]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/sparc/mm/srmmu.c
Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[mirror_ubuntu-bionic-kernel.git] / arch / sparc / mm / srmmu.c
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kdebug.h>
22
23 #include <asm/bitext.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
30 #include <asm/smp.h>
31 #include <asm/mbus.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
34 #include <asm/sbus.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/a.out.h>
38 #include <asm/mmu_context.h>
39 #include <asm/io-unit.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42
43 /* Now the cpu specific definitions. */
44 #include <asm/viking.h>
45 #include <asm/mxcc.h>
46 #include <asm/ross.h>
47 #include <asm/tsunami.h>
48 #include <asm/swift.h>
49 #include <asm/turbosparc.h>
50
51 #include <asm/btfixup.h>
52
53 enum mbus_module srmmu_modtype;
54 unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57
58 extern struct resource sparc_iomap;
59
60 extern unsigned long last_valid_pfn;
61
62 extern unsigned long page_kernel;
63
64 pgd_t *srmmu_swapper_pg_dir;
65
66 #ifdef CONFIG_SMP
67 #define FLUSH_BEGIN(mm)
68 #define FLUSH_END
69 #else
70 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
71 #define FLUSH_END }
72 #endif
73
74 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
75 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
76
77 int flush_page_for_dma_global = 1;
78
79 #ifdef CONFIG_SMP
80 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
81 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
82 #endif
83
84 char *srmmu_name;
85
86 ctxd_t *srmmu_ctx_table_phys;
87 ctxd_t *srmmu_context_table;
88
89 int viking_mxcc_present;
90 static DEFINE_SPINLOCK(srmmu_context_spinlock);
91
92 int is_hypersparc;
93
94 /*
95 * In general all page table modifications should use the V8 atomic
96 * swap instruction. This insures the mmu and the cpu are in sync
97 * with respect to ref/mod bits in the page tables.
98 */
99 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
100 {
101 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
102 return value;
103 }
104
105 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
106 {
107 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
108 }
109
110 /* The very generic SRMMU page table operations. */
111 static inline int srmmu_device_memory(unsigned long x)
112 {
113 return ((x & 0xF0000000) != 0);
114 }
115
116 int srmmu_cache_pagetables;
117
118 /* these will be initialized in srmmu_nocache_calcsize() */
119 unsigned long srmmu_nocache_size;
120 unsigned long srmmu_nocache_end;
121
122 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
124
125 /* The context table is a nocache user with the biggest alignment needs. */
126 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
127
128 void *srmmu_nocache_pool;
129 void *srmmu_nocache_bitmap;
130 static struct bit_map srmmu_nocache_map;
131
132 static unsigned long srmmu_pte_pfn(pte_t pte)
133 {
134 if (srmmu_device_memory(pte_val(pte))) {
135 /* Just return something that will cause
136 * pfn_valid() to return false. This makes
137 * copy_one_pte() to just directly copy to
138 * PTE over.
139 */
140 return ~0UL;
141 }
142 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
143 }
144
145 static struct page *srmmu_pmd_page(pmd_t pmd)
146 {
147
148 if (srmmu_device_memory(pmd_val(pmd)))
149 BUG();
150 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
151 }
152
153 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
154 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
155
156
157 static inline int srmmu_pte_none(pte_t pte)
158 { return !(pte_val(pte) & 0xFFFFFFF); }
159
160 static inline int srmmu_pte_present(pte_t pte)
161 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
162
163 static inline void srmmu_pte_clear(pte_t *ptep)
164 { srmmu_set_pte(ptep, __pte(0)); }
165
166 static inline int srmmu_pmd_none(pmd_t pmd)
167 { return !(pmd_val(pmd) & 0xFFFFFFF); }
168
169 static inline int srmmu_pmd_bad(pmd_t pmd)
170 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
171
172 static inline int srmmu_pmd_present(pmd_t pmd)
173 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
174
175 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
176 int i;
177 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
178 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
179 }
180
181 static inline int srmmu_pgd_none(pgd_t pgd)
182 { return !(pgd_val(pgd) & 0xFFFFFFF); }
183
184 static inline int srmmu_pgd_bad(pgd_t pgd)
185 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
186
187 static inline int srmmu_pgd_present(pgd_t pgd)
188 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
189
190 static inline void srmmu_pgd_clear(pgd_t * pgdp)
191 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
192
193 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
194 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
195
196 static inline pte_t srmmu_pte_mkclean(pte_t pte)
197 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
198
199 static inline pte_t srmmu_pte_mkold(pte_t pte)
200 { return __pte(pte_val(pte) & ~SRMMU_REF);}
201
202 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
203 { return __pte(pte_val(pte) | SRMMU_WRITE);}
204
205 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
206 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
207
208 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
209 { return __pte(pte_val(pte) | SRMMU_REF);}
210
211 /*
212 * Conversion functions: convert a page and protection to a page entry,
213 * and a page entry and page directory to the page they refer to.
214 */
215 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
216 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
217
218 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
219 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
220
221 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
222 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
223
224 /* XXX should we hyper_flush_whole_icache here - Anton */
225 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
226 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
227
228 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
229 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
230
231 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
232 {
233 unsigned long ptp; /* Physical address, shifted right by 4 */
234 int i;
235
236 ptp = __nocache_pa((unsigned long) ptep) >> 4;
237 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
238 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
239 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
240 }
241 }
242
243 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
244 {
245 unsigned long ptp; /* Physical address, shifted right by 4 */
246 int i;
247
248 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
249 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
250 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
251 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
252 }
253 }
254
255 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
256 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
257
258 /* to find an entry in a top-level page table... */
259 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
260 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
261
262 /* Find an entry in the second-level page table.. */
263 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
264 {
265 return (pmd_t *) srmmu_pgd_page(*dir) +
266 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
267 }
268
269 /* Find an entry in the third-level page table.. */
270 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
271 {
272 void *pte;
273
274 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
275 return (pte_t *) pte +
276 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
277 }
278
279 static unsigned long srmmu_swp_type(swp_entry_t entry)
280 {
281 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
282 }
283
284 static unsigned long srmmu_swp_offset(swp_entry_t entry)
285 {
286 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
287 }
288
289 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
290 {
291 return (swp_entry_t) {
292 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
293 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
294 }
295
296 /*
297 * size: bytes to allocate in the nocache area.
298 * align: bytes, number to align at.
299 * Returns the virtual address of the allocated area.
300 */
301 static unsigned long __srmmu_get_nocache(int size, int align)
302 {
303 int offset;
304
305 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
306 printk("Size 0x%x too small for nocache request\n", size);
307 size = SRMMU_NOCACHE_BITMAP_SHIFT;
308 }
309 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
310 printk("Size 0x%x unaligned int nocache request\n", size);
311 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
312 }
313 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
314
315 offset = bit_map_string_get(&srmmu_nocache_map,
316 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
317 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
318 if (offset == -1) {
319 printk("srmmu: out of nocache %d: %d/%d\n",
320 size, (int) srmmu_nocache_size,
321 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
322 return 0;
323 }
324
325 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
326 }
327
328 unsigned inline long srmmu_get_nocache(int size, int align)
329 {
330 unsigned long tmp;
331
332 tmp = __srmmu_get_nocache(size, align);
333
334 if (tmp)
335 memset((void *)tmp, 0, size);
336
337 return tmp;
338 }
339
340 void srmmu_free_nocache(unsigned long vaddr, int size)
341 {
342 int offset;
343
344 if (vaddr < SRMMU_NOCACHE_VADDR) {
345 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
346 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
347 BUG();
348 }
349 if (vaddr+size > srmmu_nocache_end) {
350 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
351 vaddr, srmmu_nocache_end);
352 BUG();
353 }
354 if (size & (size-1)) {
355 printk("Size 0x%x is not a power of 2\n", size);
356 BUG();
357 }
358 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
359 printk("Size 0x%x is too small\n", size);
360 BUG();
361 }
362 if (vaddr & (size-1)) {
363 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
364 BUG();
365 }
366
367 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
368 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
369
370 bit_map_clear(&srmmu_nocache_map, offset, size);
371 }
372
373 void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
374
375 extern unsigned long probe_memory(void); /* in fault.c */
376
377 /*
378 * Reserve nocache dynamically proportionally to the amount of
379 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
380 */
381 void srmmu_nocache_calcsize(void)
382 {
383 unsigned long sysmemavail = probe_memory() / 1024;
384 int srmmu_nocache_npages;
385
386 srmmu_nocache_npages =
387 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
388
389 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
390 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
391 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
392 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
393
394 /* anything above 1280 blows up */
395 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
396 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
397
398 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
399 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
400 }
401
402 void __init srmmu_nocache_init(void)
403 {
404 unsigned int bitmap_bits;
405 pgd_t *pgd;
406 pmd_t *pmd;
407 pte_t *pte;
408 unsigned long paddr, vaddr;
409 unsigned long pteval;
410
411 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
412
413 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
414 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
415 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
416
417 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
418 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
419
420 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
421 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
422 init_mm.pgd = srmmu_swapper_pg_dir;
423
424 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
425
426 paddr = __pa((unsigned long)srmmu_nocache_pool);
427 vaddr = SRMMU_NOCACHE_VADDR;
428
429 while (vaddr < srmmu_nocache_end) {
430 pgd = pgd_offset_k(vaddr);
431 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
432 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
433
434 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
435
436 if (srmmu_cache_pagetables)
437 pteval |= SRMMU_CACHE;
438
439 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
440
441 vaddr += PAGE_SIZE;
442 paddr += PAGE_SIZE;
443 }
444
445 flush_cache_all();
446 flush_tlb_all();
447 }
448
449 static inline pgd_t *srmmu_get_pgd_fast(void)
450 {
451 pgd_t *pgd = NULL;
452
453 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
454 if (pgd) {
455 pgd_t *init = pgd_offset_k(0);
456 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
457 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
458 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
459 }
460
461 return pgd;
462 }
463
464 static void srmmu_free_pgd_fast(pgd_t *pgd)
465 {
466 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
467 }
468
469 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
470 {
471 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
472 }
473
474 static void srmmu_pmd_free(pmd_t * pmd)
475 {
476 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
477 }
478
479 /*
480 * Hardware needs alignment to 256 only, but we align to whole page size
481 * to reduce fragmentation problems due to the buddy principle.
482 * XXX Provide actual fragmentation statistics in /proc.
483 *
484 * Alignments up to the page size are the same for physical and virtual
485 * addresses of the nocache area.
486 */
487 static pte_t *
488 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
489 {
490 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
491 }
492
493 static struct page *
494 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
495 {
496 unsigned long pte;
497
498 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
499 return NULL;
500 return pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
501 }
502
503 static void srmmu_free_pte_fast(pte_t *pte)
504 {
505 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
506 }
507
508 static void srmmu_pte_free(struct page *pte)
509 {
510 unsigned long p;
511
512 p = (unsigned long)page_address(pte); /* Cached address (for test) */
513 if (p == 0)
514 BUG();
515 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
516 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
517 srmmu_free_nocache(p, PTE_SIZE);
518 }
519
520 /*
521 */
522 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
523 {
524 struct ctx_list *ctxp;
525
526 ctxp = ctx_free.next;
527 if(ctxp != &ctx_free) {
528 remove_from_ctx_list(ctxp);
529 add_to_used_ctxlist(ctxp);
530 mm->context = ctxp->ctx_number;
531 ctxp->ctx_mm = mm;
532 return;
533 }
534 ctxp = ctx_used.next;
535 if(ctxp->ctx_mm == old_mm)
536 ctxp = ctxp->next;
537 if(ctxp == &ctx_used)
538 panic("out of mmu contexts");
539 flush_cache_mm(ctxp->ctx_mm);
540 flush_tlb_mm(ctxp->ctx_mm);
541 remove_from_ctx_list(ctxp);
542 add_to_used_ctxlist(ctxp);
543 ctxp->ctx_mm->context = NO_CONTEXT;
544 ctxp->ctx_mm = mm;
545 mm->context = ctxp->ctx_number;
546 }
547
548 static inline void free_context(int context)
549 {
550 struct ctx_list *ctx_old;
551
552 ctx_old = ctx_list_pool + context;
553 remove_from_ctx_list(ctx_old);
554 add_to_free_ctxlist(ctx_old);
555 }
556
557
558 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
559 struct task_struct *tsk, int cpu)
560 {
561 if(mm->context == NO_CONTEXT) {
562 spin_lock(&srmmu_context_spinlock);
563 alloc_context(old_mm, mm);
564 spin_unlock(&srmmu_context_spinlock);
565 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
566 }
567
568 if (is_hypersparc)
569 hyper_flush_whole_icache();
570
571 srmmu_set_context(mm->context);
572 }
573
574 /* Low level IO area allocation on the SRMMU. */
575 static inline void srmmu_mapioaddr(unsigned long physaddr,
576 unsigned long virt_addr, int bus_type)
577 {
578 pgd_t *pgdp;
579 pmd_t *pmdp;
580 pte_t *ptep;
581 unsigned long tmp;
582
583 physaddr &= PAGE_MASK;
584 pgdp = pgd_offset_k(virt_addr);
585 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
586 ptep = srmmu_pte_offset(pmdp, virt_addr);
587 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
588
589 /*
590 * I need to test whether this is consistent over all
591 * sun4m's. The bus_type represents the upper 4 bits of
592 * 36-bit physical address on the I/O space lines...
593 */
594 tmp |= (bus_type << 28);
595 tmp |= SRMMU_PRIV;
596 __flush_page_to_ram(virt_addr);
597 srmmu_set_pte(ptep, __pte(tmp));
598 }
599
600 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
601 unsigned long xva, unsigned int len)
602 {
603 while (len != 0) {
604 len -= PAGE_SIZE;
605 srmmu_mapioaddr(xpa, xva, bus);
606 xva += PAGE_SIZE;
607 xpa += PAGE_SIZE;
608 }
609 flush_tlb_all();
610 }
611
612 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
613 {
614 pgd_t *pgdp;
615 pmd_t *pmdp;
616 pte_t *ptep;
617
618 pgdp = pgd_offset_k(virt_addr);
619 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
620 ptep = srmmu_pte_offset(pmdp, virt_addr);
621
622 /* No need to flush uncacheable page. */
623 srmmu_pte_clear(ptep);
624 }
625
626 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
627 {
628 while (len != 0) {
629 len -= PAGE_SIZE;
630 srmmu_unmapioaddr(virt_addr);
631 virt_addr += PAGE_SIZE;
632 }
633 flush_tlb_all();
634 }
635
636 /*
637 * On the SRMMU we do not have the problems with limited tlb entries
638 * for mapping kernel pages, so we just take things from the free page
639 * pool. As a side effect we are putting a little too much pressure
640 * on the gfp() subsystem. This setup also makes the logic of the
641 * iommu mapping code a lot easier as we can transparently handle
642 * mappings on the kernel stack without any special code as we did
643 * need on the sun4c.
644 */
645 struct thread_info *srmmu_alloc_thread_info(void)
646 {
647 struct thread_info *ret;
648
649 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
650 THREAD_INFO_ORDER);
651 #ifdef CONFIG_DEBUG_STACK_USAGE
652 if (ret)
653 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
654 #endif /* DEBUG_STACK_USAGE */
655
656 return ret;
657 }
658
659 static void srmmu_free_thread_info(struct thread_info *ti)
660 {
661 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
662 }
663
664 /* tsunami.S */
665 extern void tsunami_flush_cache_all(void);
666 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
667 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
668 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
669 extern void tsunami_flush_page_to_ram(unsigned long page);
670 extern void tsunami_flush_page_for_dma(unsigned long page);
671 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
672 extern void tsunami_flush_tlb_all(void);
673 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
674 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
675 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
676 extern void tsunami_setup_blockops(void);
677
678 /*
679 * Workaround, until we find what's going on with Swift. When low on memory,
680 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
681 * out it is already in page tables/ fault again on the same instruction.
682 * I really don't understand it, have checked it and contexts
683 * are right, flush_tlb_all is done as well, and it faults again...
684 * Strange. -jj
685 *
686 * The following code is a deadwood that may be necessary when
687 * we start to make precise page flushes again. --zaitcev
688 */
689 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
690 {
691 #if 0
692 static unsigned long last;
693 unsigned int val;
694 /* unsigned int n; */
695
696 if (address == last) {
697 val = srmmu_hwprobe(address);
698 if (val != 0 && pte_val(pte) != val) {
699 printk("swift_update_mmu_cache: "
700 "addr %lx put %08x probed %08x from %p\n",
701 address, pte_val(pte), val,
702 __builtin_return_address(0));
703 srmmu_flush_whole_tlb();
704 }
705 }
706 last = address;
707 #endif
708 }
709
710 /* swift.S */
711 extern void swift_flush_cache_all(void);
712 extern void swift_flush_cache_mm(struct mm_struct *mm);
713 extern void swift_flush_cache_range(struct vm_area_struct *vma,
714 unsigned long start, unsigned long end);
715 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
716 extern void swift_flush_page_to_ram(unsigned long page);
717 extern void swift_flush_page_for_dma(unsigned long page);
718 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
719 extern void swift_flush_tlb_all(void);
720 extern void swift_flush_tlb_mm(struct mm_struct *mm);
721 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
722 unsigned long start, unsigned long end);
723 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
724
725 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
726 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
727 {
728 int cctx, ctx1;
729
730 page &= PAGE_MASK;
731 if ((ctx1 = vma->vm_mm->context) != -1) {
732 cctx = srmmu_get_context();
733 /* Is context # ever different from current context? P3 */
734 if (cctx != ctx1) {
735 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
736 srmmu_set_context(ctx1);
737 swift_flush_page(page);
738 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
739 "r" (page), "i" (ASI_M_FLUSH_PROBE));
740 srmmu_set_context(cctx);
741 } else {
742 /* Rm. prot. bits from virt. c. */
743 /* swift_flush_cache_all(); */
744 /* swift_flush_cache_page(vma, page); */
745 swift_flush_page(page);
746
747 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
748 "r" (page), "i" (ASI_M_FLUSH_PROBE));
749 /* same as above: srmmu_flush_tlb_page() */
750 }
751 }
752 }
753 #endif
754
755 /*
756 * The following are all MBUS based SRMMU modules, and therefore could
757 * be found in a multiprocessor configuration. On the whole, these
758 * chips seems to be much more touchy about DVMA and page tables
759 * with respect to cache coherency.
760 */
761
762 /* Cypress flushes. */
763 static void cypress_flush_cache_all(void)
764 {
765 volatile unsigned long cypress_sucks;
766 unsigned long faddr, tagval;
767
768 flush_user_windows();
769 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
770 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
771 "=r" (tagval) :
772 "r" (faddr), "r" (0x40000),
773 "i" (ASI_M_DATAC_TAG));
774
775 /* If modified and valid, kick it. */
776 if((tagval & 0x60) == 0x60)
777 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
778 }
779 }
780
781 static void cypress_flush_cache_mm(struct mm_struct *mm)
782 {
783 register unsigned long a, b, c, d, e, f, g;
784 unsigned long flags, faddr;
785 int octx;
786
787 FLUSH_BEGIN(mm)
788 flush_user_windows();
789 local_irq_save(flags);
790 octx = srmmu_get_context();
791 srmmu_set_context(mm->context);
792 a = 0x20; b = 0x40; c = 0x60;
793 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
794
795 faddr = (0x10000 - 0x100);
796 goto inside;
797 do {
798 faddr -= 0x100;
799 inside:
800 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
801 "sta %%g0, [%0 + %2] %1\n\t"
802 "sta %%g0, [%0 + %3] %1\n\t"
803 "sta %%g0, [%0 + %4] %1\n\t"
804 "sta %%g0, [%0 + %5] %1\n\t"
805 "sta %%g0, [%0 + %6] %1\n\t"
806 "sta %%g0, [%0 + %7] %1\n\t"
807 "sta %%g0, [%0 + %8] %1\n\t" : :
808 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
809 "r" (a), "r" (b), "r" (c), "r" (d),
810 "r" (e), "r" (f), "r" (g));
811 } while(faddr);
812 srmmu_set_context(octx);
813 local_irq_restore(flags);
814 FLUSH_END
815 }
816
817 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
818 {
819 struct mm_struct *mm = vma->vm_mm;
820 register unsigned long a, b, c, d, e, f, g;
821 unsigned long flags, faddr;
822 int octx;
823
824 FLUSH_BEGIN(mm)
825 flush_user_windows();
826 local_irq_save(flags);
827 octx = srmmu_get_context();
828 srmmu_set_context(mm->context);
829 a = 0x20; b = 0x40; c = 0x60;
830 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
831
832 start &= SRMMU_REAL_PMD_MASK;
833 while(start < end) {
834 faddr = (start + (0x10000 - 0x100));
835 goto inside;
836 do {
837 faddr -= 0x100;
838 inside:
839 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
840 "sta %%g0, [%0 + %2] %1\n\t"
841 "sta %%g0, [%0 + %3] %1\n\t"
842 "sta %%g0, [%0 + %4] %1\n\t"
843 "sta %%g0, [%0 + %5] %1\n\t"
844 "sta %%g0, [%0 + %6] %1\n\t"
845 "sta %%g0, [%0 + %7] %1\n\t"
846 "sta %%g0, [%0 + %8] %1\n\t" : :
847 "r" (faddr),
848 "i" (ASI_M_FLUSH_SEG),
849 "r" (a), "r" (b), "r" (c), "r" (d),
850 "r" (e), "r" (f), "r" (g));
851 } while (faddr != start);
852 start += SRMMU_REAL_PMD_SIZE;
853 }
854 srmmu_set_context(octx);
855 local_irq_restore(flags);
856 FLUSH_END
857 }
858
859 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
860 {
861 register unsigned long a, b, c, d, e, f, g;
862 struct mm_struct *mm = vma->vm_mm;
863 unsigned long flags, line;
864 int octx;
865
866 FLUSH_BEGIN(mm)
867 flush_user_windows();
868 local_irq_save(flags);
869 octx = srmmu_get_context();
870 srmmu_set_context(mm->context);
871 a = 0x20; b = 0x40; c = 0x60;
872 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
873
874 page &= PAGE_MASK;
875 line = (page + PAGE_SIZE) - 0x100;
876 goto inside;
877 do {
878 line -= 0x100;
879 inside:
880 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
881 "sta %%g0, [%0 + %2] %1\n\t"
882 "sta %%g0, [%0 + %3] %1\n\t"
883 "sta %%g0, [%0 + %4] %1\n\t"
884 "sta %%g0, [%0 + %5] %1\n\t"
885 "sta %%g0, [%0 + %6] %1\n\t"
886 "sta %%g0, [%0 + %7] %1\n\t"
887 "sta %%g0, [%0 + %8] %1\n\t" : :
888 "r" (line),
889 "i" (ASI_M_FLUSH_PAGE),
890 "r" (a), "r" (b), "r" (c), "r" (d),
891 "r" (e), "r" (f), "r" (g));
892 } while(line != page);
893 srmmu_set_context(octx);
894 local_irq_restore(flags);
895 FLUSH_END
896 }
897
898 /* Cypress is copy-back, at least that is how we configure it. */
899 static void cypress_flush_page_to_ram(unsigned long page)
900 {
901 register unsigned long a, b, c, d, e, f, g;
902 unsigned long line;
903
904 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
905 page &= PAGE_MASK;
906 line = (page + PAGE_SIZE) - 0x100;
907 goto inside;
908 do {
909 line -= 0x100;
910 inside:
911 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
912 "sta %%g0, [%0 + %2] %1\n\t"
913 "sta %%g0, [%0 + %3] %1\n\t"
914 "sta %%g0, [%0 + %4] %1\n\t"
915 "sta %%g0, [%0 + %5] %1\n\t"
916 "sta %%g0, [%0 + %6] %1\n\t"
917 "sta %%g0, [%0 + %7] %1\n\t"
918 "sta %%g0, [%0 + %8] %1\n\t" : :
919 "r" (line),
920 "i" (ASI_M_FLUSH_PAGE),
921 "r" (a), "r" (b), "r" (c), "r" (d),
922 "r" (e), "r" (f), "r" (g));
923 } while(line != page);
924 }
925
926 /* Cypress is also IO cache coherent. */
927 static void cypress_flush_page_for_dma(unsigned long page)
928 {
929 }
930
931 /* Cypress has unified L2 VIPT, from which both instructions and data
932 * are stored. It does not have an onboard icache of any sort, therefore
933 * no flush is necessary.
934 */
935 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
936 {
937 }
938
939 static void cypress_flush_tlb_all(void)
940 {
941 srmmu_flush_whole_tlb();
942 }
943
944 static void cypress_flush_tlb_mm(struct mm_struct *mm)
945 {
946 FLUSH_BEGIN(mm)
947 __asm__ __volatile__(
948 "lda [%0] %3, %%g5\n\t"
949 "sta %2, [%0] %3\n\t"
950 "sta %%g0, [%1] %4\n\t"
951 "sta %%g5, [%0] %3\n"
952 : /* no outputs */
953 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
954 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
955 : "g5");
956 FLUSH_END
957 }
958
959 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
960 {
961 struct mm_struct *mm = vma->vm_mm;
962 unsigned long size;
963
964 FLUSH_BEGIN(mm)
965 start &= SRMMU_PGDIR_MASK;
966 size = SRMMU_PGDIR_ALIGN(end) - start;
967 __asm__ __volatile__(
968 "lda [%0] %5, %%g5\n\t"
969 "sta %1, [%0] %5\n"
970 "1:\n\t"
971 "subcc %3, %4, %3\n\t"
972 "bne 1b\n\t"
973 " sta %%g0, [%2 + %3] %6\n\t"
974 "sta %%g5, [%0] %5\n"
975 : /* no outputs */
976 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
977 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
978 "i" (ASI_M_FLUSH_PROBE)
979 : "g5", "cc");
980 FLUSH_END
981 }
982
983 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
984 {
985 struct mm_struct *mm = vma->vm_mm;
986
987 FLUSH_BEGIN(mm)
988 __asm__ __volatile__(
989 "lda [%0] %3, %%g5\n\t"
990 "sta %1, [%0] %3\n\t"
991 "sta %%g0, [%2] %4\n\t"
992 "sta %%g5, [%0] %3\n"
993 : /* no outputs */
994 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
995 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
996 : "g5");
997 FLUSH_END
998 }
999
1000 /* viking.S */
1001 extern void viking_flush_cache_all(void);
1002 extern void viking_flush_cache_mm(struct mm_struct *mm);
1003 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1004 unsigned long end);
1005 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1006 extern void viking_flush_page_to_ram(unsigned long page);
1007 extern void viking_flush_page_for_dma(unsigned long page);
1008 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1009 extern void viking_flush_page(unsigned long page);
1010 extern void viking_mxcc_flush_page(unsigned long page);
1011 extern void viking_flush_tlb_all(void);
1012 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1013 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1014 unsigned long end);
1015 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1016 unsigned long page);
1017 extern void sun4dsmp_flush_tlb_all(void);
1018 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1019 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1020 unsigned long end);
1021 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1022 unsigned long page);
1023
1024 /* hypersparc.S */
1025 extern void hypersparc_flush_cache_all(void);
1026 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1027 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1028 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1029 extern void hypersparc_flush_page_to_ram(unsigned long page);
1030 extern void hypersparc_flush_page_for_dma(unsigned long page);
1031 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1032 extern void hypersparc_flush_tlb_all(void);
1033 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1034 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1035 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1036 extern void hypersparc_setup_blockops(void);
1037
1038 /*
1039 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1040 * kernel mappings are done with one single contiguous chunk of
1041 * ram. On small ram machines (classics mainly) we only get
1042 * around 8mb mapped for us.
1043 */
1044
1045 void __init early_pgtable_allocfail(char *type)
1046 {
1047 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1048 prom_halt();
1049 }
1050
1051 void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1052 {
1053 pgd_t *pgdp;
1054 pmd_t *pmdp;
1055 pte_t *ptep;
1056
1057 while(start < end) {
1058 pgdp = pgd_offset_k(start);
1059 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1060 pmdp = (pmd_t *) __srmmu_get_nocache(
1061 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1062 if (pmdp == NULL)
1063 early_pgtable_allocfail("pmd");
1064 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1065 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1066 }
1067 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1068 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1069 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1070 if (ptep == NULL)
1071 early_pgtable_allocfail("pte");
1072 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1073 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1074 }
1075 if (start > (0xffffffffUL - PMD_SIZE))
1076 break;
1077 start = (start + PMD_SIZE) & PMD_MASK;
1078 }
1079 }
1080
1081 void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1082 {
1083 pgd_t *pgdp;
1084 pmd_t *pmdp;
1085 pte_t *ptep;
1086
1087 while(start < end) {
1088 pgdp = pgd_offset_k(start);
1089 if(srmmu_pgd_none(*pgdp)) {
1090 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1091 if (pmdp == NULL)
1092 early_pgtable_allocfail("pmd");
1093 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1094 srmmu_pgd_set(pgdp, pmdp);
1095 }
1096 pmdp = srmmu_pmd_offset(pgdp, start);
1097 if(srmmu_pmd_none(*pmdp)) {
1098 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1099 PTE_SIZE);
1100 if (ptep == NULL)
1101 early_pgtable_allocfail("pte");
1102 memset(ptep, 0, PTE_SIZE);
1103 srmmu_pmd_set(pmdp, ptep);
1104 }
1105 if (start > (0xffffffffUL - PMD_SIZE))
1106 break;
1107 start = (start + PMD_SIZE) & PMD_MASK;
1108 }
1109 }
1110
1111 /*
1112 * This is much cleaner than poking around physical address space
1113 * looking at the prom's page table directly which is what most
1114 * other OS's do. Yuck... this is much better.
1115 */
1116 void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1117 {
1118 pgd_t *pgdp;
1119 pmd_t *pmdp;
1120 pte_t *ptep;
1121 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1122 unsigned long prompte;
1123
1124 while(start <= end) {
1125 if (start == 0)
1126 break; /* probably wrap around */
1127 if(start == 0xfef00000)
1128 start = KADB_DEBUGGER_BEGVM;
1129 if(!(prompte = srmmu_hwprobe(start))) {
1130 start += PAGE_SIZE;
1131 continue;
1132 }
1133
1134 /* A red snapper, see what it really is. */
1135 what = 0;
1136
1137 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1138 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1139 what = 1;
1140 }
1141
1142 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1143 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1144 prompte)
1145 what = 2;
1146 }
1147
1148 pgdp = pgd_offset_k(start);
1149 if(what == 2) {
1150 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1151 start += SRMMU_PGDIR_SIZE;
1152 continue;
1153 }
1154 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1155 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1156 if (pmdp == NULL)
1157 early_pgtable_allocfail("pmd");
1158 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1159 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1160 }
1161 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1162 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1163 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1164 PTE_SIZE);
1165 if (ptep == NULL)
1166 early_pgtable_allocfail("pte");
1167 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1168 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1169 }
1170 if(what == 1) {
1171 /*
1172 * We bend the rule where all 16 PTPs in a pmd_t point
1173 * inside the same PTE page, and we leak a perfectly
1174 * good hardware PTE piece. Alternatives seem worse.
1175 */
1176 unsigned int x; /* Index of HW PMD in soft cluster */
1177 x = (start >> PMD_SHIFT) & 15;
1178 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1179 start += SRMMU_REAL_PMD_SIZE;
1180 continue;
1181 }
1182 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1183 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1184 start += PAGE_SIZE;
1185 }
1186 }
1187
1188 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1189
1190 /* Create a third-level SRMMU 16MB page mapping. */
1191 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1192 {
1193 pgd_t *pgdp = pgd_offset_k(vaddr);
1194 unsigned long big_pte;
1195
1196 big_pte = KERNEL_PTE(phys_base >> 4);
1197 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1198 }
1199
1200 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1201 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1202 {
1203 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1204 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1205 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1206 /* Map "low" memory only */
1207 const unsigned long min_vaddr = PAGE_OFFSET;
1208 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1209
1210 if (vstart < min_vaddr || vstart >= max_vaddr)
1211 return vstart;
1212
1213 if (vend > max_vaddr || vend < min_vaddr)
1214 vend = max_vaddr;
1215
1216 while(vstart < vend) {
1217 do_large_mapping(vstart, pstart);
1218 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1219 }
1220 return vstart;
1221 }
1222
1223 static inline void memprobe_error(char *msg)
1224 {
1225 prom_printf(msg);
1226 prom_printf("Halting now...\n");
1227 prom_halt();
1228 }
1229
1230 static inline void map_kernel(void)
1231 {
1232 int i;
1233
1234 if (phys_base > 0) {
1235 do_large_mapping(PAGE_OFFSET, phys_base);
1236 }
1237
1238 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1239 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1240 }
1241
1242 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1243 }
1244
1245 /* Paging initialization on the Sparc Reference MMU. */
1246 extern void sparc_context_init(int);
1247
1248 void (*poke_srmmu)(void) __initdata = NULL;
1249
1250 extern unsigned long bootmem_init(unsigned long *pages_avail);
1251
1252 void __init srmmu_paging_init(void)
1253 {
1254 int i, cpunode;
1255 char node_str[128];
1256 pgd_t *pgd;
1257 pmd_t *pmd;
1258 pte_t *pte;
1259 unsigned long pages_avail;
1260
1261 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1262
1263 if (sparc_cpu_model == sun4d)
1264 num_contexts = 65536; /* We know it is Viking */
1265 else {
1266 /* Find the number of contexts on the srmmu. */
1267 cpunode = prom_getchild(prom_root_node);
1268 num_contexts = 0;
1269 while(cpunode != 0) {
1270 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1271 if(!strcmp(node_str, "cpu")) {
1272 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1273 break;
1274 }
1275 cpunode = prom_getsibling(cpunode);
1276 }
1277 }
1278
1279 if(!num_contexts) {
1280 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1281 prom_halt();
1282 }
1283
1284 pages_avail = 0;
1285 last_valid_pfn = bootmem_init(&pages_avail);
1286
1287 srmmu_nocache_calcsize();
1288 srmmu_nocache_init();
1289 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1290 map_kernel();
1291
1292 /* ctx table has to be physically aligned to its size */
1293 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1294 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1295
1296 for(i = 0; i < num_contexts; i++)
1297 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1298
1299 flush_cache_all();
1300 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1301 #ifdef CONFIG_SMP
1302 /* Stop from hanging here... */
1303 local_flush_tlb_all();
1304 #else
1305 flush_tlb_all();
1306 #endif
1307 poke_srmmu();
1308
1309 #ifdef CONFIG_SUN_IO
1310 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1311 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1312 #endif
1313
1314 srmmu_allocate_ptable_skeleton(
1315 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1316 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1317
1318 pgd = pgd_offset_k(PKMAP_BASE);
1319 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1320 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1321 pkmap_page_table = pte;
1322
1323 flush_cache_all();
1324 flush_tlb_all();
1325
1326 sparc_context_init(num_contexts);
1327
1328 kmap_init();
1329
1330 {
1331 unsigned long zones_size[MAX_NR_ZONES];
1332 unsigned long zholes_size[MAX_NR_ZONES];
1333 unsigned long npages;
1334 int znum;
1335
1336 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1337 zones_size[znum] = zholes_size[znum] = 0;
1338
1339 npages = max_low_pfn - pfn_base;
1340
1341 zones_size[ZONE_DMA] = npages;
1342 zholes_size[ZONE_DMA] = npages - pages_avail;
1343
1344 npages = highend_pfn - max_low_pfn;
1345 zones_size[ZONE_HIGHMEM] = npages;
1346 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1347
1348 free_area_init_node(0, &contig_page_data, zones_size,
1349 pfn_base, zholes_size);
1350 }
1351 }
1352
1353 static void srmmu_mmu_info(struct seq_file *m)
1354 {
1355 seq_printf(m,
1356 "MMU type\t: %s\n"
1357 "contexts\t: %d\n"
1358 "nocache total\t: %ld\n"
1359 "nocache used\t: %d\n",
1360 srmmu_name,
1361 num_contexts,
1362 srmmu_nocache_size,
1363 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1364 }
1365
1366 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1367 {
1368 }
1369
1370 static void srmmu_destroy_context(struct mm_struct *mm)
1371 {
1372
1373 if(mm->context != NO_CONTEXT) {
1374 flush_cache_mm(mm);
1375 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1376 flush_tlb_mm(mm);
1377 spin_lock(&srmmu_context_spinlock);
1378 free_context(mm->context);
1379 spin_unlock(&srmmu_context_spinlock);
1380 mm->context = NO_CONTEXT;
1381 }
1382 }
1383
1384 /* Init various srmmu chip types. */
1385 static void __init srmmu_is_bad(void)
1386 {
1387 prom_printf("Could not determine SRMMU chip type.\n");
1388 prom_halt();
1389 }
1390
1391 static void __init init_vac_layout(void)
1392 {
1393 int nd, cache_lines;
1394 char node_str[128];
1395 #ifdef CONFIG_SMP
1396 int cpu = 0;
1397 unsigned long max_size = 0;
1398 unsigned long min_line_size = 0x10000000;
1399 #endif
1400
1401 nd = prom_getchild(prom_root_node);
1402 while((nd = prom_getsibling(nd)) != 0) {
1403 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1404 if(!strcmp(node_str, "cpu")) {
1405 vac_line_size = prom_getint(nd, "cache-line-size");
1406 if (vac_line_size == -1) {
1407 prom_printf("can't determine cache-line-size, "
1408 "halting.\n");
1409 prom_halt();
1410 }
1411 cache_lines = prom_getint(nd, "cache-nlines");
1412 if (cache_lines == -1) {
1413 prom_printf("can't determine cache-nlines, halting.\n");
1414 prom_halt();
1415 }
1416
1417 vac_cache_size = cache_lines * vac_line_size;
1418 #ifdef CONFIG_SMP
1419 if(vac_cache_size > max_size)
1420 max_size = vac_cache_size;
1421 if(vac_line_size < min_line_size)
1422 min_line_size = vac_line_size;
1423 //FIXME: cpus not contiguous!!
1424 cpu++;
1425 if (cpu >= NR_CPUS || !cpu_online(cpu))
1426 break;
1427 #else
1428 break;
1429 #endif
1430 }
1431 }
1432 if(nd == 0) {
1433 prom_printf("No CPU nodes found, halting.\n");
1434 prom_halt();
1435 }
1436 #ifdef CONFIG_SMP
1437 vac_cache_size = max_size;
1438 vac_line_size = min_line_size;
1439 #endif
1440 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1441 (int)vac_cache_size, (int)vac_line_size);
1442 }
1443
1444 static void __init poke_hypersparc(void)
1445 {
1446 volatile unsigned long clear;
1447 unsigned long mreg = srmmu_get_mmureg();
1448
1449 hyper_flush_unconditional_combined();
1450
1451 mreg &= ~(HYPERSPARC_CWENABLE);
1452 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1453 mreg |= (HYPERSPARC_CMODE);
1454
1455 srmmu_set_mmureg(mreg);
1456
1457 #if 0 /* XXX I think this is bad news... -DaveM */
1458 hyper_clear_all_tags();
1459 #endif
1460
1461 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1462 hyper_flush_whole_icache();
1463 clear = srmmu_get_faddr();
1464 clear = srmmu_get_fstatus();
1465 }
1466
1467 static void __init init_hypersparc(void)
1468 {
1469 srmmu_name = "ROSS HyperSparc";
1470 srmmu_modtype = HyperSparc;
1471
1472 init_vac_layout();
1473
1474 is_hypersparc = 1;
1475
1476 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1477 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1478 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1479 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1480 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1481 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1482 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1483
1484 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1485 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1486 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1487 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1488
1489 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1491 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1492
1493
1494 poke_srmmu = poke_hypersparc;
1495
1496 hypersparc_setup_blockops();
1497 }
1498
1499 static void __init poke_cypress(void)
1500 {
1501 unsigned long mreg = srmmu_get_mmureg();
1502 unsigned long faddr, tagval;
1503 volatile unsigned long cypress_sucks;
1504 volatile unsigned long clear;
1505
1506 clear = srmmu_get_faddr();
1507 clear = srmmu_get_fstatus();
1508
1509 if (!(mreg & CYPRESS_CENABLE)) {
1510 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1511 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1512 "sta %%g0, [%0] %2\n\t" : :
1513 "r" (faddr), "r" (0x40000),
1514 "i" (ASI_M_DATAC_TAG));
1515 }
1516 } else {
1517 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1518 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1519 "=r" (tagval) :
1520 "r" (faddr), "r" (0x40000),
1521 "i" (ASI_M_DATAC_TAG));
1522
1523 /* If modified and valid, kick it. */
1524 if((tagval & 0x60) == 0x60)
1525 cypress_sucks = *(unsigned long *)
1526 (0xf0020000 + faddr);
1527 }
1528 }
1529
1530 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1531 clear = srmmu_get_faddr();
1532 clear = srmmu_get_fstatus();
1533
1534 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1535 srmmu_set_mmureg(mreg);
1536 }
1537
1538 static void __init init_cypress_common(void)
1539 {
1540 init_vac_layout();
1541
1542 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1543 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1544 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1545 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1546 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1547 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1548 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1549
1550 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1551 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1552 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1553 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1554
1555
1556 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1557 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1558 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1559
1560 poke_srmmu = poke_cypress;
1561 }
1562
1563 static void __init init_cypress_604(void)
1564 {
1565 srmmu_name = "ROSS Cypress-604(UP)";
1566 srmmu_modtype = Cypress;
1567 init_cypress_common();
1568 }
1569
1570 static void __init init_cypress_605(unsigned long mrev)
1571 {
1572 srmmu_name = "ROSS Cypress-605(MP)";
1573 if(mrev == 0xe) {
1574 srmmu_modtype = Cypress_vE;
1575 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1576 } else {
1577 if(mrev == 0xd) {
1578 srmmu_modtype = Cypress_vD;
1579 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1580 } else {
1581 srmmu_modtype = Cypress;
1582 }
1583 }
1584 init_cypress_common();
1585 }
1586
1587 static void __init poke_swift(void)
1588 {
1589 unsigned long mreg;
1590
1591 /* Clear any crap from the cache or else... */
1592 swift_flush_cache_all();
1593
1594 /* Enable I & D caches */
1595 mreg = srmmu_get_mmureg();
1596 mreg |= (SWIFT_IE | SWIFT_DE);
1597 /*
1598 * The Swift branch folding logic is completely broken. At
1599 * trap time, if things are just right, if can mistakenly
1600 * think that a trap is coming from kernel mode when in fact
1601 * it is coming from user mode (it mis-executes the branch in
1602 * the trap code). So you see things like crashme completely
1603 * hosing your machine which is completely unacceptable. Turn
1604 * this shit off... nice job Fujitsu.
1605 */
1606 mreg &= ~(SWIFT_BF);
1607 srmmu_set_mmureg(mreg);
1608 }
1609
1610 #define SWIFT_MASKID_ADDR 0x10003018
1611 static void __init init_swift(void)
1612 {
1613 unsigned long swift_rev;
1614
1615 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1616 "srl %0, 0x18, %0\n\t" :
1617 "=r" (swift_rev) :
1618 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1619 srmmu_name = "Fujitsu Swift";
1620 switch(swift_rev) {
1621 case 0x11:
1622 case 0x20:
1623 case 0x23:
1624 case 0x30:
1625 srmmu_modtype = Swift_lots_o_bugs;
1626 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1627 /*
1628 * Gee george, I wonder why Sun is so hush hush about
1629 * this hardware bug... really braindamage stuff going
1630 * on here. However I think we can find a way to avoid
1631 * all of the workaround overhead under Linux. Basically,
1632 * any page fault can cause kernel pages to become user
1633 * accessible (the mmu gets confused and clears some of
1634 * the ACC bits in kernel ptes). Aha, sounds pretty
1635 * horrible eh? But wait, after extensive testing it appears
1636 * that if you use pgd_t level large kernel pte's (like the
1637 * 4MB pages on the Pentium) the bug does not get tripped
1638 * at all. This avoids almost all of the major overhead.
1639 * Welcome to a world where your vendor tells you to,
1640 * "apply this kernel patch" instead of "sorry for the
1641 * broken hardware, send it back and we'll give you
1642 * properly functioning parts"
1643 */
1644 break;
1645 case 0x25:
1646 case 0x31:
1647 srmmu_modtype = Swift_bad_c;
1648 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1649 /*
1650 * You see Sun allude to this hardware bug but never
1651 * admit things directly, they'll say things like,
1652 * "the Swift chip cache problems" or similar.
1653 */
1654 break;
1655 default:
1656 srmmu_modtype = Swift_ok;
1657 break;
1658 };
1659
1660 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1661 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1662 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1663 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1664
1665
1666 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1667 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1668 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1669 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1670
1671 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1673 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1674
1675 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1676
1677 flush_page_for_dma_global = 0;
1678
1679 /*
1680 * Are you now convinced that the Swift is one of the
1681 * biggest VLSI abortions of all time? Bravo Fujitsu!
1682 * Fujitsu, the !#?!%$'d up processor people. I bet if
1683 * you examined the microcode of the Swift you'd find
1684 * XXX's all over the place.
1685 */
1686 poke_srmmu = poke_swift;
1687 }
1688
1689 static void turbosparc_flush_cache_all(void)
1690 {
1691 flush_user_windows();
1692 turbosparc_idflash_clear();
1693 }
1694
1695 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1696 {
1697 FLUSH_BEGIN(mm)
1698 flush_user_windows();
1699 turbosparc_idflash_clear();
1700 FLUSH_END
1701 }
1702
1703 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1704 {
1705 FLUSH_BEGIN(vma->vm_mm)
1706 flush_user_windows();
1707 turbosparc_idflash_clear();
1708 FLUSH_END
1709 }
1710
1711 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1712 {
1713 FLUSH_BEGIN(vma->vm_mm)
1714 flush_user_windows();
1715 if (vma->vm_flags & VM_EXEC)
1716 turbosparc_flush_icache();
1717 turbosparc_flush_dcache();
1718 FLUSH_END
1719 }
1720
1721 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1722 static void turbosparc_flush_page_to_ram(unsigned long page)
1723 {
1724 #ifdef TURBOSPARC_WRITEBACK
1725 volatile unsigned long clear;
1726
1727 if (srmmu_hwprobe(page))
1728 turbosparc_flush_page_cache(page);
1729 clear = srmmu_get_fstatus();
1730 #endif
1731 }
1732
1733 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1734 {
1735 }
1736
1737 static void turbosparc_flush_page_for_dma(unsigned long page)
1738 {
1739 turbosparc_flush_dcache();
1740 }
1741
1742 static void turbosparc_flush_tlb_all(void)
1743 {
1744 srmmu_flush_whole_tlb();
1745 }
1746
1747 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1748 {
1749 FLUSH_BEGIN(mm)
1750 srmmu_flush_whole_tlb();
1751 FLUSH_END
1752 }
1753
1754 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1755 {
1756 FLUSH_BEGIN(vma->vm_mm)
1757 srmmu_flush_whole_tlb();
1758 FLUSH_END
1759 }
1760
1761 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1762 {
1763 FLUSH_BEGIN(vma->vm_mm)
1764 srmmu_flush_whole_tlb();
1765 FLUSH_END
1766 }
1767
1768
1769 static void __init poke_turbosparc(void)
1770 {
1771 unsigned long mreg = srmmu_get_mmureg();
1772 unsigned long ccreg;
1773
1774 /* Clear any crap from the cache or else... */
1775 turbosparc_flush_cache_all();
1776 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1777 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1778 srmmu_set_mmureg(mreg);
1779
1780 ccreg = turbosparc_get_ccreg();
1781
1782 #ifdef TURBOSPARC_WRITEBACK
1783 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1784 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1785 /* Write-back D-cache, emulate VLSI
1786 * abortion number three, not number one */
1787 #else
1788 /* For now let's play safe, optimize later */
1789 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1790 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1791 ccreg &= ~(TURBOSPARC_uS2);
1792 /* Emulate VLSI abortion number three, not number one */
1793 #endif
1794
1795 switch (ccreg & 7) {
1796 case 0: /* No SE cache */
1797 case 7: /* Test mode */
1798 break;
1799 default:
1800 ccreg |= (TURBOSPARC_SCENABLE);
1801 }
1802 turbosparc_set_ccreg (ccreg);
1803
1804 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1805 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1806 srmmu_set_mmureg(mreg);
1807 }
1808
1809 static void __init init_turbosparc(void)
1810 {
1811 srmmu_name = "Fujitsu TurboSparc";
1812 srmmu_modtype = TurboSparc;
1813
1814 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1815 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1816 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1817 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1818
1819 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1820 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1821 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1822 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1823
1824 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1825
1826 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1827 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1828
1829 poke_srmmu = poke_turbosparc;
1830 }
1831
1832 static void __init poke_tsunami(void)
1833 {
1834 unsigned long mreg = srmmu_get_mmureg();
1835
1836 tsunami_flush_icache();
1837 tsunami_flush_dcache();
1838 mreg &= ~TSUNAMI_ITD;
1839 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1840 srmmu_set_mmureg(mreg);
1841 }
1842
1843 static void __init init_tsunami(void)
1844 {
1845 /*
1846 * Tsunami's pretty sane, Sun and TI actually got it
1847 * somewhat right this time. Fujitsu should have
1848 * taken some lessons from them.
1849 */
1850
1851 srmmu_name = "TI Tsunami";
1852 srmmu_modtype = Tsunami;
1853
1854 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1855 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1856 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1857 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1858
1859
1860 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1861 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1862 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1863 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1864
1865 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1866 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1867 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1868
1869 poke_srmmu = poke_tsunami;
1870
1871 tsunami_setup_blockops();
1872 }
1873
1874 static void __init poke_viking(void)
1875 {
1876 unsigned long mreg = srmmu_get_mmureg();
1877 static int smp_catch;
1878
1879 if(viking_mxcc_present) {
1880 unsigned long mxcc_control = mxcc_get_creg();
1881
1882 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1883 mxcc_control &= ~(MXCC_CTL_RRC);
1884 mxcc_set_creg(mxcc_control);
1885
1886 /*
1887 * We don't need memory parity checks.
1888 * XXX This is a mess, have to dig out later. ecd.
1889 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1890 */
1891
1892 /* We do cache ptables on MXCC. */
1893 mreg |= VIKING_TCENABLE;
1894 } else {
1895 unsigned long bpreg;
1896
1897 mreg &= ~(VIKING_TCENABLE);
1898 if(smp_catch++) {
1899 /* Must disable mixed-cmd mode here for other cpu's. */
1900 bpreg = viking_get_bpreg();
1901 bpreg &= ~(VIKING_ACTION_MIX);
1902 viking_set_bpreg(bpreg);
1903
1904 /* Just in case PROM does something funny. */
1905 msi_set_sync();
1906 }
1907 }
1908
1909 mreg |= VIKING_SPENABLE;
1910 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1911 mreg |= VIKING_SBENABLE;
1912 mreg &= ~(VIKING_ACENABLE);
1913 srmmu_set_mmureg(mreg);
1914
1915 #ifdef CONFIG_SMP
1916 /* Avoid unnecessary cross calls. */
1917 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1918 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1919 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1920 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1921 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1922 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1923 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1924 btfixup();
1925 #endif
1926 }
1927
1928 static void __init init_viking(void)
1929 {
1930 unsigned long mreg = srmmu_get_mmureg();
1931
1932 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1933 if(mreg & VIKING_MMODE) {
1934 srmmu_name = "TI Viking";
1935 viking_mxcc_present = 0;
1936 msi_set_sync();
1937
1938 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1939 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1940 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1941
1942 /*
1943 * We need this to make sure old viking takes no hits
1944 * on it's cache for dma snoops to workaround the
1945 * "load from non-cacheable memory" interrupt bug.
1946 * This is only necessary because of the new way in
1947 * which we use the IOMMU.
1948 */
1949 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1950
1951 flush_page_for_dma_global = 0;
1952 } else {
1953 srmmu_name = "TI Viking/MXCC";
1954 viking_mxcc_present = 1;
1955
1956 srmmu_cache_pagetables = 1;
1957
1958 /* MXCC vikings lack the DMA snooping bug. */
1959 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1960 }
1961
1962 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1963 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1964 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1965 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1966
1967 #ifdef CONFIG_SMP
1968 if (sparc_cpu_model == sun4d) {
1969 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1970 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1971 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1972 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1973 } else
1974 #endif
1975 {
1976 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1977 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1978 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1979 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1980 }
1981
1982 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1983 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1984
1985 poke_srmmu = poke_viking;
1986 }
1987
1988 /* Probe for the srmmu chip version. */
1989 static void __init get_srmmu_type(void)
1990 {
1991 unsigned long mreg, psr;
1992 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1993
1994 srmmu_modtype = SRMMU_INVAL_MOD;
1995 hwbug_bitmask = 0;
1996
1997 mreg = srmmu_get_mmureg(); psr = get_psr();
1998 mod_typ = (mreg & 0xf0000000) >> 28;
1999 mod_rev = (mreg & 0x0f000000) >> 24;
2000 psr_typ = (psr >> 28) & 0xf;
2001 psr_vers = (psr >> 24) & 0xf;
2002
2003 /* First, check for HyperSparc or Cypress. */
2004 if(mod_typ == 1) {
2005 switch(mod_rev) {
2006 case 7:
2007 /* UP or MP Hypersparc */
2008 init_hypersparc();
2009 break;
2010 case 0:
2011 case 2:
2012 /* Uniprocessor Cypress */
2013 init_cypress_604();
2014 break;
2015 case 10:
2016 case 11:
2017 case 12:
2018 /* _REALLY OLD_ Cypress MP chips... */
2019 case 13:
2020 case 14:
2021 case 15:
2022 /* MP Cypress mmu/cache-controller */
2023 init_cypress_605(mod_rev);
2024 break;
2025 default:
2026 /* Some other Cypress revision, assume a 605. */
2027 init_cypress_605(mod_rev);
2028 break;
2029 };
2030 return;
2031 }
2032
2033 /*
2034 * Now Fujitsu TurboSparc. It might happen that it is
2035 * in Swift emulation mode, so we will check later...
2036 */
2037 if (psr_typ == 0 && psr_vers == 5) {
2038 init_turbosparc();
2039 return;
2040 }
2041
2042 /* Next check for Fujitsu Swift. */
2043 if(psr_typ == 0 && psr_vers == 4) {
2044 int cpunode;
2045 char node_str[128];
2046
2047 /* Look if it is not a TurboSparc emulating Swift... */
2048 cpunode = prom_getchild(prom_root_node);
2049 while((cpunode = prom_getsibling(cpunode)) != 0) {
2050 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2051 if(!strcmp(node_str, "cpu")) {
2052 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2053 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2054 init_turbosparc();
2055 return;
2056 }
2057 break;
2058 }
2059 }
2060
2061 init_swift();
2062 return;
2063 }
2064
2065 /* Now the Viking family of srmmu. */
2066 if(psr_typ == 4 &&
2067 ((psr_vers == 0) ||
2068 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2069 init_viking();
2070 return;
2071 }
2072
2073 /* Finally the Tsunami. */
2074 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2075 init_tsunami();
2076 return;
2077 }
2078
2079 /* Oh well */
2080 srmmu_is_bad();
2081 }
2082
2083 /* don't laugh, static pagetables */
2084 static void srmmu_check_pgt_cache(int low, int high)
2085 {
2086 }
2087
2088 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2089 tsetup_mmu_patchme, rtrap_mmu_patchme;
2090
2091 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2092 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2093
2094 extern unsigned long srmmu_fault;
2095
2096 #define PATCH_BRANCH(insn, dest) do { \
2097 iaddr = &(insn); \
2098 daddr = &(dest); \
2099 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2100 } while(0)
2101
2102 static void __init patch_window_trap_handlers(void)
2103 {
2104 unsigned long *iaddr, *daddr;
2105
2106 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2107 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2108 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2109 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2110 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2111 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2112 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2113 }
2114
2115 #ifdef CONFIG_SMP
2116 /* Local cross-calls. */
2117 static void smp_flush_page_for_dma(unsigned long page)
2118 {
2119 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2120 local_flush_page_for_dma(page);
2121 }
2122
2123 #endif
2124
2125 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2126 {
2127 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2128 }
2129
2130 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2131 {
2132 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2133 }
2134
2135 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2136 {
2137 prot &= ~__pgprot(SRMMU_CACHE);
2138
2139 return prot;
2140 }
2141
2142 /* Load up routines and constants for sun4m and sun4d mmu */
2143 void __init ld_mmu_srmmu(void)
2144 {
2145 extern void ld_mmu_iommu(void);
2146 extern void ld_mmu_iounit(void);
2147 extern void ___xchg32_sun4md(void);
2148
2149 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2150 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2151 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2152
2153 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2154 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2155
2156 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2157 BTFIXUPSET_INT(page_shared, pgprot_val(SRMMU_PAGE_SHARED));
2158 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2159 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2160 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2161 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2162
2163 /* Functions */
2164 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2165 #ifndef CONFIG_SMP
2166 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2167 #endif
2168 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2169
2170 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2171 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2172
2173 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2174 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2175 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2176
2177 BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2178
2179 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2180 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2181
2182 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2183 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2184 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2185
2186 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2187 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2188 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2189 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2190
2191 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2192 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2193 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2194 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2195 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2196 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2197
2198 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2199 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2200 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2201
2202 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2203 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2204 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2205 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2206 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2207 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2208 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2209 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2210
2211 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2212 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2213 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2214 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2215 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2216 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2217 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2218 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2219 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2220 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2221 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2222 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2223
2224 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2225 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2226
2227 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2228 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2229 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2230
2231 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2232
2233 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2234 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2235
2236 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2237 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2238
2239 get_srmmu_type();
2240 patch_window_trap_handlers();
2241
2242 #ifdef CONFIG_SMP
2243 /* El switcheroo... */
2244
2245 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2246 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2247 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2248 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2249 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2250 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2251 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2252 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2253 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2254 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2255 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2256
2257 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2258 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2259 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2260 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2261 if (sparc_cpu_model != sun4d) {
2262 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2263 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2264 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2265 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2266 }
2267 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2268 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2269 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2270 #endif
2271
2272 if (sparc_cpu_model == sun4d)
2273 ld_mmu_iounit();
2274 else
2275 ld_mmu_iommu();
2276 #ifdef CONFIG_SMP
2277 if (sparc_cpu_model == sun4d)
2278 sun4d_init_smp();
2279 else
2280 sun4m_init_smp();
2281 #endif
2282 }