]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/smpboot.c
leds: add HAS_IOMEM dependency to LEDS_BCM6328/LEDS_BCM6358
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/fpu/internal.h>
72 #include <asm/setup.h>
73 #include <asm/uv/uv.h>
74 #include <linux/mc146818rtc.h>
75 #include <asm/i8259.h>
76 #include <asm/realmode.h>
77 #include <asm/misc.h>
78
79 /* Number of siblings per CPU package */
80 int smp_num_siblings = 1;
81 EXPORT_SYMBOL(smp_num_siblings);
82
83 /* Last level cache ID of each logical CPU */
84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85
86 /* representing HT siblings of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89
90 /* representing HT and core siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95
96 /* Per CPU bogomips and other parameters */
97 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
98 EXPORT_PER_CPU_SYMBOL(cpu_info);
99
100 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
101 {
102 unsigned long flags;
103
104 spin_lock_irqsave(&rtc_lock, flags);
105 CMOS_WRITE(0xa, 0xf);
106 spin_unlock_irqrestore(&rtc_lock, flags);
107 local_flush_tlb();
108 pr_debug("1.\n");
109 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
110 start_eip >> 4;
111 pr_debug("2.\n");
112 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
113 start_eip & 0xf;
114 pr_debug("3.\n");
115 }
116
117 static inline void smpboot_restore_warm_reset_vector(void)
118 {
119 unsigned long flags;
120
121 /*
122 * Install writable page 0 entry to set BIOS data area.
123 */
124 local_flush_tlb();
125
126 /*
127 * Paranoid: Set warm reset code and vector here back
128 * to default values.
129 */
130 spin_lock_irqsave(&rtc_lock, flags);
131 CMOS_WRITE(0, 0xf);
132 spin_unlock_irqrestore(&rtc_lock, flags);
133
134 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
135 }
136
137 /*
138 * Report back to the Boot Processor during boot time or to the caller processor
139 * during CPU online.
140 */
141 static void smp_callin(void)
142 {
143 int cpuid, phys_id;
144
145 /*
146 * If waken up by an INIT in an 82489DX configuration
147 * cpu_callout_mask guarantees we don't get here before
148 * an INIT_deassert IPI reaches our local APIC, so it is
149 * now safe to touch our local APIC.
150 */
151 cpuid = smp_processor_id();
152
153 /*
154 * (This works even if the APIC is not enabled.)
155 */
156 phys_id = read_apic_id();
157
158 /*
159 * the boot CPU has finished the init stage and is spinning
160 * on callin_map until we finish. We are free to set up this
161 * CPU, first the APIC. (this is probably redundant on most
162 * boards)
163 */
164 apic_ap_setup();
165
166 /*
167 * Save our processor parameters. Note: this information
168 * is needed for clock calibration.
169 */
170 smp_store_cpu_info(cpuid);
171
172 /*
173 * Get our bogomips.
174 * Update loops_per_jiffy in cpu_data. Previous call to
175 * smp_store_cpu_info() stored a value that is close but not as
176 * accurate as the value just calculated.
177 */
178 calibrate_delay();
179 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
180 pr_debug("Stack at about %p\n", &cpuid);
181
182 /*
183 * This must be done before setting cpu_online_mask
184 * or calling notify_cpu_starting.
185 */
186 set_cpu_sibling_map(raw_smp_processor_id());
187 wmb();
188
189 notify_cpu_starting(cpuid);
190
191 /*
192 * Allow the master to continue.
193 */
194 cpumask_set_cpu(cpuid, cpu_callin_mask);
195 }
196
197 static int cpu0_logical_apicid;
198 static int enable_start_cpu0;
199 /*
200 * Activate a secondary processor.
201 */
202 static void notrace start_secondary(void *unused)
203 {
204 /*
205 * Don't put *anything* before cpu_init(), SMP booting is too
206 * fragile that we want to limit the things done here to the
207 * most necessary things.
208 */
209 cpu_init();
210 x86_cpuinit.early_percpu_clock_init();
211 preempt_disable();
212 smp_callin();
213
214 enable_start_cpu0 = 0;
215
216 #ifdef CONFIG_X86_32
217 /* switch away from the initial page table */
218 load_cr3(swapper_pg_dir);
219 __flush_tlb_all();
220 #endif
221
222 /* otherwise gcc will move up smp_processor_id before the cpu_init */
223 barrier();
224 /*
225 * Check TSC synchronization with the BP:
226 */
227 check_tsc_sync_target();
228
229 /*
230 * Lock vector_lock and initialize the vectors on this cpu
231 * before setting the cpu online. We must set it online with
232 * vector_lock held to prevent a concurrent setup/teardown
233 * from seeing a half valid vector space.
234 */
235 lock_vector_lock();
236 setup_vector_irq(smp_processor_id());
237 set_cpu_online(smp_processor_id(), true);
238 unlock_vector_lock();
239 cpu_set_state_online(smp_processor_id());
240 x86_platform.nmi_init();
241
242 /* enable local interrupts */
243 local_irq_enable();
244
245 /* to prevent fake stack check failure in clock setup */
246 boot_init_stack_canary();
247
248 x86_cpuinit.setup_percpu_clockev();
249
250 wmb();
251 cpu_startup_entry(CPUHP_ONLINE);
252 }
253
254 void __init smp_store_boot_cpu_info(void)
255 {
256 int id = 0; /* CPU 0 */
257 struct cpuinfo_x86 *c = &cpu_data(id);
258
259 *c = boot_cpu_data;
260 c->cpu_index = id;
261 }
262
263 /*
264 * The bootstrap kernel entry code has set these up. Save them for
265 * a given CPU
266 */
267 void smp_store_cpu_info(int id)
268 {
269 struct cpuinfo_x86 *c = &cpu_data(id);
270
271 *c = boot_cpu_data;
272 c->cpu_index = id;
273 /*
274 * During boot time, CPU0 has this setup already. Save the info when
275 * bringing up AP or offlined CPU0.
276 */
277 identify_secondary_cpu(c);
278 }
279
280 static bool
281 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
282 {
283 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
284
285 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
286 }
287
288 static bool
289 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
290 {
291 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
292
293 return !WARN_ONCE(!topology_same_node(c, o),
294 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
295 "[node: %d != %d]. Ignoring dependency.\n",
296 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
297 }
298
299 #define link_mask(mfunc, c1, c2) \
300 do { \
301 cpumask_set_cpu((c1), mfunc(c2)); \
302 cpumask_set_cpu((c2), mfunc(c1)); \
303 } while (0)
304
305 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
306 {
307 if (cpu_has_topoext) {
308 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
309
310 if (c->phys_proc_id == o->phys_proc_id &&
311 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
312 c->compute_unit_id == o->compute_unit_id)
313 return topology_sane(c, o, "smt");
314
315 } else if (c->phys_proc_id == o->phys_proc_id &&
316 c->cpu_core_id == o->cpu_core_id) {
317 return topology_sane(c, o, "smt");
318 }
319
320 return false;
321 }
322
323 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
324 {
325 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
326
327 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
328 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
329 return topology_sane(c, o, "llc");
330
331 return false;
332 }
333
334 /*
335 * Unlike the other levels, we do not enforce keeping a
336 * multicore group inside a NUMA node. If this happens, we will
337 * discard the MC level of the topology later.
338 */
339 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
340 {
341 if (c->phys_proc_id == o->phys_proc_id)
342 return true;
343 return false;
344 }
345
346 static struct sched_domain_topology_level numa_inside_package_topology[] = {
347 #ifdef CONFIG_SCHED_SMT
348 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
349 #endif
350 #ifdef CONFIG_SCHED_MC
351 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
352 #endif
353 { NULL, },
354 };
355 /*
356 * set_sched_topology() sets the topology internal to a CPU. The
357 * NUMA topologies are layered on top of it to build the full
358 * system topology.
359 *
360 * If NUMA nodes are observed to occur within a CPU package, this
361 * function should be called. It forces the sched domain code to
362 * only use the SMT level for the CPU portion of the topology.
363 * This essentially falls back to relying on NUMA information
364 * from the SRAT table to describe the entire system topology
365 * (except for hyperthreads).
366 */
367 static void primarily_use_numa_for_topology(void)
368 {
369 set_sched_topology(numa_inside_package_topology);
370 }
371
372 void set_cpu_sibling_map(int cpu)
373 {
374 bool has_smt = smp_num_siblings > 1;
375 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
376 struct cpuinfo_x86 *c = &cpu_data(cpu);
377 struct cpuinfo_x86 *o;
378 int i;
379
380 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
381
382 if (!has_mp) {
383 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
384 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
385 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
386 c->booted_cores = 1;
387 return;
388 }
389
390 for_each_cpu(i, cpu_sibling_setup_mask) {
391 o = &cpu_data(i);
392
393 if ((i == cpu) || (has_smt && match_smt(c, o)))
394 link_mask(topology_sibling_cpumask, cpu, i);
395
396 if ((i == cpu) || (has_mp && match_llc(c, o)))
397 link_mask(cpu_llc_shared_mask, cpu, i);
398
399 }
400
401 /*
402 * This needs a separate iteration over the cpus because we rely on all
403 * topology_sibling_cpumask links to be set-up.
404 */
405 for_each_cpu(i, cpu_sibling_setup_mask) {
406 o = &cpu_data(i);
407
408 if ((i == cpu) || (has_mp && match_die(c, o))) {
409 link_mask(topology_core_cpumask, cpu, i);
410
411 /*
412 * Does this new cpu bringup a new core?
413 */
414 if (cpumask_weight(
415 topology_sibling_cpumask(cpu)) == 1) {
416 /*
417 * for each core in package, increment
418 * the booted_cores for this new cpu
419 */
420 if (cpumask_first(
421 topology_sibling_cpumask(i)) == i)
422 c->booted_cores++;
423 /*
424 * increment the core count for all
425 * the other cpus in this package
426 */
427 if (i != cpu)
428 cpu_data(i).booted_cores++;
429 } else if (i != cpu && !c->booted_cores)
430 c->booted_cores = cpu_data(i).booted_cores;
431 }
432 if (match_die(c, o) && !topology_same_node(c, o))
433 primarily_use_numa_for_topology();
434 }
435 }
436
437 /* maps the cpu to the sched domain representing multi-core */
438 const struct cpumask *cpu_coregroup_mask(int cpu)
439 {
440 return cpu_llc_shared_mask(cpu);
441 }
442
443 static void impress_friends(void)
444 {
445 int cpu;
446 unsigned long bogosum = 0;
447 /*
448 * Allow the user to impress friends.
449 */
450 pr_debug("Before bogomips\n");
451 for_each_possible_cpu(cpu)
452 if (cpumask_test_cpu(cpu, cpu_callout_mask))
453 bogosum += cpu_data(cpu).loops_per_jiffy;
454 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
455 num_online_cpus(),
456 bogosum/(500000/HZ),
457 (bogosum/(5000/HZ))%100);
458
459 pr_debug("Before bogocount - setting activated=1\n");
460 }
461
462 void __inquire_remote_apic(int apicid)
463 {
464 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
465 const char * const names[] = { "ID", "VERSION", "SPIV" };
466 int timeout;
467 u32 status;
468
469 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
470
471 for (i = 0; i < ARRAY_SIZE(regs); i++) {
472 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
473
474 /*
475 * Wait for idle.
476 */
477 status = safe_apic_wait_icr_idle();
478 if (status)
479 pr_cont("a previous APIC delivery may have failed\n");
480
481 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
482
483 timeout = 0;
484 do {
485 udelay(100);
486 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
487 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
488
489 switch (status) {
490 case APIC_ICR_RR_VALID:
491 status = apic_read(APIC_RRR);
492 pr_cont("%08x\n", status);
493 break;
494 default:
495 pr_cont("failed\n");
496 }
497 }
498 }
499
500 /*
501 * The Multiprocessor Specification 1.4 (1997) example code suggests
502 * that there should be a 10ms delay between the BSP asserting INIT
503 * and de-asserting INIT, when starting a remote processor.
504 * But that slows boot and resume on modern processors, which include
505 * many cores and don't require that delay.
506 *
507 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
508 * Modern processor families are quirked to remove the delay entirely.
509 */
510 #define UDELAY_10MS_DEFAULT 10000
511
512 static unsigned int init_udelay = UINT_MAX;
513
514 static int __init cpu_init_udelay(char *str)
515 {
516 get_option(&str, &init_udelay);
517
518 return 0;
519 }
520 early_param("cpu_init_udelay", cpu_init_udelay);
521
522 static void __init smp_quirk_init_udelay(void)
523 {
524 /* if cmdline changed it from default, leave it alone */
525 if (init_udelay != UINT_MAX)
526 return;
527
528 /* if modern processor, use no delay */
529 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
530 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
531 init_udelay = 0;
532 return;
533 }
534 /* else, use legacy delay */
535 init_udelay = UDELAY_10MS_DEFAULT;
536 }
537
538 /*
539 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
540 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
541 * won't ... remember to clear down the APIC, etc later.
542 */
543 int
544 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
545 {
546 unsigned long send_status, accept_status = 0;
547 int maxlvt;
548
549 /* Target chip */
550 /* Boot on the stack */
551 /* Kick the second */
552 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
553
554 pr_debug("Waiting for send to finish...\n");
555 send_status = safe_apic_wait_icr_idle();
556
557 /*
558 * Give the other CPU some time to accept the IPI.
559 */
560 udelay(200);
561 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
562 maxlvt = lapic_get_maxlvt();
563 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
564 apic_write(APIC_ESR, 0);
565 accept_status = (apic_read(APIC_ESR) & 0xEF);
566 }
567 pr_debug("NMI sent\n");
568
569 if (send_status)
570 pr_err("APIC never delivered???\n");
571 if (accept_status)
572 pr_err("APIC delivery error (%lx)\n", accept_status);
573
574 return (send_status | accept_status);
575 }
576
577 static int
578 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
579 {
580 unsigned long send_status = 0, accept_status = 0;
581 int maxlvt, num_starts, j;
582
583 maxlvt = lapic_get_maxlvt();
584
585 /*
586 * Be paranoid about clearing APIC errors.
587 */
588 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
589 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
590 apic_write(APIC_ESR, 0);
591 apic_read(APIC_ESR);
592 }
593
594 pr_debug("Asserting INIT\n");
595
596 /*
597 * Turn INIT on target chip
598 */
599 /*
600 * Send IPI
601 */
602 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
603 phys_apicid);
604
605 pr_debug("Waiting for send to finish...\n");
606 send_status = safe_apic_wait_icr_idle();
607
608 udelay(init_udelay);
609
610 pr_debug("Deasserting INIT\n");
611
612 /* Target chip */
613 /* Send IPI */
614 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
615
616 pr_debug("Waiting for send to finish...\n");
617 send_status = safe_apic_wait_icr_idle();
618
619 mb();
620
621 /*
622 * Should we send STARTUP IPIs ?
623 *
624 * Determine this based on the APIC version.
625 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
626 */
627 if (APIC_INTEGRATED(apic_version[phys_apicid]))
628 num_starts = 2;
629 else
630 num_starts = 0;
631
632 /*
633 * Paravirt / VMI wants a startup IPI hook here to set up the
634 * target processor state.
635 */
636 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
637 stack_start);
638
639 /*
640 * Run STARTUP IPI loop.
641 */
642 pr_debug("#startup loops: %d\n", num_starts);
643
644 for (j = 1; j <= num_starts; j++) {
645 pr_debug("Sending STARTUP #%d\n", j);
646 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
647 apic_write(APIC_ESR, 0);
648 apic_read(APIC_ESR);
649 pr_debug("After apic_write\n");
650
651 /*
652 * STARTUP IPI
653 */
654
655 /* Target chip */
656 /* Boot on the stack */
657 /* Kick the second */
658 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
659 phys_apicid);
660
661 /*
662 * Give the other CPU some time to accept the IPI.
663 */
664 if (init_udelay == 0)
665 udelay(10);
666 else
667 udelay(300);
668
669 pr_debug("Startup point 1\n");
670
671 pr_debug("Waiting for send to finish...\n");
672 send_status = safe_apic_wait_icr_idle();
673
674 /*
675 * Give the other CPU some time to accept the IPI.
676 */
677 if (init_udelay == 0)
678 udelay(10);
679 else
680 udelay(200);
681
682 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
683 apic_write(APIC_ESR, 0);
684 accept_status = (apic_read(APIC_ESR) & 0xEF);
685 if (send_status || accept_status)
686 break;
687 }
688 pr_debug("After Startup\n");
689
690 if (send_status)
691 pr_err("APIC never delivered???\n");
692 if (accept_status)
693 pr_err("APIC delivery error (%lx)\n", accept_status);
694
695 return (send_status | accept_status);
696 }
697
698 void smp_announce(void)
699 {
700 int num_nodes = num_online_nodes();
701
702 printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
703 num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
704 }
705
706 /* reduce the number of lines printed when booting a large cpu count system */
707 static void announce_cpu(int cpu, int apicid)
708 {
709 static int current_node = -1;
710 int node = early_cpu_to_node(cpu);
711 static int width, node_width;
712
713 if (!width)
714 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
715
716 if (!node_width)
717 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
718
719 if (cpu == 1)
720 printk(KERN_INFO "x86: Booting SMP configuration:\n");
721
722 if (system_state == SYSTEM_BOOTING) {
723 if (node != current_node) {
724 if (current_node > (-1))
725 pr_cont("\n");
726 current_node = node;
727
728 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
729 node_width - num_digits(node), " ", node);
730 }
731
732 /* Add padding for the BSP */
733 if (cpu == 1)
734 pr_cont("%*s", width + 1, " ");
735
736 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
737
738 } else
739 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
740 node, cpu, apicid);
741 }
742
743 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
744 {
745 int cpu;
746
747 cpu = smp_processor_id();
748 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
749 return NMI_HANDLED;
750
751 return NMI_DONE;
752 }
753
754 /*
755 * Wake up AP by INIT, INIT, STARTUP sequence.
756 *
757 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
758 * boot-strap code which is not a desired behavior for waking up BSP. To
759 * void the boot-strap code, wake up CPU0 by NMI instead.
760 *
761 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
762 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
763 * We'll change this code in the future to wake up hard offlined CPU0 if
764 * real platform and request are available.
765 */
766 static int
767 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
768 int *cpu0_nmi_registered)
769 {
770 int id;
771 int boot_error;
772
773 preempt_disable();
774
775 /*
776 * Wake up AP by INIT, INIT, STARTUP sequence.
777 */
778 if (cpu) {
779 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
780 goto out;
781 }
782
783 /*
784 * Wake up BSP by nmi.
785 *
786 * Register a NMI handler to help wake up CPU0.
787 */
788 boot_error = register_nmi_handler(NMI_LOCAL,
789 wakeup_cpu0_nmi, 0, "wake_cpu0");
790
791 if (!boot_error) {
792 enable_start_cpu0 = 1;
793 *cpu0_nmi_registered = 1;
794 if (apic->dest_logical == APIC_DEST_LOGICAL)
795 id = cpu0_logical_apicid;
796 else
797 id = apicid;
798 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
799 }
800
801 out:
802 preempt_enable();
803
804 return boot_error;
805 }
806
807 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
808 {
809 /* Just in case we booted with a single CPU. */
810 alternatives_enable_smp();
811
812 per_cpu(current_task, cpu) = idle;
813
814 #ifdef CONFIG_X86_32
815 /* Stack for startup_32 can be just as for start_secondary onwards */
816 irq_ctx_init(cpu);
817 per_cpu(cpu_current_top_of_stack, cpu) =
818 (unsigned long)task_stack_page(idle) + THREAD_SIZE;
819 #else
820 clear_tsk_thread_flag(idle, TIF_FORK);
821 initial_gs = per_cpu_offset(cpu);
822 #endif
823 }
824
825 /*
826 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
827 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
828 * Returns zero if CPU booted OK, else error code from
829 * ->wakeup_secondary_cpu.
830 */
831 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
832 {
833 volatile u32 *trampoline_status =
834 (volatile u32 *) __va(real_mode_header->trampoline_status);
835 /* start_ip had better be page-aligned! */
836 unsigned long start_ip = real_mode_header->trampoline_start;
837
838 unsigned long boot_error = 0;
839 int cpu0_nmi_registered = 0;
840 unsigned long timeout;
841
842 idle->thread.sp = (unsigned long) (((struct pt_regs *)
843 (THREAD_SIZE + task_stack_page(idle))) - 1);
844
845 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
846 initial_code = (unsigned long)start_secondary;
847 stack_start = idle->thread.sp;
848
849 /*
850 * Enable the espfix hack for this CPU
851 */
852 #ifdef CONFIG_X86_ESPFIX64
853 init_espfix_ap(cpu);
854 #endif
855
856 /* So we see what's up */
857 announce_cpu(cpu, apicid);
858
859 /*
860 * This grunge runs the startup process for
861 * the targeted processor.
862 */
863
864 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
865
866 pr_debug("Setting warm reset code and vector.\n");
867
868 smpboot_setup_warm_reset_vector(start_ip);
869 /*
870 * Be paranoid about clearing APIC errors.
871 */
872 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
873 apic_write(APIC_ESR, 0);
874 apic_read(APIC_ESR);
875 }
876 }
877
878 /*
879 * AP might wait on cpu_callout_mask in cpu_init() with
880 * cpu_initialized_mask set if previous attempt to online
881 * it timed-out. Clear cpu_initialized_mask so that after
882 * INIT/SIPI it could start with a clean state.
883 */
884 cpumask_clear_cpu(cpu, cpu_initialized_mask);
885 smp_mb();
886
887 /*
888 * Wake up a CPU in difference cases:
889 * - Use the method in the APIC driver if it's defined
890 * Otherwise,
891 * - Use an INIT boot APIC message for APs or NMI for BSP.
892 */
893 if (apic->wakeup_secondary_cpu)
894 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
895 else
896 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
897 &cpu0_nmi_registered);
898
899 if (!boot_error) {
900 /*
901 * Wait 10s total for first sign of life from AP
902 */
903 boot_error = -1;
904 timeout = jiffies + 10*HZ;
905 while (time_before(jiffies, timeout)) {
906 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
907 /*
908 * Tell AP to proceed with initialization
909 */
910 cpumask_set_cpu(cpu, cpu_callout_mask);
911 boot_error = 0;
912 break;
913 }
914 schedule();
915 }
916 }
917
918 if (!boot_error) {
919 /*
920 * Wait till AP completes initial initialization
921 */
922 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
923 /*
924 * Allow other tasks to run while we wait for the
925 * AP to come online. This also gives a chance
926 * for the MTRR work(triggered by the AP coming online)
927 * to be completed in the stop machine context.
928 */
929 schedule();
930 }
931 }
932
933 /* mark "stuck" area as not stuck */
934 *trampoline_status = 0;
935
936 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
937 /*
938 * Cleanup possible dangling ends...
939 */
940 smpboot_restore_warm_reset_vector();
941 }
942 /*
943 * Clean up the nmi handler. Do this after the callin and callout sync
944 * to avoid impact of possible long unregister time.
945 */
946 if (cpu0_nmi_registered)
947 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
948
949 return boot_error;
950 }
951
952 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
953 {
954 int apicid = apic->cpu_present_to_apicid(cpu);
955 unsigned long flags;
956 int err;
957
958 WARN_ON(irqs_disabled());
959
960 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
961
962 if (apicid == BAD_APICID ||
963 !physid_isset(apicid, phys_cpu_present_map) ||
964 !apic->apic_id_valid(apicid)) {
965 pr_err("%s: bad cpu %d\n", __func__, cpu);
966 return -EINVAL;
967 }
968
969 /*
970 * Already booted CPU?
971 */
972 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
973 pr_debug("do_boot_cpu %d Already started\n", cpu);
974 return -ENOSYS;
975 }
976
977 /*
978 * Save current MTRR state in case it was changed since early boot
979 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
980 */
981 mtrr_save_state();
982
983 /* x86 CPUs take themselves offline, so delayed offline is OK. */
984 err = cpu_check_up_prepare(cpu);
985 if (err && err != -EBUSY)
986 return err;
987
988 /* the FPU context is blank, nobody can own it */
989 __cpu_disable_lazy_restore(cpu);
990
991 common_cpu_up(cpu, tidle);
992
993 /*
994 * We have to walk the irq descriptors to setup the vector
995 * space for the cpu which comes online. Prevent irq
996 * alloc/free across the bringup.
997 */
998 irq_lock_sparse();
999
1000 err = do_boot_cpu(apicid, cpu, tidle);
1001
1002 if (err) {
1003 irq_unlock_sparse();
1004 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1005 return -EIO;
1006 }
1007
1008 /*
1009 * Check TSC synchronization with the AP (keep irqs disabled
1010 * while doing so):
1011 */
1012 local_irq_save(flags);
1013 check_tsc_sync_source(cpu);
1014 local_irq_restore(flags);
1015
1016 while (!cpu_online(cpu)) {
1017 cpu_relax();
1018 touch_nmi_watchdog();
1019 }
1020
1021 irq_unlock_sparse();
1022
1023 return 0;
1024 }
1025
1026 /**
1027 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1028 */
1029 void arch_disable_smp_support(void)
1030 {
1031 disable_ioapic_support();
1032 }
1033
1034 /*
1035 * Fall back to non SMP mode after errors.
1036 *
1037 * RED-PEN audit/test this more. I bet there is more state messed up here.
1038 */
1039 static __init void disable_smp(void)
1040 {
1041 pr_info("SMP disabled\n");
1042
1043 disable_ioapic_support();
1044
1045 init_cpu_present(cpumask_of(0));
1046 init_cpu_possible(cpumask_of(0));
1047
1048 if (smp_found_config)
1049 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1050 else
1051 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1052 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1053 cpumask_set_cpu(0, topology_core_cpumask(0));
1054 }
1055
1056 enum {
1057 SMP_OK,
1058 SMP_NO_CONFIG,
1059 SMP_NO_APIC,
1060 SMP_FORCE_UP,
1061 };
1062
1063 /*
1064 * Various sanity checks.
1065 */
1066 static int __init smp_sanity_check(unsigned max_cpus)
1067 {
1068 preempt_disable();
1069
1070 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1071 if (def_to_bigsmp && nr_cpu_ids > 8) {
1072 unsigned int cpu;
1073 unsigned nr;
1074
1075 pr_warn("More than 8 CPUs detected - skipping them\n"
1076 "Use CONFIG_X86_BIGSMP\n");
1077
1078 nr = 0;
1079 for_each_present_cpu(cpu) {
1080 if (nr >= 8)
1081 set_cpu_present(cpu, false);
1082 nr++;
1083 }
1084
1085 nr = 0;
1086 for_each_possible_cpu(cpu) {
1087 if (nr >= 8)
1088 set_cpu_possible(cpu, false);
1089 nr++;
1090 }
1091
1092 nr_cpu_ids = 8;
1093 }
1094 #endif
1095
1096 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1097 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1098 hard_smp_processor_id());
1099
1100 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1101 }
1102
1103 /*
1104 * If we couldn't find an SMP configuration at boot time,
1105 * get out of here now!
1106 */
1107 if (!smp_found_config && !acpi_lapic) {
1108 preempt_enable();
1109 pr_notice("SMP motherboard not detected\n");
1110 return SMP_NO_CONFIG;
1111 }
1112
1113 /*
1114 * Should not be necessary because the MP table should list the boot
1115 * CPU too, but we do it for the sake of robustness anyway.
1116 */
1117 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1118 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1119 boot_cpu_physical_apicid);
1120 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1121 }
1122 preempt_enable();
1123
1124 /*
1125 * If we couldn't find a local APIC, then get out of here now!
1126 */
1127 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1128 !cpu_has_apic) {
1129 if (!disable_apic) {
1130 pr_err("BIOS bug, local APIC #%d not detected!...\n",
1131 boot_cpu_physical_apicid);
1132 pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1133 }
1134 return SMP_NO_APIC;
1135 }
1136
1137 /*
1138 * If SMP should be disabled, then really disable it!
1139 */
1140 if (!max_cpus) {
1141 pr_info("SMP mode deactivated\n");
1142 return SMP_FORCE_UP;
1143 }
1144
1145 return SMP_OK;
1146 }
1147
1148 static void __init smp_cpu_index_default(void)
1149 {
1150 int i;
1151 struct cpuinfo_x86 *c;
1152
1153 for_each_possible_cpu(i) {
1154 c = &cpu_data(i);
1155 /* mark all to hotplug */
1156 c->cpu_index = nr_cpu_ids;
1157 }
1158 }
1159
1160 /*
1161 * Prepare for SMP bootup. The MP table or ACPI has been read
1162 * earlier. Just do some sanity checking here and enable APIC mode.
1163 */
1164 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1165 {
1166 unsigned int i;
1167
1168 smp_cpu_index_default();
1169
1170 /*
1171 * Setup boot CPU information
1172 */
1173 smp_store_boot_cpu_info(); /* Final full version of the data */
1174 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1175 mb();
1176
1177 current_thread_info()->cpu = 0; /* needed? */
1178 for_each_possible_cpu(i) {
1179 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1180 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1181 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1182 }
1183 set_cpu_sibling_map(0);
1184
1185 switch (smp_sanity_check(max_cpus)) {
1186 case SMP_NO_CONFIG:
1187 disable_smp();
1188 if (APIC_init_uniprocessor())
1189 pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1190 return;
1191 case SMP_NO_APIC:
1192 disable_smp();
1193 return;
1194 case SMP_FORCE_UP:
1195 disable_smp();
1196 apic_bsp_setup(false);
1197 return;
1198 case SMP_OK:
1199 break;
1200 }
1201
1202 default_setup_apic_routing();
1203
1204 if (read_apic_id() != boot_cpu_physical_apicid) {
1205 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1206 read_apic_id(), boot_cpu_physical_apicid);
1207 /* Or can we switch back to PIC here? */
1208 }
1209
1210 cpu0_logical_apicid = apic_bsp_setup(false);
1211
1212 pr_info("CPU%d: ", 0);
1213 print_cpu_info(&cpu_data(0));
1214
1215 if (is_uv_system())
1216 uv_system_init();
1217
1218 set_mtrr_aps_delayed_init();
1219
1220 smp_quirk_init_udelay();
1221 }
1222
1223 void arch_enable_nonboot_cpus_begin(void)
1224 {
1225 set_mtrr_aps_delayed_init();
1226 }
1227
1228 void arch_enable_nonboot_cpus_end(void)
1229 {
1230 mtrr_aps_init();
1231 }
1232
1233 /*
1234 * Early setup to make printk work.
1235 */
1236 void __init native_smp_prepare_boot_cpu(void)
1237 {
1238 int me = smp_processor_id();
1239 switch_to_new_gdt(me);
1240 /* already set me in cpu_online_mask in boot_cpu_init() */
1241 cpumask_set_cpu(me, cpu_callout_mask);
1242 cpu_set_state_online(me);
1243 }
1244
1245 void __init native_smp_cpus_done(unsigned int max_cpus)
1246 {
1247 pr_debug("Boot done\n");
1248
1249 nmi_selftest();
1250 impress_friends();
1251 setup_ioapic_dest();
1252 mtrr_aps_init();
1253 }
1254
1255 static int __initdata setup_possible_cpus = -1;
1256 static int __init _setup_possible_cpus(char *str)
1257 {
1258 get_option(&str, &setup_possible_cpus);
1259 return 0;
1260 }
1261 early_param("possible_cpus", _setup_possible_cpus);
1262
1263
1264 /*
1265 * cpu_possible_mask should be static, it cannot change as cpu's
1266 * are onlined, or offlined. The reason is per-cpu data-structures
1267 * are allocated by some modules at init time, and dont expect to
1268 * do this dynamically on cpu arrival/departure.
1269 * cpu_present_mask on the other hand can change dynamically.
1270 * In case when cpu_hotplug is not compiled, then we resort to current
1271 * behaviour, which is cpu_possible == cpu_present.
1272 * - Ashok Raj
1273 *
1274 * Three ways to find out the number of additional hotplug CPUs:
1275 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1276 * - The user can overwrite it with possible_cpus=NUM
1277 * - Otherwise don't reserve additional CPUs.
1278 * We do this because additional CPUs waste a lot of memory.
1279 * -AK
1280 */
1281 __init void prefill_possible_map(void)
1282 {
1283 int i, possible;
1284
1285 /* no processor from mptable or madt */
1286 if (!num_processors)
1287 num_processors = 1;
1288
1289 i = setup_max_cpus ?: 1;
1290 if (setup_possible_cpus == -1) {
1291 possible = num_processors;
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 if (setup_max_cpus)
1294 possible += disabled_cpus;
1295 #else
1296 if (possible > i)
1297 possible = i;
1298 #endif
1299 } else
1300 possible = setup_possible_cpus;
1301
1302 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1303
1304 /* nr_cpu_ids could be reduced via nr_cpus= */
1305 if (possible > nr_cpu_ids) {
1306 pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1307 possible, nr_cpu_ids);
1308 possible = nr_cpu_ids;
1309 }
1310
1311 #ifdef CONFIG_HOTPLUG_CPU
1312 if (!setup_max_cpus)
1313 #endif
1314 if (possible > i) {
1315 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1316 possible, setup_max_cpus);
1317 possible = i;
1318 }
1319
1320 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1321 possible, max_t(int, possible - num_processors, 0));
1322
1323 for (i = 0; i < possible; i++)
1324 set_cpu_possible(i, true);
1325 for (; i < NR_CPUS; i++)
1326 set_cpu_possible(i, false);
1327
1328 nr_cpu_ids = possible;
1329 }
1330
1331 #ifdef CONFIG_HOTPLUG_CPU
1332
1333 static void remove_siblinginfo(int cpu)
1334 {
1335 int sibling;
1336 struct cpuinfo_x86 *c = &cpu_data(cpu);
1337
1338 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1339 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1340 /*/
1341 * last thread sibling in this cpu core going down
1342 */
1343 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1344 cpu_data(sibling).booted_cores--;
1345 }
1346
1347 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1348 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1349 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1350 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1351 cpumask_clear(cpu_llc_shared_mask(cpu));
1352 cpumask_clear(topology_sibling_cpumask(cpu));
1353 cpumask_clear(topology_core_cpumask(cpu));
1354 c->phys_proc_id = 0;
1355 c->cpu_core_id = 0;
1356 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1357 }
1358
1359 static void remove_cpu_from_maps(int cpu)
1360 {
1361 set_cpu_online(cpu, false);
1362 cpumask_clear_cpu(cpu, cpu_callout_mask);
1363 cpumask_clear_cpu(cpu, cpu_callin_mask);
1364 /* was set by cpu_init() */
1365 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1366 numa_remove_cpu(cpu);
1367 }
1368
1369 void cpu_disable_common(void)
1370 {
1371 int cpu = smp_processor_id();
1372
1373 remove_siblinginfo(cpu);
1374
1375 /* It's now safe to remove this processor from the online map */
1376 lock_vector_lock();
1377 remove_cpu_from_maps(cpu);
1378 unlock_vector_lock();
1379 fixup_irqs();
1380 }
1381
1382 int native_cpu_disable(void)
1383 {
1384 int ret;
1385
1386 ret = check_irq_vectors_for_cpu_disable();
1387 if (ret)
1388 return ret;
1389
1390 clear_local_APIC();
1391 cpu_disable_common();
1392
1393 return 0;
1394 }
1395
1396 int common_cpu_die(unsigned int cpu)
1397 {
1398 int ret = 0;
1399
1400 /* We don't do anything here: idle task is faking death itself. */
1401
1402 /* They ack this in play_dead() by setting CPU_DEAD */
1403 if (cpu_wait_death(cpu, 5)) {
1404 if (system_state == SYSTEM_RUNNING)
1405 pr_info("CPU %u is now offline\n", cpu);
1406 } else {
1407 pr_err("CPU %u didn't die...\n", cpu);
1408 ret = -1;
1409 }
1410
1411 return ret;
1412 }
1413
1414 void native_cpu_die(unsigned int cpu)
1415 {
1416 common_cpu_die(cpu);
1417 }
1418
1419 void play_dead_common(void)
1420 {
1421 idle_task_exit();
1422 reset_lazy_tlbstate();
1423 amd_e400_remove_cpu(raw_smp_processor_id());
1424
1425 /* Ack it */
1426 (void)cpu_report_death();
1427
1428 /*
1429 * With physical CPU hotplug, we should halt the cpu
1430 */
1431 local_irq_disable();
1432 }
1433
1434 static bool wakeup_cpu0(void)
1435 {
1436 if (smp_processor_id() == 0 && enable_start_cpu0)
1437 return true;
1438
1439 return false;
1440 }
1441
1442 /*
1443 * We need to flush the caches before going to sleep, lest we have
1444 * dirty data in our caches when we come back up.
1445 */
1446 static inline void mwait_play_dead(void)
1447 {
1448 unsigned int eax, ebx, ecx, edx;
1449 unsigned int highest_cstate = 0;
1450 unsigned int highest_subcstate = 0;
1451 void *mwait_ptr;
1452 int i;
1453
1454 if (!this_cpu_has(X86_FEATURE_MWAIT))
1455 return;
1456 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1457 return;
1458 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1459 return;
1460
1461 eax = CPUID_MWAIT_LEAF;
1462 ecx = 0;
1463 native_cpuid(&eax, &ebx, &ecx, &edx);
1464
1465 /*
1466 * eax will be 0 if EDX enumeration is not valid.
1467 * Initialized below to cstate, sub_cstate value when EDX is valid.
1468 */
1469 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1470 eax = 0;
1471 } else {
1472 edx >>= MWAIT_SUBSTATE_SIZE;
1473 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1474 if (edx & MWAIT_SUBSTATE_MASK) {
1475 highest_cstate = i;
1476 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1477 }
1478 }
1479 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1480 (highest_subcstate - 1);
1481 }
1482
1483 /*
1484 * This should be a memory location in a cache line which is
1485 * unlikely to be touched by other processors. The actual
1486 * content is immaterial as it is not actually modified in any way.
1487 */
1488 mwait_ptr = &current_thread_info()->flags;
1489
1490 wbinvd();
1491
1492 while (1) {
1493 /*
1494 * The CLFLUSH is a workaround for erratum AAI65 for
1495 * the Xeon 7400 series. It's not clear it is actually
1496 * needed, but it should be harmless in either case.
1497 * The WBINVD is insufficient due to the spurious-wakeup
1498 * case where we return around the loop.
1499 */
1500 mb();
1501 clflush(mwait_ptr);
1502 mb();
1503 __monitor(mwait_ptr, 0, 0);
1504 mb();
1505 __mwait(eax, 0);
1506 /*
1507 * If NMI wants to wake up CPU0, start CPU0.
1508 */
1509 if (wakeup_cpu0())
1510 start_cpu0();
1511 }
1512 }
1513
1514 static inline void hlt_play_dead(void)
1515 {
1516 if (__this_cpu_read(cpu_info.x86) >= 4)
1517 wbinvd();
1518
1519 while (1) {
1520 native_halt();
1521 /*
1522 * If NMI wants to wake up CPU0, start CPU0.
1523 */
1524 if (wakeup_cpu0())
1525 start_cpu0();
1526 }
1527 }
1528
1529 void native_play_dead(void)
1530 {
1531 play_dead_common();
1532 tboot_shutdown(TB_SHUTDOWN_WFS);
1533
1534 mwait_play_dead(); /* Only returns on failure */
1535 if (cpuidle_play_dead())
1536 hlt_play_dead();
1537 }
1538
1539 #else /* ... !CONFIG_HOTPLUG_CPU */
1540 int native_cpu_disable(void)
1541 {
1542 return -ENOSYS;
1543 }
1544
1545 void native_cpu_die(unsigned int cpu)
1546 {
1547 /* We said "no" in __cpu_disable */
1548 BUG();
1549 }
1550
1551 void native_play_dead(void)
1552 {
1553 BUG();
1554 }
1555
1556 #endif