]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce.c
x86/mce: Cleanup timer mess
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kallsyms.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/device.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/irq_work.h>
40 #include <linux/export.h>
41
42 #include <asm/processor.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45
46 #include "mce-internal.h"
47
48 static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50 #define rcu_dereference_check_mce(p) \
51 rcu_dereference_index_check((p), \
52 rcu_read_lock_sched_held() || \
53 lockdep_is_held(&mce_chrdev_read_mutex))
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mce.h>
57
58 int mce_disabled __read_mostly;
59
60 #define MISC_MCELOG_MINOR 227
61
62 #define SPINUNIT 100 /* 100ns */
63
64 atomic_t mce_entry;
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 /*
69 * Tolerant levels:
70 * 0: always panic on uncorrected errors, log corrected errors
71 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
72 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 * 3: never panic or SIGBUS, log all errors (for testing only)
74 */
75 static int tolerant __read_mostly = 1;
76 static int banks __read_mostly;
77 static int rip_msr __read_mostly;
78 static int mce_bootlog __read_mostly = -1;
79 static int monarch_timeout __read_mostly = -1;
80 static int mce_panic_timeout __read_mostly;
81 static int mce_dont_log_ce __read_mostly;
82 int mce_cmci_disabled __read_mostly;
83 int mce_ignore_ce __read_mostly;
84 int mce_ser __read_mostly;
85
86 struct mce_bank *mce_banks __read_mostly;
87
88 /* User mode helper program triggered by machine check event */
89 static unsigned long mce_need_notify;
90 static char mce_helper[128];
91 static char *mce_helper_argv[2] = { mce_helper, NULL };
92
93 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95 static DEFINE_PER_CPU(struct mce, mces_seen);
96 static int cpu_missing;
97
98 /* MCA banks polled by the period polling timer for corrected events */
99 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101 };
102
103 static DEFINE_PER_CPU(struct work_struct, mce_work);
104
105 /*
106 * CPU/chipset specific EDAC code can register a notifier call here to print
107 * MCE errors in a human-readable form.
108 */
109 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110
111 /* Do initial initialization of a struct mce */
112 void mce_setup(struct mce *m)
113 {
114 memset(m, 0, sizeof(struct mce));
115 m->cpu = m->extcpu = smp_processor_id();
116 rdtscll(m->tsc);
117 /* We hope get_seconds stays lockless */
118 m->time = get_seconds();
119 m->cpuvendor = boot_cpu_data.x86_vendor;
120 m->cpuid = cpuid_eax(1);
121 m->socketid = cpu_data(m->extcpu).phys_proc_id;
122 m->apicid = cpu_data(m->extcpu).initial_apicid;
123 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
124 }
125
126 DEFINE_PER_CPU(struct mce, injectm);
127 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
128
129 /*
130 * Lockless MCE logging infrastructure.
131 * This avoids deadlocks on printk locks without having to break locks. Also
132 * separate MCEs from kernel messages to avoid bogus bug reports.
133 */
134
135 static struct mce_log mcelog = {
136 .signature = MCE_LOG_SIGNATURE,
137 .len = MCE_LOG_LEN,
138 .recordlen = sizeof(struct mce),
139 };
140
141 void mce_log(struct mce *mce)
142 {
143 unsigned next, entry;
144 int ret = 0;
145
146 /* Emit the trace record: */
147 trace_mce_record(mce);
148
149 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
150 if (ret == NOTIFY_STOP)
151 return;
152
153 mce->finished = 0;
154 wmb();
155 for (;;) {
156 entry = rcu_dereference_check_mce(mcelog.next);
157 for (;;) {
158
159 /*
160 * When the buffer fills up discard new entries.
161 * Assume that the earlier errors are the more
162 * interesting ones:
163 */
164 if (entry >= MCE_LOG_LEN) {
165 set_bit(MCE_OVERFLOW,
166 (unsigned long *)&mcelog.flags);
167 return;
168 }
169 /* Old left over entry. Skip: */
170 if (mcelog.entry[entry].finished) {
171 entry++;
172 continue;
173 }
174 break;
175 }
176 smp_rmb();
177 next = entry + 1;
178 if (cmpxchg(&mcelog.next, entry, next) == entry)
179 break;
180 }
181 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
182 wmb();
183 mcelog.entry[entry].finished = 1;
184 wmb();
185
186 mce->finished = 1;
187 set_bit(0, &mce_need_notify);
188 }
189
190 static void drain_mcelog_buffer(void)
191 {
192 unsigned int next, i, prev = 0;
193
194 next = ACCESS_ONCE(mcelog.next);
195
196 do {
197 struct mce *m;
198
199 /* drain what was logged during boot */
200 for (i = prev; i < next; i++) {
201 unsigned long start = jiffies;
202 unsigned retries = 1;
203
204 m = &mcelog.entry[i];
205
206 while (!m->finished) {
207 if (time_after_eq(jiffies, start + 2*retries))
208 retries++;
209
210 cpu_relax();
211
212 if (!m->finished && retries >= 4) {
213 pr_err("MCE: skipping error being logged currently!\n");
214 break;
215 }
216 }
217 smp_rmb();
218 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
219 }
220
221 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
222 prev = next;
223 next = cmpxchg(&mcelog.next, prev, 0);
224 } while (next != prev);
225 }
226
227
228 void mce_register_decode_chain(struct notifier_block *nb)
229 {
230 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
231 drain_mcelog_buffer();
232 }
233 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
234
235 void mce_unregister_decode_chain(struct notifier_block *nb)
236 {
237 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
238 }
239 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
240
241 static void print_mce(struct mce *m)
242 {
243 int ret = 0;
244
245 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
246 m->extcpu, m->mcgstatus, m->bank, m->status);
247
248 if (m->ip) {
249 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
250 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
251 m->cs, m->ip);
252
253 if (m->cs == __KERNEL_CS)
254 print_symbol("{%s}", m->ip);
255 pr_cont("\n");
256 }
257
258 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
259 if (m->addr)
260 pr_cont("ADDR %llx ", m->addr);
261 if (m->misc)
262 pr_cont("MISC %llx ", m->misc);
263
264 pr_cont("\n");
265 /*
266 * Note this output is parsed by external tools and old fields
267 * should not be changed.
268 */
269 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271 cpu_data(m->extcpu).microcode);
272
273 /*
274 * Print out human-readable details about the MCE error,
275 * (if the CPU has an implementation for that)
276 */
277 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
278 if (ret == NOTIFY_STOP)
279 return;
280
281 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
282 }
283
284 #define PANIC_TIMEOUT 5 /* 5 seconds */
285
286 static atomic_t mce_paniced;
287
288 static int fake_panic;
289 static atomic_t mce_fake_paniced;
290
291 /* Panic in progress. Enable interrupts and wait for final IPI */
292 static void wait_for_panic(void)
293 {
294 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
295
296 preempt_disable();
297 local_irq_enable();
298 while (timeout-- > 0)
299 udelay(1);
300 if (panic_timeout == 0)
301 panic_timeout = mce_panic_timeout;
302 panic("Panicing machine check CPU died");
303 }
304
305 static void mce_panic(char *msg, struct mce *final, char *exp)
306 {
307 int i, apei_err = 0;
308
309 if (!fake_panic) {
310 /*
311 * Make sure only one CPU runs in machine check panic
312 */
313 if (atomic_inc_return(&mce_paniced) > 1)
314 wait_for_panic();
315 barrier();
316
317 bust_spinlocks(1);
318 console_verbose();
319 } else {
320 /* Don't log too much for fake panic */
321 if (atomic_inc_return(&mce_fake_paniced) > 1)
322 return;
323 }
324 /* First print corrected ones that are still unlogged */
325 for (i = 0; i < MCE_LOG_LEN; i++) {
326 struct mce *m = &mcelog.entry[i];
327 if (!(m->status & MCI_STATUS_VAL))
328 continue;
329 if (!(m->status & MCI_STATUS_UC)) {
330 print_mce(m);
331 if (!apei_err)
332 apei_err = apei_write_mce(m);
333 }
334 }
335 /* Now print uncorrected but with the final one last */
336 for (i = 0; i < MCE_LOG_LEN; i++) {
337 struct mce *m = &mcelog.entry[i];
338 if (!(m->status & MCI_STATUS_VAL))
339 continue;
340 if (!(m->status & MCI_STATUS_UC))
341 continue;
342 if (!final || memcmp(m, final, sizeof(struct mce))) {
343 print_mce(m);
344 if (!apei_err)
345 apei_err = apei_write_mce(m);
346 }
347 }
348 if (final) {
349 print_mce(final);
350 if (!apei_err)
351 apei_err = apei_write_mce(final);
352 }
353 if (cpu_missing)
354 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
355 if (exp)
356 pr_emerg(HW_ERR "Machine check: %s\n", exp);
357 if (!fake_panic) {
358 if (panic_timeout == 0)
359 panic_timeout = mce_panic_timeout;
360 panic(msg);
361 } else
362 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
363 }
364
365 /* Support code for software error injection */
366
367 static int msr_to_offset(u32 msr)
368 {
369 unsigned bank = __this_cpu_read(injectm.bank);
370
371 if (msr == rip_msr)
372 return offsetof(struct mce, ip);
373 if (msr == MSR_IA32_MCx_STATUS(bank))
374 return offsetof(struct mce, status);
375 if (msr == MSR_IA32_MCx_ADDR(bank))
376 return offsetof(struct mce, addr);
377 if (msr == MSR_IA32_MCx_MISC(bank))
378 return offsetof(struct mce, misc);
379 if (msr == MSR_IA32_MCG_STATUS)
380 return offsetof(struct mce, mcgstatus);
381 return -1;
382 }
383
384 /* MSR access wrappers used for error injection */
385 static u64 mce_rdmsrl(u32 msr)
386 {
387 u64 v;
388
389 if (__this_cpu_read(injectm.finished)) {
390 int offset = msr_to_offset(msr);
391
392 if (offset < 0)
393 return 0;
394 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
395 }
396
397 if (rdmsrl_safe(msr, &v)) {
398 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
399 /*
400 * Return zero in case the access faulted. This should
401 * not happen normally but can happen if the CPU does
402 * something weird, or if the code is buggy.
403 */
404 v = 0;
405 }
406
407 return v;
408 }
409
410 static void mce_wrmsrl(u32 msr, u64 v)
411 {
412 if (__this_cpu_read(injectm.finished)) {
413 int offset = msr_to_offset(msr);
414
415 if (offset >= 0)
416 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
417 return;
418 }
419 wrmsrl(msr, v);
420 }
421
422 /*
423 * Collect all global (w.r.t. this processor) status about this machine
424 * check into our "mce" struct so that we can use it later to assess
425 * the severity of the problem as we read per-bank specific details.
426 */
427 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
428 {
429 mce_setup(m);
430
431 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
432 if (regs) {
433 /*
434 * Get the address of the instruction at the time of
435 * the machine check error.
436 */
437 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
438 m->ip = regs->ip;
439 m->cs = regs->cs;
440
441 /*
442 * When in VM86 mode make the cs look like ring 3
443 * always. This is a lie, but it's better than passing
444 * the additional vm86 bit around everywhere.
445 */
446 if (v8086_mode(regs))
447 m->cs |= 3;
448 }
449 /* Use accurate RIP reporting if available. */
450 if (rip_msr)
451 m->ip = mce_rdmsrl(rip_msr);
452 }
453 }
454
455 /*
456 * Simple lockless ring to communicate PFNs from the exception handler with the
457 * process context work function. This is vastly simplified because there's
458 * only a single reader and a single writer.
459 */
460 #define MCE_RING_SIZE 16 /* we use one entry less */
461
462 struct mce_ring {
463 unsigned short start;
464 unsigned short end;
465 unsigned long ring[MCE_RING_SIZE];
466 };
467 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
468
469 /* Runs with CPU affinity in workqueue */
470 static int mce_ring_empty(void)
471 {
472 struct mce_ring *r = &__get_cpu_var(mce_ring);
473
474 return r->start == r->end;
475 }
476
477 static int mce_ring_get(unsigned long *pfn)
478 {
479 struct mce_ring *r;
480 int ret = 0;
481
482 *pfn = 0;
483 get_cpu();
484 r = &__get_cpu_var(mce_ring);
485 if (r->start == r->end)
486 goto out;
487 *pfn = r->ring[r->start];
488 r->start = (r->start + 1) % MCE_RING_SIZE;
489 ret = 1;
490 out:
491 put_cpu();
492 return ret;
493 }
494
495 /* Always runs in MCE context with preempt off */
496 static int mce_ring_add(unsigned long pfn)
497 {
498 struct mce_ring *r = &__get_cpu_var(mce_ring);
499 unsigned next;
500
501 next = (r->end + 1) % MCE_RING_SIZE;
502 if (next == r->start)
503 return -1;
504 r->ring[r->end] = pfn;
505 wmb();
506 r->end = next;
507 return 0;
508 }
509
510 int mce_available(struct cpuinfo_x86 *c)
511 {
512 if (mce_disabled)
513 return 0;
514 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
515 }
516
517 static void mce_schedule_work(void)
518 {
519 if (!mce_ring_empty()) {
520 struct work_struct *work = &__get_cpu_var(mce_work);
521 if (!work_pending(work))
522 schedule_work(work);
523 }
524 }
525
526 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
527
528 static void mce_irq_work_cb(struct irq_work *entry)
529 {
530 mce_notify_irq();
531 mce_schedule_work();
532 }
533
534 static void mce_report_event(struct pt_regs *regs)
535 {
536 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
537 mce_notify_irq();
538 /*
539 * Triggering the work queue here is just an insurance
540 * policy in case the syscall exit notify handler
541 * doesn't run soon enough or ends up running on the
542 * wrong CPU (can happen when audit sleeps)
543 */
544 mce_schedule_work();
545 return;
546 }
547
548 irq_work_queue(&__get_cpu_var(mce_irq_work));
549 }
550
551 /*
552 * Read ADDR and MISC registers.
553 */
554 static void mce_read_aux(struct mce *m, int i)
555 {
556 if (m->status & MCI_STATUS_MISCV)
557 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
558 if (m->status & MCI_STATUS_ADDRV) {
559 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
560
561 /*
562 * Mask the reported address by the reported granularity.
563 */
564 if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
565 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
566 m->addr >>= shift;
567 m->addr <<= shift;
568 }
569 }
570 }
571
572 DEFINE_PER_CPU(unsigned, mce_poll_count);
573
574 /*
575 * Poll for corrected events or events that happened before reset.
576 * Those are just logged through /dev/mcelog.
577 *
578 * This is executed in standard interrupt context.
579 *
580 * Note: spec recommends to panic for fatal unsignalled
581 * errors here. However this would be quite problematic --
582 * we would need to reimplement the Monarch handling and
583 * it would mess up the exclusion between exception handler
584 * and poll hander -- * so we skip this for now.
585 * These cases should not happen anyways, or only when the CPU
586 * is already totally * confused. In this case it's likely it will
587 * not fully execute the machine check handler either.
588 */
589 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
590 {
591 struct mce m;
592 int i;
593
594 percpu_inc(mce_poll_count);
595
596 mce_gather_info(&m, NULL);
597
598 for (i = 0; i < banks; i++) {
599 if (!mce_banks[i].ctl || !test_bit(i, *b))
600 continue;
601
602 m.misc = 0;
603 m.addr = 0;
604 m.bank = i;
605 m.tsc = 0;
606
607 barrier();
608 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
609 if (!(m.status & MCI_STATUS_VAL))
610 continue;
611
612 /*
613 * Uncorrected or signalled events are handled by the exception
614 * handler when it is enabled, so don't process those here.
615 *
616 * TBD do the same check for MCI_STATUS_EN here?
617 */
618 if (!(flags & MCP_UC) &&
619 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
620 continue;
621
622 mce_read_aux(&m, i);
623
624 if (!(flags & MCP_TIMESTAMP))
625 m.tsc = 0;
626 /*
627 * Don't get the IP here because it's unlikely to
628 * have anything to do with the actual error location.
629 */
630 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
631 mce_log(&m);
632
633 /*
634 * Clear state for this bank.
635 */
636 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
637 }
638
639 /*
640 * Don't clear MCG_STATUS here because it's only defined for
641 * exceptions.
642 */
643
644 sync_core();
645 }
646 EXPORT_SYMBOL_GPL(machine_check_poll);
647
648 /*
649 * Do a quick check if any of the events requires a panic.
650 * This decides if we keep the events around or clear them.
651 */
652 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp)
653 {
654 int i, ret = 0;
655
656 for (i = 0; i < banks; i++) {
657 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
658 if (m->status & MCI_STATUS_VAL)
659 __set_bit(i, validp);
660 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
661 ret = 1;
662 }
663 return ret;
664 }
665
666 /*
667 * Variable to establish order between CPUs while scanning.
668 * Each CPU spins initially until executing is equal its number.
669 */
670 static atomic_t mce_executing;
671
672 /*
673 * Defines order of CPUs on entry. First CPU becomes Monarch.
674 */
675 static atomic_t mce_callin;
676
677 /*
678 * Check if a timeout waiting for other CPUs happened.
679 */
680 static int mce_timed_out(u64 *t)
681 {
682 /*
683 * The others already did panic for some reason.
684 * Bail out like in a timeout.
685 * rmb() to tell the compiler that system_state
686 * might have been modified by someone else.
687 */
688 rmb();
689 if (atomic_read(&mce_paniced))
690 wait_for_panic();
691 if (!monarch_timeout)
692 goto out;
693 if ((s64)*t < SPINUNIT) {
694 /* CHECKME: Make panic default for 1 too? */
695 if (tolerant < 1)
696 mce_panic("Timeout synchronizing machine check over CPUs",
697 NULL, NULL);
698 cpu_missing = 1;
699 return 1;
700 }
701 *t -= SPINUNIT;
702 out:
703 touch_nmi_watchdog();
704 return 0;
705 }
706
707 /*
708 * The Monarch's reign. The Monarch is the CPU who entered
709 * the machine check handler first. It waits for the others to
710 * raise the exception too and then grades them. When any
711 * error is fatal panic. Only then let the others continue.
712 *
713 * The other CPUs entering the MCE handler will be controlled by the
714 * Monarch. They are called Subjects.
715 *
716 * This way we prevent any potential data corruption in a unrecoverable case
717 * and also makes sure always all CPU's errors are examined.
718 *
719 * Also this detects the case of a machine check event coming from outer
720 * space (not detected by any CPUs) In this case some external agent wants
721 * us to shut down, so panic too.
722 *
723 * The other CPUs might still decide to panic if the handler happens
724 * in a unrecoverable place, but in this case the system is in a semi-stable
725 * state and won't corrupt anything by itself. It's ok to let the others
726 * continue for a bit first.
727 *
728 * All the spin loops have timeouts; when a timeout happens a CPU
729 * typically elects itself to be Monarch.
730 */
731 static void mce_reign(void)
732 {
733 int cpu;
734 struct mce *m = NULL;
735 int global_worst = 0;
736 char *msg = NULL;
737 char *nmsg = NULL;
738
739 /*
740 * This CPU is the Monarch and the other CPUs have run
741 * through their handlers.
742 * Grade the severity of the errors of all the CPUs.
743 */
744 for_each_possible_cpu(cpu) {
745 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
746 &nmsg);
747 if (severity > global_worst) {
748 msg = nmsg;
749 global_worst = severity;
750 m = &per_cpu(mces_seen, cpu);
751 }
752 }
753
754 /*
755 * Cannot recover? Panic here then.
756 * This dumps all the mces in the log buffer and stops the
757 * other CPUs.
758 */
759 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
760 mce_panic("Fatal Machine check", m, msg);
761
762 /*
763 * For UC somewhere we let the CPU who detects it handle it.
764 * Also must let continue the others, otherwise the handling
765 * CPU could deadlock on a lock.
766 */
767
768 /*
769 * No machine check event found. Must be some external
770 * source or one CPU is hung. Panic.
771 */
772 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
773 mce_panic("Machine check from unknown source", NULL, NULL);
774
775 /*
776 * Now clear all the mces_seen so that they don't reappear on
777 * the next mce.
778 */
779 for_each_possible_cpu(cpu)
780 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
781 }
782
783 static atomic_t global_nwo;
784
785 /*
786 * Start of Monarch synchronization. This waits until all CPUs have
787 * entered the exception handler and then determines if any of them
788 * saw a fatal event that requires panic. Then it executes them
789 * in the entry order.
790 * TBD double check parallel CPU hotunplug
791 */
792 static int mce_start(int *no_way_out)
793 {
794 int order;
795 int cpus = num_online_cpus();
796 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
797
798 if (!timeout)
799 return -1;
800
801 atomic_add(*no_way_out, &global_nwo);
802 /*
803 * global_nwo should be updated before mce_callin
804 */
805 smp_wmb();
806 order = atomic_inc_return(&mce_callin);
807
808 /*
809 * Wait for everyone.
810 */
811 while (atomic_read(&mce_callin) != cpus) {
812 if (mce_timed_out(&timeout)) {
813 atomic_set(&global_nwo, 0);
814 return -1;
815 }
816 ndelay(SPINUNIT);
817 }
818
819 /*
820 * mce_callin should be read before global_nwo
821 */
822 smp_rmb();
823
824 if (order == 1) {
825 /*
826 * Monarch: Starts executing now, the others wait.
827 */
828 atomic_set(&mce_executing, 1);
829 } else {
830 /*
831 * Subject: Now start the scanning loop one by one in
832 * the original callin order.
833 * This way when there are any shared banks it will be
834 * only seen by one CPU before cleared, avoiding duplicates.
835 */
836 while (atomic_read(&mce_executing) < order) {
837 if (mce_timed_out(&timeout)) {
838 atomic_set(&global_nwo, 0);
839 return -1;
840 }
841 ndelay(SPINUNIT);
842 }
843 }
844
845 /*
846 * Cache the global no_way_out state.
847 */
848 *no_way_out = atomic_read(&global_nwo);
849
850 return order;
851 }
852
853 /*
854 * Synchronize between CPUs after main scanning loop.
855 * This invokes the bulk of the Monarch processing.
856 */
857 static int mce_end(int order)
858 {
859 int ret = -1;
860 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
861
862 if (!timeout)
863 goto reset;
864 if (order < 0)
865 goto reset;
866
867 /*
868 * Allow others to run.
869 */
870 atomic_inc(&mce_executing);
871
872 if (order == 1) {
873 /* CHECKME: Can this race with a parallel hotplug? */
874 int cpus = num_online_cpus();
875
876 /*
877 * Monarch: Wait for everyone to go through their scanning
878 * loops.
879 */
880 while (atomic_read(&mce_executing) <= cpus) {
881 if (mce_timed_out(&timeout))
882 goto reset;
883 ndelay(SPINUNIT);
884 }
885
886 mce_reign();
887 barrier();
888 ret = 0;
889 } else {
890 /*
891 * Subject: Wait for Monarch to finish.
892 */
893 while (atomic_read(&mce_executing) != 0) {
894 if (mce_timed_out(&timeout))
895 goto reset;
896 ndelay(SPINUNIT);
897 }
898
899 /*
900 * Don't reset anything. That's done by the Monarch.
901 */
902 return 0;
903 }
904
905 /*
906 * Reset all global state.
907 */
908 reset:
909 atomic_set(&global_nwo, 0);
910 atomic_set(&mce_callin, 0);
911 barrier();
912
913 /*
914 * Let others run again.
915 */
916 atomic_set(&mce_executing, 0);
917 return ret;
918 }
919
920 /*
921 * Check if the address reported by the CPU is in a format we can parse.
922 * It would be possible to add code for most other cases, but all would
923 * be somewhat complicated (e.g. segment offset would require an instruction
924 * parser). So only support physical addresses up to page granuality for now.
925 */
926 static int mce_usable_address(struct mce *m)
927 {
928 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
929 return 0;
930 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
931 return 0;
932 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
933 return 0;
934 return 1;
935 }
936
937 static void mce_clear_state(unsigned long *toclear)
938 {
939 int i;
940
941 for (i = 0; i < banks; i++) {
942 if (test_bit(i, toclear))
943 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
944 }
945 }
946
947 /*
948 * Need to save faulting physical address associated with a process
949 * in the machine check handler some place where we can grab it back
950 * later in mce_notify_process()
951 */
952 #define MCE_INFO_MAX 16
953
954 struct mce_info {
955 atomic_t inuse;
956 struct task_struct *t;
957 __u64 paddr;
958 } mce_info[MCE_INFO_MAX];
959
960 static void mce_save_info(__u64 addr)
961 {
962 struct mce_info *mi;
963
964 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
965 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
966 mi->t = current;
967 mi->paddr = addr;
968 return;
969 }
970 }
971
972 mce_panic("Too many concurrent recoverable errors", NULL, NULL);
973 }
974
975 static struct mce_info *mce_find_info(void)
976 {
977 struct mce_info *mi;
978
979 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
980 if (atomic_read(&mi->inuse) && mi->t == current)
981 return mi;
982 return NULL;
983 }
984
985 static void mce_clear_info(struct mce_info *mi)
986 {
987 atomic_set(&mi->inuse, 0);
988 }
989
990 /*
991 * The actual machine check handler. This only handles real
992 * exceptions when something got corrupted coming in through int 18.
993 *
994 * This is executed in NMI context not subject to normal locking rules. This
995 * implies that most kernel services cannot be safely used. Don't even
996 * think about putting a printk in there!
997 *
998 * On Intel systems this is entered on all CPUs in parallel through
999 * MCE broadcast. However some CPUs might be broken beyond repair,
1000 * so be always careful when synchronizing with others.
1001 */
1002 void do_machine_check(struct pt_regs *regs, long error_code)
1003 {
1004 struct mce m, *final;
1005 int i;
1006 int worst = 0;
1007 int severity;
1008 /*
1009 * Establish sequential order between the CPUs entering the machine
1010 * check handler.
1011 */
1012 int order;
1013 /*
1014 * If no_way_out gets set, there is no safe way to recover from this
1015 * MCE. If tolerant is cranked up, we'll try anyway.
1016 */
1017 int no_way_out = 0;
1018 /*
1019 * If kill_it gets set, there might be a way to recover from this
1020 * error.
1021 */
1022 int kill_it = 0;
1023 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1024 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1025 char *msg = "Unknown";
1026
1027 atomic_inc(&mce_entry);
1028
1029 percpu_inc(mce_exception_count);
1030
1031 if (!banks)
1032 goto out;
1033
1034 mce_gather_info(&m, regs);
1035
1036 final = &__get_cpu_var(mces_seen);
1037 *final = m;
1038
1039 memset(valid_banks, 0, sizeof(valid_banks));
1040 no_way_out = mce_no_way_out(&m, &msg, valid_banks);
1041
1042 barrier();
1043
1044 /*
1045 * When no restart IP might need to kill or panic.
1046 * Assume the worst for now, but if we find the
1047 * severity is MCE_AR_SEVERITY we have other options.
1048 */
1049 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1050 kill_it = 1;
1051
1052 /*
1053 * Go through all the banks in exclusion of the other CPUs.
1054 * This way we don't report duplicated events on shared banks
1055 * because the first one to see it will clear it.
1056 */
1057 order = mce_start(&no_way_out);
1058 for (i = 0; i < banks; i++) {
1059 __clear_bit(i, toclear);
1060 if (!test_bit(i, valid_banks))
1061 continue;
1062 if (!mce_banks[i].ctl)
1063 continue;
1064
1065 m.misc = 0;
1066 m.addr = 0;
1067 m.bank = i;
1068
1069 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1070 if ((m.status & MCI_STATUS_VAL) == 0)
1071 continue;
1072
1073 /*
1074 * Non uncorrected or non signaled errors are handled by
1075 * machine_check_poll. Leave them alone, unless this panics.
1076 */
1077 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1078 !no_way_out)
1079 continue;
1080
1081 /*
1082 * Set taint even when machine check was not enabled.
1083 */
1084 add_taint(TAINT_MACHINE_CHECK);
1085
1086 severity = mce_severity(&m, tolerant, NULL);
1087
1088 /*
1089 * When machine check was for corrected handler don't touch,
1090 * unless we're panicing.
1091 */
1092 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1093 continue;
1094 __set_bit(i, toclear);
1095 if (severity == MCE_NO_SEVERITY) {
1096 /*
1097 * Machine check event was not enabled. Clear, but
1098 * ignore.
1099 */
1100 continue;
1101 }
1102
1103 mce_read_aux(&m, i);
1104
1105 /*
1106 * Action optional error. Queue address for later processing.
1107 * When the ring overflows we just ignore the AO error.
1108 * RED-PEN add some logging mechanism when
1109 * usable_address or mce_add_ring fails.
1110 * RED-PEN don't ignore overflow for tolerant == 0
1111 */
1112 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1113 mce_ring_add(m.addr >> PAGE_SHIFT);
1114
1115 mce_log(&m);
1116
1117 if (severity > worst) {
1118 *final = m;
1119 worst = severity;
1120 }
1121 }
1122
1123 /* mce_clear_state will clear *final, save locally for use later */
1124 m = *final;
1125
1126 if (!no_way_out)
1127 mce_clear_state(toclear);
1128
1129 /*
1130 * Do most of the synchronization with other CPUs.
1131 * When there's any problem use only local no_way_out state.
1132 */
1133 if (mce_end(order) < 0)
1134 no_way_out = worst >= MCE_PANIC_SEVERITY;
1135
1136 /*
1137 * At insane "tolerant" levels we take no action. Otherwise
1138 * we only die if we have no other choice. For less serious
1139 * issues we try to recover, or limit damage to the current
1140 * process.
1141 */
1142 if (tolerant < 3) {
1143 if (no_way_out)
1144 mce_panic("Fatal machine check on current CPU", &m, msg);
1145 if (worst == MCE_AR_SEVERITY) {
1146 /* schedule action before return to userland */
1147 mce_save_info(m.addr);
1148 set_thread_flag(TIF_MCE_NOTIFY);
1149 } else if (kill_it) {
1150 force_sig(SIGBUS, current);
1151 }
1152 }
1153
1154 if (worst > 0)
1155 mce_report_event(regs);
1156 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1157 out:
1158 atomic_dec(&mce_entry);
1159 sync_core();
1160 }
1161 EXPORT_SYMBOL_GPL(do_machine_check);
1162
1163 #ifndef CONFIG_MEMORY_FAILURE
1164 int memory_failure(unsigned long pfn, int vector, int flags)
1165 {
1166 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1167 BUG_ON(flags & MF_ACTION_REQUIRED);
1168 printk(KERN_ERR "Uncorrected memory error in page 0x%lx ignored\n"
1169 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn);
1170
1171 return 0;
1172 }
1173 #endif
1174
1175 /*
1176 * Called in process context that interrupted by MCE and marked with
1177 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1178 * This code is allowed to sleep.
1179 * Attempt possible recovery such as calling the high level VM handler to
1180 * process any corrupted pages, and kill/signal current process if required.
1181 * Action required errors are handled here.
1182 */
1183 void mce_notify_process(void)
1184 {
1185 unsigned long pfn;
1186 struct mce_info *mi = mce_find_info();
1187
1188 if (!mi)
1189 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1190 pfn = mi->paddr >> PAGE_SHIFT;
1191
1192 clear_thread_flag(TIF_MCE_NOTIFY);
1193
1194 pr_err("Uncorrected hardware memory error in user-access at %llx",
1195 mi->paddr);
1196 if (memory_failure(pfn, MCE_VECTOR, MF_ACTION_REQUIRED) < 0) {
1197 pr_err("Memory error not recovered");
1198 force_sig(SIGBUS, current);
1199 }
1200 mce_clear_info(mi);
1201 }
1202
1203 /*
1204 * Action optional processing happens here (picking up
1205 * from the list of faulting pages that do_machine_check()
1206 * placed into the "ring").
1207 */
1208 static void mce_process_work(struct work_struct *dummy)
1209 {
1210 unsigned long pfn;
1211
1212 while (mce_ring_get(&pfn))
1213 memory_failure(pfn, MCE_VECTOR, 0);
1214 }
1215
1216 #ifdef CONFIG_X86_MCE_INTEL
1217 /***
1218 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1219 * @cpu: The CPU on which the event occurred.
1220 * @status: Event status information
1221 *
1222 * This function should be called by the thermal interrupt after the
1223 * event has been processed and the decision was made to log the event
1224 * further.
1225 *
1226 * The status parameter will be saved to the 'status' field of 'struct mce'
1227 * and historically has been the register value of the
1228 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1229 */
1230 void mce_log_therm_throt_event(__u64 status)
1231 {
1232 struct mce m;
1233
1234 mce_setup(&m);
1235 m.bank = MCE_THERMAL_BANK;
1236 m.status = status;
1237 mce_log(&m);
1238 }
1239 #endif /* CONFIG_X86_MCE_INTEL */
1240
1241 /*
1242 * Periodic polling timer for "silent" machine check errors. If the
1243 * poller finds an MCE, poll 2x faster. When the poller finds no more
1244 * errors, poll 2x slower (up to check_interval seconds).
1245 */
1246 static unsigned long check_interval = 5 * 60; /* 5 minutes */
1247
1248 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1249 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1250
1251 static void mce_timer_fn(unsigned long data)
1252 {
1253 struct timer_list *t = &__get_cpu_var(mce_timer);
1254 unsigned long iv;
1255
1256 WARN_ON(smp_processor_id() != data);
1257
1258 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1259 machine_check_poll(MCP_TIMESTAMP,
1260 &__get_cpu_var(mce_poll_banks));
1261 }
1262
1263 /*
1264 * Alert userspace if needed. If we logged an MCE, reduce the
1265 * polling interval, otherwise increase the polling interval.
1266 */
1267 iv = __this_cpu_read(mce_next_interval);
1268 if (mce_notify_irq())
1269 iv = max(iv, (unsigned long) HZ/100);
1270 else
1271 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1272 __this_cpu_write(mce_next_interval, iv);
1273
1274 t->expires = jiffies + iv;
1275 add_timer_on(t, smp_processor_id());
1276 }
1277
1278 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1279 static void mce_timer_delete_all(void)
1280 {
1281 int cpu;
1282
1283 for_each_online_cpu(cpu)
1284 del_timer_sync(&per_cpu(mce_timer, cpu));
1285 }
1286
1287 static void mce_do_trigger(struct work_struct *work)
1288 {
1289 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1290 }
1291
1292 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1293
1294 /*
1295 * Notify the user(s) about new machine check events.
1296 * Can be called from interrupt context, but not from machine check/NMI
1297 * context.
1298 */
1299 int mce_notify_irq(void)
1300 {
1301 /* Not more than two messages every minute */
1302 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1303
1304 if (test_and_clear_bit(0, &mce_need_notify)) {
1305 /* wake processes polling /dev/mcelog */
1306 wake_up_interruptible(&mce_chrdev_wait);
1307
1308 /*
1309 * There is no risk of missing notifications because
1310 * work_pending is always cleared before the function is
1311 * executed.
1312 */
1313 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1314 schedule_work(&mce_trigger_work);
1315
1316 if (__ratelimit(&ratelimit))
1317 pr_info(HW_ERR "Machine check events logged\n");
1318
1319 return 1;
1320 }
1321 return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(mce_notify_irq);
1324
1325 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1326 {
1327 int i;
1328
1329 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1330 if (!mce_banks)
1331 return -ENOMEM;
1332 for (i = 0; i < banks; i++) {
1333 struct mce_bank *b = &mce_banks[i];
1334
1335 b->ctl = -1ULL;
1336 b->init = 1;
1337 }
1338 return 0;
1339 }
1340
1341 /*
1342 * Initialize Machine Checks for a CPU.
1343 */
1344 static int __cpuinit __mcheck_cpu_cap_init(void)
1345 {
1346 unsigned b;
1347 u64 cap;
1348
1349 rdmsrl(MSR_IA32_MCG_CAP, cap);
1350
1351 b = cap & MCG_BANKCNT_MASK;
1352 if (!banks)
1353 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1354
1355 if (b > MAX_NR_BANKS) {
1356 printk(KERN_WARNING
1357 "MCE: Using only %u machine check banks out of %u\n",
1358 MAX_NR_BANKS, b);
1359 b = MAX_NR_BANKS;
1360 }
1361
1362 /* Don't support asymmetric configurations today */
1363 WARN_ON(banks != 0 && b != banks);
1364 banks = b;
1365 if (!mce_banks) {
1366 int err = __mcheck_cpu_mce_banks_init();
1367
1368 if (err)
1369 return err;
1370 }
1371
1372 /* Use accurate RIP reporting if available. */
1373 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1374 rip_msr = MSR_IA32_MCG_EIP;
1375
1376 if (cap & MCG_SER_P)
1377 mce_ser = 1;
1378
1379 return 0;
1380 }
1381
1382 static void __mcheck_cpu_init_generic(void)
1383 {
1384 mce_banks_t all_banks;
1385 u64 cap;
1386 int i;
1387
1388 /*
1389 * Log the machine checks left over from the previous reset.
1390 */
1391 bitmap_fill(all_banks, MAX_NR_BANKS);
1392 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1393
1394 set_in_cr4(X86_CR4_MCE);
1395
1396 rdmsrl(MSR_IA32_MCG_CAP, cap);
1397 if (cap & MCG_CTL_P)
1398 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1399
1400 for (i = 0; i < banks; i++) {
1401 struct mce_bank *b = &mce_banks[i];
1402
1403 if (!b->init)
1404 continue;
1405 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1406 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1407 }
1408 }
1409
1410 /* Add per CPU specific workarounds here */
1411 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1412 {
1413 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1414 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1415 return -EOPNOTSUPP;
1416 }
1417
1418 /* This should be disabled by the BIOS, but isn't always */
1419 if (c->x86_vendor == X86_VENDOR_AMD) {
1420 if (c->x86 == 15 && banks > 4) {
1421 /*
1422 * disable GART TBL walk error reporting, which
1423 * trips off incorrectly with the IOMMU & 3ware
1424 * & Cerberus:
1425 */
1426 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1427 }
1428 if (c->x86 <= 17 && mce_bootlog < 0) {
1429 /*
1430 * Lots of broken BIOS around that don't clear them
1431 * by default and leave crap in there. Don't log:
1432 */
1433 mce_bootlog = 0;
1434 }
1435 /*
1436 * Various K7s with broken bank 0 around. Always disable
1437 * by default.
1438 */
1439 if (c->x86 == 6 && banks > 0)
1440 mce_banks[0].ctl = 0;
1441 }
1442
1443 if (c->x86_vendor == X86_VENDOR_INTEL) {
1444 /*
1445 * SDM documents that on family 6 bank 0 should not be written
1446 * because it aliases to another special BIOS controlled
1447 * register.
1448 * But it's not aliased anymore on model 0x1a+
1449 * Don't ignore bank 0 completely because there could be a
1450 * valid event later, merely don't write CTL0.
1451 */
1452
1453 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1454 mce_banks[0].init = 0;
1455
1456 /*
1457 * All newer Intel systems support MCE broadcasting. Enable
1458 * synchronization with a one second timeout.
1459 */
1460 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1461 monarch_timeout < 0)
1462 monarch_timeout = USEC_PER_SEC;
1463
1464 /*
1465 * There are also broken BIOSes on some Pentium M and
1466 * earlier systems:
1467 */
1468 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1469 mce_bootlog = 0;
1470 }
1471 if (monarch_timeout < 0)
1472 monarch_timeout = 0;
1473 if (mce_bootlog != 0)
1474 mce_panic_timeout = 30;
1475
1476 return 0;
1477 }
1478
1479 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1480 {
1481 if (c->x86 != 5)
1482 return 0;
1483
1484 switch (c->x86_vendor) {
1485 case X86_VENDOR_INTEL:
1486 intel_p5_mcheck_init(c);
1487 return 1;
1488 break;
1489 case X86_VENDOR_CENTAUR:
1490 winchip_mcheck_init(c);
1491 return 1;
1492 break;
1493 }
1494
1495 return 0;
1496 }
1497
1498 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1499 {
1500 switch (c->x86_vendor) {
1501 case X86_VENDOR_INTEL:
1502 mce_intel_feature_init(c);
1503 break;
1504 case X86_VENDOR_AMD:
1505 mce_amd_feature_init(c);
1506 break;
1507 default:
1508 break;
1509 }
1510 }
1511
1512 static void __mcheck_cpu_init_timer(void)
1513 {
1514 struct timer_list *t = &__get_cpu_var(mce_timer);
1515 unsigned long iv = __this_cpu_read(mce_next_interval);
1516
1517 setup_timer(t, mce_timer_fn, smp_processor_id());
1518
1519 if (mce_ignore_ce)
1520 return;
1521
1522 __this_cpu_write(mce_next_interval, iv);
1523 if (!iv)
1524 return;
1525 t->expires = round_jiffies(jiffies + iv);
1526 add_timer_on(t, smp_processor_id());
1527 }
1528
1529 /* Handle unconfigured int18 (should never happen) */
1530 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1531 {
1532 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1533 smp_processor_id());
1534 }
1535
1536 /* Call the installed machine check handler for this CPU setup. */
1537 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1538 unexpected_machine_check;
1539
1540 /*
1541 * Called for each booted CPU to set up machine checks.
1542 * Must be called with preempt off:
1543 */
1544 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1545 {
1546 if (mce_disabled)
1547 return;
1548
1549 if (__mcheck_cpu_ancient_init(c))
1550 return;
1551
1552 if (!mce_available(c))
1553 return;
1554
1555 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1556 mce_disabled = 1;
1557 return;
1558 }
1559
1560 machine_check_vector = do_machine_check;
1561
1562 __mcheck_cpu_init_generic();
1563 __mcheck_cpu_init_vendor(c);
1564 __mcheck_cpu_init_timer();
1565 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1566 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1567 }
1568
1569 /*
1570 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1571 */
1572
1573 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1574 static int mce_chrdev_open_count; /* #times opened */
1575 static int mce_chrdev_open_exclu; /* already open exclusive? */
1576
1577 static int mce_chrdev_open(struct inode *inode, struct file *file)
1578 {
1579 spin_lock(&mce_chrdev_state_lock);
1580
1581 if (mce_chrdev_open_exclu ||
1582 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1583 spin_unlock(&mce_chrdev_state_lock);
1584
1585 return -EBUSY;
1586 }
1587
1588 if (file->f_flags & O_EXCL)
1589 mce_chrdev_open_exclu = 1;
1590 mce_chrdev_open_count++;
1591
1592 spin_unlock(&mce_chrdev_state_lock);
1593
1594 return nonseekable_open(inode, file);
1595 }
1596
1597 static int mce_chrdev_release(struct inode *inode, struct file *file)
1598 {
1599 spin_lock(&mce_chrdev_state_lock);
1600
1601 mce_chrdev_open_count--;
1602 mce_chrdev_open_exclu = 0;
1603
1604 spin_unlock(&mce_chrdev_state_lock);
1605
1606 return 0;
1607 }
1608
1609 static void collect_tscs(void *data)
1610 {
1611 unsigned long *cpu_tsc = (unsigned long *)data;
1612
1613 rdtscll(cpu_tsc[smp_processor_id()]);
1614 }
1615
1616 static int mce_apei_read_done;
1617
1618 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1619 static int __mce_read_apei(char __user **ubuf, size_t usize)
1620 {
1621 int rc;
1622 u64 record_id;
1623 struct mce m;
1624
1625 if (usize < sizeof(struct mce))
1626 return -EINVAL;
1627
1628 rc = apei_read_mce(&m, &record_id);
1629 /* Error or no more MCE record */
1630 if (rc <= 0) {
1631 mce_apei_read_done = 1;
1632 /*
1633 * When ERST is disabled, mce_chrdev_read() should return
1634 * "no record" instead of "no device."
1635 */
1636 if (rc == -ENODEV)
1637 return 0;
1638 return rc;
1639 }
1640 rc = -EFAULT;
1641 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1642 return rc;
1643 /*
1644 * In fact, we should have cleared the record after that has
1645 * been flushed to the disk or sent to network in
1646 * /sbin/mcelog, but we have no interface to support that now,
1647 * so just clear it to avoid duplication.
1648 */
1649 rc = apei_clear_mce(record_id);
1650 if (rc) {
1651 mce_apei_read_done = 1;
1652 return rc;
1653 }
1654 *ubuf += sizeof(struct mce);
1655
1656 return 0;
1657 }
1658
1659 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1660 size_t usize, loff_t *off)
1661 {
1662 char __user *buf = ubuf;
1663 unsigned long *cpu_tsc;
1664 unsigned prev, next;
1665 int i, err;
1666
1667 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1668 if (!cpu_tsc)
1669 return -ENOMEM;
1670
1671 mutex_lock(&mce_chrdev_read_mutex);
1672
1673 if (!mce_apei_read_done) {
1674 err = __mce_read_apei(&buf, usize);
1675 if (err || buf != ubuf)
1676 goto out;
1677 }
1678
1679 next = rcu_dereference_check_mce(mcelog.next);
1680
1681 /* Only supports full reads right now */
1682 err = -EINVAL;
1683 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1684 goto out;
1685
1686 err = 0;
1687 prev = 0;
1688 do {
1689 for (i = prev; i < next; i++) {
1690 unsigned long start = jiffies;
1691 struct mce *m = &mcelog.entry[i];
1692
1693 while (!m->finished) {
1694 if (time_after_eq(jiffies, start + 2)) {
1695 memset(m, 0, sizeof(*m));
1696 goto timeout;
1697 }
1698 cpu_relax();
1699 }
1700 smp_rmb();
1701 err |= copy_to_user(buf, m, sizeof(*m));
1702 buf += sizeof(*m);
1703 timeout:
1704 ;
1705 }
1706
1707 memset(mcelog.entry + prev, 0,
1708 (next - prev) * sizeof(struct mce));
1709 prev = next;
1710 next = cmpxchg(&mcelog.next, prev, 0);
1711 } while (next != prev);
1712
1713 synchronize_sched();
1714
1715 /*
1716 * Collect entries that were still getting written before the
1717 * synchronize.
1718 */
1719 on_each_cpu(collect_tscs, cpu_tsc, 1);
1720
1721 for (i = next; i < MCE_LOG_LEN; i++) {
1722 struct mce *m = &mcelog.entry[i];
1723
1724 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1725 err |= copy_to_user(buf, m, sizeof(*m));
1726 smp_rmb();
1727 buf += sizeof(*m);
1728 memset(m, 0, sizeof(*m));
1729 }
1730 }
1731
1732 if (err)
1733 err = -EFAULT;
1734
1735 out:
1736 mutex_unlock(&mce_chrdev_read_mutex);
1737 kfree(cpu_tsc);
1738
1739 return err ? err : buf - ubuf;
1740 }
1741
1742 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1743 {
1744 poll_wait(file, &mce_chrdev_wait, wait);
1745 if (rcu_access_index(mcelog.next))
1746 return POLLIN | POLLRDNORM;
1747 if (!mce_apei_read_done && apei_check_mce())
1748 return POLLIN | POLLRDNORM;
1749 return 0;
1750 }
1751
1752 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1753 unsigned long arg)
1754 {
1755 int __user *p = (int __user *)arg;
1756
1757 if (!capable(CAP_SYS_ADMIN))
1758 return -EPERM;
1759
1760 switch (cmd) {
1761 case MCE_GET_RECORD_LEN:
1762 return put_user(sizeof(struct mce), p);
1763 case MCE_GET_LOG_LEN:
1764 return put_user(MCE_LOG_LEN, p);
1765 case MCE_GETCLEAR_FLAGS: {
1766 unsigned flags;
1767
1768 do {
1769 flags = mcelog.flags;
1770 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1771
1772 return put_user(flags, p);
1773 }
1774 default:
1775 return -ENOTTY;
1776 }
1777 }
1778
1779 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1780 size_t usize, loff_t *off);
1781
1782 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1783 const char __user *ubuf,
1784 size_t usize, loff_t *off))
1785 {
1786 mce_write = fn;
1787 }
1788 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1789
1790 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1791 size_t usize, loff_t *off)
1792 {
1793 if (mce_write)
1794 return mce_write(filp, ubuf, usize, off);
1795 else
1796 return -EINVAL;
1797 }
1798
1799 static const struct file_operations mce_chrdev_ops = {
1800 .open = mce_chrdev_open,
1801 .release = mce_chrdev_release,
1802 .read = mce_chrdev_read,
1803 .write = mce_chrdev_write,
1804 .poll = mce_chrdev_poll,
1805 .unlocked_ioctl = mce_chrdev_ioctl,
1806 .llseek = no_llseek,
1807 };
1808
1809 static struct miscdevice mce_chrdev_device = {
1810 MISC_MCELOG_MINOR,
1811 "mcelog",
1812 &mce_chrdev_ops,
1813 };
1814
1815 /*
1816 * mce=off Disables machine check
1817 * mce=no_cmci Disables CMCI
1818 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1819 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1820 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1821 * monarchtimeout is how long to wait for other CPUs on machine
1822 * check, or 0 to not wait
1823 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1824 * mce=nobootlog Don't log MCEs from before booting.
1825 */
1826 static int __init mcheck_enable(char *str)
1827 {
1828 if (*str == 0) {
1829 enable_p5_mce();
1830 return 1;
1831 }
1832 if (*str == '=')
1833 str++;
1834 if (!strcmp(str, "off"))
1835 mce_disabled = 1;
1836 else if (!strcmp(str, "no_cmci"))
1837 mce_cmci_disabled = 1;
1838 else if (!strcmp(str, "dont_log_ce"))
1839 mce_dont_log_ce = 1;
1840 else if (!strcmp(str, "ignore_ce"))
1841 mce_ignore_ce = 1;
1842 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1843 mce_bootlog = (str[0] == 'b');
1844 else if (isdigit(str[0])) {
1845 get_option(&str, &tolerant);
1846 if (*str == ',') {
1847 ++str;
1848 get_option(&str, &monarch_timeout);
1849 }
1850 } else {
1851 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1852 str);
1853 return 0;
1854 }
1855 return 1;
1856 }
1857 __setup("mce", mcheck_enable);
1858
1859 int __init mcheck_init(void)
1860 {
1861 mcheck_intel_therm_init();
1862
1863 return 0;
1864 }
1865
1866 /*
1867 * mce_syscore: PM support
1868 */
1869
1870 /*
1871 * Disable machine checks on suspend and shutdown. We can't really handle
1872 * them later.
1873 */
1874 static int mce_disable_error_reporting(void)
1875 {
1876 int i;
1877
1878 for (i = 0; i < banks; i++) {
1879 struct mce_bank *b = &mce_banks[i];
1880
1881 if (b->init)
1882 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1883 }
1884 return 0;
1885 }
1886
1887 static int mce_syscore_suspend(void)
1888 {
1889 return mce_disable_error_reporting();
1890 }
1891
1892 static void mce_syscore_shutdown(void)
1893 {
1894 mce_disable_error_reporting();
1895 }
1896
1897 /*
1898 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1899 * Only one CPU is active at this time, the others get re-added later using
1900 * CPU hotplug:
1901 */
1902 static void mce_syscore_resume(void)
1903 {
1904 __mcheck_cpu_init_generic();
1905 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1906 }
1907
1908 static struct syscore_ops mce_syscore_ops = {
1909 .suspend = mce_syscore_suspend,
1910 .shutdown = mce_syscore_shutdown,
1911 .resume = mce_syscore_resume,
1912 };
1913
1914 /*
1915 * mce_device: Sysfs support
1916 */
1917
1918 static void mce_cpu_restart(void *data)
1919 {
1920 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1921 return;
1922 __mcheck_cpu_init_generic();
1923 __mcheck_cpu_init_timer();
1924 }
1925
1926 /* Reinit MCEs after user configuration changes */
1927 static void mce_restart(void)
1928 {
1929 mce_timer_delete_all();
1930 on_each_cpu(mce_cpu_restart, NULL, 1);
1931 }
1932
1933 /* Toggle features for corrected errors */
1934 static void mce_disable_cmci(void *data)
1935 {
1936 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1937 return;
1938 cmci_clear();
1939 }
1940
1941 static void mce_enable_ce(void *all)
1942 {
1943 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1944 return;
1945 cmci_reenable();
1946 cmci_recheck();
1947 if (all)
1948 __mcheck_cpu_init_timer();
1949 }
1950
1951 static struct bus_type mce_subsys = {
1952 .name = "machinecheck",
1953 .dev_name = "machinecheck",
1954 };
1955
1956 DEFINE_PER_CPU(struct device *, mce_device);
1957
1958 __cpuinitdata
1959 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1960
1961 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
1962 {
1963 return container_of(attr, struct mce_bank, attr);
1964 }
1965
1966 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
1967 char *buf)
1968 {
1969 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1970 }
1971
1972 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
1973 const char *buf, size_t size)
1974 {
1975 u64 new;
1976
1977 if (strict_strtoull(buf, 0, &new) < 0)
1978 return -EINVAL;
1979
1980 attr_to_bank(attr)->ctl = new;
1981 mce_restart();
1982
1983 return size;
1984 }
1985
1986 static ssize_t
1987 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
1988 {
1989 strcpy(buf, mce_helper);
1990 strcat(buf, "\n");
1991 return strlen(mce_helper) + 1;
1992 }
1993
1994 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
1995 const char *buf, size_t siz)
1996 {
1997 char *p;
1998
1999 strncpy(mce_helper, buf, sizeof(mce_helper));
2000 mce_helper[sizeof(mce_helper)-1] = 0;
2001 p = strchr(mce_helper, '\n');
2002
2003 if (p)
2004 *p = 0;
2005
2006 return strlen(mce_helper) + !!p;
2007 }
2008
2009 static ssize_t set_ignore_ce(struct device *s,
2010 struct device_attribute *attr,
2011 const char *buf, size_t size)
2012 {
2013 u64 new;
2014
2015 if (strict_strtoull(buf, 0, &new) < 0)
2016 return -EINVAL;
2017
2018 if (mce_ignore_ce ^ !!new) {
2019 if (new) {
2020 /* disable ce features */
2021 mce_timer_delete_all();
2022 on_each_cpu(mce_disable_cmci, NULL, 1);
2023 mce_ignore_ce = 1;
2024 } else {
2025 /* enable ce features */
2026 mce_ignore_ce = 0;
2027 on_each_cpu(mce_enable_ce, (void *)1, 1);
2028 }
2029 }
2030 return size;
2031 }
2032
2033 static ssize_t set_cmci_disabled(struct device *s,
2034 struct device_attribute *attr,
2035 const char *buf, size_t size)
2036 {
2037 u64 new;
2038
2039 if (strict_strtoull(buf, 0, &new) < 0)
2040 return -EINVAL;
2041
2042 if (mce_cmci_disabled ^ !!new) {
2043 if (new) {
2044 /* disable cmci */
2045 on_each_cpu(mce_disable_cmci, NULL, 1);
2046 mce_cmci_disabled = 1;
2047 } else {
2048 /* enable cmci */
2049 mce_cmci_disabled = 0;
2050 on_each_cpu(mce_enable_ce, NULL, 1);
2051 }
2052 }
2053 return size;
2054 }
2055
2056 static ssize_t store_int_with_restart(struct device *s,
2057 struct device_attribute *attr,
2058 const char *buf, size_t size)
2059 {
2060 ssize_t ret = device_store_int(s, attr, buf, size);
2061 mce_restart();
2062 return ret;
2063 }
2064
2065 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2066 static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
2067 static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
2068 static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
2069
2070 static struct dev_ext_attribute dev_attr_check_interval = {
2071 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2072 &check_interval
2073 };
2074
2075 static struct dev_ext_attribute dev_attr_ignore_ce = {
2076 __ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
2077 &mce_ignore_ce
2078 };
2079
2080 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2081 __ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
2082 &mce_cmci_disabled
2083 };
2084
2085 static struct device_attribute *mce_device_attrs[] = {
2086 &dev_attr_tolerant.attr,
2087 &dev_attr_check_interval.attr,
2088 &dev_attr_trigger,
2089 &dev_attr_monarch_timeout.attr,
2090 &dev_attr_dont_log_ce.attr,
2091 &dev_attr_ignore_ce.attr,
2092 &dev_attr_cmci_disabled.attr,
2093 NULL
2094 };
2095
2096 static cpumask_var_t mce_device_initialized;
2097
2098 static void mce_device_release(struct device *dev)
2099 {
2100 kfree(dev);
2101 }
2102
2103 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2104 static __cpuinit int mce_device_create(unsigned int cpu)
2105 {
2106 struct device *dev;
2107 int err;
2108 int i, j;
2109
2110 if (!mce_available(&boot_cpu_data))
2111 return -EIO;
2112
2113 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2114 if (!dev)
2115 return -ENOMEM;
2116 dev->id = cpu;
2117 dev->bus = &mce_subsys;
2118 dev->release = &mce_device_release;
2119
2120 err = device_register(dev);
2121 if (err)
2122 return err;
2123
2124 for (i = 0; mce_device_attrs[i]; i++) {
2125 err = device_create_file(dev, mce_device_attrs[i]);
2126 if (err)
2127 goto error;
2128 }
2129 for (j = 0; j < banks; j++) {
2130 err = device_create_file(dev, &mce_banks[j].attr);
2131 if (err)
2132 goto error2;
2133 }
2134 cpumask_set_cpu(cpu, mce_device_initialized);
2135 per_cpu(mce_device, cpu) = dev;
2136
2137 return 0;
2138 error2:
2139 while (--j >= 0)
2140 device_remove_file(dev, &mce_banks[j].attr);
2141 error:
2142 while (--i >= 0)
2143 device_remove_file(dev, mce_device_attrs[i]);
2144
2145 device_unregister(dev);
2146
2147 return err;
2148 }
2149
2150 static __cpuinit void mce_device_remove(unsigned int cpu)
2151 {
2152 struct device *dev = per_cpu(mce_device, cpu);
2153 int i;
2154
2155 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2156 return;
2157
2158 for (i = 0; mce_device_attrs[i]; i++)
2159 device_remove_file(dev, mce_device_attrs[i]);
2160
2161 for (i = 0; i < banks; i++)
2162 device_remove_file(dev, &mce_banks[i].attr);
2163
2164 device_unregister(dev);
2165 cpumask_clear_cpu(cpu, mce_device_initialized);
2166 per_cpu(mce_device, cpu) = NULL;
2167 }
2168
2169 /* Make sure there are no machine checks on offlined CPUs. */
2170 static void __cpuinit mce_disable_cpu(void *h)
2171 {
2172 unsigned long action = *(unsigned long *)h;
2173 int i;
2174
2175 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2176 return;
2177
2178 if (!(action & CPU_TASKS_FROZEN))
2179 cmci_clear();
2180 for (i = 0; i < banks; i++) {
2181 struct mce_bank *b = &mce_banks[i];
2182
2183 if (b->init)
2184 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2185 }
2186 }
2187
2188 static void __cpuinit mce_reenable_cpu(void *h)
2189 {
2190 unsigned long action = *(unsigned long *)h;
2191 int i;
2192
2193 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2194 return;
2195
2196 if (!(action & CPU_TASKS_FROZEN))
2197 cmci_reenable();
2198 for (i = 0; i < banks; i++) {
2199 struct mce_bank *b = &mce_banks[i];
2200
2201 if (b->init)
2202 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2203 }
2204 }
2205
2206 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2207 static int __cpuinit
2208 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2209 {
2210 unsigned int cpu = (unsigned long)hcpu;
2211 struct timer_list *t = &per_cpu(mce_timer, cpu);
2212
2213 switch (action) {
2214 case CPU_ONLINE:
2215 case CPU_ONLINE_FROZEN:
2216 mce_device_create(cpu);
2217 if (threshold_cpu_callback)
2218 threshold_cpu_callback(action, cpu);
2219 break;
2220 case CPU_DEAD:
2221 case CPU_DEAD_FROZEN:
2222 if (threshold_cpu_callback)
2223 threshold_cpu_callback(action, cpu);
2224 mce_device_remove(cpu);
2225 break;
2226 case CPU_DOWN_PREPARE:
2227 case CPU_DOWN_PREPARE_FROZEN:
2228 del_timer_sync(t);
2229 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2230 break;
2231 case CPU_DOWN_FAILED:
2232 case CPU_DOWN_FAILED_FROZEN:
2233 if (!mce_ignore_ce && check_interval) {
2234 t->expires = round_jiffies(jiffies +
2235 per_cpu(mce_next_interval, cpu));
2236 add_timer_on(t, cpu);
2237 }
2238 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2239 break;
2240 case CPU_POST_DEAD:
2241 /* intentionally ignoring frozen here */
2242 cmci_rediscover(cpu);
2243 break;
2244 }
2245 return NOTIFY_OK;
2246 }
2247
2248 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2249 .notifier_call = mce_cpu_callback,
2250 };
2251
2252 static __init void mce_init_banks(void)
2253 {
2254 int i;
2255
2256 for (i = 0; i < banks; i++) {
2257 struct mce_bank *b = &mce_banks[i];
2258 struct device_attribute *a = &b->attr;
2259
2260 sysfs_attr_init(&a->attr);
2261 a->attr.name = b->attrname;
2262 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2263
2264 a->attr.mode = 0644;
2265 a->show = show_bank;
2266 a->store = set_bank;
2267 }
2268 }
2269
2270 static __init int mcheck_init_device(void)
2271 {
2272 int err;
2273 int i = 0;
2274
2275 if (!mce_available(&boot_cpu_data))
2276 return -EIO;
2277
2278 zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2279
2280 mce_init_banks();
2281
2282 err = subsys_system_register(&mce_subsys, NULL);
2283 if (err)
2284 return err;
2285
2286 for_each_online_cpu(i) {
2287 err = mce_device_create(i);
2288 if (err)
2289 return err;
2290 }
2291
2292 register_syscore_ops(&mce_syscore_ops);
2293 register_hotcpu_notifier(&mce_cpu_notifier);
2294
2295 /* register character device /dev/mcelog */
2296 misc_register(&mce_chrdev_device);
2297
2298 return err;
2299 }
2300 device_initcall(mcheck_init_device);
2301
2302 /*
2303 * Old style boot options parsing. Only for compatibility.
2304 */
2305 static int __init mcheck_disable(char *str)
2306 {
2307 mce_disabled = 1;
2308 return 1;
2309 }
2310 __setup("nomce", mcheck_disable);
2311
2312 #ifdef CONFIG_DEBUG_FS
2313 struct dentry *mce_get_debugfs_dir(void)
2314 {
2315 static struct dentry *dmce;
2316
2317 if (!dmce)
2318 dmce = debugfs_create_dir("mce", NULL);
2319
2320 return dmce;
2321 }
2322
2323 static void mce_reset(void)
2324 {
2325 cpu_missing = 0;
2326 atomic_set(&mce_fake_paniced, 0);
2327 atomic_set(&mce_executing, 0);
2328 atomic_set(&mce_callin, 0);
2329 atomic_set(&global_nwo, 0);
2330 }
2331
2332 static int fake_panic_get(void *data, u64 *val)
2333 {
2334 *val = fake_panic;
2335 return 0;
2336 }
2337
2338 static int fake_panic_set(void *data, u64 val)
2339 {
2340 mce_reset();
2341 fake_panic = val;
2342 return 0;
2343 }
2344
2345 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2346 fake_panic_set, "%llu\n");
2347
2348 static int __init mcheck_debugfs_init(void)
2349 {
2350 struct dentry *dmce, *ffake_panic;
2351
2352 dmce = mce_get_debugfs_dir();
2353 if (!dmce)
2354 return -ENOMEM;
2355 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2356 &fake_panic_fops);
2357 if (!ffake_panic)
2358 return -ENOMEM;
2359
2360 return 0;
2361 }
2362 late_initcall(mcheck_debugfs_init);
2363 #endif