]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86: introduce noxsave boot parameter
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/mmu_context.h>
17 #include <asm/hypervisor.h>
18 #include <asm/processor.h>
19 #include <asm/sections.h>
20 #include <asm/topology.h>
21 #include <asm/cpumask.h>
22 #include <asm/pgtable.h>
23 #include <asm/atomic.h>
24 #include <asm/proto.h>
25 #include <asm/setup.h>
26 #include <asm/apic.h>
27 #include <asm/desc.h>
28 #include <asm/i387.h>
29 #include <asm/mtrr.h>
30 #include <asm/numa.h>
31 #include <asm/asm.h>
32 #include <asm/cpu.h>
33 #include <asm/mce.h>
34 #include <asm/msr.h>
35 #include <asm/pat.h>
36 #include <asm/smp.h>
37
38 #ifdef CONFIG_X86_LOCAL_APIC
39 #include <asm/uv/uv.h>
40 #endif
41
42 #include "cpu.h"
43
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_initialized_mask;
46 cpumask_var_t cpu_callout_mask;
47 cpumask_var_t cpu_callin_mask;
48
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask;
51
52 /* correctly size the local cpu masks */
53 void __init setup_cpu_local_masks(void)
54 {
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
59 }
60
61 static const struct cpu_dev *this_cpu __cpuinitdata;
62
63 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
64 #ifdef CONFIG_X86_64
65 /*
66 * We need valid kernel segments for data and code in long mode too
67 * IRET will check the segment types kkeil 2000/10/28
68 * Also sysret mandates a special GDT layout
69 *
70 * TLS descriptors are currently at a different place compared to i386.
71 * Hopefully nobody expects them at a fixed place (Wine?)
72 */
73 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
74 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
75 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
76 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
77 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
78 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
79 #else
80 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
81 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
82 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
83 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
84 /*
85 * Segments used for calling PnP BIOS have byte granularity.
86 * They code segments and data segments have fixed 64k limits,
87 * the transfer segment sizes are set at run time.
88 */
89 /* 32-bit code */
90 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
91 /* 16-bit code */
92 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
93 /* 16-bit data */
94 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
95 /* 16-bit data */
96 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
97 /* 16-bit data */
98 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
99 /*
100 * The APM segments have byte granularity and their bases
101 * are set at run time. All have 64k limits.
102 */
103 /* 32-bit code */
104 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
105 /* 16-bit code */
106 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
107 /* data */
108 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
109
110 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
111 [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
112 GDT_STACK_CANARY_INIT
113 #endif
114 } };
115 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
116
117 static int __init x86_xsave_setup(char *s)
118 {
119 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
120 return 1;
121 }
122 __setup("noxsave", x86_xsave_setup);
123
124 #ifdef CONFIG_X86_32
125 static int cachesize_override __cpuinitdata = -1;
126 static int disable_x86_serial_nr __cpuinitdata = 1;
127
128 static int __init cachesize_setup(char *str)
129 {
130 get_option(&str, &cachesize_override);
131 return 1;
132 }
133 __setup("cachesize=", cachesize_setup);
134
135 static int __init x86_fxsr_setup(char *s)
136 {
137 setup_clear_cpu_cap(X86_FEATURE_FXSR);
138 setup_clear_cpu_cap(X86_FEATURE_XMM);
139 return 1;
140 }
141 __setup("nofxsr", x86_fxsr_setup);
142
143 static int __init x86_sep_setup(char *s)
144 {
145 setup_clear_cpu_cap(X86_FEATURE_SEP);
146 return 1;
147 }
148 __setup("nosep", x86_sep_setup);
149
150 /* Standard macro to see if a specific flag is changeable */
151 static inline int flag_is_changeable_p(u32 flag)
152 {
153 u32 f1, f2;
154
155 /*
156 * Cyrix and IDT cpus allow disabling of CPUID
157 * so the code below may return different results
158 * when it is executed before and after enabling
159 * the CPUID. Add "volatile" to not allow gcc to
160 * optimize the subsequent calls to this function.
161 */
162 asm volatile ("pushfl \n\t"
163 "pushfl \n\t"
164 "popl %0 \n\t"
165 "movl %0, %1 \n\t"
166 "xorl %2, %0 \n\t"
167 "pushl %0 \n\t"
168 "popfl \n\t"
169 "pushfl \n\t"
170 "popl %0 \n\t"
171 "popfl \n\t"
172
173 : "=&r" (f1), "=&r" (f2)
174 : "ir" (flag));
175
176 return ((f1^f2) & flag) != 0;
177 }
178
179 /* Probe for the CPUID instruction */
180 static int __cpuinit have_cpuid_p(void)
181 {
182 return flag_is_changeable_p(X86_EFLAGS_ID);
183 }
184
185 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
186 {
187 unsigned long lo, hi;
188
189 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
190 return;
191
192 /* Disable processor serial number: */
193
194 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
195 lo |= 0x200000;
196 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
197
198 printk(KERN_NOTICE "CPU serial number disabled.\n");
199 clear_cpu_cap(c, X86_FEATURE_PN);
200
201 /* Disabling the serial number may affect the cpuid level */
202 c->cpuid_level = cpuid_eax(0);
203 }
204
205 static int __init x86_serial_nr_setup(char *s)
206 {
207 disable_x86_serial_nr = 0;
208 return 1;
209 }
210 __setup("serialnumber", x86_serial_nr_setup);
211 #else
212 static inline int flag_is_changeable_p(u32 flag)
213 {
214 return 1;
215 }
216 /* Probe for the CPUID instruction */
217 static inline int have_cpuid_p(void)
218 {
219 return 1;
220 }
221 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
222 {
223 }
224 #endif
225
226 /*
227 * Some CPU features depend on higher CPUID levels, which may not always
228 * be available due to CPUID level capping or broken virtualization
229 * software. Add those features to this table to auto-disable them.
230 */
231 struct cpuid_dependent_feature {
232 u32 feature;
233 u32 level;
234 };
235
236 static const struct cpuid_dependent_feature __cpuinitconst
237 cpuid_dependent_features[] = {
238 { X86_FEATURE_MWAIT, 0x00000005 },
239 { X86_FEATURE_DCA, 0x00000009 },
240 { X86_FEATURE_XSAVE, 0x0000000d },
241 { 0, 0 }
242 };
243
244 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
245 {
246 const struct cpuid_dependent_feature *df;
247
248 for (df = cpuid_dependent_features; df->feature; df++) {
249
250 if (!cpu_has(c, df->feature))
251 continue;
252 /*
253 * Note: cpuid_level is set to -1 if unavailable, but
254 * extended_extended_level is set to 0 if unavailable
255 * and the legitimate extended levels are all negative
256 * when signed; hence the weird messing around with
257 * signs here...
258 */
259 if (!((s32)df->level < 0 ?
260 (u32)df->level > (u32)c->extended_cpuid_level :
261 (s32)df->level > (s32)c->cpuid_level))
262 continue;
263
264 clear_cpu_cap(c, df->feature);
265 if (!warn)
266 continue;
267
268 printk(KERN_WARNING
269 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
270 x86_cap_flags[df->feature], df->level);
271 }
272 }
273
274 /*
275 * Naming convention should be: <Name> [(<Codename>)]
276 * This table only is used unless init_<vendor>() below doesn't set it;
277 * in particular, if CPUID levels 0x80000002..4 are supported, this
278 * isn't used
279 */
280
281 /* Look up CPU names by table lookup. */
282 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
283 {
284 const struct cpu_model_info *info;
285
286 if (c->x86_model >= 16)
287 return NULL; /* Range check */
288
289 if (!this_cpu)
290 return NULL;
291
292 info = this_cpu->c_models;
293
294 while (info && info->family) {
295 if (info->family == c->x86)
296 return info->model_names[c->x86_model];
297 info++;
298 }
299 return NULL; /* Not found */
300 }
301
302 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
303
304 void load_percpu_segment(int cpu)
305 {
306 #ifdef CONFIG_X86_32
307 loadsegment(fs, __KERNEL_PERCPU);
308 #else
309 loadsegment(gs, 0);
310 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
311 #endif
312 load_stack_canary_segment();
313 }
314
315 /*
316 * Current gdt points %fs at the "master" per-cpu area: after this,
317 * it's on the real one.
318 */
319 void switch_to_new_gdt(int cpu)
320 {
321 struct desc_ptr gdt_descr;
322
323 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
324 gdt_descr.size = GDT_SIZE - 1;
325 load_gdt(&gdt_descr);
326 /* Reload the per-cpu base */
327
328 load_percpu_segment(cpu);
329 }
330
331 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
332
333 static void __cpuinit default_init(struct cpuinfo_x86 *c)
334 {
335 #ifdef CONFIG_X86_64
336 display_cacheinfo(c);
337 #else
338 /* Not much we can do here... */
339 /* Check if at least it has cpuid */
340 if (c->cpuid_level == -1) {
341 /* No cpuid. It must be an ancient CPU */
342 if (c->x86 == 4)
343 strcpy(c->x86_model_id, "486");
344 else if (c->x86 == 3)
345 strcpy(c->x86_model_id, "386");
346 }
347 #endif
348 }
349
350 static const struct cpu_dev __cpuinitconst default_cpu = {
351 .c_init = default_init,
352 .c_vendor = "Unknown",
353 .c_x86_vendor = X86_VENDOR_UNKNOWN,
354 };
355
356 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
357 {
358 unsigned int *v;
359 char *p, *q;
360
361 if (c->extended_cpuid_level < 0x80000004)
362 return;
363
364 v = (unsigned int *)c->x86_model_id;
365 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
366 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
367 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
368 c->x86_model_id[48] = 0;
369
370 /*
371 * Intel chips right-justify this string for some dumb reason;
372 * undo that brain damage:
373 */
374 p = q = &c->x86_model_id[0];
375 while (*p == ' ')
376 p++;
377 if (p != q) {
378 while (*p)
379 *q++ = *p++;
380 while (q <= &c->x86_model_id[48])
381 *q++ = '\0'; /* Zero-pad the rest */
382 }
383 }
384
385 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
386 {
387 unsigned int n, dummy, ebx, ecx, edx, l2size;
388
389 n = c->extended_cpuid_level;
390
391 if (n >= 0x80000005) {
392 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
393 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
394 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
395 c->x86_cache_size = (ecx>>24) + (edx>>24);
396 #ifdef CONFIG_X86_64
397 /* On K8 L1 TLB is inclusive, so don't count it */
398 c->x86_tlbsize = 0;
399 #endif
400 }
401
402 if (n < 0x80000006) /* Some chips just has a large L1. */
403 return;
404
405 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
406 l2size = ecx >> 16;
407
408 #ifdef CONFIG_X86_64
409 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
410 #else
411 /* do processor-specific cache resizing */
412 if (this_cpu->c_size_cache)
413 l2size = this_cpu->c_size_cache(c, l2size);
414
415 /* Allow user to override all this if necessary. */
416 if (cachesize_override != -1)
417 l2size = cachesize_override;
418
419 if (l2size == 0)
420 return; /* Again, no L2 cache is possible */
421 #endif
422
423 c->x86_cache_size = l2size;
424
425 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
426 l2size, ecx & 0xFF);
427 }
428
429 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
430 {
431 #ifdef CONFIG_X86_HT
432 u32 eax, ebx, ecx, edx;
433 int index_msb, core_bits;
434
435 if (!cpu_has(c, X86_FEATURE_HT))
436 return;
437
438 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
439 goto out;
440
441 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
442 return;
443
444 cpuid(1, &eax, &ebx, &ecx, &edx);
445
446 smp_num_siblings = (ebx & 0xff0000) >> 16;
447
448 if (smp_num_siblings == 1) {
449 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
450 goto out;
451 }
452
453 if (smp_num_siblings <= 1)
454 goto out;
455
456 if (smp_num_siblings > nr_cpu_ids) {
457 pr_warning("CPU: Unsupported number of siblings %d",
458 smp_num_siblings);
459 smp_num_siblings = 1;
460 return;
461 }
462
463 index_msb = get_count_order(smp_num_siblings);
464 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
465
466 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
467
468 index_msb = get_count_order(smp_num_siblings);
469
470 core_bits = get_count_order(c->x86_max_cores);
471
472 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
473 ((1 << core_bits) - 1);
474
475 out:
476 if ((c->x86_max_cores * smp_num_siblings) > 1) {
477 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
478 c->phys_proc_id);
479 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
480 c->cpu_core_id);
481 }
482 #endif
483 }
484
485 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
486 {
487 char *v = c->x86_vendor_id;
488 static int printed;
489 int i;
490
491 for (i = 0; i < X86_VENDOR_NUM; i++) {
492 if (!cpu_devs[i])
493 break;
494
495 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
496 (cpu_devs[i]->c_ident[1] &&
497 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
498
499 this_cpu = cpu_devs[i];
500 c->x86_vendor = this_cpu->c_x86_vendor;
501 return;
502 }
503 }
504
505 if (!printed) {
506 printed++;
507 printk(KERN_ERR
508 "CPU: vendor_id '%s' unknown, using generic init.\n", v);
509
510 printk(KERN_ERR "CPU: Your system may be unstable.\n");
511 }
512
513 c->x86_vendor = X86_VENDOR_UNKNOWN;
514 this_cpu = &default_cpu;
515 }
516
517 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
518 {
519 /* Get vendor name */
520 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
521 (unsigned int *)&c->x86_vendor_id[0],
522 (unsigned int *)&c->x86_vendor_id[8],
523 (unsigned int *)&c->x86_vendor_id[4]);
524
525 c->x86 = 4;
526 /* Intel-defined flags: level 0x00000001 */
527 if (c->cpuid_level >= 0x00000001) {
528 u32 junk, tfms, cap0, misc;
529
530 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
531 c->x86 = (tfms >> 8) & 0xf;
532 c->x86_model = (tfms >> 4) & 0xf;
533 c->x86_mask = tfms & 0xf;
534
535 if (c->x86 == 0xf)
536 c->x86 += (tfms >> 20) & 0xff;
537 if (c->x86 >= 0x6)
538 c->x86_model += ((tfms >> 16) & 0xf) << 4;
539
540 if (cap0 & (1<<19)) {
541 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
542 c->x86_cache_alignment = c->x86_clflush_size;
543 }
544 }
545 }
546
547 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
548 {
549 u32 tfms, xlvl;
550 u32 ebx;
551
552 /* Intel-defined flags: level 0x00000001 */
553 if (c->cpuid_level >= 0x00000001) {
554 u32 capability, excap;
555
556 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
557 c->x86_capability[0] = capability;
558 c->x86_capability[4] = excap;
559 }
560
561 /* AMD-defined flags: level 0x80000001 */
562 xlvl = cpuid_eax(0x80000000);
563 c->extended_cpuid_level = xlvl;
564
565 if ((xlvl & 0xffff0000) == 0x80000000) {
566 if (xlvl >= 0x80000001) {
567 c->x86_capability[1] = cpuid_edx(0x80000001);
568 c->x86_capability[6] = cpuid_ecx(0x80000001);
569 }
570 }
571
572 if (c->extended_cpuid_level >= 0x80000008) {
573 u32 eax = cpuid_eax(0x80000008);
574
575 c->x86_virt_bits = (eax >> 8) & 0xff;
576 c->x86_phys_bits = eax & 0xff;
577 }
578 #ifdef CONFIG_X86_32
579 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
580 c->x86_phys_bits = 36;
581 #endif
582
583 if (c->extended_cpuid_level >= 0x80000007)
584 c->x86_power = cpuid_edx(0x80000007);
585
586 }
587
588 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
589 {
590 #ifdef CONFIG_X86_32
591 int i;
592
593 /*
594 * First of all, decide if this is a 486 or higher
595 * It's a 486 if we can modify the AC flag
596 */
597 if (flag_is_changeable_p(X86_EFLAGS_AC))
598 c->x86 = 4;
599 else
600 c->x86 = 3;
601
602 for (i = 0; i < X86_VENDOR_NUM; i++)
603 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
604 c->x86_vendor_id[0] = 0;
605 cpu_devs[i]->c_identify(c);
606 if (c->x86_vendor_id[0]) {
607 get_cpu_vendor(c);
608 break;
609 }
610 }
611 #endif
612 }
613
614 /*
615 * Do minimum CPU detection early.
616 * Fields really needed: vendor, cpuid_level, family, model, mask,
617 * cache alignment.
618 * The others are not touched to avoid unwanted side effects.
619 *
620 * WARNING: this function is only called on the BP. Don't add code here
621 * that is supposed to run on all CPUs.
622 */
623 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
624 {
625 #ifdef CONFIG_X86_64
626 c->x86_clflush_size = 64;
627 c->x86_phys_bits = 36;
628 c->x86_virt_bits = 48;
629 #else
630 c->x86_clflush_size = 32;
631 c->x86_phys_bits = 32;
632 c->x86_virt_bits = 32;
633 #endif
634 c->x86_cache_alignment = c->x86_clflush_size;
635
636 memset(&c->x86_capability, 0, sizeof c->x86_capability);
637 c->extended_cpuid_level = 0;
638
639 if (!have_cpuid_p())
640 identify_cpu_without_cpuid(c);
641
642 /* cyrix could have cpuid enabled via c_identify()*/
643 if (!have_cpuid_p())
644 return;
645
646 cpu_detect(c);
647
648 get_cpu_vendor(c);
649
650 get_cpu_cap(c);
651
652 if (this_cpu->c_early_init)
653 this_cpu->c_early_init(c);
654
655 #ifdef CONFIG_SMP
656 c->cpu_index = boot_cpu_id;
657 #endif
658 filter_cpuid_features(c, false);
659 }
660
661 void __init early_cpu_init(void)
662 {
663 const struct cpu_dev *const *cdev;
664 int count = 0;
665
666 printk(KERN_INFO "KERNEL supported cpus:\n");
667 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
668 const struct cpu_dev *cpudev = *cdev;
669 unsigned int j;
670
671 if (count >= X86_VENDOR_NUM)
672 break;
673 cpu_devs[count] = cpudev;
674 count++;
675
676 for (j = 0; j < 2; j++) {
677 if (!cpudev->c_ident[j])
678 continue;
679 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
680 cpudev->c_ident[j]);
681 }
682 }
683
684 early_identify_cpu(&boot_cpu_data);
685 }
686
687 /*
688 * The NOPL instruction is supposed to exist on all CPUs with
689 * family >= 6; unfortunately, that's not true in practice because
690 * of early VIA chips and (more importantly) broken virtualizers that
691 * are not easy to detect. In the latter case it doesn't even *fail*
692 * reliably, so probing for it doesn't even work. Disable it completely
693 * unless we can find a reliable way to detect all the broken cases.
694 */
695 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
696 {
697 clear_cpu_cap(c, X86_FEATURE_NOPL);
698 }
699
700 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
701 {
702 c->extended_cpuid_level = 0;
703
704 if (!have_cpuid_p())
705 identify_cpu_without_cpuid(c);
706
707 /* cyrix could have cpuid enabled via c_identify()*/
708 if (!have_cpuid_p())
709 return;
710
711 cpu_detect(c);
712
713 get_cpu_vendor(c);
714
715 get_cpu_cap(c);
716
717 if (c->cpuid_level >= 0x00000001) {
718 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
719 #ifdef CONFIG_X86_32
720 # ifdef CONFIG_X86_HT
721 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
722 # else
723 c->apicid = c->initial_apicid;
724 # endif
725 #endif
726
727 #ifdef CONFIG_X86_HT
728 c->phys_proc_id = c->initial_apicid;
729 #endif
730 }
731
732 get_model_name(c); /* Default name */
733
734 init_scattered_cpuid_features(c);
735 detect_nopl(c);
736 }
737
738 /*
739 * This does the hard work of actually picking apart the CPU stuff...
740 */
741 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
742 {
743 int i;
744
745 c->loops_per_jiffy = loops_per_jiffy;
746 c->x86_cache_size = -1;
747 c->x86_vendor = X86_VENDOR_UNKNOWN;
748 c->x86_model = c->x86_mask = 0; /* So far unknown... */
749 c->x86_vendor_id[0] = '\0'; /* Unset */
750 c->x86_model_id[0] = '\0'; /* Unset */
751 c->x86_max_cores = 1;
752 c->x86_coreid_bits = 0;
753 #ifdef CONFIG_X86_64
754 c->x86_clflush_size = 64;
755 c->x86_phys_bits = 36;
756 c->x86_virt_bits = 48;
757 #else
758 c->cpuid_level = -1; /* CPUID not detected */
759 c->x86_clflush_size = 32;
760 c->x86_phys_bits = 32;
761 c->x86_virt_bits = 32;
762 #endif
763 c->x86_cache_alignment = c->x86_clflush_size;
764 memset(&c->x86_capability, 0, sizeof c->x86_capability);
765
766 generic_identify(c);
767
768 if (this_cpu->c_identify)
769 this_cpu->c_identify(c);
770
771 #ifdef CONFIG_X86_64
772 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
773 #endif
774
775 /*
776 * Vendor-specific initialization. In this section we
777 * canonicalize the feature flags, meaning if there are
778 * features a certain CPU supports which CPUID doesn't
779 * tell us, CPUID claiming incorrect flags, or other bugs,
780 * we handle them here.
781 *
782 * At the end of this section, c->x86_capability better
783 * indicate the features this CPU genuinely supports!
784 */
785 if (this_cpu->c_init)
786 this_cpu->c_init(c);
787
788 /* Disable the PN if appropriate */
789 squash_the_stupid_serial_number(c);
790
791 /*
792 * The vendor-specific functions might have changed features.
793 * Now we do "generic changes."
794 */
795
796 /* Filter out anything that depends on CPUID levels we don't have */
797 filter_cpuid_features(c, true);
798
799 /* If the model name is still unset, do table lookup. */
800 if (!c->x86_model_id[0]) {
801 const char *p;
802 p = table_lookup_model(c);
803 if (p)
804 strcpy(c->x86_model_id, p);
805 else
806 /* Last resort... */
807 sprintf(c->x86_model_id, "%02x/%02x",
808 c->x86, c->x86_model);
809 }
810
811 #ifdef CONFIG_X86_64
812 detect_ht(c);
813 #endif
814
815 init_hypervisor(c);
816 /*
817 * On SMP, boot_cpu_data holds the common feature set between
818 * all CPUs; so make sure that we indicate which features are
819 * common between the CPUs. The first time this routine gets
820 * executed, c == &boot_cpu_data.
821 */
822 if (c != &boot_cpu_data) {
823 /* AND the already accumulated flags with these */
824 for (i = 0; i < NCAPINTS; i++)
825 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
826 }
827
828 /* Clear all flags overriden by options */
829 for (i = 0; i < NCAPINTS; i++)
830 c->x86_capability[i] &= ~cleared_cpu_caps[i];
831
832 #ifdef CONFIG_X86_MCE
833 /* Init Machine Check Exception if available. */
834 mcheck_init(c);
835 #endif
836
837 select_idle_routine(c);
838
839 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
840 numa_add_cpu(smp_processor_id());
841 #endif
842 }
843
844 #ifdef CONFIG_X86_64
845 static void vgetcpu_set_mode(void)
846 {
847 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
848 vgetcpu_mode = VGETCPU_RDTSCP;
849 else
850 vgetcpu_mode = VGETCPU_LSL;
851 }
852 #endif
853
854 void __init identify_boot_cpu(void)
855 {
856 identify_cpu(&boot_cpu_data);
857 init_c1e_mask();
858 #ifdef CONFIG_X86_32
859 sysenter_setup();
860 enable_sep_cpu();
861 #else
862 vgetcpu_set_mode();
863 #endif
864 }
865
866 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
867 {
868 BUG_ON(c == &boot_cpu_data);
869 identify_cpu(c);
870 #ifdef CONFIG_X86_32
871 enable_sep_cpu();
872 #endif
873 mtrr_ap_init();
874 }
875
876 struct msr_range {
877 unsigned min;
878 unsigned max;
879 };
880
881 static const struct msr_range msr_range_array[] __cpuinitconst = {
882 { 0x00000000, 0x00000418},
883 { 0xc0000000, 0xc000040b},
884 { 0xc0010000, 0xc0010142},
885 { 0xc0011000, 0xc001103b},
886 };
887
888 static void __cpuinit print_cpu_msr(void)
889 {
890 unsigned index_min, index_max;
891 unsigned index;
892 u64 val;
893 int i;
894
895 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
896 index_min = msr_range_array[i].min;
897 index_max = msr_range_array[i].max;
898
899 for (index = index_min; index < index_max; index++) {
900 if (rdmsrl_amd_safe(index, &val))
901 continue;
902 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
903 }
904 }
905 }
906
907 static int show_msr __cpuinitdata;
908
909 static __init int setup_show_msr(char *arg)
910 {
911 int num;
912
913 get_option(&arg, &num);
914
915 if (num > 0)
916 show_msr = num;
917 return 1;
918 }
919 __setup("show_msr=", setup_show_msr);
920
921 static __init int setup_noclflush(char *arg)
922 {
923 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
924 return 1;
925 }
926 __setup("noclflush", setup_noclflush);
927
928 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
929 {
930 const char *vendor = NULL;
931
932 if (c->x86_vendor < X86_VENDOR_NUM) {
933 vendor = this_cpu->c_vendor;
934 } else {
935 if (c->cpuid_level >= 0)
936 vendor = c->x86_vendor_id;
937 }
938
939 if (vendor && !strstr(c->x86_model_id, vendor))
940 printk(KERN_CONT "%s ", vendor);
941
942 if (c->x86_model_id[0])
943 printk(KERN_CONT "%s", c->x86_model_id);
944 else
945 printk(KERN_CONT "%d86", c->x86);
946
947 if (c->x86_mask || c->cpuid_level >= 0)
948 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
949 else
950 printk(KERN_CONT "\n");
951
952 #ifdef CONFIG_SMP
953 if (c->cpu_index < show_msr)
954 print_cpu_msr();
955 #else
956 if (show_msr)
957 print_cpu_msr();
958 #endif
959 }
960
961 static __init int setup_disablecpuid(char *arg)
962 {
963 int bit;
964
965 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
966 setup_clear_cpu_cap(bit);
967 else
968 return 0;
969
970 return 1;
971 }
972 __setup("clearcpuid=", setup_disablecpuid);
973
974 #ifdef CONFIG_X86_64
975 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
976
977 DEFINE_PER_CPU_FIRST(union irq_stack_union,
978 irq_stack_union) __aligned(PAGE_SIZE);
979
980 DEFINE_PER_CPU(char *, irq_stack_ptr) =
981 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
982
983 DEFINE_PER_CPU(unsigned long, kernel_stack) =
984 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
985 EXPORT_PER_CPU_SYMBOL(kernel_stack);
986
987 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
988
989 /*
990 * Special IST stacks which the CPU switches to when it calls
991 * an IST-marked descriptor entry. Up to 7 stacks (hardware
992 * limit), all of them are 4K, except the debug stack which
993 * is 8K.
994 */
995 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
996 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
997 [DEBUG_STACK - 1] = DEBUG_STKSZ
998 };
999
1000 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1001 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
1002 __aligned(PAGE_SIZE);
1003
1004 /* May not be marked __init: used by software suspend */
1005 void syscall_init(void)
1006 {
1007 /*
1008 * LSTAR and STAR live in a bit strange symbiosis.
1009 * They both write to the same internal register. STAR allows to
1010 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1011 */
1012 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1013 wrmsrl(MSR_LSTAR, system_call);
1014 wrmsrl(MSR_CSTAR, ignore_sysret);
1015
1016 #ifdef CONFIG_IA32_EMULATION
1017 syscall32_cpu_init();
1018 #endif
1019
1020 /* Flags to clear on syscall */
1021 wrmsrl(MSR_SYSCALL_MASK,
1022 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1023 }
1024
1025 unsigned long kernel_eflags;
1026
1027 /*
1028 * Copies of the original ist values from the tss are only accessed during
1029 * debugging, no special alignment required.
1030 */
1031 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1032
1033 #else /* CONFIG_X86_64 */
1034
1035 #ifdef CONFIG_CC_STACKPROTECTOR
1036 DEFINE_PER_CPU(unsigned long, stack_canary);
1037 #endif
1038
1039 /* Make sure %fs and %gs are initialized properly in idle threads */
1040 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1041 {
1042 memset(regs, 0, sizeof(struct pt_regs));
1043 regs->fs = __KERNEL_PERCPU;
1044 regs->gs = __KERNEL_STACK_CANARY;
1045
1046 return regs;
1047 }
1048 #endif /* CONFIG_X86_64 */
1049
1050 /*
1051 * Clear all 6 debug registers:
1052 */
1053 static void clear_all_debug_regs(void)
1054 {
1055 int i;
1056
1057 for (i = 0; i < 8; i++) {
1058 /* Ignore db4, db5 */
1059 if ((i == 4) || (i == 5))
1060 continue;
1061
1062 set_debugreg(0, i);
1063 }
1064 }
1065
1066 /*
1067 * cpu_init() initializes state that is per-CPU. Some data is already
1068 * initialized (naturally) in the bootstrap process, such as the GDT
1069 * and IDT. We reload them nevertheless, this function acts as a
1070 * 'CPU state barrier', nothing should get across.
1071 * A lot of state is already set up in PDA init for 64 bit
1072 */
1073 #ifdef CONFIG_X86_64
1074
1075 void __cpuinit cpu_init(void)
1076 {
1077 struct orig_ist *orig_ist;
1078 struct task_struct *me;
1079 struct tss_struct *t;
1080 unsigned long v;
1081 int cpu;
1082 int i;
1083
1084 cpu = stack_smp_processor_id();
1085 t = &per_cpu(init_tss, cpu);
1086 orig_ist = &per_cpu(orig_ist, cpu);
1087
1088 #ifdef CONFIG_NUMA
1089 if (cpu != 0 && percpu_read(node_number) == 0 &&
1090 cpu_to_node(cpu) != NUMA_NO_NODE)
1091 percpu_write(node_number, cpu_to_node(cpu));
1092 #endif
1093
1094 me = current;
1095
1096 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1097 panic("CPU#%d already initialized!\n", cpu);
1098
1099 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1100
1101 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1102
1103 /*
1104 * Initialize the per-CPU GDT with the boot GDT,
1105 * and set up the GDT descriptor:
1106 */
1107
1108 switch_to_new_gdt(cpu);
1109 loadsegment(fs, 0);
1110
1111 load_idt((const struct desc_ptr *)&idt_descr);
1112
1113 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1114 syscall_init();
1115
1116 wrmsrl(MSR_FS_BASE, 0);
1117 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1118 barrier();
1119
1120 check_efer();
1121 if (cpu != 0)
1122 enable_x2apic();
1123
1124 /*
1125 * set up and load the per-CPU TSS
1126 */
1127 if (!orig_ist->ist[0]) {
1128 char *estacks = per_cpu(exception_stacks, cpu);
1129
1130 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1131 estacks += exception_stack_sizes[v];
1132 orig_ist->ist[v] = t->x86_tss.ist[v] =
1133 (unsigned long)estacks;
1134 }
1135 }
1136
1137 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1138
1139 /*
1140 * <= is required because the CPU will access up to
1141 * 8 bits beyond the end of the IO permission bitmap.
1142 */
1143 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1144 t->io_bitmap[i] = ~0UL;
1145
1146 atomic_inc(&init_mm.mm_count);
1147 me->active_mm = &init_mm;
1148 BUG_ON(me->mm);
1149 enter_lazy_tlb(&init_mm, me);
1150
1151 load_sp0(t, &current->thread);
1152 set_tss_desc(cpu, t);
1153 load_TR_desc();
1154 load_LDT(&init_mm.context);
1155
1156 #ifdef CONFIG_KGDB
1157 /*
1158 * If the kgdb is connected no debug regs should be altered. This
1159 * is only applicable when KGDB and a KGDB I/O module are built
1160 * into the kernel and you are using early debugging with
1161 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1162 */
1163 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1164 arch_kgdb_ops.correct_hw_break();
1165 else
1166 #endif
1167 clear_all_debug_regs();
1168
1169 fpu_init();
1170
1171 raw_local_save_flags(kernel_eflags);
1172
1173 if (is_uv_system())
1174 uv_cpu_init();
1175 }
1176
1177 #else
1178
1179 void __cpuinit cpu_init(void)
1180 {
1181 int cpu = smp_processor_id();
1182 struct task_struct *curr = current;
1183 struct tss_struct *t = &per_cpu(init_tss, cpu);
1184 struct thread_struct *thread = &curr->thread;
1185
1186 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1187 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1188 for (;;)
1189 local_irq_enable();
1190 }
1191
1192 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1193
1194 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1195 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1196
1197 load_idt(&idt_descr);
1198 switch_to_new_gdt(cpu);
1199
1200 /*
1201 * Set up and load the per-CPU TSS and LDT
1202 */
1203 atomic_inc(&init_mm.mm_count);
1204 curr->active_mm = &init_mm;
1205 BUG_ON(curr->mm);
1206 enter_lazy_tlb(&init_mm, curr);
1207
1208 load_sp0(t, thread);
1209 set_tss_desc(cpu, t);
1210 load_TR_desc();
1211 load_LDT(&init_mm.context);
1212
1213 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1214
1215 #ifdef CONFIG_DOUBLEFAULT
1216 /* Set up doublefault TSS pointer in the GDT */
1217 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1218 #endif
1219
1220 clear_all_debug_regs();
1221
1222 /*
1223 * Force FPU initialization:
1224 */
1225 if (cpu_has_xsave)
1226 current_thread_info()->status = TS_XSAVE;
1227 else
1228 current_thread_info()->status = 0;
1229 clear_used_math();
1230 mxcsr_feature_mask_init();
1231
1232 /*
1233 * Boot processor to setup the FP and extended state context info.
1234 */
1235 if (smp_processor_id() == boot_cpu_id)
1236 init_thread_xstate();
1237
1238 xsave_init();
1239 }
1240 #endif