]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/mcheck/mce_amd.c
x86/mce: Hide mca_cfg
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / mcheck / mce_amd.c
1 /*
2 * (c) 2005-2016 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
7 * Written by Jacob Shin - AMD, Inc.
8 * Maintained by: Borislav Petkov <bp@alien8.de>
9 *
10 * All MC4_MISCi registers are shared between cores on a node.
11 */
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
24
25 #include <asm/amd_nb.h>
26 #include <asm/apic.h>
27 #include <asm/mce.h>
28 #include <asm/msr.h>
29 #include <asm/trace/irq_vectors.h>
30
31 #include "mce-internal.h"
32
33 #define NR_BLOCKS 5
34 #define THRESHOLD_MAX 0xFFF
35 #define INT_TYPE_APIC 0x00020000
36 #define MASK_VALID_HI 0x80000000
37 #define MASK_CNTP_HI 0x40000000
38 #define MASK_LOCKED_HI 0x20000000
39 #define MASK_LVTOFF_HI 0x00F00000
40 #define MASK_COUNT_EN_HI 0x00080000
41 #define MASK_INT_TYPE_HI 0x00060000
42 #define MASK_OVERFLOW_HI 0x00010000
43 #define MASK_ERR_COUNT_HI 0x00000FFF
44 #define MASK_BLKPTR_LO 0xFF000000
45 #define MCG_XBLK_ADDR 0xC0000400
46
47 /* Deferred error settings */
48 #define MSR_CU_DEF_ERR 0xC0000410
49 #define MASK_DEF_LVTOFF 0x000000F0
50 #define MASK_DEF_INT_TYPE 0x00000006
51 #define DEF_LVT_OFF 0x2
52 #define DEF_INT_TYPE_APIC 0x2
53
54 /* Scalable MCA: */
55
56 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
57 #define SMCA_THR_LVT_OFF 0xF000
58
59 static bool thresholding_en;
60
61 static const char * const th_names[] = {
62 "load_store",
63 "insn_fetch",
64 "combined_unit",
65 "decode_unit",
66 "northbridge",
67 "execution_unit",
68 };
69
70 static const char * const smca_umc_block_names[] = {
71 "dram_ecc",
72 "misc_umc"
73 };
74
75 struct smca_bank_name {
76 const char *name; /* Short name for sysfs */
77 const char *long_name; /* Long name for pretty-printing */
78 };
79
80 static struct smca_bank_name smca_names[] = {
81 [SMCA_LS] = { "load_store", "Load Store Unit" },
82 [SMCA_IF] = { "insn_fetch", "Instruction Fetch Unit" },
83 [SMCA_L2_CACHE] = { "l2_cache", "L2 Cache" },
84 [SMCA_DE] = { "decode_unit", "Decode Unit" },
85 [SMCA_EX] = { "execution_unit", "Execution Unit" },
86 [SMCA_FP] = { "floating_point", "Floating Point Unit" },
87 [SMCA_L3_CACHE] = { "l3_cache", "L3 Cache" },
88 [SMCA_CS] = { "coherent_slave", "Coherent Slave" },
89 [SMCA_PIE] = { "pie", "Power, Interrupts, etc." },
90 [SMCA_UMC] = { "umc", "Unified Memory Controller" },
91 [SMCA_PB] = { "param_block", "Parameter Block" },
92 [SMCA_PSP] = { "psp", "Platform Security Processor" },
93 [SMCA_SMU] = { "smu", "System Management Unit" },
94 };
95
96 const char *smca_get_name(enum smca_bank_types t)
97 {
98 if (t >= N_SMCA_BANK_TYPES)
99 return NULL;
100
101 return smca_names[t].name;
102 }
103
104 const char *smca_get_long_name(enum smca_bank_types t)
105 {
106 if (t >= N_SMCA_BANK_TYPES)
107 return NULL;
108
109 return smca_names[t].long_name;
110 }
111 EXPORT_SYMBOL_GPL(smca_get_long_name);
112
113 static struct smca_hwid smca_hwid_mcatypes[] = {
114 /* { bank_type, hwid_mcatype, xec_bitmap } */
115
116 /* ZN Core (HWID=0xB0) MCA types */
117 { SMCA_LS, HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
118 { SMCA_IF, HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
119 { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
120 { SMCA_DE, HWID_MCATYPE(0xB0, 0x3), 0x1FF },
121 /* HWID 0xB0 MCATYPE 0x4 is Reserved */
122 { SMCA_EX, HWID_MCATYPE(0xB0, 0x5), 0x7FF },
123 { SMCA_FP, HWID_MCATYPE(0xB0, 0x6), 0x7F },
124 { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
125
126 /* Data Fabric MCA types */
127 { SMCA_CS, HWID_MCATYPE(0x2E, 0x0), 0x1FF },
128 { SMCA_PIE, HWID_MCATYPE(0x2E, 0x1), 0xF },
129
130 /* Unified Memory Controller MCA type */
131 { SMCA_UMC, HWID_MCATYPE(0x96, 0x0), 0x3F },
132
133 /* Parameter Block MCA type */
134 { SMCA_PB, HWID_MCATYPE(0x05, 0x0), 0x1 },
135
136 /* Platform Security Processor MCA type */
137 { SMCA_PSP, HWID_MCATYPE(0xFF, 0x0), 0x1 },
138
139 /* System Management Unit MCA type */
140 { SMCA_SMU, HWID_MCATYPE(0x01, 0x0), 0x1 },
141 };
142
143 struct smca_bank smca_banks[MAX_NR_BANKS];
144 EXPORT_SYMBOL_GPL(smca_banks);
145
146 /*
147 * In SMCA enabled processors, we can have multiple banks for a given IP type.
148 * So to define a unique name for each bank, we use a temp c-string to append
149 * the MCA_IPID[InstanceId] to type's name in get_name().
150 *
151 * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
152 * is greater than 8 plus 1 (for underscore) plus length of longest type name.
153 */
154 #define MAX_MCATYPE_NAME_LEN 30
155 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
156
157 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
158 static DEFINE_PER_CPU(unsigned int, bank_map); /* see which banks are on */
159
160 static void amd_threshold_interrupt(void);
161 static void amd_deferred_error_interrupt(void);
162
163 static void default_deferred_error_interrupt(void)
164 {
165 pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
166 }
167 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
168
169 static void smca_configure(unsigned int bank, unsigned int cpu)
170 {
171 unsigned int i, hwid_mcatype;
172 struct smca_hwid *s_hwid;
173 u32 high, low;
174 u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
175
176 /* Set appropriate bits in MCA_CONFIG */
177 if (!rdmsr_safe(smca_config, &low, &high)) {
178 /*
179 * OS is required to set the MCAX bit to acknowledge that it is
180 * now using the new MSR ranges and new registers under each
181 * bank. It also means that the OS will configure deferred
182 * errors in the new MCx_CONFIG register. If the bit is not set,
183 * uncorrectable errors will cause a system panic.
184 *
185 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
186 */
187 high |= BIT(0);
188
189 /*
190 * SMCA sets the Deferred Error Interrupt type per bank.
191 *
192 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
193 * if the DeferredIntType bit field is available.
194 *
195 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
196 * high portion of the MSR). OS should set this to 0x1 to enable
197 * APIC based interrupt. First, check that no interrupt has been
198 * set.
199 */
200 if ((low & BIT(5)) && !((high >> 5) & 0x3))
201 high |= BIT(5);
202
203 wrmsr(smca_config, low, high);
204 }
205
206 /* Return early if this bank was already initialized. */
207 if (smca_banks[bank].hwid)
208 return;
209
210 if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
211 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
212 return;
213 }
214
215 hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
216 (high & MCI_IPID_MCATYPE) >> 16);
217
218 for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
219 s_hwid = &smca_hwid_mcatypes[i];
220 if (hwid_mcatype == s_hwid->hwid_mcatype) {
221 smca_banks[bank].hwid = s_hwid;
222 smca_banks[bank].id = low;
223 smca_banks[bank].sysfs_id = s_hwid->count++;
224 break;
225 }
226 }
227 }
228
229 struct thresh_restart {
230 struct threshold_block *b;
231 int reset;
232 int set_lvt_off;
233 int lvt_off;
234 u16 old_limit;
235 };
236
237 static inline bool is_shared_bank(int bank)
238 {
239 /*
240 * Scalable MCA provides for only one core to have access to the MSRs of
241 * a shared bank.
242 */
243 if (mce_flags.smca)
244 return false;
245
246 /* Bank 4 is for northbridge reporting and is thus shared */
247 return (bank == 4);
248 }
249
250 static const char *bank4_names(const struct threshold_block *b)
251 {
252 switch (b->address) {
253 /* MSR4_MISC0 */
254 case 0x00000413:
255 return "dram";
256
257 case 0xc0000408:
258 return "ht_links";
259
260 case 0xc0000409:
261 return "l3_cache";
262
263 default:
264 WARN(1, "Funny MSR: 0x%08x\n", b->address);
265 return "";
266 }
267 };
268
269
270 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
271 {
272 /*
273 * bank 4 supports APIC LVT interrupts implicitly since forever.
274 */
275 if (bank == 4)
276 return true;
277
278 /*
279 * IntP: interrupt present; if this bit is set, the thresholding
280 * bank can generate APIC LVT interrupts
281 */
282 return msr_high_bits & BIT(28);
283 }
284
285 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
286 {
287 int msr = (hi & MASK_LVTOFF_HI) >> 20;
288
289 if (apic < 0) {
290 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
291 "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
292 b->bank, b->block, b->address, hi, lo);
293 return 0;
294 }
295
296 if (apic != msr) {
297 /*
298 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
299 * the BIOS provides the value. The original field where LVT offset
300 * was set is reserved. Return early here:
301 */
302 if (mce_flags.smca)
303 return 0;
304
305 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
306 "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
307 b->cpu, apic, b->bank, b->block, b->address, hi, lo);
308 return 0;
309 }
310
311 return 1;
312 };
313
314 /* Reprogram MCx_MISC MSR behind this threshold bank. */
315 static void threshold_restart_bank(void *_tr)
316 {
317 struct thresh_restart *tr = _tr;
318 u32 hi, lo;
319
320 rdmsr(tr->b->address, lo, hi);
321
322 if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
323 tr->reset = 1; /* limit cannot be lower than err count */
324
325 if (tr->reset) { /* reset err count and overflow bit */
326 hi =
327 (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
328 (THRESHOLD_MAX - tr->b->threshold_limit);
329 } else if (tr->old_limit) { /* change limit w/o reset */
330 int new_count = (hi & THRESHOLD_MAX) +
331 (tr->old_limit - tr->b->threshold_limit);
332
333 hi = (hi & ~MASK_ERR_COUNT_HI) |
334 (new_count & THRESHOLD_MAX);
335 }
336
337 /* clear IntType */
338 hi &= ~MASK_INT_TYPE_HI;
339
340 if (!tr->b->interrupt_capable)
341 goto done;
342
343 if (tr->set_lvt_off) {
344 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
345 /* set new lvt offset */
346 hi &= ~MASK_LVTOFF_HI;
347 hi |= tr->lvt_off << 20;
348 }
349 }
350
351 if (tr->b->interrupt_enable)
352 hi |= INT_TYPE_APIC;
353
354 done:
355
356 hi |= MASK_COUNT_EN_HI;
357 wrmsr(tr->b->address, lo, hi);
358 }
359
360 static void mce_threshold_block_init(struct threshold_block *b, int offset)
361 {
362 struct thresh_restart tr = {
363 .b = b,
364 .set_lvt_off = 1,
365 .lvt_off = offset,
366 };
367
368 b->threshold_limit = THRESHOLD_MAX;
369 threshold_restart_bank(&tr);
370 };
371
372 static int setup_APIC_mce_threshold(int reserved, int new)
373 {
374 if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
375 APIC_EILVT_MSG_FIX, 0))
376 return new;
377
378 return reserved;
379 }
380
381 static int setup_APIC_deferred_error(int reserved, int new)
382 {
383 if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
384 APIC_EILVT_MSG_FIX, 0))
385 return new;
386
387 return reserved;
388 }
389
390 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
391 {
392 u32 low = 0, high = 0;
393 int def_offset = -1, def_new;
394
395 if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
396 return;
397
398 def_new = (low & MASK_DEF_LVTOFF) >> 4;
399 if (!(low & MASK_DEF_LVTOFF)) {
400 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
401 def_new = DEF_LVT_OFF;
402 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
403 }
404
405 def_offset = setup_APIC_deferred_error(def_offset, def_new);
406 if ((def_offset == def_new) &&
407 (deferred_error_int_vector != amd_deferred_error_interrupt))
408 deferred_error_int_vector = amd_deferred_error_interrupt;
409
410 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
411 wrmsr(MSR_CU_DEF_ERR, low, high);
412 }
413
414 static u32 get_block_address(unsigned int cpu, u32 current_addr, u32 low, u32 high,
415 unsigned int bank, unsigned int block)
416 {
417 u32 addr = 0, offset = 0;
418
419 if (mce_flags.smca) {
420 if (!block) {
421 addr = MSR_AMD64_SMCA_MCx_MISC(bank);
422 } else {
423 /*
424 * For SMCA enabled processors, BLKPTR field of the
425 * first MISC register (MCx_MISC0) indicates presence of
426 * additional MISC register set (MISC1-4).
427 */
428 u32 low, high;
429
430 if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
431 return addr;
432
433 if (!(low & MCI_CONFIG_MCAX))
434 return addr;
435
436 if (!rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
437 (low & MASK_BLKPTR_LO))
438 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
439 }
440 return addr;
441 }
442
443 /* Fall back to method we used for older processors: */
444 switch (block) {
445 case 0:
446 addr = msr_ops.misc(bank);
447 break;
448 case 1:
449 offset = ((low & MASK_BLKPTR_LO) >> 21);
450 if (offset)
451 addr = MCG_XBLK_ADDR + offset;
452 break;
453 default:
454 addr = ++current_addr;
455 }
456 return addr;
457 }
458
459 static int
460 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
461 int offset, u32 misc_high)
462 {
463 unsigned int cpu = smp_processor_id();
464 u32 smca_low, smca_high;
465 struct threshold_block b;
466 int new;
467
468 if (!block)
469 per_cpu(bank_map, cpu) |= (1 << bank);
470
471 memset(&b, 0, sizeof(b));
472 b.cpu = cpu;
473 b.bank = bank;
474 b.block = block;
475 b.address = addr;
476 b.interrupt_capable = lvt_interrupt_supported(bank, misc_high);
477
478 if (!b.interrupt_capable)
479 goto done;
480
481 b.interrupt_enable = 1;
482
483 if (!mce_flags.smca) {
484 new = (misc_high & MASK_LVTOFF_HI) >> 20;
485 goto set_offset;
486 }
487
488 /* Gather LVT offset for thresholding: */
489 if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
490 goto out;
491
492 new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
493
494 set_offset:
495 offset = setup_APIC_mce_threshold(offset, new);
496
497 if ((offset == new) && (mce_threshold_vector != amd_threshold_interrupt))
498 mce_threshold_vector = amd_threshold_interrupt;
499
500 done:
501 mce_threshold_block_init(&b, offset);
502
503 out:
504 return offset;
505 }
506
507 /* cpu init entry point, called from mce.c with preempt off */
508 void mce_amd_feature_init(struct cpuinfo_x86 *c)
509 {
510 u32 low = 0, high = 0, address = 0;
511 unsigned int bank, block, cpu = smp_processor_id();
512 int offset = -1;
513
514 for (bank = 0; bank < mca_cfg.banks; ++bank) {
515 if (mce_flags.smca)
516 smca_configure(bank, cpu);
517
518 for (block = 0; block < NR_BLOCKS; ++block) {
519 address = get_block_address(cpu, address, low, high, bank, block);
520 if (!address)
521 break;
522
523 if (rdmsr_safe(address, &low, &high))
524 break;
525
526 if (!(high & MASK_VALID_HI))
527 continue;
528
529 if (!(high & MASK_CNTP_HI) ||
530 (high & MASK_LOCKED_HI))
531 continue;
532
533 offset = prepare_threshold_block(bank, block, address, offset, high);
534 }
535 }
536
537 if (mce_flags.succor)
538 deferred_error_interrupt_enable(c);
539 }
540
541 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
542 {
543 u64 dram_base_addr, dram_limit_addr, dram_hole_base;
544 /* We start from the normalized address */
545 u64 ret_addr = norm_addr;
546
547 u32 tmp;
548
549 u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
550 u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
551 u8 intlv_addr_sel, intlv_addr_bit;
552 u8 num_intlv_bits, hashed_bit;
553 u8 lgcy_mmio_hole_en, base = 0;
554 u8 cs_mask, cs_id = 0;
555 bool hash_enabled = false;
556
557 /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
558 if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
559 goto out_err;
560
561 /* Remove HiAddrOffset from normalized address, if enabled: */
562 if (tmp & BIT(0)) {
563 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
564
565 if (norm_addr >= hi_addr_offset) {
566 ret_addr -= hi_addr_offset;
567 base = 1;
568 }
569 }
570
571 /* Read D18F0x110 (DramBaseAddress). */
572 if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
573 goto out_err;
574
575 /* Check if address range is valid. */
576 if (!(tmp & BIT(0))) {
577 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
578 __func__, tmp);
579 goto out_err;
580 }
581
582 lgcy_mmio_hole_en = tmp & BIT(1);
583 intlv_num_chan = (tmp >> 4) & 0xF;
584 intlv_addr_sel = (tmp >> 8) & 0x7;
585 dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16;
586
587 /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
588 if (intlv_addr_sel > 3) {
589 pr_err("%s: Invalid interleave address select %d.\n",
590 __func__, intlv_addr_sel);
591 goto out_err;
592 }
593
594 /* Read D18F0x114 (DramLimitAddress). */
595 if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
596 goto out_err;
597
598 intlv_num_sockets = (tmp >> 8) & 0x1;
599 intlv_num_dies = (tmp >> 10) & 0x3;
600 dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
601
602 intlv_addr_bit = intlv_addr_sel + 8;
603
604 /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
605 switch (intlv_num_chan) {
606 case 0: intlv_num_chan = 0; break;
607 case 1: intlv_num_chan = 1; break;
608 case 3: intlv_num_chan = 2; break;
609 case 5: intlv_num_chan = 3; break;
610 case 7: intlv_num_chan = 4; break;
611
612 case 8: intlv_num_chan = 1;
613 hash_enabled = true;
614 break;
615 default:
616 pr_err("%s: Invalid number of interleaved channels %d.\n",
617 __func__, intlv_num_chan);
618 goto out_err;
619 }
620
621 num_intlv_bits = intlv_num_chan;
622
623 if (intlv_num_dies > 2) {
624 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
625 __func__, intlv_num_dies);
626 goto out_err;
627 }
628
629 num_intlv_bits += intlv_num_dies;
630
631 /* Add a bit if sockets are interleaved. */
632 num_intlv_bits += intlv_num_sockets;
633
634 /* Assert num_intlv_bits <= 4 */
635 if (num_intlv_bits > 4) {
636 pr_err("%s: Invalid interleave bits %d.\n",
637 __func__, num_intlv_bits);
638 goto out_err;
639 }
640
641 if (num_intlv_bits > 0) {
642 u64 temp_addr_x, temp_addr_i, temp_addr_y;
643 u8 die_id_bit, sock_id_bit, cs_fabric_id;
644
645 /*
646 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
647 * This is the fabric id for this coherent slave. Use
648 * umc/channel# as instance id of the coherent slave
649 * for FICAA.
650 */
651 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
652 goto out_err;
653
654 cs_fabric_id = (tmp >> 8) & 0xFF;
655 die_id_bit = 0;
656
657 /* If interleaved over more than 1 channel: */
658 if (intlv_num_chan) {
659 die_id_bit = intlv_num_chan;
660 cs_mask = (1 << die_id_bit) - 1;
661 cs_id = cs_fabric_id & cs_mask;
662 }
663
664 sock_id_bit = die_id_bit;
665
666 /* Read D18F1x208 (SystemFabricIdMask). */
667 if (intlv_num_dies || intlv_num_sockets)
668 if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
669 goto out_err;
670
671 /* If interleaved over more than 1 die. */
672 if (intlv_num_dies) {
673 sock_id_bit = die_id_bit + intlv_num_dies;
674 die_id_shift = (tmp >> 24) & 0xF;
675 die_id_mask = (tmp >> 8) & 0xFF;
676
677 cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
678 }
679
680 /* If interleaved over more than 1 socket. */
681 if (intlv_num_sockets) {
682 socket_id_shift = (tmp >> 28) & 0xF;
683 socket_id_mask = (tmp >> 16) & 0xFF;
684
685 cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
686 }
687
688 /*
689 * The pre-interleaved address consists of XXXXXXIIIYYYYY
690 * where III is the ID for this CS, and XXXXXXYYYYY are the
691 * address bits from the post-interleaved address.
692 * "num_intlv_bits" has been calculated to tell us how many "I"
693 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
694 * there are (where "I" starts).
695 */
696 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
697 temp_addr_i = (cs_id << intlv_addr_bit);
698 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
699 ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
700 }
701
702 /* Add dram base address */
703 ret_addr += dram_base_addr;
704
705 /* If legacy MMIO hole enabled */
706 if (lgcy_mmio_hole_en) {
707 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
708 goto out_err;
709
710 dram_hole_base = tmp & GENMASK(31, 24);
711 if (ret_addr >= dram_hole_base)
712 ret_addr += (BIT_ULL(32) - dram_hole_base);
713 }
714
715 if (hash_enabled) {
716 /* Save some parentheses and grab ls-bit at the end. */
717 hashed_bit = (ret_addr >> 12) ^
718 (ret_addr >> 18) ^
719 (ret_addr >> 21) ^
720 (ret_addr >> 30) ^
721 cs_id;
722
723 hashed_bit &= BIT(0);
724
725 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
726 ret_addr ^= BIT(intlv_addr_bit);
727 }
728
729 /* Is calculated system address is above DRAM limit address? */
730 if (ret_addr > dram_limit_addr)
731 goto out_err;
732
733 *sys_addr = ret_addr;
734 return 0;
735
736 out_err:
737 return -EINVAL;
738 }
739 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
740
741 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
742 {
743 struct mce m;
744
745 mce_setup(&m);
746
747 m.status = status;
748 m.misc = misc;
749 m.bank = bank;
750 m.tsc = rdtsc();
751
752 if (m.status & MCI_STATUS_ADDRV) {
753 m.addr = addr;
754
755 /*
756 * Extract [55:<lsb>] where lsb is the least significant
757 * *valid* bit of the address bits.
758 */
759 if (mce_flags.smca) {
760 u8 lsb = (m.addr >> 56) & 0x3f;
761
762 m.addr &= GENMASK_ULL(55, lsb);
763 }
764 }
765
766 if (mce_flags.smca) {
767 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
768
769 if (m.status & MCI_STATUS_SYNDV)
770 rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
771 }
772
773 mce_log(&m);
774 }
775
776 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(void)
777 {
778 entering_irq();
779 trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
780 inc_irq_stat(irq_deferred_error_count);
781 deferred_error_int_vector();
782 trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
783 exiting_ack_irq();
784 }
785
786 /*
787 * Returns true if the logged error is deferred. False, otherwise.
788 */
789 static inline bool
790 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
791 {
792 u64 status, addr = 0;
793
794 rdmsrl(msr_stat, status);
795 if (!(status & MCI_STATUS_VAL))
796 return false;
797
798 if (status & MCI_STATUS_ADDRV)
799 rdmsrl(msr_addr, addr);
800
801 __log_error(bank, status, addr, misc);
802
803 wrmsrl(msr_stat, 0);
804
805 return status & MCI_STATUS_DEFERRED;
806 }
807
808 /*
809 * We have three scenarios for checking for Deferred errors:
810 *
811 * 1) Non-SMCA systems check MCA_STATUS and log error if found.
812 * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
813 * clear MCA_DESTAT.
814 * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
815 * log it.
816 */
817 static void log_error_deferred(unsigned int bank)
818 {
819 bool defrd;
820
821 defrd = _log_error_bank(bank, msr_ops.status(bank),
822 msr_ops.addr(bank), 0);
823
824 if (!mce_flags.smca)
825 return;
826
827 /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
828 if (defrd) {
829 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
830 return;
831 }
832
833 /*
834 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
835 * for a valid error.
836 */
837 _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
838 MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
839 }
840
841 /* APIC interrupt handler for deferred errors */
842 static void amd_deferred_error_interrupt(void)
843 {
844 unsigned int bank;
845
846 for (bank = 0; bank < mca_cfg.banks; ++bank)
847 log_error_deferred(bank);
848 }
849
850 static void log_error_thresholding(unsigned int bank, u64 misc)
851 {
852 _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
853 }
854
855 static void log_and_reset_block(struct threshold_block *block)
856 {
857 struct thresh_restart tr;
858 u32 low = 0, high = 0;
859
860 if (!block)
861 return;
862
863 if (rdmsr_safe(block->address, &low, &high))
864 return;
865
866 if (!(high & MASK_OVERFLOW_HI))
867 return;
868
869 /* Log the MCE which caused the threshold event. */
870 log_error_thresholding(block->bank, ((u64)high << 32) | low);
871
872 /* Reset threshold block after logging error. */
873 memset(&tr, 0, sizeof(tr));
874 tr.b = block;
875 threshold_restart_bank(&tr);
876 }
877
878 /*
879 * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
880 * goes off when error_count reaches threshold_limit.
881 */
882 static void amd_threshold_interrupt(void)
883 {
884 struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
885 unsigned int bank, cpu = smp_processor_id();
886
887 for (bank = 0; bank < mca_cfg.banks; ++bank) {
888 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
889 continue;
890
891 first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
892 if (!first_block)
893 continue;
894
895 /*
896 * The first block is also the head of the list. Check it first
897 * before iterating over the rest.
898 */
899 log_and_reset_block(first_block);
900 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
901 log_and_reset_block(block);
902 }
903 }
904
905 /*
906 * Sysfs Interface
907 */
908
909 struct threshold_attr {
910 struct attribute attr;
911 ssize_t (*show) (struct threshold_block *, char *);
912 ssize_t (*store) (struct threshold_block *, const char *, size_t count);
913 };
914
915 #define SHOW_FIELDS(name) \
916 static ssize_t show_ ## name(struct threshold_block *b, char *buf) \
917 { \
918 return sprintf(buf, "%lu\n", (unsigned long) b->name); \
919 }
920 SHOW_FIELDS(interrupt_enable)
921 SHOW_FIELDS(threshold_limit)
922
923 static ssize_t
924 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
925 {
926 struct thresh_restart tr;
927 unsigned long new;
928
929 if (!b->interrupt_capable)
930 return -EINVAL;
931
932 if (kstrtoul(buf, 0, &new) < 0)
933 return -EINVAL;
934
935 b->interrupt_enable = !!new;
936
937 memset(&tr, 0, sizeof(tr));
938 tr.b = b;
939
940 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
941
942 return size;
943 }
944
945 static ssize_t
946 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
947 {
948 struct thresh_restart tr;
949 unsigned long new;
950
951 if (kstrtoul(buf, 0, &new) < 0)
952 return -EINVAL;
953
954 if (new > THRESHOLD_MAX)
955 new = THRESHOLD_MAX;
956 if (new < 1)
957 new = 1;
958
959 memset(&tr, 0, sizeof(tr));
960 tr.old_limit = b->threshold_limit;
961 b->threshold_limit = new;
962 tr.b = b;
963
964 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
965
966 return size;
967 }
968
969 static ssize_t show_error_count(struct threshold_block *b, char *buf)
970 {
971 u32 lo, hi;
972
973 rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
974
975 return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
976 (THRESHOLD_MAX - b->threshold_limit)));
977 }
978
979 static struct threshold_attr error_count = {
980 .attr = {.name = __stringify(error_count), .mode = 0444 },
981 .show = show_error_count,
982 };
983
984 #define RW_ATTR(val) \
985 static struct threshold_attr val = { \
986 .attr = {.name = __stringify(val), .mode = 0644 }, \
987 .show = show_## val, \
988 .store = store_## val, \
989 };
990
991 RW_ATTR(interrupt_enable);
992 RW_ATTR(threshold_limit);
993
994 static struct attribute *default_attrs[] = {
995 &threshold_limit.attr,
996 &error_count.attr,
997 NULL, /* possibly interrupt_enable if supported, see below */
998 NULL,
999 };
1000
1001 #define to_block(k) container_of(k, struct threshold_block, kobj)
1002 #define to_attr(a) container_of(a, struct threshold_attr, attr)
1003
1004 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1005 {
1006 struct threshold_block *b = to_block(kobj);
1007 struct threshold_attr *a = to_attr(attr);
1008 ssize_t ret;
1009
1010 ret = a->show ? a->show(b, buf) : -EIO;
1011
1012 return ret;
1013 }
1014
1015 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1016 const char *buf, size_t count)
1017 {
1018 struct threshold_block *b = to_block(kobj);
1019 struct threshold_attr *a = to_attr(attr);
1020 ssize_t ret;
1021
1022 ret = a->store ? a->store(b, buf, count) : -EIO;
1023
1024 return ret;
1025 }
1026
1027 static const struct sysfs_ops threshold_ops = {
1028 .show = show,
1029 .store = store,
1030 };
1031
1032 static struct kobj_type threshold_ktype = {
1033 .sysfs_ops = &threshold_ops,
1034 .default_attrs = default_attrs,
1035 };
1036
1037 static const char *get_name(unsigned int bank, struct threshold_block *b)
1038 {
1039 unsigned int bank_type;
1040
1041 if (!mce_flags.smca) {
1042 if (b && bank == 4)
1043 return bank4_names(b);
1044
1045 return th_names[bank];
1046 }
1047
1048 if (!smca_banks[bank].hwid)
1049 return NULL;
1050
1051 bank_type = smca_banks[bank].hwid->bank_type;
1052
1053 if (b && bank_type == SMCA_UMC) {
1054 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1055 return smca_umc_block_names[b->block];
1056 return NULL;
1057 }
1058
1059 if (smca_banks[bank].hwid->count == 1)
1060 return smca_get_name(bank_type);
1061
1062 snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1063 "%s_%x", smca_get_name(bank_type),
1064 smca_banks[bank].sysfs_id);
1065 return buf_mcatype;
1066 }
1067
1068 static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
1069 unsigned int block, u32 address)
1070 {
1071 struct threshold_block *b = NULL;
1072 u32 low, high;
1073 int err;
1074
1075 if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1076 return 0;
1077
1078 if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1079 return 0;
1080
1081 if (!(high & MASK_VALID_HI)) {
1082 if (block)
1083 goto recurse;
1084 else
1085 return 0;
1086 }
1087
1088 if (!(high & MASK_CNTP_HI) ||
1089 (high & MASK_LOCKED_HI))
1090 goto recurse;
1091
1092 b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1093 if (!b)
1094 return -ENOMEM;
1095
1096 b->block = block;
1097 b->bank = bank;
1098 b->cpu = cpu;
1099 b->address = address;
1100 b->interrupt_enable = 0;
1101 b->interrupt_capable = lvt_interrupt_supported(bank, high);
1102 b->threshold_limit = THRESHOLD_MAX;
1103
1104 if (b->interrupt_capable) {
1105 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1106 b->interrupt_enable = 1;
1107 } else {
1108 threshold_ktype.default_attrs[2] = NULL;
1109 }
1110
1111 INIT_LIST_HEAD(&b->miscj);
1112
1113 if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
1114 list_add(&b->miscj,
1115 &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
1116 } else {
1117 per_cpu(threshold_banks, cpu)[bank]->blocks = b;
1118 }
1119
1120 err = kobject_init_and_add(&b->kobj, &threshold_ktype,
1121 per_cpu(threshold_banks, cpu)[bank]->kobj,
1122 get_name(bank, b));
1123 if (err)
1124 goto out_free;
1125 recurse:
1126 address = get_block_address(cpu, address, low, high, bank, ++block);
1127 if (!address)
1128 return 0;
1129
1130 err = allocate_threshold_blocks(cpu, bank, block, address);
1131 if (err)
1132 goto out_free;
1133
1134 if (b)
1135 kobject_uevent(&b->kobj, KOBJ_ADD);
1136
1137 return err;
1138
1139 out_free:
1140 if (b) {
1141 kobject_put(&b->kobj);
1142 list_del(&b->miscj);
1143 kfree(b);
1144 }
1145 return err;
1146 }
1147
1148 static int __threshold_add_blocks(struct threshold_bank *b)
1149 {
1150 struct list_head *head = &b->blocks->miscj;
1151 struct threshold_block *pos = NULL;
1152 struct threshold_block *tmp = NULL;
1153 int err = 0;
1154
1155 err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1156 if (err)
1157 return err;
1158
1159 list_for_each_entry_safe(pos, tmp, head, miscj) {
1160
1161 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1162 if (err) {
1163 list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1164 kobject_del(&pos->kobj);
1165
1166 return err;
1167 }
1168 }
1169 return err;
1170 }
1171
1172 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1173 {
1174 struct device *dev = per_cpu(mce_device, cpu);
1175 struct amd_northbridge *nb = NULL;
1176 struct threshold_bank *b = NULL;
1177 const char *name = get_name(bank, NULL);
1178 int err = 0;
1179
1180 if (!dev)
1181 return -ENODEV;
1182
1183 if (is_shared_bank(bank)) {
1184 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1185
1186 /* threshold descriptor already initialized on this node? */
1187 if (nb && nb->bank4) {
1188 /* yes, use it */
1189 b = nb->bank4;
1190 err = kobject_add(b->kobj, &dev->kobj, name);
1191 if (err)
1192 goto out;
1193
1194 per_cpu(threshold_banks, cpu)[bank] = b;
1195 refcount_inc(&b->cpus);
1196
1197 err = __threshold_add_blocks(b);
1198
1199 goto out;
1200 }
1201 }
1202
1203 b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1204 if (!b) {
1205 err = -ENOMEM;
1206 goto out;
1207 }
1208
1209 b->kobj = kobject_create_and_add(name, &dev->kobj);
1210 if (!b->kobj) {
1211 err = -EINVAL;
1212 goto out_free;
1213 }
1214
1215 per_cpu(threshold_banks, cpu)[bank] = b;
1216
1217 if (is_shared_bank(bank)) {
1218 refcount_set(&b->cpus, 1);
1219
1220 /* nb is already initialized, see above */
1221 if (nb) {
1222 WARN_ON(nb->bank4);
1223 nb->bank4 = b;
1224 }
1225 }
1226
1227 err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank));
1228 if (!err)
1229 goto out;
1230
1231 out_free:
1232 kfree(b);
1233
1234 out:
1235 return err;
1236 }
1237
1238 static void deallocate_threshold_block(unsigned int cpu,
1239 unsigned int bank)
1240 {
1241 struct threshold_block *pos = NULL;
1242 struct threshold_block *tmp = NULL;
1243 struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1244
1245 if (!head)
1246 return;
1247
1248 list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1249 kobject_put(&pos->kobj);
1250 list_del(&pos->miscj);
1251 kfree(pos);
1252 }
1253
1254 kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
1255 per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
1256 }
1257
1258 static void __threshold_remove_blocks(struct threshold_bank *b)
1259 {
1260 struct threshold_block *pos = NULL;
1261 struct threshold_block *tmp = NULL;
1262
1263 kobject_del(b->kobj);
1264
1265 list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1266 kobject_del(&pos->kobj);
1267 }
1268
1269 static void threshold_remove_bank(unsigned int cpu, int bank)
1270 {
1271 struct amd_northbridge *nb;
1272 struct threshold_bank *b;
1273
1274 b = per_cpu(threshold_banks, cpu)[bank];
1275 if (!b)
1276 return;
1277
1278 if (!b->blocks)
1279 goto free_out;
1280
1281 if (is_shared_bank(bank)) {
1282 if (!refcount_dec_and_test(&b->cpus)) {
1283 __threshold_remove_blocks(b);
1284 per_cpu(threshold_banks, cpu)[bank] = NULL;
1285 return;
1286 } else {
1287 /*
1288 * the last CPU on this node using the shared bank is
1289 * going away, remove that bank now.
1290 */
1291 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1292 nb->bank4 = NULL;
1293 }
1294 }
1295
1296 deallocate_threshold_block(cpu, bank);
1297
1298 free_out:
1299 kobject_del(b->kobj);
1300 kobject_put(b->kobj);
1301 kfree(b);
1302 per_cpu(threshold_banks, cpu)[bank] = NULL;
1303 }
1304
1305 int mce_threshold_remove_device(unsigned int cpu)
1306 {
1307 unsigned int bank;
1308
1309 if (!thresholding_en)
1310 return 0;
1311
1312 for (bank = 0; bank < mca_cfg.banks; ++bank) {
1313 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1314 continue;
1315 threshold_remove_bank(cpu, bank);
1316 }
1317 kfree(per_cpu(threshold_banks, cpu));
1318 per_cpu(threshold_banks, cpu) = NULL;
1319 return 0;
1320 }
1321
1322 /* create dir/files for all valid threshold banks */
1323 int mce_threshold_create_device(unsigned int cpu)
1324 {
1325 unsigned int bank;
1326 struct threshold_bank **bp;
1327 int err = 0;
1328
1329 if (!thresholding_en)
1330 return 0;
1331
1332 bp = per_cpu(threshold_banks, cpu);
1333 if (bp)
1334 return 0;
1335
1336 bp = kzalloc(sizeof(struct threshold_bank *) * mca_cfg.banks,
1337 GFP_KERNEL);
1338 if (!bp)
1339 return -ENOMEM;
1340
1341 per_cpu(threshold_banks, cpu) = bp;
1342
1343 for (bank = 0; bank < mca_cfg.banks; ++bank) {
1344 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1345 continue;
1346 err = threshold_create_bank(cpu, bank);
1347 if (err)
1348 goto err;
1349 }
1350 return err;
1351 err:
1352 mce_threshold_remove_device(cpu);
1353 return err;
1354 }
1355
1356 static __init int threshold_init_device(void)
1357 {
1358 unsigned lcpu = 0;
1359
1360 if (mce_threshold_vector == amd_threshold_interrupt)
1361 thresholding_en = true;
1362
1363 /* to hit CPUs online before the notifier is up */
1364 for_each_online_cpu(lcpu) {
1365 int err = mce_threshold_create_device(lcpu);
1366
1367 if (err)
1368 return err;
1369 }
1370
1371 return 0;
1372 }
1373 /*
1374 * there are 3 funcs which need to be _initcalled in a logic sequence:
1375 * 1. xen_late_init_mcelog
1376 * 2. mcheck_init_device
1377 * 3. threshold_init_device
1378 *
1379 * xen_late_init_mcelog must register xen_mce_chrdev_device before
1380 * native mce_chrdev_device registration if running under xen platform;
1381 *
1382 * mcheck_init_device should be inited before threshold_init_device to
1383 * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1384 *
1385 * so we use following _initcalls
1386 * 1. device_initcall(xen_late_init_mcelog);
1387 * 2. device_initcall_sync(mcheck_init_device);
1388 * 3. late_initcall(threshold_init_device);
1389 *
1390 * when running under xen, the initcall order is 1,2,3;
1391 * on baremetal, we skip 1 and we do only 2 and 3.
1392 */
1393 late_initcall(threshold_init_device);