]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kernel/nmi.c
x86: Warn when NMI handlers take large amounts of time
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / nmi.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * Handle hardware traps and faults.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/slab.h>
21 #include <linux/export.h>
22
23 #if defined(CONFIG_EDAC)
24 #include <linux/edac.h>
25 #endif
26
27 #include <linux/atomic.h>
28 #include <asm/traps.h>
29 #include <asm/mach_traps.h>
30 #include <asm/nmi.h>
31 #include <asm/x86_init.h>
32
33 struct nmi_desc {
34 spinlock_t lock;
35 struct list_head head;
36 };
37
38 static struct nmi_desc nmi_desc[NMI_MAX] =
39 {
40 {
41 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
42 .head = LIST_HEAD_INIT(nmi_desc[0].head),
43 },
44 {
45 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
46 .head = LIST_HEAD_INIT(nmi_desc[1].head),
47 },
48 {
49 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
50 .head = LIST_HEAD_INIT(nmi_desc[2].head),
51 },
52 {
53 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
54 .head = LIST_HEAD_INIT(nmi_desc[3].head),
55 },
56
57 };
58
59 struct nmi_stats {
60 unsigned int normal;
61 unsigned int unknown;
62 unsigned int external;
63 unsigned int swallow;
64 };
65
66 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
67
68 static int ignore_nmis;
69
70 int unknown_nmi_panic;
71 /*
72 * Prevent NMI reason port (0x61) being accessed simultaneously, can
73 * only be used in NMI handler.
74 */
75 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
76
77 static int __init setup_unknown_nmi_panic(char *str)
78 {
79 unknown_nmi_panic = 1;
80 return 1;
81 }
82 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
83
84 #define nmi_to_desc(type) (&nmi_desc[type])
85
86 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
87 static int __init nmi_warning_debugfs(void)
88 {
89 debugfs_create_u64("nmi_longest_ns", 0644,
90 arch_debugfs_dir, &nmi_longest_ns);
91 return 0;
92 }
93 fs_initcall(nmi_warning_debugfs);
94
95 static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
96 {
97 struct nmi_desc *desc = nmi_to_desc(type);
98 struct nmiaction *a;
99 int handled=0;
100
101 rcu_read_lock();
102
103 /*
104 * NMIs are edge-triggered, which means if you have enough
105 * of them concurrently, you can lose some because only one
106 * can be latched at any given time. Walk the whole list
107 * to handle those situations.
108 */
109 list_for_each_entry_rcu(a, &desc->head, list) {
110 u64 before, delta, whole_msecs;
111 int decimal_msecs;
112
113 before = local_clock();
114 handled += a->handler(type, regs);
115 delta = local_clock() - before;
116
117 if (delta < nmi_longest_ns)
118 continue;
119
120 nmi_longest_ns = delta;
121 whole_msecs = do_div(delta, (1000 * 1000));
122 decimal_msecs = do_div(delta, 1000) % 1000;
123 printk_ratelimited(KERN_INFO
124 "INFO: NMI handler (%ps) took too long to run: "
125 "%lld.%03d msecs\n", a->handler, whole_msecs,
126 decimal_msecs);
127 }
128
129 rcu_read_unlock();
130
131 /* return total number of NMI events handled */
132 return handled;
133 }
134
135 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
136 {
137 struct nmi_desc *desc = nmi_to_desc(type);
138 unsigned long flags;
139
140 if (!action->handler)
141 return -EINVAL;
142
143 spin_lock_irqsave(&desc->lock, flags);
144
145 /*
146 * most handlers of type NMI_UNKNOWN never return because
147 * they just assume the NMI is theirs. Just a sanity check
148 * to manage expectations
149 */
150 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
151 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
152 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
153
154 /*
155 * some handlers need to be executed first otherwise a fake
156 * event confuses some handlers (kdump uses this flag)
157 */
158 if (action->flags & NMI_FLAG_FIRST)
159 list_add_rcu(&action->list, &desc->head);
160 else
161 list_add_tail_rcu(&action->list, &desc->head);
162
163 spin_unlock_irqrestore(&desc->lock, flags);
164 return 0;
165 }
166 EXPORT_SYMBOL(__register_nmi_handler);
167
168 void unregister_nmi_handler(unsigned int type, const char *name)
169 {
170 struct nmi_desc *desc = nmi_to_desc(type);
171 struct nmiaction *n;
172 unsigned long flags;
173
174 spin_lock_irqsave(&desc->lock, flags);
175
176 list_for_each_entry_rcu(n, &desc->head, list) {
177 /*
178 * the name passed in to describe the nmi handler
179 * is used as the lookup key
180 */
181 if (!strcmp(n->name, name)) {
182 WARN(in_nmi(),
183 "Trying to free NMI (%s) from NMI context!\n", n->name);
184 list_del_rcu(&n->list);
185 break;
186 }
187 }
188
189 spin_unlock_irqrestore(&desc->lock, flags);
190 synchronize_rcu();
191 }
192 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
193
194 static __kprobes void
195 pci_serr_error(unsigned char reason, struct pt_regs *regs)
196 {
197 /* check to see if anyone registered against these types of errors */
198 if (nmi_handle(NMI_SERR, regs, false))
199 return;
200
201 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
202 reason, smp_processor_id());
203
204 /*
205 * On some machines, PCI SERR line is used to report memory
206 * errors. EDAC makes use of it.
207 */
208 #if defined(CONFIG_EDAC)
209 if (edac_handler_set()) {
210 edac_atomic_assert_error();
211 return;
212 }
213 #endif
214
215 if (panic_on_unrecovered_nmi)
216 panic("NMI: Not continuing");
217
218 pr_emerg("Dazed and confused, but trying to continue\n");
219
220 /* Clear and disable the PCI SERR error line. */
221 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
222 outb(reason, NMI_REASON_PORT);
223 }
224
225 static __kprobes void
226 io_check_error(unsigned char reason, struct pt_regs *regs)
227 {
228 unsigned long i;
229
230 /* check to see if anyone registered against these types of errors */
231 if (nmi_handle(NMI_IO_CHECK, regs, false))
232 return;
233
234 pr_emerg(
235 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
236 reason, smp_processor_id());
237 show_regs(regs);
238
239 if (panic_on_io_nmi)
240 panic("NMI IOCK error: Not continuing");
241
242 /* Re-enable the IOCK line, wait for a few seconds */
243 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
244 outb(reason, NMI_REASON_PORT);
245
246 i = 20000;
247 while (--i) {
248 touch_nmi_watchdog();
249 udelay(100);
250 }
251
252 reason &= ~NMI_REASON_CLEAR_IOCHK;
253 outb(reason, NMI_REASON_PORT);
254 }
255
256 static __kprobes void
257 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
258 {
259 int handled;
260
261 /*
262 * Use 'false' as back-to-back NMIs are dealt with one level up.
263 * Of course this makes having multiple 'unknown' handlers useless
264 * as only the first one is ever run (unless it can actually determine
265 * if it caused the NMI)
266 */
267 handled = nmi_handle(NMI_UNKNOWN, regs, false);
268 if (handled) {
269 __this_cpu_add(nmi_stats.unknown, handled);
270 return;
271 }
272
273 __this_cpu_add(nmi_stats.unknown, 1);
274
275 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
276 reason, smp_processor_id());
277
278 pr_emerg("Do you have a strange power saving mode enabled?\n");
279 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
280 panic("NMI: Not continuing");
281
282 pr_emerg("Dazed and confused, but trying to continue\n");
283 }
284
285 static DEFINE_PER_CPU(bool, swallow_nmi);
286 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
287
288 static __kprobes void default_do_nmi(struct pt_regs *regs)
289 {
290 unsigned char reason = 0;
291 int handled;
292 bool b2b = false;
293
294 /*
295 * CPU-specific NMI must be processed before non-CPU-specific
296 * NMI, otherwise we may lose it, because the CPU-specific
297 * NMI can not be detected/processed on other CPUs.
298 */
299
300 /*
301 * Back-to-back NMIs are interesting because they can either
302 * be two NMI or more than two NMIs (any thing over two is dropped
303 * due to NMI being edge-triggered). If this is the second half
304 * of the back-to-back NMI, assume we dropped things and process
305 * more handlers. Otherwise reset the 'swallow' NMI behaviour
306 */
307 if (regs->ip == __this_cpu_read(last_nmi_rip))
308 b2b = true;
309 else
310 __this_cpu_write(swallow_nmi, false);
311
312 __this_cpu_write(last_nmi_rip, regs->ip);
313
314 handled = nmi_handle(NMI_LOCAL, regs, b2b);
315 __this_cpu_add(nmi_stats.normal, handled);
316 if (handled) {
317 /*
318 * There are cases when a NMI handler handles multiple
319 * events in the current NMI. One of these events may
320 * be queued for in the next NMI. Because the event is
321 * already handled, the next NMI will result in an unknown
322 * NMI. Instead lets flag this for a potential NMI to
323 * swallow.
324 */
325 if (handled > 1)
326 __this_cpu_write(swallow_nmi, true);
327 return;
328 }
329
330 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
331 raw_spin_lock(&nmi_reason_lock);
332 reason = x86_platform.get_nmi_reason();
333
334 if (reason & NMI_REASON_MASK) {
335 if (reason & NMI_REASON_SERR)
336 pci_serr_error(reason, regs);
337 else if (reason & NMI_REASON_IOCHK)
338 io_check_error(reason, regs);
339 #ifdef CONFIG_X86_32
340 /*
341 * Reassert NMI in case it became active
342 * meanwhile as it's edge-triggered:
343 */
344 reassert_nmi();
345 #endif
346 __this_cpu_add(nmi_stats.external, 1);
347 raw_spin_unlock(&nmi_reason_lock);
348 return;
349 }
350 raw_spin_unlock(&nmi_reason_lock);
351
352 /*
353 * Only one NMI can be latched at a time. To handle
354 * this we may process multiple nmi handlers at once to
355 * cover the case where an NMI is dropped. The downside
356 * to this approach is we may process an NMI prematurely,
357 * while its real NMI is sitting latched. This will cause
358 * an unknown NMI on the next run of the NMI processing.
359 *
360 * We tried to flag that condition above, by setting the
361 * swallow_nmi flag when we process more than one event.
362 * This condition is also only present on the second half
363 * of a back-to-back NMI, so we flag that condition too.
364 *
365 * If both are true, we assume we already processed this
366 * NMI previously and we swallow it. Otherwise we reset
367 * the logic.
368 *
369 * There are scenarios where we may accidentally swallow
370 * a 'real' unknown NMI. For example, while processing
371 * a perf NMI another perf NMI comes in along with a
372 * 'real' unknown NMI. These two NMIs get combined into
373 * one (as descibed above). When the next NMI gets
374 * processed, it will be flagged by perf as handled, but
375 * noone will know that there was a 'real' unknown NMI sent
376 * also. As a result it gets swallowed. Or if the first
377 * perf NMI returns two events handled then the second
378 * NMI will get eaten by the logic below, again losing a
379 * 'real' unknown NMI. But this is the best we can do
380 * for now.
381 */
382 if (b2b && __this_cpu_read(swallow_nmi))
383 __this_cpu_add(nmi_stats.swallow, 1);
384 else
385 unknown_nmi_error(reason, regs);
386 }
387
388 /*
389 * NMIs can hit breakpoints which will cause it to lose its
390 * NMI context with the CPU when the breakpoint does an iret.
391 */
392 #ifdef CONFIG_X86_32
393 /*
394 * For i386, NMIs use the same stack as the kernel, and we can
395 * add a workaround to the iret problem in C (preventing nested
396 * NMIs if an NMI takes a trap). Simply have 3 states the NMI
397 * can be in:
398 *
399 * 1) not running
400 * 2) executing
401 * 3) latched
402 *
403 * When no NMI is in progress, it is in the "not running" state.
404 * When an NMI comes in, it goes into the "executing" state.
405 * Normally, if another NMI is triggered, it does not interrupt
406 * the running NMI and the HW will simply latch it so that when
407 * the first NMI finishes, it will restart the second NMI.
408 * (Note, the latch is binary, thus multiple NMIs triggering,
409 * when one is running, are ignored. Only one NMI is restarted.)
410 *
411 * If an NMI hits a breakpoint that executes an iret, another
412 * NMI can preempt it. We do not want to allow this new NMI
413 * to run, but we want to execute it when the first one finishes.
414 * We set the state to "latched", and the exit of the first NMI will
415 * perform a dec_return, if the result is zero (NOT_RUNNING), then
416 * it will simply exit the NMI handler. If not, the dec_return
417 * would have set the state to NMI_EXECUTING (what we want it to
418 * be when we are running). In this case, we simply jump back
419 * to rerun the NMI handler again, and restart the 'latched' NMI.
420 *
421 * No trap (breakpoint or page fault) should be hit before nmi_restart,
422 * thus there is no race between the first check of state for NOT_RUNNING
423 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
424 * at this point.
425 *
426 * In case the NMI takes a page fault, we need to save off the CR2
427 * because the NMI could have preempted another page fault and corrupt
428 * the CR2 that is about to be read. As nested NMIs must be restarted
429 * and they can not take breakpoints or page faults, the update of the
430 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
431 * Otherwise, there would be a race of another nested NMI coming in
432 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
433 */
434 enum nmi_states {
435 NMI_NOT_RUNNING = 0,
436 NMI_EXECUTING,
437 NMI_LATCHED,
438 };
439 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
440 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
441
442 #define nmi_nesting_preprocess(regs) \
443 do { \
444 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \
445 this_cpu_write(nmi_state, NMI_LATCHED); \
446 return; \
447 } \
448 this_cpu_write(nmi_state, NMI_EXECUTING); \
449 this_cpu_write(nmi_cr2, read_cr2()); \
450 } while (0); \
451 nmi_restart:
452
453 #define nmi_nesting_postprocess() \
454 do { \
455 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \
456 write_cr2(this_cpu_read(nmi_cr2)); \
457 if (this_cpu_dec_return(nmi_state)) \
458 goto nmi_restart; \
459 } while (0)
460 #else /* x86_64 */
461 /*
462 * In x86_64 things are a bit more difficult. This has the same problem
463 * where an NMI hitting a breakpoint that calls iret will remove the
464 * NMI context, allowing a nested NMI to enter. What makes this more
465 * difficult is that both NMIs and breakpoints have their own stack.
466 * When a new NMI or breakpoint is executed, the stack is set to a fixed
467 * point. If an NMI is nested, it will have its stack set at that same
468 * fixed address that the first NMI had, and will start corrupting the
469 * stack. This is handled in entry_64.S, but the same problem exists with
470 * the breakpoint stack.
471 *
472 * If a breakpoint is being processed, and the debug stack is being used,
473 * if an NMI comes in and also hits a breakpoint, the stack pointer
474 * will be set to the same fixed address as the breakpoint that was
475 * interrupted, causing that stack to be corrupted. To handle this case,
476 * check if the stack that was interrupted is the debug stack, and if
477 * so, change the IDT so that new breakpoints will use the current stack
478 * and not switch to the fixed address. On return of the NMI, switch back
479 * to the original IDT.
480 */
481 static DEFINE_PER_CPU(int, update_debug_stack);
482
483 static inline void nmi_nesting_preprocess(struct pt_regs *regs)
484 {
485 /*
486 * If we interrupted a breakpoint, it is possible that
487 * the nmi handler will have breakpoints too. We need to
488 * change the IDT such that breakpoints that happen here
489 * continue to use the NMI stack.
490 */
491 if (unlikely(is_debug_stack(regs->sp))) {
492 debug_stack_set_zero();
493 this_cpu_write(update_debug_stack, 1);
494 }
495 }
496
497 static inline void nmi_nesting_postprocess(void)
498 {
499 if (unlikely(this_cpu_read(update_debug_stack))) {
500 debug_stack_reset();
501 this_cpu_write(update_debug_stack, 0);
502 }
503 }
504 #endif
505
506 dotraplinkage notrace __kprobes void
507 do_nmi(struct pt_regs *regs, long error_code)
508 {
509 nmi_nesting_preprocess(regs);
510
511 nmi_enter();
512
513 inc_irq_stat(__nmi_count);
514
515 if (!ignore_nmis)
516 default_do_nmi(regs);
517
518 nmi_exit();
519
520 /* On i386, may loop back to preprocess */
521 nmi_nesting_postprocess();
522 }
523
524 void stop_nmi(void)
525 {
526 ignore_nmis++;
527 }
528
529 void restart_nmi(void)
530 {
531 ignore_nmis--;
532 }
533
534 /* reset the back-to-back NMI logic */
535 void local_touch_nmi(void)
536 {
537 __this_cpu_write(last_nmi_rip, 0);
538 }
539 EXPORT_SYMBOL_GPL(local_touch_nmi);