]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
2af127d4c3d1dc2ebdab3e0e2ff95d2d07595a46
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kallsyms.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/sysdev.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/irq_work.h>
40 #include <linux/export.h>
41
42 #include <asm/processor.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45
46 #include "mce-internal.h"
47
48 static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50 #define rcu_dereference_check_mce(p) \
51 rcu_dereference_index_check((p), \
52 rcu_read_lock_sched_held() || \
53 lockdep_is_held(&mce_chrdev_read_mutex))
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mce.h>
57
58 int mce_disabled __read_mostly;
59
60 #define MISC_MCELOG_MINOR 227
61
62 #define SPINUNIT 100 /* 100ns */
63
64 atomic_t mce_entry;
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 /*
69 * Tolerant levels:
70 * 0: always panic on uncorrected errors, log corrected errors
71 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
72 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 * 3: never panic or SIGBUS, log all errors (for testing only)
74 */
75 static int tolerant __read_mostly = 1;
76 static int banks __read_mostly;
77 static int rip_msr __read_mostly;
78 static int mce_bootlog __read_mostly = -1;
79 static int monarch_timeout __read_mostly = -1;
80 static int mce_panic_timeout __read_mostly;
81 static int mce_dont_log_ce __read_mostly;
82 int mce_cmci_disabled __read_mostly;
83 int mce_ignore_ce __read_mostly;
84 int mce_ser __read_mostly;
85
86 struct mce_bank *mce_banks __read_mostly;
87
88 /* User mode helper program triggered by machine check event */
89 static unsigned long mce_need_notify;
90 static char mce_helper[128];
91 static char *mce_helper_argv[2] = { mce_helper, NULL };
92
93 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95 static DEFINE_PER_CPU(struct mce, mces_seen);
96 static int cpu_missing;
97
98 /*
99 * CPU/chipset specific EDAC code can register a notifier call here to print
100 * MCE errors in a human-readable form.
101 */
102 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
103 EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
104
105 /* MCA banks polled by the period polling timer for corrected events */
106 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
107 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
108 };
109
110 static DEFINE_PER_CPU(struct work_struct, mce_work);
111
112 /* Do initial initialization of a struct mce */
113 void mce_setup(struct mce *m)
114 {
115 memset(m, 0, sizeof(struct mce));
116 m->cpu = m->extcpu = smp_processor_id();
117 rdtscll(m->tsc);
118 /* We hope get_seconds stays lockless */
119 m->time = get_seconds();
120 m->cpuvendor = boot_cpu_data.x86_vendor;
121 m->cpuid = cpuid_eax(1);
122 #ifdef CONFIG_SMP
123 m->socketid = cpu_data(m->extcpu).phys_proc_id;
124 #endif
125 m->apicid = cpu_data(m->extcpu).initial_apicid;
126 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
127 }
128
129 DEFINE_PER_CPU(struct mce, injectm);
130 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
131
132 /*
133 * Lockless MCE logging infrastructure.
134 * This avoids deadlocks on printk locks without having to break locks. Also
135 * separate MCEs from kernel messages to avoid bogus bug reports.
136 */
137
138 static struct mce_log mcelog = {
139 .signature = MCE_LOG_SIGNATURE,
140 .len = MCE_LOG_LEN,
141 .recordlen = sizeof(struct mce),
142 };
143
144 void mce_log(struct mce *mce)
145 {
146 unsigned next, entry;
147 int ret = 0;
148
149 /* Emit the trace record: */
150 trace_mce_record(mce);
151
152 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
153 if (ret == NOTIFY_STOP)
154 return;
155
156 mce->finished = 0;
157 wmb();
158 for (;;) {
159 entry = rcu_dereference_check_mce(mcelog.next);
160 for (;;) {
161
162 /*
163 * When the buffer fills up discard new entries.
164 * Assume that the earlier errors are the more
165 * interesting ones:
166 */
167 if (entry >= MCE_LOG_LEN) {
168 set_bit(MCE_OVERFLOW,
169 (unsigned long *)&mcelog.flags);
170 return;
171 }
172 /* Old left over entry. Skip: */
173 if (mcelog.entry[entry].finished) {
174 entry++;
175 continue;
176 }
177 break;
178 }
179 smp_rmb();
180 next = entry + 1;
181 if (cmpxchg(&mcelog.next, entry, next) == entry)
182 break;
183 }
184 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
185 wmb();
186 mcelog.entry[entry].finished = 1;
187 wmb();
188
189 mce->finished = 1;
190 set_bit(0, &mce_need_notify);
191 }
192
193 static void print_mce(struct mce *m)
194 {
195 int ret = 0;
196
197 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
198 m->extcpu, m->mcgstatus, m->bank, m->status);
199
200 if (m->ip) {
201 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
202 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
203 m->cs, m->ip);
204
205 if (m->cs == __KERNEL_CS)
206 print_symbol("{%s}", m->ip);
207 pr_cont("\n");
208 }
209
210 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
211 if (m->addr)
212 pr_cont("ADDR %llx ", m->addr);
213 if (m->misc)
214 pr_cont("MISC %llx ", m->misc);
215
216 pr_cont("\n");
217 /*
218 * Note this output is parsed by external tools and old fields
219 * should not be changed.
220 */
221 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
222 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
223 cpu_data(m->extcpu).microcode);
224
225 /*
226 * Print out human-readable details about the MCE error,
227 * (if the CPU has an implementation for that)
228 */
229 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
230 if (ret == NOTIFY_STOP)
231 return;
232
233 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
234 }
235
236 #define PANIC_TIMEOUT 5 /* 5 seconds */
237
238 static atomic_t mce_paniced;
239
240 static int fake_panic;
241 static atomic_t mce_fake_paniced;
242
243 /* Panic in progress. Enable interrupts and wait for final IPI */
244 static void wait_for_panic(void)
245 {
246 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
247
248 preempt_disable();
249 local_irq_enable();
250 while (timeout-- > 0)
251 udelay(1);
252 if (panic_timeout == 0)
253 panic_timeout = mce_panic_timeout;
254 panic("Panicing machine check CPU died");
255 }
256
257 static void mce_panic(char *msg, struct mce *final, char *exp)
258 {
259 int i, apei_err = 0;
260
261 if (!fake_panic) {
262 /*
263 * Make sure only one CPU runs in machine check panic
264 */
265 if (atomic_inc_return(&mce_paniced) > 1)
266 wait_for_panic();
267 barrier();
268
269 bust_spinlocks(1);
270 console_verbose();
271 } else {
272 /* Don't log too much for fake panic */
273 if (atomic_inc_return(&mce_fake_paniced) > 1)
274 return;
275 }
276 /* First print corrected ones that are still unlogged */
277 for (i = 0; i < MCE_LOG_LEN; i++) {
278 struct mce *m = &mcelog.entry[i];
279 if (!(m->status & MCI_STATUS_VAL))
280 continue;
281 if (!(m->status & MCI_STATUS_UC)) {
282 print_mce(m);
283 if (!apei_err)
284 apei_err = apei_write_mce(m);
285 }
286 }
287 /* Now print uncorrected but with the final one last */
288 for (i = 0; i < MCE_LOG_LEN; i++) {
289 struct mce *m = &mcelog.entry[i];
290 if (!(m->status & MCI_STATUS_VAL))
291 continue;
292 if (!(m->status & MCI_STATUS_UC))
293 continue;
294 if (!final || memcmp(m, final, sizeof(struct mce))) {
295 print_mce(m);
296 if (!apei_err)
297 apei_err = apei_write_mce(m);
298 }
299 }
300 if (final) {
301 print_mce(final);
302 if (!apei_err)
303 apei_err = apei_write_mce(final);
304 }
305 if (cpu_missing)
306 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
307 if (exp)
308 pr_emerg(HW_ERR "Machine check: %s\n", exp);
309 if (!fake_panic) {
310 if (panic_timeout == 0)
311 panic_timeout = mce_panic_timeout;
312 panic(msg);
313 } else
314 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
315 }
316
317 /* Support code for software error injection */
318
319 static int msr_to_offset(u32 msr)
320 {
321 unsigned bank = __this_cpu_read(injectm.bank);
322
323 if (msr == rip_msr)
324 return offsetof(struct mce, ip);
325 if (msr == MSR_IA32_MCx_STATUS(bank))
326 return offsetof(struct mce, status);
327 if (msr == MSR_IA32_MCx_ADDR(bank))
328 return offsetof(struct mce, addr);
329 if (msr == MSR_IA32_MCx_MISC(bank))
330 return offsetof(struct mce, misc);
331 if (msr == MSR_IA32_MCG_STATUS)
332 return offsetof(struct mce, mcgstatus);
333 return -1;
334 }
335
336 /* MSR access wrappers used for error injection */
337 static u64 mce_rdmsrl(u32 msr)
338 {
339 u64 v;
340
341 if (__this_cpu_read(injectm.finished)) {
342 int offset = msr_to_offset(msr);
343
344 if (offset < 0)
345 return 0;
346 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
347 }
348
349 if (rdmsrl_safe(msr, &v)) {
350 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
351 /*
352 * Return zero in case the access faulted. This should
353 * not happen normally but can happen if the CPU does
354 * something weird, or if the code is buggy.
355 */
356 v = 0;
357 }
358
359 return v;
360 }
361
362 static void mce_wrmsrl(u32 msr, u64 v)
363 {
364 if (__this_cpu_read(injectm.finished)) {
365 int offset = msr_to_offset(msr);
366
367 if (offset >= 0)
368 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
369 return;
370 }
371 wrmsrl(msr, v);
372 }
373
374 /*
375 * Collect all global (w.r.t. this processor) status about this machine
376 * check into our "mce" struct so that we can use it later to assess
377 * the severity of the problem as we read per-bank specific details.
378 */
379 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
380 {
381 mce_setup(m);
382
383 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
384 if (regs) {
385 /*
386 * Get the address of the instruction at the time of
387 * the machine check error.
388 */
389 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
390 m->ip = regs->ip;
391 m->cs = regs->cs;
392 }
393 /* Use accurate RIP reporting if available. */
394 if (rip_msr)
395 m->ip = mce_rdmsrl(rip_msr);
396 }
397 }
398
399 /*
400 * Simple lockless ring to communicate PFNs from the exception handler with the
401 * process context work function. This is vastly simplified because there's
402 * only a single reader and a single writer.
403 */
404 #define MCE_RING_SIZE 16 /* we use one entry less */
405
406 struct mce_ring {
407 unsigned short start;
408 unsigned short end;
409 unsigned long ring[MCE_RING_SIZE];
410 };
411 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
412
413 /* Runs with CPU affinity in workqueue */
414 static int mce_ring_empty(void)
415 {
416 struct mce_ring *r = &__get_cpu_var(mce_ring);
417
418 return r->start == r->end;
419 }
420
421 static int mce_ring_get(unsigned long *pfn)
422 {
423 struct mce_ring *r;
424 int ret = 0;
425
426 *pfn = 0;
427 get_cpu();
428 r = &__get_cpu_var(mce_ring);
429 if (r->start == r->end)
430 goto out;
431 *pfn = r->ring[r->start];
432 r->start = (r->start + 1) % MCE_RING_SIZE;
433 ret = 1;
434 out:
435 put_cpu();
436 return ret;
437 }
438
439 /* Always runs in MCE context with preempt off */
440 static int mce_ring_add(unsigned long pfn)
441 {
442 struct mce_ring *r = &__get_cpu_var(mce_ring);
443 unsigned next;
444
445 next = (r->end + 1) % MCE_RING_SIZE;
446 if (next == r->start)
447 return -1;
448 r->ring[r->end] = pfn;
449 wmb();
450 r->end = next;
451 return 0;
452 }
453
454 int mce_available(struct cpuinfo_x86 *c)
455 {
456 if (mce_disabled)
457 return 0;
458 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
459 }
460
461 static void mce_schedule_work(void)
462 {
463 if (!mce_ring_empty()) {
464 struct work_struct *work = &__get_cpu_var(mce_work);
465 if (!work_pending(work))
466 schedule_work(work);
467 }
468 }
469
470 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
471
472 static void mce_irq_work_cb(struct irq_work *entry)
473 {
474 mce_notify_irq();
475 mce_schedule_work();
476 }
477
478 static void mce_report_event(struct pt_regs *regs)
479 {
480 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
481 mce_notify_irq();
482 /*
483 * Triggering the work queue here is just an insurance
484 * policy in case the syscall exit notify handler
485 * doesn't run soon enough or ends up running on the
486 * wrong CPU (can happen when audit sleeps)
487 */
488 mce_schedule_work();
489 return;
490 }
491
492 irq_work_queue(&__get_cpu_var(mce_irq_work));
493 }
494
495 DEFINE_PER_CPU(unsigned, mce_poll_count);
496
497 /*
498 * Poll for corrected events or events that happened before reset.
499 * Those are just logged through /dev/mcelog.
500 *
501 * This is executed in standard interrupt context.
502 *
503 * Note: spec recommends to panic for fatal unsignalled
504 * errors here. However this would be quite problematic --
505 * we would need to reimplement the Monarch handling and
506 * it would mess up the exclusion between exception handler
507 * and poll hander -- * so we skip this for now.
508 * These cases should not happen anyways, or only when the CPU
509 * is already totally * confused. In this case it's likely it will
510 * not fully execute the machine check handler either.
511 */
512 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
513 {
514 struct mce m;
515 int i;
516
517 percpu_inc(mce_poll_count);
518
519 mce_gather_info(&m, NULL);
520
521 for (i = 0; i < banks; i++) {
522 if (!mce_banks[i].ctl || !test_bit(i, *b))
523 continue;
524
525 m.misc = 0;
526 m.addr = 0;
527 m.bank = i;
528 m.tsc = 0;
529
530 barrier();
531 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
532 if (!(m.status & MCI_STATUS_VAL))
533 continue;
534
535 /*
536 * Uncorrected or signalled events are handled by the exception
537 * handler when it is enabled, so don't process those here.
538 *
539 * TBD do the same check for MCI_STATUS_EN here?
540 */
541 if (!(flags & MCP_UC) &&
542 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
543 continue;
544
545 if (m.status & MCI_STATUS_MISCV)
546 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
547 if (m.status & MCI_STATUS_ADDRV)
548 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
549
550 if (!(flags & MCP_TIMESTAMP))
551 m.tsc = 0;
552 /*
553 * Don't get the IP here because it's unlikely to
554 * have anything to do with the actual error location.
555 */
556 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
557 mce_log(&m);
558
559 /*
560 * Clear state for this bank.
561 */
562 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
563 }
564
565 /*
566 * Don't clear MCG_STATUS here because it's only defined for
567 * exceptions.
568 */
569
570 sync_core();
571 }
572 EXPORT_SYMBOL_GPL(machine_check_poll);
573
574 /*
575 * Do a quick check if any of the events requires a panic.
576 * This decides if we keep the events around or clear them.
577 */
578 static int mce_no_way_out(struct mce *m, char **msg)
579 {
580 int i;
581
582 for (i = 0; i < banks; i++) {
583 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
584 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
585 return 1;
586 }
587 return 0;
588 }
589
590 /*
591 * Variable to establish order between CPUs while scanning.
592 * Each CPU spins initially until executing is equal its number.
593 */
594 static atomic_t mce_executing;
595
596 /*
597 * Defines order of CPUs on entry. First CPU becomes Monarch.
598 */
599 static atomic_t mce_callin;
600
601 /*
602 * Check if a timeout waiting for other CPUs happened.
603 */
604 static int mce_timed_out(u64 *t)
605 {
606 /*
607 * The others already did panic for some reason.
608 * Bail out like in a timeout.
609 * rmb() to tell the compiler that system_state
610 * might have been modified by someone else.
611 */
612 rmb();
613 if (atomic_read(&mce_paniced))
614 wait_for_panic();
615 if (!monarch_timeout)
616 goto out;
617 if ((s64)*t < SPINUNIT) {
618 /* CHECKME: Make panic default for 1 too? */
619 if (tolerant < 1)
620 mce_panic("Timeout synchronizing machine check over CPUs",
621 NULL, NULL);
622 cpu_missing = 1;
623 return 1;
624 }
625 *t -= SPINUNIT;
626 out:
627 touch_nmi_watchdog();
628 return 0;
629 }
630
631 /*
632 * The Monarch's reign. The Monarch is the CPU who entered
633 * the machine check handler first. It waits for the others to
634 * raise the exception too and then grades them. When any
635 * error is fatal panic. Only then let the others continue.
636 *
637 * The other CPUs entering the MCE handler will be controlled by the
638 * Monarch. They are called Subjects.
639 *
640 * This way we prevent any potential data corruption in a unrecoverable case
641 * and also makes sure always all CPU's errors are examined.
642 *
643 * Also this detects the case of a machine check event coming from outer
644 * space (not detected by any CPUs) In this case some external agent wants
645 * us to shut down, so panic too.
646 *
647 * The other CPUs might still decide to panic if the handler happens
648 * in a unrecoverable place, but in this case the system is in a semi-stable
649 * state and won't corrupt anything by itself. It's ok to let the others
650 * continue for a bit first.
651 *
652 * All the spin loops have timeouts; when a timeout happens a CPU
653 * typically elects itself to be Monarch.
654 */
655 static void mce_reign(void)
656 {
657 int cpu;
658 struct mce *m = NULL;
659 int global_worst = 0;
660 char *msg = NULL;
661 char *nmsg = NULL;
662
663 /*
664 * This CPU is the Monarch and the other CPUs have run
665 * through their handlers.
666 * Grade the severity of the errors of all the CPUs.
667 */
668 for_each_possible_cpu(cpu) {
669 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
670 &nmsg);
671 if (severity > global_worst) {
672 msg = nmsg;
673 global_worst = severity;
674 m = &per_cpu(mces_seen, cpu);
675 }
676 }
677
678 /*
679 * Cannot recover? Panic here then.
680 * This dumps all the mces in the log buffer and stops the
681 * other CPUs.
682 */
683 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
684 mce_panic("Fatal Machine check", m, msg);
685
686 /*
687 * For UC somewhere we let the CPU who detects it handle it.
688 * Also must let continue the others, otherwise the handling
689 * CPU could deadlock on a lock.
690 */
691
692 /*
693 * No machine check event found. Must be some external
694 * source or one CPU is hung. Panic.
695 */
696 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
697 mce_panic("Machine check from unknown source", NULL, NULL);
698
699 /*
700 * Now clear all the mces_seen so that they don't reappear on
701 * the next mce.
702 */
703 for_each_possible_cpu(cpu)
704 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
705 }
706
707 static atomic_t global_nwo;
708
709 /*
710 * Start of Monarch synchronization. This waits until all CPUs have
711 * entered the exception handler and then determines if any of them
712 * saw a fatal event that requires panic. Then it executes them
713 * in the entry order.
714 * TBD double check parallel CPU hotunplug
715 */
716 static int mce_start(int *no_way_out)
717 {
718 int order;
719 int cpus = num_online_cpus();
720 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
721
722 if (!timeout)
723 return -1;
724
725 atomic_add(*no_way_out, &global_nwo);
726 /*
727 * global_nwo should be updated before mce_callin
728 */
729 smp_wmb();
730 order = atomic_inc_return(&mce_callin);
731
732 /*
733 * Wait for everyone.
734 */
735 while (atomic_read(&mce_callin) != cpus) {
736 if (mce_timed_out(&timeout)) {
737 atomic_set(&global_nwo, 0);
738 return -1;
739 }
740 ndelay(SPINUNIT);
741 }
742
743 /*
744 * mce_callin should be read before global_nwo
745 */
746 smp_rmb();
747
748 if (order == 1) {
749 /*
750 * Monarch: Starts executing now, the others wait.
751 */
752 atomic_set(&mce_executing, 1);
753 } else {
754 /*
755 * Subject: Now start the scanning loop one by one in
756 * the original callin order.
757 * This way when there are any shared banks it will be
758 * only seen by one CPU before cleared, avoiding duplicates.
759 */
760 while (atomic_read(&mce_executing) < order) {
761 if (mce_timed_out(&timeout)) {
762 atomic_set(&global_nwo, 0);
763 return -1;
764 }
765 ndelay(SPINUNIT);
766 }
767 }
768
769 /*
770 * Cache the global no_way_out state.
771 */
772 *no_way_out = atomic_read(&global_nwo);
773
774 return order;
775 }
776
777 /*
778 * Synchronize between CPUs after main scanning loop.
779 * This invokes the bulk of the Monarch processing.
780 */
781 static int mce_end(int order)
782 {
783 int ret = -1;
784 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
785
786 if (!timeout)
787 goto reset;
788 if (order < 0)
789 goto reset;
790
791 /*
792 * Allow others to run.
793 */
794 atomic_inc(&mce_executing);
795
796 if (order == 1) {
797 /* CHECKME: Can this race with a parallel hotplug? */
798 int cpus = num_online_cpus();
799
800 /*
801 * Monarch: Wait for everyone to go through their scanning
802 * loops.
803 */
804 while (atomic_read(&mce_executing) <= cpus) {
805 if (mce_timed_out(&timeout))
806 goto reset;
807 ndelay(SPINUNIT);
808 }
809
810 mce_reign();
811 barrier();
812 ret = 0;
813 } else {
814 /*
815 * Subject: Wait for Monarch to finish.
816 */
817 while (atomic_read(&mce_executing) != 0) {
818 if (mce_timed_out(&timeout))
819 goto reset;
820 ndelay(SPINUNIT);
821 }
822
823 /*
824 * Don't reset anything. That's done by the Monarch.
825 */
826 return 0;
827 }
828
829 /*
830 * Reset all global state.
831 */
832 reset:
833 atomic_set(&global_nwo, 0);
834 atomic_set(&mce_callin, 0);
835 barrier();
836
837 /*
838 * Let others run again.
839 */
840 atomic_set(&mce_executing, 0);
841 return ret;
842 }
843
844 /*
845 * Check if the address reported by the CPU is in a format we can parse.
846 * It would be possible to add code for most other cases, but all would
847 * be somewhat complicated (e.g. segment offset would require an instruction
848 * parser). So only support physical addresses up to page granuality for now.
849 */
850 static int mce_usable_address(struct mce *m)
851 {
852 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
853 return 0;
854 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
855 return 0;
856 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
857 return 0;
858 return 1;
859 }
860
861 static void mce_clear_state(unsigned long *toclear)
862 {
863 int i;
864
865 for (i = 0; i < banks; i++) {
866 if (test_bit(i, toclear))
867 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
868 }
869 }
870
871 /*
872 * The actual machine check handler. This only handles real
873 * exceptions when something got corrupted coming in through int 18.
874 *
875 * This is executed in NMI context not subject to normal locking rules. This
876 * implies that most kernel services cannot be safely used. Don't even
877 * think about putting a printk in there!
878 *
879 * On Intel systems this is entered on all CPUs in parallel through
880 * MCE broadcast. However some CPUs might be broken beyond repair,
881 * so be always careful when synchronizing with others.
882 */
883 void do_machine_check(struct pt_regs *regs, long error_code)
884 {
885 struct mce m, *final;
886 int i;
887 int worst = 0;
888 int severity;
889 /*
890 * Establish sequential order between the CPUs entering the machine
891 * check handler.
892 */
893 int order;
894 /*
895 * If no_way_out gets set, there is no safe way to recover from this
896 * MCE. If tolerant is cranked up, we'll try anyway.
897 */
898 int no_way_out = 0;
899 /*
900 * If kill_it gets set, there might be a way to recover from this
901 * error.
902 */
903 int kill_it = 0;
904 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
905 char *msg = "Unknown";
906
907 atomic_inc(&mce_entry);
908
909 percpu_inc(mce_exception_count);
910
911 if (!banks)
912 goto out;
913
914 mce_gather_info(&m, regs);
915
916 final = &__get_cpu_var(mces_seen);
917 *final = m;
918
919 no_way_out = mce_no_way_out(&m, &msg);
920
921 barrier();
922
923 /*
924 * When no restart IP must always kill or panic.
925 */
926 if (!(m.mcgstatus & MCG_STATUS_RIPV))
927 kill_it = 1;
928
929 /*
930 * Go through all the banks in exclusion of the other CPUs.
931 * This way we don't report duplicated events on shared banks
932 * because the first one to see it will clear it.
933 */
934 order = mce_start(&no_way_out);
935 for (i = 0; i < banks; i++) {
936 __clear_bit(i, toclear);
937 if (!mce_banks[i].ctl)
938 continue;
939
940 m.misc = 0;
941 m.addr = 0;
942 m.bank = i;
943
944 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
945 if ((m.status & MCI_STATUS_VAL) == 0)
946 continue;
947
948 /*
949 * Non uncorrected or non signaled errors are handled by
950 * machine_check_poll. Leave them alone, unless this panics.
951 */
952 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
953 !no_way_out)
954 continue;
955
956 /*
957 * Set taint even when machine check was not enabled.
958 */
959 add_taint(TAINT_MACHINE_CHECK);
960
961 severity = mce_severity(&m, tolerant, NULL);
962
963 /*
964 * When machine check was for corrected handler don't touch,
965 * unless we're panicing.
966 */
967 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
968 continue;
969 __set_bit(i, toclear);
970 if (severity == MCE_NO_SEVERITY) {
971 /*
972 * Machine check event was not enabled. Clear, but
973 * ignore.
974 */
975 continue;
976 }
977
978 /*
979 * Kill on action required.
980 */
981 if (severity == MCE_AR_SEVERITY)
982 kill_it = 1;
983
984 if (m.status & MCI_STATUS_MISCV)
985 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
986 if (m.status & MCI_STATUS_ADDRV)
987 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
988
989 /*
990 * Action optional error. Queue address for later processing.
991 * When the ring overflows we just ignore the AO error.
992 * RED-PEN add some logging mechanism when
993 * usable_address or mce_add_ring fails.
994 * RED-PEN don't ignore overflow for tolerant == 0
995 */
996 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
997 mce_ring_add(m.addr >> PAGE_SHIFT);
998
999 mce_log(&m);
1000
1001 if (severity > worst) {
1002 *final = m;
1003 worst = severity;
1004 }
1005 }
1006
1007 if (!no_way_out)
1008 mce_clear_state(toclear);
1009
1010 /*
1011 * Do most of the synchronization with other CPUs.
1012 * When there's any problem use only local no_way_out state.
1013 */
1014 if (mce_end(order) < 0)
1015 no_way_out = worst >= MCE_PANIC_SEVERITY;
1016
1017 /*
1018 * If we have decided that we just CAN'T continue, and the user
1019 * has not set tolerant to an insane level, give up and die.
1020 *
1021 * This is mainly used in the case when the system doesn't
1022 * support MCE broadcasting or it has been disabled.
1023 */
1024 if (no_way_out && tolerant < 3)
1025 mce_panic("Fatal machine check on current CPU", final, msg);
1026
1027 /*
1028 * If the error seems to be unrecoverable, something should be
1029 * done. Try to kill as little as possible. If we can kill just
1030 * one task, do that. If the user has set the tolerance very
1031 * high, don't try to do anything at all.
1032 */
1033
1034 if (kill_it && tolerant < 3)
1035 force_sig(SIGBUS, current);
1036
1037 /* notify userspace ASAP */
1038 set_thread_flag(TIF_MCE_NOTIFY);
1039
1040 if (worst > 0)
1041 mce_report_event(regs);
1042 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1043 out:
1044 atomic_dec(&mce_entry);
1045 sync_core();
1046 }
1047 EXPORT_SYMBOL_GPL(do_machine_check);
1048
1049 /* dummy to break dependency. actual code is in mm/memory-failure.c */
1050 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1051 {
1052 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1053 }
1054
1055 /*
1056 * Called after mce notification in process context. This code
1057 * is allowed to sleep. Call the high level VM handler to process
1058 * any corrupted pages.
1059 * Assume that the work queue code only calls this one at a time
1060 * per CPU.
1061 * Note we don't disable preemption, so this code might run on the wrong
1062 * CPU. In this case the event is picked up by the scheduled work queue.
1063 * This is merely a fast path to expedite processing in some common
1064 * cases.
1065 */
1066 void mce_notify_process(void)
1067 {
1068 unsigned long pfn;
1069 mce_notify_irq();
1070 while (mce_ring_get(&pfn))
1071 memory_failure(pfn, MCE_VECTOR);
1072 }
1073
1074 static void mce_process_work(struct work_struct *dummy)
1075 {
1076 mce_notify_process();
1077 }
1078
1079 #ifdef CONFIG_X86_MCE_INTEL
1080 /***
1081 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1082 * @cpu: The CPU on which the event occurred.
1083 * @status: Event status information
1084 *
1085 * This function should be called by the thermal interrupt after the
1086 * event has been processed and the decision was made to log the event
1087 * further.
1088 *
1089 * The status parameter will be saved to the 'status' field of 'struct mce'
1090 * and historically has been the register value of the
1091 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1092 */
1093 void mce_log_therm_throt_event(__u64 status)
1094 {
1095 struct mce m;
1096
1097 mce_setup(&m);
1098 m.bank = MCE_THERMAL_BANK;
1099 m.status = status;
1100 mce_log(&m);
1101 }
1102 #endif /* CONFIG_X86_MCE_INTEL */
1103
1104 /*
1105 * Periodic polling timer for "silent" machine check errors. If the
1106 * poller finds an MCE, poll 2x faster. When the poller finds no more
1107 * errors, poll 2x slower (up to check_interval seconds).
1108 */
1109 static int check_interval = 5 * 60; /* 5 minutes */
1110
1111 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1112 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1113
1114 static void mce_start_timer(unsigned long data)
1115 {
1116 struct timer_list *t = &per_cpu(mce_timer, data);
1117 int *n;
1118
1119 WARN_ON(smp_processor_id() != data);
1120
1121 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1122 machine_check_poll(MCP_TIMESTAMP,
1123 &__get_cpu_var(mce_poll_banks));
1124 }
1125
1126 /*
1127 * Alert userspace if needed. If we logged an MCE, reduce the
1128 * polling interval, otherwise increase the polling interval.
1129 */
1130 n = &__get_cpu_var(mce_next_interval);
1131 if (mce_notify_irq())
1132 *n = max(*n/2, HZ/100);
1133 else
1134 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1135
1136 t->expires = jiffies + *n;
1137 add_timer_on(t, smp_processor_id());
1138 }
1139
1140 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1141 static void mce_timer_delete_all(void)
1142 {
1143 int cpu;
1144
1145 for_each_online_cpu(cpu)
1146 del_timer_sync(&per_cpu(mce_timer, cpu));
1147 }
1148
1149 static void mce_do_trigger(struct work_struct *work)
1150 {
1151 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1152 }
1153
1154 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1155
1156 /*
1157 * Notify the user(s) about new machine check events.
1158 * Can be called from interrupt context, but not from machine check/NMI
1159 * context.
1160 */
1161 int mce_notify_irq(void)
1162 {
1163 /* Not more than two messages every minute */
1164 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1165
1166 clear_thread_flag(TIF_MCE_NOTIFY);
1167
1168 if (test_and_clear_bit(0, &mce_need_notify)) {
1169 /* wake processes polling /dev/mcelog */
1170 wake_up_interruptible(&mce_chrdev_wait);
1171
1172 /*
1173 * There is no risk of missing notifications because
1174 * work_pending is always cleared before the function is
1175 * executed.
1176 */
1177 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1178 schedule_work(&mce_trigger_work);
1179
1180 if (__ratelimit(&ratelimit))
1181 pr_info(HW_ERR "Machine check events logged\n");
1182
1183 return 1;
1184 }
1185 return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(mce_notify_irq);
1188
1189 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1190 {
1191 int i;
1192
1193 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1194 if (!mce_banks)
1195 return -ENOMEM;
1196 for (i = 0; i < banks; i++) {
1197 struct mce_bank *b = &mce_banks[i];
1198
1199 b->ctl = -1ULL;
1200 b->init = 1;
1201 }
1202 return 0;
1203 }
1204
1205 /*
1206 * Initialize Machine Checks for a CPU.
1207 */
1208 static int __cpuinit __mcheck_cpu_cap_init(void)
1209 {
1210 unsigned b;
1211 u64 cap;
1212
1213 rdmsrl(MSR_IA32_MCG_CAP, cap);
1214
1215 b = cap & MCG_BANKCNT_MASK;
1216 if (!banks)
1217 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1218
1219 if (b > MAX_NR_BANKS) {
1220 printk(KERN_WARNING
1221 "MCE: Using only %u machine check banks out of %u\n",
1222 MAX_NR_BANKS, b);
1223 b = MAX_NR_BANKS;
1224 }
1225
1226 /* Don't support asymmetric configurations today */
1227 WARN_ON(banks != 0 && b != banks);
1228 banks = b;
1229 if (!mce_banks) {
1230 int err = __mcheck_cpu_mce_banks_init();
1231
1232 if (err)
1233 return err;
1234 }
1235
1236 /* Use accurate RIP reporting if available. */
1237 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1238 rip_msr = MSR_IA32_MCG_EIP;
1239
1240 if (cap & MCG_SER_P)
1241 mce_ser = 1;
1242
1243 return 0;
1244 }
1245
1246 static void __mcheck_cpu_init_generic(void)
1247 {
1248 mce_banks_t all_banks;
1249 u64 cap;
1250 int i;
1251
1252 /*
1253 * Log the machine checks left over from the previous reset.
1254 */
1255 bitmap_fill(all_banks, MAX_NR_BANKS);
1256 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1257
1258 set_in_cr4(X86_CR4_MCE);
1259
1260 rdmsrl(MSR_IA32_MCG_CAP, cap);
1261 if (cap & MCG_CTL_P)
1262 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1263
1264 for (i = 0; i < banks; i++) {
1265 struct mce_bank *b = &mce_banks[i];
1266
1267 if (!b->init)
1268 continue;
1269 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1270 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1271 }
1272 }
1273
1274 /* Add per CPU specific workarounds here */
1275 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1276 {
1277 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1278 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1279 return -EOPNOTSUPP;
1280 }
1281
1282 /* This should be disabled by the BIOS, but isn't always */
1283 if (c->x86_vendor == X86_VENDOR_AMD) {
1284 if (c->x86 == 15 && banks > 4) {
1285 /*
1286 * disable GART TBL walk error reporting, which
1287 * trips off incorrectly with the IOMMU & 3ware
1288 * & Cerberus:
1289 */
1290 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1291 }
1292 if (c->x86 <= 17 && mce_bootlog < 0) {
1293 /*
1294 * Lots of broken BIOS around that don't clear them
1295 * by default and leave crap in there. Don't log:
1296 */
1297 mce_bootlog = 0;
1298 }
1299 /*
1300 * Various K7s with broken bank 0 around. Always disable
1301 * by default.
1302 */
1303 if (c->x86 == 6 && banks > 0)
1304 mce_banks[0].ctl = 0;
1305 }
1306
1307 if (c->x86_vendor == X86_VENDOR_INTEL) {
1308 /*
1309 * SDM documents that on family 6 bank 0 should not be written
1310 * because it aliases to another special BIOS controlled
1311 * register.
1312 * But it's not aliased anymore on model 0x1a+
1313 * Don't ignore bank 0 completely because there could be a
1314 * valid event later, merely don't write CTL0.
1315 */
1316
1317 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1318 mce_banks[0].init = 0;
1319
1320 /*
1321 * All newer Intel systems support MCE broadcasting. Enable
1322 * synchronization with a one second timeout.
1323 */
1324 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1325 monarch_timeout < 0)
1326 monarch_timeout = USEC_PER_SEC;
1327
1328 /*
1329 * There are also broken BIOSes on some Pentium M and
1330 * earlier systems:
1331 */
1332 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1333 mce_bootlog = 0;
1334 }
1335 if (monarch_timeout < 0)
1336 monarch_timeout = 0;
1337 if (mce_bootlog != 0)
1338 mce_panic_timeout = 30;
1339
1340 return 0;
1341 }
1342
1343 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1344 {
1345 if (c->x86 != 5)
1346 return 0;
1347
1348 switch (c->x86_vendor) {
1349 case X86_VENDOR_INTEL:
1350 intel_p5_mcheck_init(c);
1351 return 1;
1352 break;
1353 case X86_VENDOR_CENTAUR:
1354 winchip_mcheck_init(c);
1355 return 1;
1356 break;
1357 }
1358
1359 return 0;
1360 }
1361
1362 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1363 {
1364 switch (c->x86_vendor) {
1365 case X86_VENDOR_INTEL:
1366 mce_intel_feature_init(c);
1367 break;
1368 case X86_VENDOR_AMD:
1369 mce_amd_feature_init(c);
1370 break;
1371 default:
1372 break;
1373 }
1374 }
1375
1376 static void __mcheck_cpu_init_timer(void)
1377 {
1378 struct timer_list *t = &__get_cpu_var(mce_timer);
1379 int *n = &__get_cpu_var(mce_next_interval);
1380
1381 setup_timer(t, mce_start_timer, smp_processor_id());
1382
1383 if (mce_ignore_ce)
1384 return;
1385
1386 *n = check_interval * HZ;
1387 if (!*n)
1388 return;
1389 t->expires = round_jiffies(jiffies + *n);
1390 add_timer_on(t, smp_processor_id());
1391 }
1392
1393 /* Handle unconfigured int18 (should never happen) */
1394 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1395 {
1396 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1397 smp_processor_id());
1398 }
1399
1400 /* Call the installed machine check handler for this CPU setup. */
1401 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1402 unexpected_machine_check;
1403
1404 /*
1405 * Called for each booted CPU to set up machine checks.
1406 * Must be called with preempt off:
1407 */
1408 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1409 {
1410 if (mce_disabled)
1411 return;
1412
1413 if (__mcheck_cpu_ancient_init(c))
1414 return;
1415
1416 if (!mce_available(c))
1417 return;
1418
1419 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1420 mce_disabled = 1;
1421 return;
1422 }
1423
1424 machine_check_vector = do_machine_check;
1425
1426 __mcheck_cpu_init_generic();
1427 __mcheck_cpu_init_vendor(c);
1428 __mcheck_cpu_init_timer();
1429 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1430 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1431 }
1432
1433 /*
1434 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1435 */
1436
1437 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1438 static int mce_chrdev_open_count; /* #times opened */
1439 static int mce_chrdev_open_exclu; /* already open exclusive? */
1440
1441 static int mce_chrdev_open(struct inode *inode, struct file *file)
1442 {
1443 spin_lock(&mce_chrdev_state_lock);
1444
1445 if (mce_chrdev_open_exclu ||
1446 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1447 spin_unlock(&mce_chrdev_state_lock);
1448
1449 return -EBUSY;
1450 }
1451
1452 if (file->f_flags & O_EXCL)
1453 mce_chrdev_open_exclu = 1;
1454 mce_chrdev_open_count++;
1455
1456 spin_unlock(&mce_chrdev_state_lock);
1457
1458 return nonseekable_open(inode, file);
1459 }
1460
1461 static int mce_chrdev_release(struct inode *inode, struct file *file)
1462 {
1463 spin_lock(&mce_chrdev_state_lock);
1464
1465 mce_chrdev_open_count--;
1466 mce_chrdev_open_exclu = 0;
1467
1468 spin_unlock(&mce_chrdev_state_lock);
1469
1470 return 0;
1471 }
1472
1473 static void collect_tscs(void *data)
1474 {
1475 unsigned long *cpu_tsc = (unsigned long *)data;
1476
1477 rdtscll(cpu_tsc[smp_processor_id()]);
1478 }
1479
1480 static int mce_apei_read_done;
1481
1482 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1483 static int __mce_read_apei(char __user **ubuf, size_t usize)
1484 {
1485 int rc;
1486 u64 record_id;
1487 struct mce m;
1488
1489 if (usize < sizeof(struct mce))
1490 return -EINVAL;
1491
1492 rc = apei_read_mce(&m, &record_id);
1493 /* Error or no more MCE record */
1494 if (rc <= 0) {
1495 mce_apei_read_done = 1;
1496 return rc;
1497 }
1498 rc = -EFAULT;
1499 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1500 return rc;
1501 /*
1502 * In fact, we should have cleared the record after that has
1503 * been flushed to the disk or sent to network in
1504 * /sbin/mcelog, but we have no interface to support that now,
1505 * so just clear it to avoid duplication.
1506 */
1507 rc = apei_clear_mce(record_id);
1508 if (rc) {
1509 mce_apei_read_done = 1;
1510 return rc;
1511 }
1512 *ubuf += sizeof(struct mce);
1513
1514 return 0;
1515 }
1516
1517 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1518 size_t usize, loff_t *off)
1519 {
1520 char __user *buf = ubuf;
1521 unsigned long *cpu_tsc;
1522 unsigned prev, next;
1523 int i, err;
1524
1525 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1526 if (!cpu_tsc)
1527 return -ENOMEM;
1528
1529 mutex_lock(&mce_chrdev_read_mutex);
1530
1531 if (!mce_apei_read_done) {
1532 err = __mce_read_apei(&buf, usize);
1533 if (err || buf != ubuf)
1534 goto out;
1535 }
1536
1537 next = rcu_dereference_check_mce(mcelog.next);
1538
1539 /* Only supports full reads right now */
1540 err = -EINVAL;
1541 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1542 goto out;
1543
1544 err = 0;
1545 prev = 0;
1546 do {
1547 for (i = prev; i < next; i++) {
1548 unsigned long start = jiffies;
1549 struct mce *m = &mcelog.entry[i];
1550
1551 while (!m->finished) {
1552 if (time_after_eq(jiffies, start + 2)) {
1553 memset(m, 0, sizeof(*m));
1554 goto timeout;
1555 }
1556 cpu_relax();
1557 }
1558 smp_rmb();
1559 err |= copy_to_user(buf, m, sizeof(*m));
1560 buf += sizeof(*m);
1561 timeout:
1562 ;
1563 }
1564
1565 memset(mcelog.entry + prev, 0,
1566 (next - prev) * sizeof(struct mce));
1567 prev = next;
1568 next = cmpxchg(&mcelog.next, prev, 0);
1569 } while (next != prev);
1570
1571 synchronize_sched();
1572
1573 /*
1574 * Collect entries that were still getting written before the
1575 * synchronize.
1576 */
1577 on_each_cpu(collect_tscs, cpu_tsc, 1);
1578
1579 for (i = next; i < MCE_LOG_LEN; i++) {
1580 struct mce *m = &mcelog.entry[i];
1581
1582 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1583 err |= copy_to_user(buf, m, sizeof(*m));
1584 smp_rmb();
1585 buf += sizeof(*m);
1586 memset(m, 0, sizeof(*m));
1587 }
1588 }
1589
1590 if (err)
1591 err = -EFAULT;
1592
1593 out:
1594 mutex_unlock(&mce_chrdev_read_mutex);
1595 kfree(cpu_tsc);
1596
1597 return err ? err : buf - ubuf;
1598 }
1599
1600 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1601 {
1602 poll_wait(file, &mce_chrdev_wait, wait);
1603 if (rcu_access_index(mcelog.next))
1604 return POLLIN | POLLRDNORM;
1605 if (!mce_apei_read_done && apei_check_mce())
1606 return POLLIN | POLLRDNORM;
1607 return 0;
1608 }
1609
1610 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1611 unsigned long arg)
1612 {
1613 int __user *p = (int __user *)arg;
1614
1615 if (!capable(CAP_SYS_ADMIN))
1616 return -EPERM;
1617
1618 switch (cmd) {
1619 case MCE_GET_RECORD_LEN:
1620 return put_user(sizeof(struct mce), p);
1621 case MCE_GET_LOG_LEN:
1622 return put_user(MCE_LOG_LEN, p);
1623 case MCE_GETCLEAR_FLAGS: {
1624 unsigned flags;
1625
1626 do {
1627 flags = mcelog.flags;
1628 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1629
1630 return put_user(flags, p);
1631 }
1632 default:
1633 return -ENOTTY;
1634 }
1635 }
1636
1637 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1638 size_t usize, loff_t *off);
1639
1640 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1641 const char __user *ubuf,
1642 size_t usize, loff_t *off))
1643 {
1644 mce_write = fn;
1645 }
1646 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1647
1648 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1649 size_t usize, loff_t *off)
1650 {
1651 if (mce_write)
1652 return mce_write(filp, ubuf, usize, off);
1653 else
1654 return -EINVAL;
1655 }
1656
1657 static const struct file_operations mce_chrdev_ops = {
1658 .open = mce_chrdev_open,
1659 .release = mce_chrdev_release,
1660 .read = mce_chrdev_read,
1661 .write = mce_chrdev_write,
1662 .poll = mce_chrdev_poll,
1663 .unlocked_ioctl = mce_chrdev_ioctl,
1664 .llseek = no_llseek,
1665 };
1666
1667 static struct miscdevice mce_chrdev_device = {
1668 MISC_MCELOG_MINOR,
1669 "mcelog",
1670 &mce_chrdev_ops,
1671 };
1672
1673 /*
1674 * mce=off Disables machine check
1675 * mce=no_cmci Disables CMCI
1676 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1677 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1678 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1679 * monarchtimeout is how long to wait for other CPUs on machine
1680 * check, or 0 to not wait
1681 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1682 * mce=nobootlog Don't log MCEs from before booting.
1683 */
1684 static int __init mcheck_enable(char *str)
1685 {
1686 if (*str == 0) {
1687 enable_p5_mce();
1688 return 1;
1689 }
1690 if (*str == '=')
1691 str++;
1692 if (!strcmp(str, "off"))
1693 mce_disabled = 1;
1694 else if (!strcmp(str, "no_cmci"))
1695 mce_cmci_disabled = 1;
1696 else if (!strcmp(str, "dont_log_ce"))
1697 mce_dont_log_ce = 1;
1698 else if (!strcmp(str, "ignore_ce"))
1699 mce_ignore_ce = 1;
1700 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1701 mce_bootlog = (str[0] == 'b');
1702 else if (isdigit(str[0])) {
1703 get_option(&str, &tolerant);
1704 if (*str == ',') {
1705 ++str;
1706 get_option(&str, &monarch_timeout);
1707 }
1708 } else {
1709 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1710 str);
1711 return 0;
1712 }
1713 return 1;
1714 }
1715 __setup("mce", mcheck_enable);
1716
1717 int __init mcheck_init(void)
1718 {
1719 mcheck_intel_therm_init();
1720
1721 return 0;
1722 }
1723
1724 /*
1725 * mce_syscore: PM support
1726 */
1727
1728 /*
1729 * Disable machine checks on suspend and shutdown. We can't really handle
1730 * them later.
1731 */
1732 static int mce_disable_error_reporting(void)
1733 {
1734 int i;
1735
1736 for (i = 0; i < banks; i++) {
1737 struct mce_bank *b = &mce_banks[i];
1738
1739 if (b->init)
1740 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1741 }
1742 return 0;
1743 }
1744
1745 static int mce_syscore_suspend(void)
1746 {
1747 return mce_disable_error_reporting();
1748 }
1749
1750 static void mce_syscore_shutdown(void)
1751 {
1752 mce_disable_error_reporting();
1753 }
1754
1755 /*
1756 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1757 * Only one CPU is active at this time, the others get re-added later using
1758 * CPU hotplug:
1759 */
1760 static void mce_syscore_resume(void)
1761 {
1762 __mcheck_cpu_init_generic();
1763 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1764 }
1765
1766 static struct syscore_ops mce_syscore_ops = {
1767 .suspend = mce_syscore_suspend,
1768 .shutdown = mce_syscore_shutdown,
1769 .resume = mce_syscore_resume,
1770 };
1771
1772 /*
1773 * mce_sysdev: Sysfs support
1774 */
1775
1776 static void mce_cpu_restart(void *data)
1777 {
1778 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1779 return;
1780 __mcheck_cpu_init_generic();
1781 __mcheck_cpu_init_timer();
1782 }
1783
1784 /* Reinit MCEs after user configuration changes */
1785 static void mce_restart(void)
1786 {
1787 mce_timer_delete_all();
1788 on_each_cpu(mce_cpu_restart, NULL, 1);
1789 }
1790
1791 /* Toggle features for corrected errors */
1792 static void mce_disable_cmci(void *data)
1793 {
1794 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1795 return;
1796 cmci_clear();
1797 }
1798
1799 static void mce_enable_ce(void *all)
1800 {
1801 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1802 return;
1803 cmci_reenable();
1804 cmci_recheck();
1805 if (all)
1806 __mcheck_cpu_init_timer();
1807 }
1808
1809 static struct sysdev_class mce_sysdev_class = {
1810 .name = "machinecheck",
1811 };
1812
1813 DEFINE_PER_CPU(struct sys_device, mce_sysdev);
1814
1815 __cpuinitdata
1816 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1817
1818 static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1819 {
1820 return container_of(attr, struct mce_bank, attr);
1821 }
1822
1823 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1824 char *buf)
1825 {
1826 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1827 }
1828
1829 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1830 const char *buf, size_t size)
1831 {
1832 u64 new;
1833
1834 if (strict_strtoull(buf, 0, &new) < 0)
1835 return -EINVAL;
1836
1837 attr_to_bank(attr)->ctl = new;
1838 mce_restart();
1839
1840 return size;
1841 }
1842
1843 static ssize_t
1844 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1845 {
1846 strcpy(buf, mce_helper);
1847 strcat(buf, "\n");
1848 return strlen(mce_helper) + 1;
1849 }
1850
1851 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1852 const char *buf, size_t siz)
1853 {
1854 char *p;
1855
1856 strncpy(mce_helper, buf, sizeof(mce_helper));
1857 mce_helper[sizeof(mce_helper)-1] = 0;
1858 p = strchr(mce_helper, '\n');
1859
1860 if (p)
1861 *p = 0;
1862
1863 return strlen(mce_helper) + !!p;
1864 }
1865
1866 static ssize_t set_ignore_ce(struct sys_device *s,
1867 struct sysdev_attribute *attr,
1868 const char *buf, size_t size)
1869 {
1870 u64 new;
1871
1872 if (strict_strtoull(buf, 0, &new) < 0)
1873 return -EINVAL;
1874
1875 if (mce_ignore_ce ^ !!new) {
1876 if (new) {
1877 /* disable ce features */
1878 mce_timer_delete_all();
1879 on_each_cpu(mce_disable_cmci, NULL, 1);
1880 mce_ignore_ce = 1;
1881 } else {
1882 /* enable ce features */
1883 mce_ignore_ce = 0;
1884 on_each_cpu(mce_enable_ce, (void *)1, 1);
1885 }
1886 }
1887 return size;
1888 }
1889
1890 static ssize_t set_cmci_disabled(struct sys_device *s,
1891 struct sysdev_attribute *attr,
1892 const char *buf, size_t size)
1893 {
1894 u64 new;
1895
1896 if (strict_strtoull(buf, 0, &new) < 0)
1897 return -EINVAL;
1898
1899 if (mce_cmci_disabled ^ !!new) {
1900 if (new) {
1901 /* disable cmci */
1902 on_each_cpu(mce_disable_cmci, NULL, 1);
1903 mce_cmci_disabled = 1;
1904 } else {
1905 /* enable cmci */
1906 mce_cmci_disabled = 0;
1907 on_each_cpu(mce_enable_ce, NULL, 1);
1908 }
1909 }
1910 return size;
1911 }
1912
1913 static ssize_t store_int_with_restart(struct sys_device *s,
1914 struct sysdev_attribute *attr,
1915 const char *buf, size_t size)
1916 {
1917 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1918 mce_restart();
1919 return ret;
1920 }
1921
1922 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1923 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1924 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1925 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1926
1927 static struct sysdev_ext_attribute attr_check_interval = {
1928 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1929 store_int_with_restart),
1930 &check_interval
1931 };
1932
1933 static struct sysdev_ext_attribute attr_ignore_ce = {
1934 _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1935 &mce_ignore_ce
1936 };
1937
1938 static struct sysdev_ext_attribute attr_cmci_disabled = {
1939 _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1940 &mce_cmci_disabled
1941 };
1942
1943 static struct sysdev_attribute *mce_sysdev_attrs[] = {
1944 &attr_tolerant.attr,
1945 &attr_check_interval.attr,
1946 &attr_trigger,
1947 &attr_monarch_timeout.attr,
1948 &attr_dont_log_ce.attr,
1949 &attr_ignore_ce.attr,
1950 &attr_cmci_disabled.attr,
1951 NULL
1952 };
1953
1954 static cpumask_var_t mce_sysdev_initialized;
1955
1956 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1957 static __cpuinit int mce_sysdev_create(unsigned int cpu)
1958 {
1959 struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
1960 int err;
1961 int i, j;
1962
1963 if (!mce_available(&boot_cpu_data))
1964 return -EIO;
1965
1966 memset(&sysdev->kobj, 0, sizeof(struct kobject));
1967 sysdev->id = cpu;
1968 sysdev->cls = &mce_sysdev_class;
1969
1970 err = sysdev_register(sysdev);
1971 if (err)
1972 return err;
1973
1974 for (i = 0; mce_sysdev_attrs[i]; i++) {
1975 err = sysdev_create_file(sysdev, mce_sysdev_attrs[i]);
1976 if (err)
1977 goto error;
1978 }
1979 for (j = 0; j < banks; j++) {
1980 err = sysdev_create_file(sysdev, &mce_banks[j].attr);
1981 if (err)
1982 goto error2;
1983 }
1984 cpumask_set_cpu(cpu, mce_sysdev_initialized);
1985
1986 return 0;
1987 error2:
1988 while (--j >= 0)
1989 sysdev_remove_file(sysdev, &mce_banks[j].attr);
1990 error:
1991 while (--i >= 0)
1992 sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
1993
1994 sysdev_unregister(sysdev);
1995
1996 return err;
1997 }
1998
1999 static __cpuinit void mce_sysdev_remove(unsigned int cpu)
2000 {
2001 struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
2002 int i;
2003
2004 if (!cpumask_test_cpu(cpu, mce_sysdev_initialized))
2005 return;
2006
2007 for (i = 0; mce_sysdev_attrs[i]; i++)
2008 sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
2009
2010 for (i = 0; i < banks; i++)
2011 sysdev_remove_file(sysdev, &mce_banks[i].attr);
2012
2013 sysdev_unregister(sysdev);
2014 cpumask_clear_cpu(cpu, mce_sysdev_initialized);
2015 }
2016
2017 /* Make sure there are no machine checks on offlined CPUs. */
2018 static void __cpuinit mce_disable_cpu(void *h)
2019 {
2020 unsigned long action = *(unsigned long *)h;
2021 int i;
2022
2023 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2024 return;
2025
2026 if (!(action & CPU_TASKS_FROZEN))
2027 cmci_clear();
2028 for (i = 0; i < banks; i++) {
2029 struct mce_bank *b = &mce_banks[i];
2030
2031 if (b->init)
2032 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2033 }
2034 }
2035
2036 static void __cpuinit mce_reenable_cpu(void *h)
2037 {
2038 unsigned long action = *(unsigned long *)h;
2039 int i;
2040
2041 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2042 return;
2043
2044 if (!(action & CPU_TASKS_FROZEN))
2045 cmci_reenable();
2046 for (i = 0; i < banks; i++) {
2047 struct mce_bank *b = &mce_banks[i];
2048
2049 if (b->init)
2050 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2051 }
2052 }
2053
2054 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2055 static int __cpuinit
2056 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2057 {
2058 unsigned int cpu = (unsigned long)hcpu;
2059 struct timer_list *t = &per_cpu(mce_timer, cpu);
2060
2061 switch (action) {
2062 case CPU_ONLINE:
2063 case CPU_ONLINE_FROZEN:
2064 mce_sysdev_create(cpu);
2065 if (threshold_cpu_callback)
2066 threshold_cpu_callback(action, cpu);
2067 break;
2068 case CPU_DEAD:
2069 case CPU_DEAD_FROZEN:
2070 if (threshold_cpu_callback)
2071 threshold_cpu_callback(action, cpu);
2072 mce_sysdev_remove(cpu);
2073 break;
2074 case CPU_DOWN_PREPARE:
2075 case CPU_DOWN_PREPARE_FROZEN:
2076 del_timer_sync(t);
2077 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2078 break;
2079 case CPU_DOWN_FAILED:
2080 case CPU_DOWN_FAILED_FROZEN:
2081 if (!mce_ignore_ce && check_interval) {
2082 t->expires = round_jiffies(jiffies +
2083 __get_cpu_var(mce_next_interval));
2084 add_timer_on(t, cpu);
2085 }
2086 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2087 break;
2088 case CPU_POST_DEAD:
2089 /* intentionally ignoring frozen here */
2090 cmci_rediscover(cpu);
2091 break;
2092 }
2093 return NOTIFY_OK;
2094 }
2095
2096 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2097 .notifier_call = mce_cpu_callback,
2098 };
2099
2100 static __init void mce_init_banks(void)
2101 {
2102 int i;
2103
2104 for (i = 0; i < banks; i++) {
2105 struct mce_bank *b = &mce_banks[i];
2106 struct sysdev_attribute *a = &b->attr;
2107
2108 sysfs_attr_init(&a->attr);
2109 a->attr.name = b->attrname;
2110 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2111
2112 a->attr.mode = 0644;
2113 a->show = show_bank;
2114 a->store = set_bank;
2115 }
2116 }
2117
2118 static __init int mcheck_init_device(void)
2119 {
2120 int err;
2121 int i = 0;
2122
2123 if (!mce_available(&boot_cpu_data))
2124 return -EIO;
2125
2126 zalloc_cpumask_var(&mce_sysdev_initialized, GFP_KERNEL);
2127
2128 mce_init_banks();
2129
2130 err = sysdev_class_register(&mce_sysdev_class);
2131 if (err)
2132 return err;
2133
2134 for_each_online_cpu(i) {
2135 err = mce_sysdev_create(i);
2136 if (err)
2137 return err;
2138 }
2139
2140 register_syscore_ops(&mce_syscore_ops);
2141 register_hotcpu_notifier(&mce_cpu_notifier);
2142
2143 /* register character device /dev/mcelog */
2144 misc_register(&mce_chrdev_device);
2145
2146 return err;
2147 }
2148 device_initcall(mcheck_init_device);
2149
2150 /*
2151 * Old style boot options parsing. Only for compatibility.
2152 */
2153 static int __init mcheck_disable(char *str)
2154 {
2155 mce_disabled = 1;
2156 return 1;
2157 }
2158 __setup("nomce", mcheck_disable);
2159
2160 #ifdef CONFIG_DEBUG_FS
2161 struct dentry *mce_get_debugfs_dir(void)
2162 {
2163 static struct dentry *dmce;
2164
2165 if (!dmce)
2166 dmce = debugfs_create_dir("mce", NULL);
2167
2168 return dmce;
2169 }
2170
2171 static void mce_reset(void)
2172 {
2173 cpu_missing = 0;
2174 atomic_set(&mce_fake_paniced, 0);
2175 atomic_set(&mce_executing, 0);
2176 atomic_set(&mce_callin, 0);
2177 atomic_set(&global_nwo, 0);
2178 }
2179
2180 static int fake_panic_get(void *data, u64 *val)
2181 {
2182 *val = fake_panic;
2183 return 0;
2184 }
2185
2186 static int fake_panic_set(void *data, u64 val)
2187 {
2188 mce_reset();
2189 fake_panic = val;
2190 return 0;
2191 }
2192
2193 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2194 fake_panic_set, "%llu\n");
2195
2196 static int __init mcheck_debugfs_init(void)
2197 {
2198 struct dentry *dmce, *ffake_panic;
2199
2200 dmce = mce_get_debugfs_dir();
2201 if (!dmce)
2202 return -ENOMEM;
2203 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2204 &fake_panic_fops);
2205 if (!ffake_panic)
2206 return -ENOMEM;
2207
2208 return 0;
2209 }
2210 late_initcall(mcheck_debugfs_init);
2211 #endif