]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/setup.c
UBUNTU: SAUCE: (efi-lockdown) efi: Lock down the kernel if booted in secure boot...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / setup.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20 /*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67 #include <linux/security.h>
68
69 #include <linux/percpu.h>
70 #include <linux/crash_dump.h>
71 #include <linux/tboot.h>
72 #include <linux/jiffies.h>
73 #include <linux/mem_encrypt.h>
74
75 #include <linux/usb/xhci-dbgp.h>
76 #include <video/edid.h>
77
78 #include <asm/mtrr.h>
79 #include <asm/apic.h>
80 #include <asm/realmode.h>
81 #include <asm/e820/api.h>
82 #include <asm/mpspec.h>
83 #include <asm/setup.h>
84 #include <asm/efi.h>
85 #include <asm/timer.h>
86 #include <asm/i8259.h>
87 #include <asm/sections.h>
88 #include <asm/io_apic.h>
89 #include <asm/ist.h>
90 #include <asm/setup_arch.h>
91 #include <asm/bios_ebda.h>
92 #include <asm/cacheflush.h>
93 #include <asm/processor.h>
94 #include <asm/bugs.h>
95 #include <asm/kasan.h>
96
97 #include <asm/vsyscall.h>
98 #include <asm/cpu.h>
99 #include <asm/desc.h>
100 #include <asm/dma.h>
101 #include <asm/iommu.h>
102 #include <asm/gart.h>
103 #include <asm/mmu_context.h>
104 #include <asm/proto.h>
105
106 #include <asm/paravirt.h>
107 #include <asm/hypervisor.h>
108 #include <asm/olpc_ofw.h>
109
110 #include <asm/percpu.h>
111 #include <asm/topology.h>
112 #include <asm/apicdef.h>
113 #include <asm/amd_nb.h>
114 #include <asm/mce.h>
115 #include <asm/alternative.h>
116 #include <asm/prom.h>
117 #include <asm/microcode.h>
118 #include <asm/mmu_context.h>
119 #include <asm/kaslr.h>
120 #include <asm/unwind.h>
121
122 /*
123 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
124 * max_pfn_mapped: highest direct mapped pfn over 4GB
125 *
126 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
127 * represented by pfn_mapped
128 */
129 unsigned long max_low_pfn_mapped;
130 unsigned long max_pfn_mapped;
131
132 #ifdef CONFIG_DMI
133 RESERVE_BRK(dmi_alloc, 65536);
134 #endif
135
136
137 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
138 unsigned long _brk_end = (unsigned long)__brk_base;
139
140 struct boot_params boot_params;
141
142 /*
143 * Machine setup..
144 */
145 static struct resource data_resource = {
146 .name = "Kernel data",
147 .start = 0,
148 .end = 0,
149 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
150 };
151
152 static struct resource code_resource = {
153 .name = "Kernel code",
154 .start = 0,
155 .end = 0,
156 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
157 };
158
159 static struct resource bss_resource = {
160 .name = "Kernel bss",
161 .start = 0,
162 .end = 0,
163 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
164 };
165
166
167 #ifdef CONFIG_X86_32
168 /* cpu data as detected by the assembly code in head_32.S */
169 struct cpuinfo_x86 new_cpu_data;
170
171 /* common cpu data for all cpus */
172 struct cpuinfo_x86 boot_cpu_data __read_mostly;
173 EXPORT_SYMBOL(boot_cpu_data);
174
175 unsigned int def_to_bigsmp;
176
177 /* for MCA, but anyone else can use it if they want */
178 unsigned int machine_id;
179 unsigned int machine_submodel_id;
180 unsigned int BIOS_revision;
181
182 struct apm_info apm_info;
183 EXPORT_SYMBOL(apm_info);
184
185 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
186 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
187 struct ist_info ist_info;
188 EXPORT_SYMBOL(ist_info);
189 #else
190 struct ist_info ist_info;
191 #endif
192
193 #else
194 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
195 .x86_phys_bits = MAX_PHYSMEM_BITS,
196 };
197 EXPORT_SYMBOL(boot_cpu_data);
198 #endif
199
200
201 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
202 __visible unsigned long mmu_cr4_features __ro_after_init;
203 #else
204 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
205 #endif
206
207 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
208 int bootloader_type, bootloader_version;
209
210 /*
211 * Setup options
212 */
213 struct screen_info screen_info;
214 EXPORT_SYMBOL(screen_info);
215 struct edid_info edid_info;
216 EXPORT_SYMBOL_GPL(edid_info);
217
218 extern int root_mountflags;
219
220 unsigned long saved_video_mode;
221
222 #define RAMDISK_IMAGE_START_MASK 0x07FF
223 #define RAMDISK_PROMPT_FLAG 0x8000
224 #define RAMDISK_LOAD_FLAG 0x4000
225
226 static char __initdata command_line[COMMAND_LINE_SIZE];
227 #ifdef CONFIG_CMDLINE_BOOL
228 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
229 #endif
230
231 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
232 struct edd edd;
233 #ifdef CONFIG_EDD_MODULE
234 EXPORT_SYMBOL(edd);
235 #endif
236 /**
237 * copy_edd() - Copy the BIOS EDD information
238 * from boot_params into a safe place.
239 *
240 */
241 static inline void __init copy_edd(void)
242 {
243 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
244 sizeof(edd.mbr_signature));
245 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
246 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
247 edd.edd_info_nr = boot_params.eddbuf_entries;
248 }
249 #else
250 static inline void __init copy_edd(void)
251 {
252 }
253 #endif
254
255 void * __init extend_brk(size_t size, size_t align)
256 {
257 size_t mask = align - 1;
258 void *ret;
259
260 BUG_ON(_brk_start == 0);
261 BUG_ON(align & mask);
262
263 _brk_end = (_brk_end + mask) & ~mask;
264 BUG_ON((char *)(_brk_end + size) > __brk_limit);
265
266 ret = (void *)_brk_end;
267 _brk_end += size;
268
269 memset(ret, 0, size);
270
271 return ret;
272 }
273
274 #ifdef CONFIG_X86_32
275 static void __init cleanup_highmap(void)
276 {
277 }
278 #endif
279
280 static void __init reserve_brk(void)
281 {
282 if (_brk_end > _brk_start)
283 memblock_reserve(__pa_symbol(_brk_start),
284 _brk_end - _brk_start);
285
286 /* Mark brk area as locked down and no longer taking any
287 new allocations */
288 _brk_start = 0;
289 }
290
291 u64 relocated_ramdisk;
292
293 #ifdef CONFIG_BLK_DEV_INITRD
294
295 static u64 __init get_ramdisk_image(void)
296 {
297 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
298
299 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
300
301 return ramdisk_image;
302 }
303 static u64 __init get_ramdisk_size(void)
304 {
305 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
306
307 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
308
309 return ramdisk_size;
310 }
311
312 static void __init relocate_initrd(void)
313 {
314 /* Assume only end is not page aligned */
315 u64 ramdisk_image = get_ramdisk_image();
316 u64 ramdisk_size = get_ramdisk_size();
317 u64 area_size = PAGE_ALIGN(ramdisk_size);
318
319 /* We need to move the initrd down into directly mapped mem */
320 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
321 area_size, PAGE_SIZE);
322
323 if (!relocated_ramdisk)
324 panic("Cannot find place for new RAMDISK of size %lld\n",
325 ramdisk_size);
326
327 /* Note: this includes all the mem currently occupied by
328 the initrd, we rely on that fact to keep the data intact. */
329 memblock_reserve(relocated_ramdisk, area_size);
330 initrd_start = relocated_ramdisk + PAGE_OFFSET;
331 initrd_end = initrd_start + ramdisk_size;
332 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
333 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
334
335 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
336
337 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
338 " [mem %#010llx-%#010llx]\n",
339 ramdisk_image, ramdisk_image + ramdisk_size - 1,
340 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
341 }
342
343 static void __init early_reserve_initrd(void)
344 {
345 /* Assume only end is not page aligned */
346 u64 ramdisk_image = get_ramdisk_image();
347 u64 ramdisk_size = get_ramdisk_size();
348 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
349
350 if (!boot_params.hdr.type_of_loader ||
351 !ramdisk_image || !ramdisk_size)
352 return; /* No initrd provided by bootloader */
353
354 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
355 }
356 static void __init reserve_initrd(void)
357 {
358 /* Assume only end is not page aligned */
359 u64 ramdisk_image = get_ramdisk_image();
360 u64 ramdisk_size = get_ramdisk_size();
361 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
362 u64 mapped_size;
363
364 if (!boot_params.hdr.type_of_loader ||
365 !ramdisk_image || !ramdisk_size)
366 return; /* No initrd provided by bootloader */
367
368 initrd_start = 0;
369
370 mapped_size = memblock_mem_size(max_pfn_mapped);
371 if (ramdisk_size >= (mapped_size>>1))
372 panic("initrd too large to handle, "
373 "disabling initrd (%lld needed, %lld available)\n",
374 ramdisk_size, mapped_size>>1);
375
376 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
377 ramdisk_end - 1);
378
379 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
380 PFN_DOWN(ramdisk_end))) {
381 /* All are mapped, easy case */
382 initrd_start = ramdisk_image + PAGE_OFFSET;
383 initrd_end = initrd_start + ramdisk_size;
384 return;
385 }
386
387 relocate_initrd();
388
389 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
390 }
391
392 #else
393 static void __init early_reserve_initrd(void)
394 {
395 }
396 static void __init reserve_initrd(void)
397 {
398 }
399 #endif /* CONFIG_BLK_DEV_INITRD */
400
401 static void __init parse_setup_data(void)
402 {
403 struct setup_data *data;
404 u64 pa_data, pa_next;
405
406 pa_data = boot_params.hdr.setup_data;
407 while (pa_data) {
408 u32 data_len, data_type;
409
410 data = early_memremap(pa_data, sizeof(*data));
411 data_len = data->len + sizeof(struct setup_data);
412 data_type = data->type;
413 pa_next = data->next;
414 early_memunmap(data, sizeof(*data));
415
416 switch (data_type) {
417 case SETUP_E820_EXT:
418 e820__memory_setup_extended(pa_data, data_len);
419 break;
420 case SETUP_DTB:
421 add_dtb(pa_data);
422 break;
423 case SETUP_EFI:
424 parse_efi_setup(pa_data, data_len);
425 break;
426 default:
427 break;
428 }
429 pa_data = pa_next;
430 }
431 }
432
433 static void __init memblock_x86_reserve_range_setup_data(void)
434 {
435 struct setup_data *data;
436 u64 pa_data;
437
438 pa_data = boot_params.hdr.setup_data;
439 while (pa_data) {
440 data = early_memremap(pa_data, sizeof(*data));
441 memblock_reserve(pa_data, sizeof(*data) + data->len);
442 pa_data = data->next;
443 early_memunmap(data, sizeof(*data));
444 }
445 }
446
447 /*
448 * --------- Crashkernel reservation ------------------------------
449 */
450
451 #ifdef CONFIG_KEXEC_CORE
452
453 /* 16M alignment for crash kernel regions */
454 #define CRASH_ALIGN (16 << 20)
455
456 /*
457 * Keep the crash kernel below this limit. On 32 bits earlier kernels
458 * would limit the kernel to the low 512 MiB due to mapping restrictions.
459 * On 64bit, old kexec-tools need to under 896MiB.
460 */
461 #ifdef CONFIG_X86_32
462 # define CRASH_ADDR_LOW_MAX (512 << 20)
463 # define CRASH_ADDR_HIGH_MAX (512 << 20)
464 #else
465 # define CRASH_ADDR_LOW_MAX (896UL << 20)
466 # define CRASH_ADDR_HIGH_MAX MAXMEM
467 #endif
468
469 static int __init reserve_crashkernel_low(void)
470 {
471 #ifdef CONFIG_X86_64
472 unsigned long long base, low_base = 0, low_size = 0;
473 unsigned long total_low_mem;
474 int ret;
475
476 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
477
478 /* crashkernel=Y,low */
479 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
480 if (ret) {
481 /*
482 * two parts from lib/swiotlb.c:
483 * -swiotlb size: user-specified with swiotlb= or default.
484 *
485 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
486 * to 8M for other buffers that may need to stay low too. Also
487 * make sure we allocate enough extra low memory so that we
488 * don't run out of DMA buffers for 32-bit devices.
489 */
490 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
491 } else {
492 /* passed with crashkernel=0,low ? */
493 if (!low_size)
494 return 0;
495 }
496
497 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
498 if (!low_base) {
499 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
500 (unsigned long)(low_size >> 20));
501 return -ENOMEM;
502 }
503
504 ret = memblock_reserve(low_base, low_size);
505 if (ret) {
506 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
507 return ret;
508 }
509
510 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
511 (unsigned long)(low_size >> 20),
512 (unsigned long)(low_base >> 20),
513 (unsigned long)(total_low_mem >> 20));
514
515 crashk_low_res.start = low_base;
516 crashk_low_res.end = low_base + low_size - 1;
517 insert_resource(&iomem_resource, &crashk_low_res);
518 #endif
519 return 0;
520 }
521
522 static void __init reserve_crashkernel(void)
523 {
524 unsigned long long crash_size, crash_base, total_mem;
525 bool high = false;
526 int ret;
527
528 total_mem = memblock_phys_mem_size();
529
530 /* crashkernel=XM */
531 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
532 if (ret != 0 || crash_size <= 0) {
533 /* crashkernel=X,high */
534 ret = parse_crashkernel_high(boot_command_line, total_mem,
535 &crash_size, &crash_base);
536 if (ret != 0 || crash_size <= 0)
537 return;
538 high = true;
539 }
540
541 /* 0 means: find the address automatically */
542 if (crash_base <= 0) {
543 /*
544 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
545 * as old kexec-tools loads bzImage below that, unless
546 * "crashkernel=size[KMG],high" is specified.
547 */
548 crash_base = memblock_find_in_range(CRASH_ALIGN,
549 high ? CRASH_ADDR_HIGH_MAX
550 : CRASH_ADDR_LOW_MAX,
551 crash_size, CRASH_ALIGN);
552 if (!crash_base) {
553 pr_info("crashkernel reservation failed - No suitable area found.\n");
554 return;
555 }
556
557 } else {
558 unsigned long long start;
559
560 start = memblock_find_in_range(crash_base,
561 crash_base + crash_size,
562 crash_size, 1 << 20);
563 if (start != crash_base) {
564 pr_info("crashkernel reservation failed - memory is in use.\n");
565 return;
566 }
567 }
568 ret = memblock_reserve(crash_base, crash_size);
569 if (ret) {
570 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
571 return;
572 }
573
574 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
575 memblock_free(crash_base, crash_size);
576 return;
577 }
578
579 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
580 (unsigned long)(crash_size >> 20),
581 (unsigned long)(crash_base >> 20),
582 (unsigned long)(total_mem >> 20));
583
584 crashk_res.start = crash_base;
585 crashk_res.end = crash_base + crash_size - 1;
586 insert_resource(&iomem_resource, &crashk_res);
587 }
588 #else
589 static void __init reserve_crashkernel(void)
590 {
591 }
592 #endif
593
594 static struct resource standard_io_resources[] = {
595 { .name = "dma1", .start = 0x00, .end = 0x1f,
596 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
597 { .name = "pic1", .start = 0x20, .end = 0x21,
598 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
599 { .name = "timer0", .start = 0x40, .end = 0x43,
600 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
601 { .name = "timer1", .start = 0x50, .end = 0x53,
602 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
603 { .name = "keyboard", .start = 0x60, .end = 0x60,
604 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
605 { .name = "keyboard", .start = 0x64, .end = 0x64,
606 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
607 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
608 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
609 { .name = "pic2", .start = 0xa0, .end = 0xa1,
610 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
611 { .name = "dma2", .start = 0xc0, .end = 0xdf,
612 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
613 { .name = "fpu", .start = 0xf0, .end = 0xff,
614 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
615 };
616
617 void __init reserve_standard_io_resources(void)
618 {
619 int i;
620
621 /* request I/O space for devices used on all i[345]86 PCs */
622 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
623 request_resource(&ioport_resource, &standard_io_resources[i]);
624
625 }
626
627 static __init void reserve_ibft_region(void)
628 {
629 unsigned long addr, size = 0;
630
631 addr = find_ibft_region(&size);
632
633 if (size)
634 memblock_reserve(addr, size);
635 }
636
637 static bool __init snb_gfx_workaround_needed(void)
638 {
639 #ifdef CONFIG_PCI
640 int i;
641 u16 vendor, devid;
642 static const __initconst u16 snb_ids[] = {
643 0x0102,
644 0x0112,
645 0x0122,
646 0x0106,
647 0x0116,
648 0x0126,
649 0x010a,
650 };
651
652 /* Assume no if something weird is going on with PCI */
653 if (!early_pci_allowed())
654 return false;
655
656 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
657 if (vendor != 0x8086)
658 return false;
659
660 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
661 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
662 if (devid == snb_ids[i])
663 return true;
664 #endif
665
666 return false;
667 }
668
669 /*
670 * Sandy Bridge graphics has trouble with certain ranges, exclude
671 * them from allocation.
672 */
673 static void __init trim_snb_memory(void)
674 {
675 static const __initconst unsigned long bad_pages[] = {
676 0x20050000,
677 0x20110000,
678 0x20130000,
679 0x20138000,
680 0x40004000,
681 };
682 int i;
683
684 if (!snb_gfx_workaround_needed())
685 return;
686
687 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
688
689 /*
690 * Reserve all memory below the 1 MB mark that has not
691 * already been reserved.
692 */
693 memblock_reserve(0, 1<<20);
694
695 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
696 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
697 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
698 bad_pages[i]);
699 }
700 }
701
702 /*
703 * Here we put platform-specific memory range workarounds, i.e.
704 * memory known to be corrupt or otherwise in need to be reserved on
705 * specific platforms.
706 *
707 * If this gets used more widely it could use a real dispatch mechanism.
708 */
709 static void __init trim_platform_memory_ranges(void)
710 {
711 trim_snb_memory();
712 }
713
714 static void __init trim_bios_range(void)
715 {
716 /*
717 * A special case is the first 4Kb of memory;
718 * This is a BIOS owned area, not kernel ram, but generally
719 * not listed as such in the E820 table.
720 *
721 * This typically reserves additional memory (64KiB by default)
722 * since some BIOSes are known to corrupt low memory. See the
723 * Kconfig help text for X86_RESERVE_LOW.
724 */
725 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
726
727 /*
728 * special case: Some BIOSen report the PC BIOS
729 * area (640->1Mb) as ram even though it is not.
730 * take them out.
731 */
732 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
733
734 e820__update_table(e820_table);
735 }
736
737 /* called before trim_bios_range() to spare extra sanitize */
738 static void __init e820_add_kernel_range(void)
739 {
740 u64 start = __pa_symbol(_text);
741 u64 size = __pa_symbol(_end) - start;
742
743 /*
744 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
745 * attempt to fix it by adding the range. We may have a confused BIOS,
746 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
747 * exclude kernel range. If we really are running on top non-RAM,
748 * we will crash later anyways.
749 */
750 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
751 return;
752
753 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
754 e820__range_remove(start, size, E820_TYPE_RAM, 0);
755 e820__range_add(start, size, E820_TYPE_RAM);
756 }
757
758 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
759
760 static int __init parse_reservelow(char *p)
761 {
762 unsigned long long size;
763
764 if (!p)
765 return -EINVAL;
766
767 size = memparse(p, &p);
768
769 if (size < 4096)
770 size = 4096;
771
772 if (size > 640*1024)
773 size = 640*1024;
774
775 reserve_low = size;
776
777 return 0;
778 }
779
780 early_param("reservelow", parse_reservelow);
781
782 static void __init trim_low_memory_range(void)
783 {
784 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
785 }
786
787 /*
788 * Dump out kernel offset information on panic.
789 */
790 static int
791 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
792 {
793 if (kaslr_enabled()) {
794 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
795 kaslr_offset(),
796 __START_KERNEL,
797 __START_KERNEL_map,
798 MODULES_VADDR-1);
799 } else {
800 pr_emerg("Kernel Offset: disabled\n");
801 }
802
803 return 0;
804 }
805
806 /*
807 * Determine if we were loaded by an EFI loader. If so, then we have also been
808 * passed the efi memmap, systab, etc., so we should use these data structures
809 * for initialization. Note, the efi init code path is determined by the
810 * global efi_enabled. This allows the same kernel image to be used on existing
811 * systems (with a traditional BIOS) as well as on EFI systems.
812 */
813 /*
814 * setup_arch - architecture-specific boot-time initializations
815 *
816 * Note: On x86_64, fixmaps are ready for use even before this is called.
817 */
818
819 void __init setup_arch(char **cmdline_p)
820 {
821 memblock_reserve(__pa_symbol(_text),
822 (unsigned long)__bss_stop - (unsigned long)_text);
823
824 early_reserve_initrd();
825
826 /*
827 * At this point everything still needed from the boot loader
828 * or BIOS or kernel text should be early reserved or marked not
829 * RAM in e820. All other memory is free game.
830 */
831
832 #ifdef CONFIG_X86_32
833 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
834
835 /*
836 * copy kernel address range established so far and switch
837 * to the proper swapper page table
838 */
839 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
840 initial_page_table + KERNEL_PGD_BOUNDARY,
841 KERNEL_PGD_PTRS);
842
843 load_cr3(swapper_pg_dir);
844 /*
845 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
846 * a cr3 based tlb flush, so the following __flush_tlb_all()
847 * will not flush anything because the cpu quirk which clears
848 * X86_FEATURE_PGE has not been invoked yet. Though due to the
849 * load_cr3() above the TLB has been flushed already. The
850 * quirk is invoked before subsequent calls to __flush_tlb_all()
851 * so proper operation is guaranteed.
852 */
853 __flush_tlb_all();
854 #else
855 printk(KERN_INFO "Command line: %s\n", boot_command_line);
856 #endif
857
858 /*
859 * If we have OLPC OFW, we might end up relocating the fixmap due to
860 * reserve_top(), so do this before touching the ioremap area.
861 */
862 olpc_ofw_detect();
863
864 idt_setup_early_traps();
865 early_cpu_init();
866 early_ioremap_init();
867
868 setup_olpc_ofw_pgd();
869
870 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
871 screen_info = boot_params.screen_info;
872 edid_info = boot_params.edid_info;
873 #ifdef CONFIG_X86_32
874 apm_info.bios = boot_params.apm_bios_info;
875 ist_info = boot_params.ist_info;
876 #endif
877 saved_video_mode = boot_params.hdr.vid_mode;
878 bootloader_type = boot_params.hdr.type_of_loader;
879 if ((bootloader_type >> 4) == 0xe) {
880 bootloader_type &= 0xf;
881 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
882 }
883 bootloader_version = bootloader_type & 0xf;
884 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
885
886 #ifdef CONFIG_BLK_DEV_RAM
887 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
888 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
889 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
890 #endif
891 #ifdef CONFIG_EFI
892 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
893 EFI32_LOADER_SIGNATURE, 4)) {
894 set_bit(EFI_BOOT, &efi.flags);
895 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
896 EFI64_LOADER_SIGNATURE, 4)) {
897 set_bit(EFI_BOOT, &efi.flags);
898 set_bit(EFI_64BIT, &efi.flags);
899 }
900 #endif
901
902 x86_init.oem.arch_setup();
903
904 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
905 e820__memory_setup();
906 parse_setup_data();
907
908 copy_edd();
909
910 if (!boot_params.hdr.root_flags)
911 root_mountflags &= ~MS_RDONLY;
912 init_mm.start_code = (unsigned long) _text;
913 init_mm.end_code = (unsigned long) _etext;
914 init_mm.end_data = (unsigned long) _edata;
915 init_mm.brk = _brk_end;
916
917 mpx_mm_init(&init_mm);
918
919 code_resource.start = __pa_symbol(_text);
920 code_resource.end = __pa_symbol(_etext)-1;
921 data_resource.start = __pa_symbol(_etext);
922 data_resource.end = __pa_symbol(_edata)-1;
923 bss_resource.start = __pa_symbol(__bss_start);
924 bss_resource.end = __pa_symbol(__bss_stop)-1;
925
926 #ifdef CONFIG_CMDLINE_BOOL
927 #ifdef CONFIG_CMDLINE_OVERRIDE
928 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
929 #else
930 if (builtin_cmdline[0]) {
931 /* append boot loader cmdline to builtin */
932 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
933 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
934 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
935 }
936 #endif
937 #endif
938
939 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
940 *cmdline_p = command_line;
941
942 /*
943 * x86_configure_nx() is called before parse_early_param() to detect
944 * whether hardware doesn't support NX (so that the early EHCI debug
945 * console setup can safely call set_fixmap()). It may then be called
946 * again from within noexec_setup() during parsing early parameters
947 * to honor the respective command line option.
948 */
949 x86_configure_nx();
950
951 parse_early_param();
952
953 if (efi_enabled(EFI_BOOT))
954 efi_memblock_x86_reserve_range();
955 #ifdef CONFIG_MEMORY_HOTPLUG
956 /*
957 * Memory used by the kernel cannot be hot-removed because Linux
958 * cannot migrate the kernel pages. When memory hotplug is
959 * enabled, we should prevent memblock from allocating memory
960 * for the kernel.
961 *
962 * ACPI SRAT records all hotpluggable memory ranges. But before
963 * SRAT is parsed, we don't know about it.
964 *
965 * The kernel image is loaded into memory at very early time. We
966 * cannot prevent this anyway. So on NUMA system, we set any
967 * node the kernel resides in as un-hotpluggable.
968 *
969 * Since on modern servers, one node could have double-digit
970 * gigabytes memory, we can assume the memory around the kernel
971 * image is also un-hotpluggable. So before SRAT is parsed, just
972 * allocate memory near the kernel image to try the best to keep
973 * the kernel away from hotpluggable memory.
974 */
975 if (movable_node_is_enabled())
976 memblock_set_bottom_up(true);
977 #endif
978
979 x86_report_nx();
980
981 /* after early param, so could get panic from serial */
982 memblock_x86_reserve_range_setup_data();
983
984 if (acpi_mps_check()) {
985 #ifdef CONFIG_X86_LOCAL_APIC
986 disable_apic = 1;
987 #endif
988 setup_clear_cpu_cap(X86_FEATURE_APIC);
989 }
990
991 #ifdef CONFIG_PCI
992 if (pci_early_dump_regs)
993 early_dump_pci_devices();
994 #endif
995
996 e820__reserve_setup_data();
997 e820__finish_early_params();
998
999 if (efi_enabled(EFI_BOOT))
1000 efi_init();
1001
1002 efi_set_secure_boot(boot_params.secure_boot);
1003 init_lockdown();
1004
1005 dmi_scan_machine();
1006 dmi_memdev_walk();
1007 dmi_set_dump_stack_arch_desc();
1008
1009 /*
1010 * VMware detection requires dmi to be available, so this
1011 * needs to be done after dmi_scan_machine(), for the boot CPU.
1012 */
1013 init_hypervisor_platform();
1014
1015 x86_init.resources.probe_roms();
1016
1017 /* after parse_early_param, so could debug it */
1018 insert_resource(&iomem_resource, &code_resource);
1019 insert_resource(&iomem_resource, &data_resource);
1020 insert_resource(&iomem_resource, &bss_resource);
1021
1022 e820_add_kernel_range();
1023 trim_bios_range();
1024 #ifdef CONFIG_X86_32
1025 if (ppro_with_ram_bug()) {
1026 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1027 E820_TYPE_RESERVED);
1028 e820__update_table(e820_table);
1029 printk(KERN_INFO "fixed physical RAM map:\n");
1030 e820__print_table("bad_ppro");
1031 }
1032 #else
1033 early_gart_iommu_check();
1034 #endif
1035
1036 /*
1037 * partially used pages are not usable - thus
1038 * we are rounding upwards:
1039 */
1040 max_pfn = e820__end_of_ram_pfn();
1041
1042 /* update e820 for memory not covered by WB MTRRs */
1043 mtrr_bp_init();
1044 if (mtrr_trim_uncached_memory(max_pfn))
1045 max_pfn = e820__end_of_ram_pfn();
1046
1047 max_possible_pfn = max_pfn;
1048
1049 /*
1050 * This call is required when the CPU does not support PAT. If
1051 * mtrr_bp_init() invoked it already via pat_init() the call has no
1052 * effect.
1053 */
1054 init_cache_modes();
1055
1056 /*
1057 * Define random base addresses for memory sections after max_pfn is
1058 * defined and before each memory section base is used.
1059 */
1060 kernel_randomize_memory();
1061
1062 #ifdef CONFIG_X86_32
1063 /* max_low_pfn get updated here */
1064 find_low_pfn_range();
1065 #else
1066 check_x2apic();
1067
1068 /* How many end-of-memory variables you have, grandma! */
1069 /* need this before calling reserve_initrd */
1070 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1071 max_low_pfn = e820__end_of_low_ram_pfn();
1072 else
1073 max_low_pfn = max_pfn;
1074
1075 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1076 #endif
1077
1078 /*
1079 * Find and reserve possible boot-time SMP configuration:
1080 */
1081 find_smp_config();
1082
1083 reserve_ibft_region();
1084
1085 early_alloc_pgt_buf();
1086
1087 /*
1088 * Need to conclude brk, before e820__memblock_setup()
1089 * it could use memblock_find_in_range, could overlap with
1090 * brk area.
1091 */
1092 reserve_brk();
1093
1094 cleanup_highmap();
1095
1096 memblock_set_current_limit(ISA_END_ADDRESS);
1097 e820__memblock_setup();
1098
1099 reserve_bios_regions();
1100
1101 if (efi_enabled(EFI_MEMMAP)) {
1102 efi_fake_memmap();
1103 efi_find_mirror();
1104 efi_esrt_init();
1105
1106 /*
1107 * The EFI specification says that boot service code won't be
1108 * called after ExitBootServices(). This is, in fact, a lie.
1109 */
1110 efi_reserve_boot_services();
1111 }
1112
1113 /* preallocate 4k for mptable mpc */
1114 e820__memblock_alloc_reserved_mpc_new();
1115
1116 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1117 setup_bios_corruption_check();
1118 #endif
1119
1120 #ifdef CONFIG_X86_32
1121 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1122 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1123 #endif
1124
1125 reserve_real_mode();
1126
1127 trim_platform_memory_ranges();
1128 trim_low_memory_range();
1129
1130 init_mem_mapping();
1131
1132 idt_setup_early_pf();
1133
1134 /*
1135 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1136 * with the current CR4 value. This may not be necessary, but
1137 * auditing all the early-boot CR4 manipulation would be needed to
1138 * rule it out.
1139 *
1140 * Mask off features that don't work outside long mode (just
1141 * PCIDE for now).
1142 */
1143 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1144
1145 memblock_set_current_limit(get_max_mapped());
1146
1147 /*
1148 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1149 */
1150
1151 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1152 if (init_ohci1394_dma_early)
1153 init_ohci1394_dma_on_all_controllers();
1154 #endif
1155 /* Allocate bigger log buffer */
1156 setup_log_buf(1);
1157
1158 reserve_initrd();
1159
1160 acpi_table_upgrade();
1161
1162 vsmp_init();
1163
1164 io_delay_init();
1165
1166 early_platform_quirks();
1167
1168 /*
1169 * Parse the ACPI tables for possible boot-time SMP configuration.
1170 */
1171 acpi_boot_table_init();
1172
1173 early_acpi_boot_init();
1174
1175 initmem_init();
1176 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1177
1178 /*
1179 * Reserve memory for crash kernel after SRAT is parsed so that it
1180 * won't consume hotpluggable memory.
1181 */
1182 reserve_crashkernel();
1183
1184 memblock_find_dma_reserve();
1185
1186 #ifdef CONFIG_KVM_GUEST
1187 kvmclock_init();
1188 #endif
1189
1190 tsc_early_delay_calibrate();
1191 if (!early_xdbc_setup_hardware())
1192 early_xdbc_register_console();
1193
1194 x86_init.paging.pagetable_init();
1195
1196 kasan_init();
1197
1198 #ifdef CONFIG_X86_32
1199 /* sync back kernel address range */
1200 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1201 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1202 KERNEL_PGD_PTRS);
1203
1204 /*
1205 * sync back low identity map too. It is used for example
1206 * in the 32-bit EFI stub.
1207 */
1208 clone_pgd_range(initial_page_table,
1209 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1210 min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1211 #endif
1212
1213 tboot_probe();
1214
1215 map_vsyscall();
1216
1217 generic_apic_probe();
1218
1219 early_quirks();
1220
1221 /*
1222 * Read APIC and some other early information from ACPI tables.
1223 */
1224 acpi_boot_init();
1225 sfi_init();
1226 x86_dtb_init();
1227
1228 /*
1229 * get boot-time SMP configuration:
1230 */
1231 get_smp_config();
1232
1233 /*
1234 * Systems w/o ACPI and mptables might not have it mapped the local
1235 * APIC yet, but prefill_possible_map() might need to access it.
1236 */
1237 init_apic_mappings();
1238
1239 prefill_possible_map();
1240
1241 init_cpu_to_node();
1242
1243 io_apic_init_mappings();
1244
1245 x86_init.hyper.guest_late_init();
1246
1247 e820__reserve_resources();
1248 e820__register_nosave_regions(max_low_pfn);
1249
1250 x86_init.resources.reserve_resources();
1251
1252 e820__setup_pci_gap();
1253
1254 #ifdef CONFIG_VT
1255 #if defined(CONFIG_VGA_CONSOLE)
1256 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1257 conswitchp = &vga_con;
1258 #elif defined(CONFIG_DUMMY_CONSOLE)
1259 conswitchp = &dummy_con;
1260 #endif
1261 #endif
1262 x86_init.oem.banner();
1263
1264 x86_init.timers.wallclock_init();
1265
1266 mcheck_init();
1267
1268 arch_init_ideal_nops();
1269
1270 register_refined_jiffies(CLOCK_TICK_RATE);
1271
1272 #ifdef CONFIG_EFI
1273 if (efi_enabled(EFI_BOOT))
1274 efi_apply_memmap_quirks();
1275 #endif
1276
1277 unwind_init();
1278 }
1279
1280 #ifdef CONFIG_X86_32
1281
1282 static struct resource video_ram_resource = {
1283 .name = "Video RAM area",
1284 .start = 0xa0000,
1285 .end = 0xbffff,
1286 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1287 };
1288
1289 void __init i386_reserve_resources(void)
1290 {
1291 request_resource(&iomem_resource, &video_ram_resource);
1292 reserve_standard_io_resources();
1293 }
1294
1295 #endif /* CONFIG_X86_32 */
1296
1297 static struct notifier_block kernel_offset_notifier = {
1298 .notifier_call = dump_kernel_offset
1299 };
1300
1301 static int __init register_kernel_offset_dumper(void)
1302 {
1303 atomic_notifier_chain_register(&panic_notifier_list,
1304 &kernel_offset_notifier);
1305 return 0;
1306 }
1307 __initcall(register_kernel_offset_dumper);
1308
1309 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1310 {
1311 if (!boot_cpu_has(X86_FEATURE_OSPKE))
1312 return;
1313
1314 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1315 }