]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/processor.h
Merge tag 'modules-for-v4.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / processor.h
1 #ifndef _ASM_X86_PROCESSOR_H
2 #define _ASM_X86_PROCESSOR_H
3
4 #include <asm/processor-flags.h>
5
6 /* Forward declaration, a strange C thing */
7 struct task_struct;
8 struct mm_struct;
9 struct vm86;
10
11 #include <asm/math_emu.h>
12 #include <asm/segment.h>
13 #include <asm/types.h>
14 #include <uapi/asm/sigcontext.h>
15 #include <asm/current.h>
16 #include <asm/cpufeatures.h>
17 #include <asm/page.h>
18 #include <asm/pgtable_types.h>
19 #include <asm/percpu.h>
20 #include <asm/msr.h>
21 #include <asm/desc_defs.h>
22 #include <asm/nops.h>
23 #include <asm/special_insns.h>
24 #include <asm/fpu/types.h>
25
26 #include <linux/personality.h>
27 #include <linux/cache.h>
28 #include <linux/threads.h>
29 #include <linux/math64.h>
30 #include <linux/err.h>
31 #include <linux/irqflags.h>
32
33 /*
34 * We handle most unaligned accesses in hardware. On the other hand
35 * unaligned DMA can be quite expensive on some Nehalem processors.
36 *
37 * Based on this we disable the IP header alignment in network drivers.
38 */
39 #define NET_IP_ALIGN 0
40
41 #define HBP_NUM 4
42 /*
43 * Default implementation of macro that returns current
44 * instruction pointer ("program counter").
45 */
46 static inline void *current_text_addr(void)
47 {
48 void *pc;
49
50 asm volatile("mov $1f, %0; 1:":"=r" (pc));
51
52 return pc;
53 }
54
55 /*
56 * These alignment constraints are for performance in the vSMP case,
57 * but in the task_struct case we must also meet hardware imposed
58 * alignment requirements of the FPU state:
59 */
60 #ifdef CONFIG_X86_VSMP
61 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
62 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
63 #else
64 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
65 # define ARCH_MIN_MMSTRUCT_ALIGN 0
66 #endif
67
68 enum tlb_infos {
69 ENTRIES,
70 NR_INFO
71 };
72
73 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80
81 /*
82 * CPU type and hardware bug flags. Kept separately for each CPU.
83 * Members of this structure are referenced in head.S, so think twice
84 * before touching them. [mj]
85 */
86
87 struct cpuinfo_x86 {
88 __u8 x86; /* CPU family */
89 __u8 x86_vendor; /* CPU vendor */
90 __u8 x86_model;
91 __u8 x86_mask;
92 #ifdef CONFIG_X86_32
93 char wp_works_ok; /* It doesn't on 386's */
94
95 /* Problems on some 486Dx4's and old 386's: */
96 char rfu;
97 char pad0;
98 char pad1;
99 #else
100 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
101 int x86_tlbsize;
102 #endif
103 __u8 x86_virt_bits;
104 __u8 x86_phys_bits;
105 /* CPUID returned core id bits: */
106 __u8 x86_coreid_bits;
107 /* Max extended CPUID function supported: */
108 __u32 extended_cpuid_level;
109 /* Maximum supported CPUID level, -1=no CPUID: */
110 int cpuid_level;
111 __u32 x86_capability[NCAPINTS + NBUGINTS];
112 char x86_vendor_id[16];
113 char x86_model_id[64];
114 /* in KB - valid for CPUS which support this call: */
115 int x86_cache_size;
116 int x86_cache_alignment; /* In bytes */
117 /* Cache QoS architectural values: */
118 int x86_cache_max_rmid; /* max index */
119 int x86_cache_occ_scale; /* scale to bytes */
120 int x86_power;
121 unsigned long loops_per_jiffy;
122 /* cpuid returned max cores value: */
123 u16 x86_max_cores;
124 u16 apicid;
125 u16 initial_apicid;
126 u16 x86_clflush_size;
127 /* number of cores as seen by the OS: */
128 u16 booted_cores;
129 /* Physical processor id: */
130 u16 phys_proc_id;
131 /* Logical processor id: */
132 u16 logical_proc_id;
133 /* Core id: */
134 u16 cpu_core_id;
135 /* Index into per_cpu list: */
136 u16 cpu_index;
137 u32 microcode;
138 };
139
140 struct cpuid_regs {
141 u32 eax, ebx, ecx, edx;
142 };
143
144 enum cpuid_regs_idx {
145 CPUID_EAX = 0,
146 CPUID_EBX,
147 CPUID_ECX,
148 CPUID_EDX,
149 };
150
151 #define X86_VENDOR_INTEL 0
152 #define X86_VENDOR_CYRIX 1
153 #define X86_VENDOR_AMD 2
154 #define X86_VENDOR_UMC 3
155 #define X86_VENDOR_CENTAUR 5
156 #define X86_VENDOR_TRANSMETA 7
157 #define X86_VENDOR_NSC 8
158 #define X86_VENDOR_NUM 9
159
160 #define X86_VENDOR_UNKNOWN 0xff
161
162 /*
163 * capabilities of CPUs
164 */
165 extern struct cpuinfo_x86 boot_cpu_data;
166 extern struct cpuinfo_x86 new_cpu_data;
167
168 extern struct tss_struct doublefault_tss;
169 extern __u32 cpu_caps_cleared[NCAPINTS];
170 extern __u32 cpu_caps_set[NCAPINTS];
171
172 #ifdef CONFIG_SMP
173 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
174 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
175 #else
176 #define cpu_info boot_cpu_data
177 #define cpu_data(cpu) boot_cpu_data
178 #endif
179
180 extern const struct seq_operations cpuinfo_op;
181
182 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
183
184 extern void cpu_detect(struct cpuinfo_x86 *c);
185
186 extern void early_cpu_init(void);
187 extern void identify_boot_cpu(void);
188 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
189 extern void print_cpu_info(struct cpuinfo_x86 *);
190 void print_cpu_msr(struct cpuinfo_x86 *);
191 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
192 extern u32 get_scattered_cpuid_leaf(unsigned int level,
193 unsigned int sub_leaf,
194 enum cpuid_regs_idx reg);
195 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
196 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
197
198 extern void detect_extended_topology(struct cpuinfo_x86 *c);
199 extern void detect_ht(struct cpuinfo_x86 *c);
200
201 #ifdef CONFIG_X86_32
202 extern int have_cpuid_p(void);
203 #else
204 static inline int have_cpuid_p(void)
205 {
206 return 1;
207 }
208 #endif
209 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
210 unsigned int *ecx, unsigned int *edx)
211 {
212 /* ecx is often an input as well as an output. */
213 asm volatile("cpuid"
214 : "=a" (*eax),
215 "=b" (*ebx),
216 "=c" (*ecx),
217 "=d" (*edx)
218 : "0" (*eax), "2" (*ecx)
219 : "memory");
220 }
221
222 #define native_cpuid_reg(reg) \
223 static inline unsigned int native_cpuid_##reg(unsigned int op) \
224 { \
225 unsigned int eax = op, ebx, ecx = 0, edx; \
226 \
227 native_cpuid(&eax, &ebx, &ecx, &edx); \
228 \
229 return reg; \
230 }
231
232 /*
233 * Native CPUID functions returning a single datum.
234 */
235 native_cpuid_reg(eax)
236 native_cpuid_reg(ebx)
237 native_cpuid_reg(ecx)
238 native_cpuid_reg(edx)
239
240 static inline void load_cr3(pgd_t *pgdir)
241 {
242 write_cr3(__pa(pgdir));
243 }
244
245 #ifdef CONFIG_X86_32
246 /* This is the TSS defined by the hardware. */
247 struct x86_hw_tss {
248 unsigned short back_link, __blh;
249 unsigned long sp0;
250 unsigned short ss0, __ss0h;
251 unsigned long sp1;
252
253 /*
254 * We don't use ring 1, so ss1 is a convenient scratch space in
255 * the same cacheline as sp0. We use ss1 to cache the value in
256 * MSR_IA32_SYSENTER_CS. When we context switch
257 * MSR_IA32_SYSENTER_CS, we first check if the new value being
258 * written matches ss1, and, if it's not, then we wrmsr the new
259 * value and update ss1.
260 *
261 * The only reason we context switch MSR_IA32_SYSENTER_CS is
262 * that we set it to zero in vm86 tasks to avoid corrupting the
263 * stack if we were to go through the sysenter path from vm86
264 * mode.
265 */
266 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
267
268 unsigned short __ss1h;
269 unsigned long sp2;
270 unsigned short ss2, __ss2h;
271 unsigned long __cr3;
272 unsigned long ip;
273 unsigned long flags;
274 unsigned long ax;
275 unsigned long cx;
276 unsigned long dx;
277 unsigned long bx;
278 unsigned long sp;
279 unsigned long bp;
280 unsigned long si;
281 unsigned long di;
282 unsigned short es, __esh;
283 unsigned short cs, __csh;
284 unsigned short ss, __ssh;
285 unsigned short ds, __dsh;
286 unsigned short fs, __fsh;
287 unsigned short gs, __gsh;
288 unsigned short ldt, __ldth;
289 unsigned short trace;
290 unsigned short io_bitmap_base;
291
292 } __attribute__((packed));
293 #else
294 struct x86_hw_tss {
295 u32 reserved1;
296 u64 sp0;
297 u64 sp1;
298 u64 sp2;
299 u64 reserved2;
300 u64 ist[7];
301 u32 reserved3;
302 u32 reserved4;
303 u16 reserved5;
304 u16 io_bitmap_base;
305
306 } __attribute__((packed)) ____cacheline_aligned;
307 #endif
308
309 /*
310 * IO-bitmap sizes:
311 */
312 #define IO_BITMAP_BITS 65536
313 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
314 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
315 #define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap)
316 #define INVALID_IO_BITMAP_OFFSET 0x8000
317
318 struct tss_struct {
319 /*
320 * The hardware state:
321 */
322 struct x86_hw_tss x86_tss;
323
324 /*
325 * The extra 1 is there because the CPU will access an
326 * additional byte beyond the end of the IO permission
327 * bitmap. The extra byte must be all 1 bits, and must
328 * be within the limit.
329 */
330 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
331
332 #ifdef CONFIG_X86_32
333 /*
334 * Space for the temporary SYSENTER stack.
335 */
336 unsigned long SYSENTER_stack_canary;
337 unsigned long SYSENTER_stack[64];
338 #endif
339
340 } ____cacheline_aligned;
341
342 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
343
344 #ifdef CONFIG_X86_32
345 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
346 #endif
347
348 /*
349 * Save the original ist values for checking stack pointers during debugging
350 */
351 struct orig_ist {
352 unsigned long ist[7];
353 };
354
355 #ifdef CONFIG_X86_64
356 DECLARE_PER_CPU(struct orig_ist, orig_ist);
357
358 union irq_stack_union {
359 char irq_stack[IRQ_STACK_SIZE];
360 /*
361 * GCC hardcodes the stack canary as %gs:40. Since the
362 * irq_stack is the object at %gs:0, we reserve the bottom
363 * 48 bytes of the irq stack for the canary.
364 */
365 struct {
366 char gs_base[40];
367 unsigned long stack_canary;
368 };
369 };
370
371 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
372 DECLARE_INIT_PER_CPU(irq_stack_union);
373
374 DECLARE_PER_CPU(char *, irq_stack_ptr);
375 DECLARE_PER_CPU(unsigned int, irq_count);
376 extern asmlinkage void ignore_sysret(void);
377 #else /* X86_64 */
378 #ifdef CONFIG_CC_STACKPROTECTOR
379 /*
380 * Make sure stack canary segment base is cached-aligned:
381 * "For Intel Atom processors, avoid non zero segment base address
382 * that is not aligned to cache line boundary at all cost."
383 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
384 */
385 struct stack_canary {
386 char __pad[20]; /* canary at %gs:20 */
387 unsigned long canary;
388 };
389 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
390 #endif
391 /*
392 * per-CPU IRQ handling stacks
393 */
394 struct irq_stack {
395 u32 stack[THREAD_SIZE/sizeof(u32)];
396 } __aligned(THREAD_SIZE);
397
398 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
399 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
400 #endif /* X86_64 */
401
402 extern unsigned int fpu_kernel_xstate_size;
403 extern unsigned int fpu_user_xstate_size;
404
405 struct perf_event;
406
407 typedef struct {
408 unsigned long seg;
409 } mm_segment_t;
410
411 struct thread_struct {
412 /* Cached TLS descriptors: */
413 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
414 unsigned long sp0;
415 unsigned long sp;
416 #ifdef CONFIG_X86_32
417 unsigned long sysenter_cs;
418 #else
419 unsigned short es;
420 unsigned short ds;
421 unsigned short fsindex;
422 unsigned short gsindex;
423 #endif
424
425 u32 status; /* thread synchronous flags */
426
427 #ifdef CONFIG_X86_64
428 unsigned long fsbase;
429 unsigned long gsbase;
430 #else
431 /*
432 * XXX: this could presumably be unsigned short. Alternatively,
433 * 32-bit kernels could be taught to use fsindex instead.
434 */
435 unsigned long fs;
436 unsigned long gs;
437 #endif
438
439 /* Save middle states of ptrace breakpoints */
440 struct perf_event *ptrace_bps[HBP_NUM];
441 /* Debug status used for traps, single steps, etc... */
442 unsigned long debugreg6;
443 /* Keep track of the exact dr7 value set by the user */
444 unsigned long ptrace_dr7;
445 /* Fault info: */
446 unsigned long cr2;
447 unsigned long trap_nr;
448 unsigned long error_code;
449 #ifdef CONFIG_VM86
450 /* Virtual 86 mode info */
451 struct vm86 *vm86;
452 #endif
453 /* IO permissions: */
454 unsigned long *io_bitmap_ptr;
455 unsigned long iopl;
456 /* Max allowed port in the bitmap, in bytes: */
457 unsigned io_bitmap_max;
458
459 mm_segment_t addr_limit;
460
461 unsigned int sig_on_uaccess_err:1;
462 unsigned int uaccess_err:1; /* uaccess failed */
463
464 /* Floating point and extended processor state */
465 struct fpu fpu;
466 /*
467 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
468 * the end.
469 */
470 };
471
472 /*
473 * Thread-synchronous status.
474 *
475 * This is different from the flags in that nobody else
476 * ever touches our thread-synchronous status, so we don't
477 * have to worry about atomic accesses.
478 */
479 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
480
481 /*
482 * Set IOPL bits in EFLAGS from given mask
483 */
484 static inline void native_set_iopl_mask(unsigned mask)
485 {
486 #ifdef CONFIG_X86_32
487 unsigned int reg;
488
489 asm volatile ("pushfl;"
490 "popl %0;"
491 "andl %1, %0;"
492 "orl %2, %0;"
493 "pushl %0;"
494 "popfl"
495 : "=&r" (reg)
496 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
497 #endif
498 }
499
500 static inline void
501 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
502 {
503 tss->x86_tss.sp0 = thread->sp0;
504 #ifdef CONFIG_X86_32
505 /* Only happens when SEP is enabled, no need to test "SEP"arately: */
506 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
507 tss->x86_tss.ss1 = thread->sysenter_cs;
508 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
509 }
510 #endif
511 }
512
513 static inline void native_swapgs(void)
514 {
515 #ifdef CONFIG_X86_64
516 asm volatile("swapgs" ::: "memory");
517 #endif
518 }
519
520 static inline unsigned long current_top_of_stack(void)
521 {
522 #ifdef CONFIG_X86_64
523 return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
524 #else
525 /* sp0 on x86_32 is special in and around vm86 mode. */
526 return this_cpu_read_stable(cpu_current_top_of_stack);
527 #endif
528 }
529
530 #ifdef CONFIG_PARAVIRT
531 #include <asm/paravirt.h>
532 #else
533 #define __cpuid native_cpuid
534
535 static inline void load_sp0(struct tss_struct *tss,
536 struct thread_struct *thread)
537 {
538 native_load_sp0(tss, thread);
539 }
540
541 #define set_iopl_mask native_set_iopl_mask
542 #endif /* CONFIG_PARAVIRT */
543
544 /* Free all resources held by a thread. */
545 extern void release_thread(struct task_struct *);
546
547 unsigned long get_wchan(struct task_struct *p);
548
549 /*
550 * Generic CPUID function
551 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
552 * resulting in stale register contents being returned.
553 */
554 static inline void cpuid(unsigned int op,
555 unsigned int *eax, unsigned int *ebx,
556 unsigned int *ecx, unsigned int *edx)
557 {
558 *eax = op;
559 *ecx = 0;
560 __cpuid(eax, ebx, ecx, edx);
561 }
562
563 /* Some CPUID calls want 'count' to be placed in ecx */
564 static inline void cpuid_count(unsigned int op, int count,
565 unsigned int *eax, unsigned int *ebx,
566 unsigned int *ecx, unsigned int *edx)
567 {
568 *eax = op;
569 *ecx = count;
570 __cpuid(eax, ebx, ecx, edx);
571 }
572
573 /*
574 * CPUID functions returning a single datum
575 */
576 static inline unsigned int cpuid_eax(unsigned int op)
577 {
578 unsigned int eax, ebx, ecx, edx;
579
580 cpuid(op, &eax, &ebx, &ecx, &edx);
581
582 return eax;
583 }
584
585 static inline unsigned int cpuid_ebx(unsigned int op)
586 {
587 unsigned int eax, ebx, ecx, edx;
588
589 cpuid(op, &eax, &ebx, &ecx, &edx);
590
591 return ebx;
592 }
593
594 static inline unsigned int cpuid_ecx(unsigned int op)
595 {
596 unsigned int eax, ebx, ecx, edx;
597
598 cpuid(op, &eax, &ebx, &ecx, &edx);
599
600 return ecx;
601 }
602
603 static inline unsigned int cpuid_edx(unsigned int op)
604 {
605 unsigned int eax, ebx, ecx, edx;
606
607 cpuid(op, &eax, &ebx, &ecx, &edx);
608
609 return edx;
610 }
611
612 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
613 static __always_inline void rep_nop(void)
614 {
615 asm volatile("rep; nop" ::: "memory");
616 }
617
618 static __always_inline void cpu_relax(void)
619 {
620 rep_nop();
621 }
622
623 /*
624 * This function forces the icache and prefetched instruction stream to
625 * catch up with reality in two very specific cases:
626 *
627 * a) Text was modified using one virtual address and is about to be executed
628 * from the same physical page at a different virtual address.
629 *
630 * b) Text was modified on a different CPU, may subsequently be
631 * executed on this CPU, and you want to make sure the new version
632 * gets executed. This generally means you're calling this in a IPI.
633 *
634 * If you're calling this for a different reason, you're probably doing
635 * it wrong.
636 */
637 static inline void sync_core(void)
638 {
639 /*
640 * There are quite a few ways to do this. IRET-to-self is nice
641 * because it works on every CPU, at any CPL (so it's compatible
642 * with paravirtualization), and it never exits to a hypervisor.
643 * The only down sides are that it's a bit slow (it seems to be
644 * a bit more than 2x slower than the fastest options) and that
645 * it unmasks NMIs. The "push %cs" is needed because, in
646 * paravirtual environments, __KERNEL_CS may not be a valid CS
647 * value when we do IRET directly.
648 *
649 * In case NMI unmasking or performance ever becomes a problem,
650 * the next best option appears to be MOV-to-CR2 and an
651 * unconditional jump. That sequence also works on all CPUs,
652 * but it will fault at CPL3 (i.e. Xen PV and lguest).
653 *
654 * CPUID is the conventional way, but it's nasty: it doesn't
655 * exist on some 486-like CPUs, and it usually exits to a
656 * hypervisor.
657 *
658 * Like all of Linux's memory ordering operations, this is a
659 * compiler barrier as well.
660 */
661 register void *__sp asm(_ASM_SP);
662
663 #ifdef CONFIG_X86_32
664 asm volatile (
665 "pushfl\n\t"
666 "pushl %%cs\n\t"
667 "pushl $1f\n\t"
668 "iret\n\t"
669 "1:"
670 : "+r" (__sp) : : "memory");
671 #else
672 unsigned int tmp;
673
674 asm volatile (
675 "mov %%ss, %0\n\t"
676 "pushq %q0\n\t"
677 "pushq %%rsp\n\t"
678 "addq $8, (%%rsp)\n\t"
679 "pushfq\n\t"
680 "mov %%cs, %0\n\t"
681 "pushq %q0\n\t"
682 "pushq $1f\n\t"
683 "iretq\n\t"
684 "1:"
685 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
686 #endif
687 }
688
689 extern void select_idle_routine(const struct cpuinfo_x86 *c);
690 extern void amd_e400_c1e_apic_setup(void);
691
692 extern unsigned long boot_option_idle_override;
693
694 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
695 IDLE_POLL};
696
697 extern void enable_sep_cpu(void);
698 extern int sysenter_setup(void);
699
700 extern void early_trap_init(void);
701 void early_trap_pf_init(void);
702
703 /* Defined in head.S */
704 extern struct desc_ptr early_gdt_descr;
705
706 extern void cpu_set_gdt(int);
707 extern void switch_to_new_gdt(int);
708 extern void load_percpu_segment(int);
709 extern void cpu_init(void);
710
711 static inline unsigned long get_debugctlmsr(void)
712 {
713 unsigned long debugctlmsr = 0;
714
715 #ifndef CONFIG_X86_DEBUGCTLMSR
716 if (boot_cpu_data.x86 < 6)
717 return 0;
718 #endif
719 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
720
721 return debugctlmsr;
722 }
723
724 static inline void update_debugctlmsr(unsigned long debugctlmsr)
725 {
726 #ifndef CONFIG_X86_DEBUGCTLMSR
727 if (boot_cpu_data.x86 < 6)
728 return;
729 #endif
730 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
731 }
732
733 extern void set_task_blockstep(struct task_struct *task, bool on);
734
735 /* Boot loader type from the setup header: */
736 extern int bootloader_type;
737 extern int bootloader_version;
738
739 extern char ignore_fpu_irq;
740
741 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
742 #define ARCH_HAS_PREFETCHW
743 #define ARCH_HAS_SPINLOCK_PREFETCH
744
745 #ifdef CONFIG_X86_32
746 # define BASE_PREFETCH ""
747 # define ARCH_HAS_PREFETCH
748 #else
749 # define BASE_PREFETCH "prefetcht0 %P1"
750 #endif
751
752 /*
753 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
754 *
755 * It's not worth to care about 3dnow prefetches for the K6
756 * because they are microcoded there and very slow.
757 */
758 static inline void prefetch(const void *x)
759 {
760 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
761 X86_FEATURE_XMM,
762 "m" (*(const char *)x));
763 }
764
765 /*
766 * 3dnow prefetch to get an exclusive cache line.
767 * Useful for spinlocks to avoid one state transition in the
768 * cache coherency protocol:
769 */
770 static inline void prefetchw(const void *x)
771 {
772 alternative_input(BASE_PREFETCH, "prefetchw %P1",
773 X86_FEATURE_3DNOWPREFETCH,
774 "m" (*(const char *)x));
775 }
776
777 static inline void spin_lock_prefetch(const void *x)
778 {
779 prefetchw(x);
780 }
781
782 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
783 TOP_OF_KERNEL_STACK_PADDING)
784
785 #ifdef CONFIG_X86_32
786 /*
787 * User space process size: 3GB (default).
788 */
789 #define TASK_SIZE PAGE_OFFSET
790 #define TASK_SIZE_MAX TASK_SIZE
791 #define STACK_TOP TASK_SIZE
792 #define STACK_TOP_MAX STACK_TOP
793
794 #define INIT_THREAD { \
795 .sp0 = TOP_OF_INIT_STACK, \
796 .sysenter_cs = __KERNEL_CS, \
797 .io_bitmap_ptr = NULL, \
798 .addr_limit = KERNEL_DS, \
799 }
800
801 /*
802 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
803 * This is necessary to guarantee that the entire "struct pt_regs"
804 * is accessible even if the CPU haven't stored the SS/ESP registers
805 * on the stack (interrupt gate does not save these registers
806 * when switching to the same priv ring).
807 * Therefore beware: accessing the ss/esp fields of the
808 * "struct pt_regs" is possible, but they may contain the
809 * completely wrong values.
810 */
811 #define task_pt_regs(task) \
812 ({ \
813 unsigned long __ptr = (unsigned long)task_stack_page(task); \
814 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
815 ((struct pt_regs *)__ptr) - 1; \
816 })
817
818 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
819
820 #else
821 /*
822 * User space process size. 47bits minus one guard page. The guard
823 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
824 * the highest possible canonical userspace address, then that
825 * syscall will enter the kernel with a non-canonical return
826 * address, and SYSRET will explode dangerously. We avoid this
827 * particular problem by preventing anything from being mapped
828 * at the maximum canonical address.
829 */
830 #define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE)
831
832 /* This decides where the kernel will search for a free chunk of vm
833 * space during mmap's.
834 */
835 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
836 0xc0000000 : 0xFFFFe000)
837
838 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
839 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
840 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
841 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
842
843 #define STACK_TOP TASK_SIZE
844 #define STACK_TOP_MAX TASK_SIZE_MAX
845
846 #define INIT_THREAD { \
847 .sp0 = TOP_OF_INIT_STACK, \
848 .addr_limit = KERNEL_DS, \
849 }
850
851 #define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1)
852 extern unsigned long KSTK_ESP(struct task_struct *task);
853
854 #endif /* CONFIG_X86_64 */
855
856 extern unsigned long thread_saved_pc(struct task_struct *tsk);
857
858 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
859 unsigned long new_sp);
860
861 /*
862 * This decides where the kernel will search for a free chunk of vm
863 * space during mmap's.
864 */
865 #define TASK_UNMAPPED_BASE (PAGE_ALIGN(TASK_SIZE / 3))
866
867 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
868
869 /* Get/set a process' ability to use the timestamp counter instruction */
870 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
871 #define SET_TSC_CTL(val) set_tsc_mode((val))
872
873 extern int get_tsc_mode(unsigned long adr);
874 extern int set_tsc_mode(unsigned int val);
875
876 /* Register/unregister a process' MPX related resource */
877 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
878 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
879
880 #ifdef CONFIG_X86_INTEL_MPX
881 extern int mpx_enable_management(void);
882 extern int mpx_disable_management(void);
883 #else
884 static inline int mpx_enable_management(void)
885 {
886 return -EINVAL;
887 }
888 static inline int mpx_disable_management(void)
889 {
890 return -EINVAL;
891 }
892 #endif /* CONFIG_X86_INTEL_MPX */
893
894 extern u16 amd_get_nb_id(int cpu);
895 extern u32 amd_get_nodes_per_socket(void);
896
897 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
898 {
899 uint32_t base, eax, signature[3];
900
901 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
902 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
903
904 if (!memcmp(sig, signature, 12) &&
905 (leaves == 0 || ((eax - base) >= leaves)))
906 return base;
907 }
908
909 return 0;
910 }
911
912 extern unsigned long arch_align_stack(unsigned long sp);
913 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
914
915 void default_idle(void);
916 #ifdef CONFIG_XEN
917 bool xen_set_default_idle(void);
918 #else
919 #define xen_set_default_idle 0
920 #endif
921
922 void stop_this_cpu(void *dummy);
923 void df_debug(struct pt_regs *regs, long error_code);
924 #endif /* _ASM_X86_PROCESSOR_H */