 if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
568 false_positives++;
569 pdn->eeh_false_positives ++;
570 rc = 0;
571 goto dn_unlock;
572 }
573
574 slot_resets++;
575
576 /* Avoid repeated reports of this failure, including problems
577 * with other functions on this device, and functions under
578 * bridges. */
579 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
580 spin_unlock_irqrestore(&confirm_error_lock, flags);
581
582 eeh_send_failure_event (dn, dev);
583
584 /* Most EEH events are due to device driver bugs. Having
585 * a stack trace will help the device-driver authors figure
586 * out what happened. So print that out. */
587 dump_stack();
588 return 1;
589
590 dn_unlock:
591 spin_unlock_irqrestore(&confirm_error_lock, flags);
592 return rc;
593 }
594
595 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
596
597 /**
598 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
599 * @token i/o token, should be address in the form 0xA....
600 * @val value, should be all 1's (XXX why do we need this arg??)
601 *
602 * Check for an EEH failure at the given token address. Call this
603 * routine if the result of a read was all 0xff's and you want to
604 * find out if this is due to an EEH slot freeze event. This routine
605 * will query firmware for the EEH status.
606 *
607 * Note this routine is safe to call in an interrupt context.
608 */
609 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
610 {
611 unsigned long addr;
612 struct pci_dev *dev;
613 struct device_node *dn;
614
615 /* Finding the phys addr + pci device; this is pretty quick. */
616 addr = eeh_token_to_phys((unsigned long __force) token);
617 dev = pci_get_device_by_addr(addr);
618 if (!dev) {
619 no_device++;
620 return val;
621 }
622
623 dn = pci_device_to_OF_node(dev);
624 eeh_dn_check_failure (dn, dev);
625
626 pci_dev_put(dev);
627 return val;
628 }
629
630 EXPORT_SYMBOL(eeh_check_failure);
631
632 /* ------------------------------------------------------------- */
633 /* The code below deals with error recovery */
634
635 /**
636 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
637 * @pdn pci device node
638 */
639
640 int
641 rtas_pci_enable(struct pci_dn *pdn, int function)
642 {
643 int config_addr;
644 int rc;
645
646 /* Use PE configuration address, if present */
647 config_addr = pdn->eeh_config_addr;
648 if (pdn->eeh_pe_config_addr)
649 config_addr = pdn->eeh_pe_config_addr;
650
651 rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
652 config_addr,
653 BUID_HI(pdn->phb->buid),
654 BUID_LO(pdn->phb->buid),
655 function);
656
657 if (rc)
658 printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
659 function, rc, pdn->node->full_name);
660
661 rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC);
662 if ((rc == 4) && (function == EEH_THAW_MMIO))
663 return 0;
664
665 return rc;
666 }
667
668 /**
669 * rtas_pci_slot_reset - raises/lowers the pci #RST line
670 * @pdn pci device node
671 * @state: 1/0 to raise/lower the #RST
672 *
673 * Clear the EEH-frozen condition on a slot. This routine
674 * asserts the PCI #RST line if the 'state' argument is '1',
675 * and drops the #RST line if 'state is '0'. This routine is
676 * safe to call in an interrupt context.
677 *
678 */
679
680 static void
681 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
682 {
683 int config_addr;
684 int rc;
685
686 BUG_ON (pdn==NULL);
687
688 if (!pdn->phb) {
689 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
690 pdn->node->full_name);
691 return;
692 }
693
694 /* Use PE configuration address, if present */
695 config_addr = pdn->eeh_config_addr;
696 if (pdn->eeh_pe_config_addr)
697 config_addr = pdn->eeh_pe_config_addr;
698
699 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
700 config_addr,
701 BUID_HI(pdn->phb->buid),
702 BUID_LO(pdn->phb->buid),
703 state);
704 if (rc)
705 printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
706 " (%d) #RST=%d dn=%s\n",
707 rc, state, pdn->node->full_name);
708 }
709
710 /**
711 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
712 * @dev: pci device struct
713 * @state: reset state to enter
714 *
715 * Return value:
716 * 0 if success
717 **/
718 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
719 {
720 struct device_node *dn = pci_device_to_OF_node(dev);
721 struct pci_dn *pdn = PCI_DN(dn);
722
723 switch (state) {
724 case pcie_deassert_reset:
725 rtas_pci_slot_reset(pdn, 0);
726 break;
727 case pcie_hot_reset:
728 rtas_pci_slot_reset(pdn, 1);
729 break;
730 case pcie_warm_reset:
731 rtas_pci_slot_reset(pdn, 3);
732 break;
733 default:
734 return -EINVAL;
735 };
736
737 return 0;
738 }
739
740 /**
741 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
742 * @pdn: pci device node to be reset.
743 *
744 * Return 0 if success, else a non-zero value.
745 */
746
747 static void __rtas_set_slot_reset(struct pci_dn *pdn)
748 {
749 rtas_pci_slot_reset (pdn, 1);
750
751 /* The PCI bus requires that the reset be held high for at least
752 * a 100 milliseconds. We wait a bit longer 'just in case'. */
753
754 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
755 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
756
757 /* We might get hit with another EEH freeze as soon as the
758 * pci slot reset line is dropped. Make sure we don't miss
759 * these, and clear the flag now. */
760 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
761
762 rtas_pci_slot_reset (pdn, 0);
763
764 /* After a PCI slot has been reset, the PCI Express spec requires
765 * a 1.5 second idle time for the bus to stabilize, before starting
766 * up traffic. */
767 #define PCI_BUS_SETTLE_TIME_MSEC 1800
768 msleep (PCI_BUS_SETTLE_TIME_MSEC);
769 }
770
771 int rtas_set_slot_reset(struct pci_dn *pdn)
772 {
773 int i, rc;
774
775 /* Take three shots at resetting the bus */
776 for (i=0; i<3; i++) {
777 __rtas_set_slot_reset(pdn);
778
779 rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC);
780 if (rc == 0)
781 return 0;
782
783 if (rc < 0) {
784 printk(KERN_ERR "EEH: unrecoverable slot failure %s\n",
785 pdn->node->full_name);
786 return -1;
787 }
788 printk(KERN_ERR "EEH: bus reset %d failed on slot %s, rc=%d\n",
789 i+1, pdn->node->full_name, rc);
790 }
791
792 return -1;
793 }
794
795 /* ------------------------------------------------------- */
796 /** Save and restore of PCI BARs
797 *
798 * Although firmware will set up BARs during boot, it doesn't
799 * set up device BAR's after a device reset, although it will,
800 * if requested, set up bridge configuration. Thus, we need to
801 * configure the PCI devices ourselves.
802 */
803
804 /**
805 * __restore_bars - Restore the Base Address Registers
806 * @pdn: pci device node
807 *
808 * Loads the PCI configuration space base address registers,
809 * the expansion ROM base address, the latency timer, and etc.
810 * from the saved values in the device node.
811 */
812 static inline void __restore_bars (struct pci_dn *pdn)
813 {
814 int i;
815
816 if (NULL==pdn->phb) return;
817 for (i=4; i<10; i++) {
818 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
819 }
820
821 /* 12 == Expansion ROM Address */
822 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
823
824 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
825 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
826
827 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
828 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
829
830 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
831 SAVED_BYTE(PCI_LATENCY_TIMER));
832
833 /* max latency, min grant, interrupt pin and line */
834 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
835 }
836
837 /**
838 * eeh_restore_bars - restore the PCI config space info
839 *
840 * This routine performs a recursive walk to the children
841 * of this device as well.
842 */
843 void eeh_restore_bars(struct pci_dn *pdn)
844 {
845 struct device_node *dn;
846 if (!pdn)
847 return;
848
849 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
850 __restore_bars (pdn);
851
852 for_each_child_of_node(pdn->node, dn)
853 eeh_restore_bars (PCI_DN(dn));
854 }
855
856 /**
857 * eeh_save_bars - save device bars
858 *
859 * Save the values of the device bars. Unlike the restore
860 * routine, this routine is *not* recursive. This is because
861 * PCI devices are added individuallly; but, for the restore,
862 * an entire slot is reset at a time.
863 */
864 static void eeh_save_bars(struct pci_dn *pdn)
865 {
866 int i;
867
868 if (!pdn )
869 return;
870
871 for (i = 0; i < 16; i++)
872 rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
873 }
874
875 void
876 rtas_configure_bridge(struct pci_dn *pdn)
877 {
878 int config_addr;
879 int rc;
880
881 /* Use PE configuration address, if present */
882 config_addr = pdn->eeh_config_addr;
883 if (pdn->eeh_pe_config_addr)
884 config_addr = pdn->eeh_pe_config_addr;
885
886 rc = rtas_call(ibm_configure_bridge,3,1, NULL,
887 config_addr,
888 BUID_HI(pdn->phb->buid),
889 BUID_LO(pdn->phb->buid));
890 if (rc) {
891 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
892 rc, pdn->node->full_name);
893 }
894 }
895
896 /* ------------------------------------------------------------- */
897 /* The code below deals with enabling EEH for devices during the
898 * early boot sequence. EEH must be enabled before any PCI probing
899 * can be done.
900 */
901
902 #define EEH_ENABLE 1
903
904 struct eeh_early_enable_info {
905 unsigned int buid_hi;
906 unsigned int buid_lo;
907 };
908
909 static int get_pe_addr (int config_addr,
910 struct eeh_early_enable_info *info)
911 {
912 unsigned int rets[3];
913 int ret;
914
915 /* Use latest config-addr token on power6 */
916 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
917 /* Make sure we have a PE in hand */
918 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
919 config_addr, info->buid_hi, info->buid_lo, 1);
920 if (ret || (rets[0]==0))
921 return 0;
922
923 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
924 config_addr, info->buid_hi, info->buid_lo, 0);
925 if (ret)
926 return 0;
927 return rets[0];
928 }
929
930 /* Use older config-addr token on power5 */
931 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
932 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
933 config_addr, info->buid_hi, info->buid_lo, 0);
934 if (ret)
935 return 0;
936 return rets[0];
937 }
938 return 0;
939 }
940
941 /* Enable eeh for the given device node. */
942 static void *early_enable_eeh(struct device_node *dn, void *data)
943 {
944 unsigned int rets[3];
945 struct eeh_early_enable_info *info = data;
946 int ret;
947 const u32 *class_code = of_get_property(dn, "class-code", NULL);
948 const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
949 const u32 *device_id = of_get_property(dn, "device-id", NULL);
950 const u32 *regs;
951 int enable;
952 struct pci_dn *pdn = PCI_DN(dn);
953
954 pdn->class_code = 0;
955 pdn->eeh_mode = 0;
956 pdn->eeh_check_count = 0;
957 pdn->eeh_freeze_count = 0;
958 pdn->eeh_false_positives = 0;
959
960 if (!of_device_is_available(dn))
961 return NULL;
962
963 /* Ignore bad nodes. */
964 if (!class_code || !vendor_id || !device_id)
965 return NULL;
966
967 /* There is nothing to check on PCI to ISA bridges */
968 if (dn->type && !strcmp(dn->type, "isa")) {
969 pdn->eeh_mode |= EEH_MODE_NOCHECK;
970 return NULL;
971 }
972 pdn->class_code = *class_code;
973
974 /* Ok... see if this device supports EEH. Some do, some don't,
975 * and the only way to find out is to check each and every one. */
976 regs = of_get_property(dn, "reg", NULL);
977 if (regs) {
978 /* First register entry is addr (00BBSS00) */
979 /* Try to enable eeh */
980 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
981 regs[0], info->buid_hi, info->buid_lo,
982 EEH_ENABLE);
983
984 enable = 0;
985 if (ret == 0) {
986 pdn->eeh_config_addr = regs[0];
987
988 /* If the newer, better, ibm,get-config-addr-info is supported,
989 * then use that instead. */
990 pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info);
991
992 /* Some older systems (Power4) allow the
993 * ibm,set-eeh-option call to succeed even on nodes
994 * where EEH is not supported. Verify support
995 * explicitly. */
996 ret = read_slot_reset_state(pdn, rets);
997 if ((ret == 0) && (rets[1] == 1))
998 enable = 1;
999 }
1000
1001 if (enable) {
1002 eeh_subsystem_enabled = 1;
1003 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1004
1005 #ifdef DEBUG
1006 printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
1007 dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
1008 #endif
1009 } else {
1010
1011 /* This device doesn't support EEH, but it may have an
1012 * EEH parent, in which case we mark it as supported. */
1013 if (dn->parent && PCI_DN(dn->parent)
1014 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
1015 /* Parent supports EEH. */
1016 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1017 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
1018 return NULL;
1019 }
1020 }
1021 } else {
1022 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
1023 dn->full_name);
1024 }
1025
1026 eeh_save_bars(pdn);
1027 return NULL;
1028 }
1029
1030 /*
1031 * Initialize EEH by trying to enable it for all of the adapters in the system.
1032 * As a side effect we can determine here if eeh is supported at all.
1033 * Note that we leave EEH on so failed config cycles won't cause a machine
1034 * check. If a user turns off EEH for a particular adapter they are really
1035 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1036 * grant access to a slot if EEH isn't enabled, and so we always enable
1037 * EEH for all slots/all devices.
1038 *
1039 * The eeh-force-off option disables EEH checking globally, for all slots.
1040 * Even if force-off is set, the EEH hardware is still enabled, so that
1041 * newer systems can boot.
1042 */
1043 void __init eeh_init(void)
1044 {
1045 struct device_node *phb, *np;
1046 struct eeh_early_enable_info info;
1047
1048 spin_lock_init(&confirm_error_lock);
1049 spin_lock_init(&slot_errbuf_lock);
1050
1051 np = of_find_node_by_path("/rtas");
1052 if (np == NULL)
1053 return;
1054
1055 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1056 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1057 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1058 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1059 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1060 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
1061 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
1062 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
1063
1064 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1065 return;
1066
1067 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1068 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1069 eeh_error_buf_size = 1024;
1070 }
1071 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1072 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1073 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1074 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1075 }
1076
1077 /* Enable EEH for all adapters. Note that eeh requires buid's */
1078 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1079 phb = of_find_node_by_name(phb, "pci")) {
1080 unsigned long buid;
1081
1082 buid = get_phb_buid(phb);
1083 if (buid == 0 || PCI_DN(phb) == NULL)
1084 continue;
1085
1086 info.buid_lo = BUID_LO(buid);
1087 info.buid_hi = BUID_HI(buid);
1088 traverse_pci_devices(phb, early_enable_eeh, &info);
1089 }
1090
1091 if (eeh_subsystem_enabled)
1092 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1093 else
1094 printk(KERN_WARNING "EEH: No capable adapters found\n");
1095 }
1096
1097 /**
1098 * eeh_add_device_early - enable EEH for the indicated device_node
1099 * @dn: device node for which to set up EEH
1100 *
1101 * This routine must be used to perform EEH initialization for PCI
1102 * devices that were added after system boot (e.g. hotplug, dlpar).
1103 * This routine must be called before any i/o is performed to the
1104 * adapter (inluding any config-space i/o).
1105 * Whether this actually enables EEH or not for this device depends
1106 * on the CEC architecture, type of the device, on earlier boot
1107 * command-line arguments & etc.
1108 */
1109 static void eeh_add_device_early(struct device_node *dn)
1110 {
1111 struct pci_controller *phb;
1112 struct eeh_early_enable_info info;
1113
1114 if (!dn || !PCI_DN(dn))
1115 return;
1116 phb = PCI_DN(dn)->phb;
1117
1118 /* USB Bus children of PCI devices will not have BUID's */
1119 if (NULL == phb || 0 == phb->buid)
1120 return;
1121
1122 info.buid_hi = BUID_HI(phb->buid);
1123 info.buid_lo = BUID_LO(phb->buid);
1124 early_enable_eeh(dn, &info);
1125 }
1126
1127 void eeh_add_device_tree_early(struct device_node *dn)
1128 {
1129 struct device_node *sib;
1130
1131 for_each_child_of_node(dn, sib)
1132 eeh_add_device_tree_early(sib);
1133 eeh_add_device_early(dn);
1134 }
1135 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1136
1137 /**
1138 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1139 * @dev: pci device for which to set up EEH
1140 *
1141 * This routine must be used to complete EEH initialization for PCI
1142 * devices that were added after system boot (e.g. hotplug, dlpar).
1143 */
1144 static void eeh_add_device_late(struct pci_dev *dev)
1145 {
1146 struct device_node *dn;
1147 struct pci_dn *pdn;
1148
1149 if (!dev || !eeh_subsystem_enabled)
1150 return;
1151
1152 #ifdef DEBUG
1153 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
1154 #endif
1155
1156 pci_dev_get (dev);
1157 dn = pci_device_to_OF_node(dev);
1158 pdn = PCI_DN(dn);
1159 pdn->pcidev = dev;
1160
1161 pci_addr_cache_insert_device(dev);
1162 eeh_sysfs_add_device(dev);
1163 }
1164
1165 void eeh_add_device_tree_late(struct pci_bus *bus)
1166 {
1167 struct pci_dev *dev;
1168
1169 list_for_each_entry(dev, &bus->devices, bus_list) {
1170 eeh_add_device_late(dev);
1171 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1172 struct pci_bus *subbus = dev->subordinate;
1173 if (subbus)
1174 eeh_add_device_tree_late(subbus);
1175 }
1176 }
1177 }
1178 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1179
1180 /**
1181 * eeh_remove_device - undo EEH setup for the indicated pci device
1182 * @dev: pci device to be removed
1183 *
1184 * This routine should be called when a device is removed from
1185 * a running system (e.g. by hotplug or dlpar). It unregisters
1186 * the PCI device from the EEH subsystem. I/O errors affecting
1187 * this device will no longer be detected after this call; thus,
1188 * i/o errors affecting this slot may leave this device unusable.
1189 */
1190 static void eeh_remove_device(struct pci_dev *dev)
1191 {
1192 struct device_node *dn;
1193 if (!dev || !eeh_subsystem_enabled)
1194 return;
1195
1196 /* Unregister the device with the EEH/PCI address search system */
1197 #ifdef DEBUG
1198 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1199 #endif
1200 pci_addr_cache_remove_device(dev);
1201 eeh_sysfs_remove_device(dev);
1202
1203 dn = pci_device_to_OF_node(dev);
1204 if (PCI_DN(dn)->pcidev) {
1205 PCI_DN(dn)->pcidev = NULL;
1206 pci_dev_put (dev);
1207 }
1208 }
1209
1210 void eeh_remove_bus_device(struct pci_dev *dev)
1211 {
1212 struct pci_bus *bus = dev->subordinate;
1213 struct pci_dev *child, *tmp;
1214
1215 eeh_remove_device(dev);
1216
1217 if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1218 list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
1219 eeh_remove_bus_device(child);
1220 }
1221 }
1222 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1223
1224 static int proc_eeh_show(struct seq_file *m, void *v)
1225 {
1226 if (0 == eeh_subsystem_enabled) {
1227 seq_printf(m, "EEH Subsystem is globally disabled\n");
1228 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
1229 } else {
1230 seq_printf(m, "EEH Subsystem is enabled\n");
1231 seq_printf(m,
1232 "no device=%ld\n"
1233 "no device node=%ld\n"
1234 "no config address=%ld\n"
1235 "check not wanted=%ld\n"
1236 "eeh_total_mmio_ffs=%ld\n"
1237 "eeh_false_positives=%ld\n"
1238 "eeh_slot_resets=%ld\n",
1239 no_device, no_dn, no_cfg_addr,
1240 ignored_check, total_mmio_ffs,
1241 false_positives,
1242 slot_resets);
1243 }
1244
1245 return 0;
1246 }
1247
1248 static int proc_eeh_open(struct inode *inode, struct file *file)
1249 {
1250 return single_open(file, proc_eeh_show, NULL);
1251 }
1252
1253 static const struct file_operations proc_eeh_operations = {
1254 .open = proc_eeh_open,
1255 .read = seq_read,
1256 .llseek = seq_lseek,
1257 .release = single_release,
1258 };
1259
1260 static int __init eeh_init_proc(void)
1261 {
1262 if (machine_is(pseries))
1263 proc_create("ppc64/eeh", 0, NULL, &proc_eeh_operations);
1264 return 0;
1265 }
1266 __initcall(eeh_init_proc);