]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kernel/traps.c
1f66d2d1e998db62758fb03e1b64d5c1ae05f081
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / traps.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/text-patching.h>
47 #include <asm/ftrace.h>
48 #include <asm/traps.h>
49 #include <asm/desc.h>
50 #include <asm/fpu/internal.h>
51 #include <asm/cpu.h>
52 #include <asm/cpu_entry_area.h>
53 #include <asm/mce.h>
54 #include <asm/fixmap.h>
55 #include <asm/mach_traps.h>
56 #include <asm/alternative.h>
57 #include <asm/fpu/xstate.h>
58 #include <asm/vm86.h>
59 #include <asm/umip.h>
60 #include <asm/insn.h>
61 #include <asm/insn-eval.h>
62
63 #ifdef CONFIG_X86_64
64 #include <asm/x86_init.h>
65 #include <asm/proto.h>
66 #else
67 #include <asm/processor-flags.h>
68 #include <asm/setup.h>
69 #include <asm/proto.h>
70 #endif
71
72 DECLARE_BITMAP(system_vectors, NR_VECTORS);
73
74 static inline void cond_local_irq_enable(struct pt_regs *regs)
75 {
76 if (regs->flags & X86_EFLAGS_IF)
77 local_irq_enable();
78 }
79
80 static inline void cond_local_irq_disable(struct pt_regs *regs)
81 {
82 if (regs->flags & X86_EFLAGS_IF)
83 local_irq_disable();
84 }
85
86 __always_inline int is_valid_bugaddr(unsigned long addr)
87 {
88 if (addr < TASK_SIZE_MAX)
89 return 0;
90
91 /*
92 * We got #UD, if the text isn't readable we'd have gotten
93 * a different exception.
94 */
95 return *(unsigned short *)addr == INSN_UD2;
96 }
97
98 static nokprobe_inline int
99 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
100 struct pt_regs *regs, long error_code)
101 {
102 if (v8086_mode(regs)) {
103 /*
104 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
105 * On nmi (interrupt 2), do_trap should not be called.
106 */
107 if (trapnr < X86_TRAP_UD) {
108 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
109 error_code, trapnr))
110 return 0;
111 }
112 } else if (!user_mode(regs)) {
113 if (fixup_exception(regs, trapnr, error_code, 0))
114 return 0;
115
116 tsk->thread.error_code = error_code;
117 tsk->thread.trap_nr = trapnr;
118 die(str, regs, error_code);
119 }
120
121 /*
122 * We want error_code and trap_nr set for userspace faults and
123 * kernelspace faults which result in die(), but not
124 * kernelspace faults which are fixed up. die() gives the
125 * process no chance to handle the signal and notice the
126 * kernel fault information, so that won't result in polluting
127 * the information about previously queued, but not yet
128 * delivered, faults. See also exc_general_protection below.
129 */
130 tsk->thread.error_code = error_code;
131 tsk->thread.trap_nr = trapnr;
132
133 return -1;
134 }
135
136 static void show_signal(struct task_struct *tsk, int signr,
137 const char *type, const char *desc,
138 struct pt_regs *regs, long error_code)
139 {
140 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
141 printk_ratelimit()) {
142 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
143 tsk->comm, task_pid_nr(tsk), type, desc,
144 regs->ip, regs->sp, error_code);
145 print_vma_addr(KERN_CONT " in ", regs->ip);
146 pr_cont("\n");
147 }
148 }
149
150 static void
151 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
152 long error_code, int sicode, void __user *addr)
153 {
154 struct task_struct *tsk = current;
155
156 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
157 return;
158
159 show_signal(tsk, signr, "trap ", str, regs, error_code);
160
161 if (!sicode)
162 force_sig(signr);
163 else
164 force_sig_fault(signr, sicode, addr);
165 }
166 NOKPROBE_SYMBOL(do_trap);
167
168 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
169 unsigned long trapnr, int signr, int sicode, void __user *addr)
170 {
171 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
172
173 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
174 NOTIFY_STOP) {
175 cond_local_irq_enable(regs);
176 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
177 cond_local_irq_disable(regs);
178 }
179 }
180
181 /*
182 * Posix requires to provide the address of the faulting instruction for
183 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
184 *
185 * This address is usually regs->ip, but when an uprobe moved the code out
186 * of line then regs->ip points to the XOL code which would confuse
187 * anything which analyzes the fault address vs. the unmodified binary. If
188 * a trap happened in XOL code then uprobe maps regs->ip back to the
189 * original instruction address.
190 */
191 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
192 {
193 return (void __user *)uprobe_get_trap_addr(regs);
194 }
195
196 DEFINE_IDTENTRY(exc_divide_error)
197 {
198 do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
199 FPE_INTDIV, error_get_trap_addr(regs));
200 }
201
202 DEFINE_IDTENTRY(exc_overflow)
203 {
204 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
205 }
206
207 #ifdef CONFIG_X86_F00F_BUG
208 void handle_invalid_op(struct pt_regs *regs)
209 #else
210 static inline void handle_invalid_op(struct pt_regs *regs)
211 #endif
212 {
213 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
214 ILL_ILLOPN, error_get_trap_addr(regs));
215 }
216
217 static noinstr bool handle_bug(struct pt_regs *regs)
218 {
219 bool handled = false;
220
221 if (!is_valid_bugaddr(regs->ip))
222 return handled;
223
224 /*
225 * All lies, just get the WARN/BUG out.
226 */
227 instrumentation_begin();
228 /*
229 * Since we're emulating a CALL with exceptions, restore the interrupt
230 * state to what it was at the exception site.
231 */
232 if (regs->flags & X86_EFLAGS_IF)
233 raw_local_irq_enable();
234 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
235 regs->ip += LEN_UD2;
236 handled = true;
237 }
238 if (regs->flags & X86_EFLAGS_IF)
239 raw_local_irq_disable();
240 instrumentation_end();
241
242 return handled;
243 }
244
245 DEFINE_IDTENTRY_RAW(exc_invalid_op)
246 {
247 irqentry_state_t state;
248
249 /*
250 * We use UD2 as a short encoding for 'CALL __WARN', as such
251 * handle it before exception entry to avoid recursive WARN
252 * in case exception entry is the one triggering WARNs.
253 */
254 if (!user_mode(regs) && handle_bug(regs))
255 return;
256
257 state = irqentry_enter(regs);
258 instrumentation_begin();
259 handle_invalid_op(regs);
260 instrumentation_end();
261 irqentry_exit(regs, state);
262 }
263
264 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
265 {
266 do_error_trap(regs, 0, "coprocessor segment overrun",
267 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
268 }
269
270 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
271 {
272 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
273 0, NULL);
274 }
275
276 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
277 {
278 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
279 SIGBUS, 0, NULL);
280 }
281
282 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
283 {
284 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
285 0, NULL);
286 }
287
288 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
289 {
290 char *str = "alignment check";
291
292 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
293 return;
294
295 if (!user_mode(regs))
296 die("Split lock detected\n", regs, error_code);
297
298 local_irq_enable();
299
300 if (handle_user_split_lock(regs, error_code))
301 return;
302
303 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
304 error_code, BUS_ADRALN, NULL);
305
306 local_irq_disable();
307 }
308
309 #ifdef CONFIG_VMAP_STACK
310 __visible void __noreturn handle_stack_overflow(const char *message,
311 struct pt_regs *regs,
312 unsigned long fault_address)
313 {
314 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
315 (void *)fault_address, current->stack,
316 (char *)current->stack + THREAD_SIZE - 1);
317 die(message, regs, 0);
318
319 /* Be absolutely certain we don't return. */
320 panic("%s", message);
321 }
322 #endif
323
324 /*
325 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
326 *
327 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
328 * SDM's warnings about double faults being unrecoverable, returning works as
329 * expected. Presumably what the SDM actually means is that the CPU may get
330 * the register state wrong on entry, so returning could be a bad idea.
331 *
332 * Various CPU engineers have promised that double faults due to an IRET fault
333 * while the stack is read-only are, in fact, recoverable.
334 *
335 * On x86_32, this is entered through a task gate, and regs are synthesized
336 * from the TSS. Returning is, in principle, okay, but changes to regs will
337 * be lost. If, for some reason, we need to return to a context with modified
338 * regs, the shim code could be adjusted to synchronize the registers.
339 *
340 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
341 * to be read before doing anything else.
342 */
343 DEFINE_IDTENTRY_DF(exc_double_fault)
344 {
345 static const char str[] = "double fault";
346 struct task_struct *tsk = current;
347
348 #ifdef CONFIG_VMAP_STACK
349 unsigned long address = read_cr2();
350 #endif
351
352 #ifdef CONFIG_X86_ESPFIX64
353 extern unsigned char native_irq_return_iret[];
354
355 /*
356 * If IRET takes a non-IST fault on the espfix64 stack, then we
357 * end up promoting it to a doublefault. In that case, take
358 * advantage of the fact that we're not using the normal (TSS.sp0)
359 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
360 * and then modify our own IRET frame so that, when we return,
361 * we land directly at the #GP(0) vector with the stack already
362 * set up according to its expectations.
363 *
364 * The net result is that our #GP handler will think that we
365 * entered from usermode with the bad user context.
366 *
367 * No need for nmi_enter() here because we don't use RCU.
368 */
369 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
370 regs->cs == __KERNEL_CS &&
371 regs->ip == (unsigned long)native_irq_return_iret)
372 {
373 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
374 unsigned long *p = (unsigned long *)regs->sp;
375
376 /*
377 * regs->sp points to the failing IRET frame on the
378 * ESPFIX64 stack. Copy it to the entry stack. This fills
379 * in gpregs->ss through gpregs->ip.
380 *
381 */
382 gpregs->ip = p[0];
383 gpregs->cs = p[1];
384 gpregs->flags = p[2];
385 gpregs->sp = p[3];
386 gpregs->ss = p[4];
387 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
388
389 /*
390 * Adjust our frame so that we return straight to the #GP
391 * vector with the expected RSP value. This is safe because
392 * we won't enable interupts or schedule before we invoke
393 * general_protection, so nothing will clobber the stack
394 * frame we just set up.
395 *
396 * We will enter general_protection with kernel GSBASE,
397 * which is what the stub expects, given that the faulting
398 * RIP will be the IRET instruction.
399 */
400 regs->ip = (unsigned long)asm_exc_general_protection;
401 regs->sp = (unsigned long)&gpregs->orig_ax;
402
403 return;
404 }
405 #endif
406
407 idtentry_enter_nmi(regs);
408 instrumentation_begin();
409 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
410
411 tsk->thread.error_code = error_code;
412 tsk->thread.trap_nr = X86_TRAP_DF;
413
414 #ifdef CONFIG_VMAP_STACK
415 /*
416 * If we overflow the stack into a guard page, the CPU will fail
417 * to deliver #PF and will send #DF instead. Similarly, if we
418 * take any non-IST exception while too close to the bottom of
419 * the stack, the processor will get a page fault while
420 * delivering the exception and will generate a double fault.
421 *
422 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
423 * Page-Fault Exception (#PF):
424 *
425 * Processors update CR2 whenever a page fault is detected. If a
426 * second page fault occurs while an earlier page fault is being
427 * delivered, the faulting linear address of the second fault will
428 * overwrite the contents of CR2 (replacing the previous
429 * address). These updates to CR2 occur even if the page fault
430 * results in a double fault or occurs during the delivery of a
431 * double fault.
432 *
433 * The logic below has a small possibility of incorrectly diagnosing
434 * some errors as stack overflows. For example, if the IDT or GDT
435 * gets corrupted such that #GP delivery fails due to a bad descriptor
436 * causing #GP and we hit this condition while CR2 coincidentally
437 * points to the stack guard page, we'll think we overflowed the
438 * stack. Given that we're going to panic one way or another
439 * if this happens, this isn't necessarily worth fixing.
440 *
441 * If necessary, we could improve the test by only diagnosing
442 * a stack overflow if the saved RSP points within 47 bytes of
443 * the bottom of the stack: if RSP == tsk_stack + 48 and we
444 * take an exception, the stack is already aligned and there
445 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
446 * possible error code, so a stack overflow would *not* double
447 * fault. With any less space left, exception delivery could
448 * fail, and, as a practical matter, we've overflowed the
449 * stack even if the actual trigger for the double fault was
450 * something else.
451 */
452 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
453 handle_stack_overflow("kernel stack overflow (double-fault)",
454 regs, address);
455 }
456 #endif
457
458 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
459 die("double fault", regs, error_code);
460 panic("Machine halted.");
461 instrumentation_end();
462 }
463
464 DEFINE_IDTENTRY(exc_bounds)
465 {
466 if (notify_die(DIE_TRAP, "bounds", regs, 0,
467 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
468 return;
469 cond_local_irq_enable(regs);
470
471 if (!user_mode(regs))
472 die("bounds", regs, 0);
473
474 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
475
476 cond_local_irq_disable(regs);
477 }
478
479 enum kernel_gp_hint {
480 GP_NO_HINT,
481 GP_NON_CANONICAL,
482 GP_CANONICAL
483 };
484
485 /*
486 * When an uncaught #GP occurs, try to determine the memory address accessed by
487 * the instruction and return that address to the caller. Also, try to figure
488 * out whether any part of the access to that address was non-canonical.
489 */
490 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
491 unsigned long *addr)
492 {
493 u8 insn_buf[MAX_INSN_SIZE];
494 struct insn insn;
495
496 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
497 MAX_INSN_SIZE))
498 return GP_NO_HINT;
499
500 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
501 insn_get_modrm(&insn);
502 insn_get_sib(&insn);
503
504 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
505 if (*addr == -1UL)
506 return GP_NO_HINT;
507
508 #ifdef CONFIG_X86_64
509 /*
510 * Check that:
511 * - the operand is not in the kernel half
512 * - the last byte of the operand is not in the user canonical half
513 */
514 if (*addr < ~__VIRTUAL_MASK &&
515 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
516 return GP_NON_CANONICAL;
517 #endif
518
519 return GP_CANONICAL;
520 }
521
522 #define GPFSTR "general protection fault"
523
524 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
525 {
526 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
527 enum kernel_gp_hint hint = GP_NO_HINT;
528 struct task_struct *tsk;
529 unsigned long gp_addr;
530 int ret;
531
532 cond_local_irq_enable(regs);
533
534 if (static_cpu_has(X86_FEATURE_UMIP)) {
535 if (user_mode(regs) && fixup_umip_exception(regs))
536 goto exit;
537 }
538
539 if (v8086_mode(regs)) {
540 local_irq_enable();
541 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
542 local_irq_disable();
543 return;
544 }
545
546 tsk = current;
547
548 if (user_mode(regs)) {
549 tsk->thread.error_code = error_code;
550 tsk->thread.trap_nr = X86_TRAP_GP;
551
552 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
553 force_sig(SIGSEGV);
554 goto exit;
555 }
556
557 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
558 goto exit;
559
560 tsk->thread.error_code = error_code;
561 tsk->thread.trap_nr = X86_TRAP_GP;
562
563 /*
564 * To be potentially processing a kprobe fault and to trust the result
565 * from kprobe_running(), we have to be non-preemptible.
566 */
567 if (!preemptible() &&
568 kprobe_running() &&
569 kprobe_fault_handler(regs, X86_TRAP_GP))
570 goto exit;
571
572 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
573 if (ret == NOTIFY_STOP)
574 goto exit;
575
576 if (error_code)
577 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
578 else
579 hint = get_kernel_gp_address(regs, &gp_addr);
580
581 if (hint != GP_NO_HINT)
582 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
583 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
584 : "maybe for address",
585 gp_addr);
586
587 /*
588 * KASAN is interested only in the non-canonical case, clear it
589 * otherwise.
590 */
591 if (hint != GP_NON_CANONICAL)
592 gp_addr = 0;
593
594 die_addr(desc, regs, error_code, gp_addr);
595
596 exit:
597 cond_local_irq_disable(regs);
598 }
599
600 static bool do_int3(struct pt_regs *regs)
601 {
602 int res;
603
604 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
605 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
606 SIGTRAP) == NOTIFY_STOP)
607 return true;
608 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
609
610 #ifdef CONFIG_KPROBES
611 if (kprobe_int3_handler(regs))
612 return true;
613 #endif
614 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
615
616 return res == NOTIFY_STOP;
617 }
618
619 static void do_int3_user(struct pt_regs *regs)
620 {
621 if (do_int3(regs))
622 return;
623
624 cond_local_irq_enable(regs);
625 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
626 cond_local_irq_disable(regs);
627 }
628
629 DEFINE_IDTENTRY_RAW(exc_int3)
630 {
631 /*
632 * poke_int3_handler() is completely self contained code; it does (and
633 * must) *NOT* call out to anything, lest it hits upon yet another
634 * INT3.
635 */
636 if (poke_int3_handler(regs))
637 return;
638
639 /*
640 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
641 * and therefore can trigger INT3, hence poke_int3_handler() must
642 * be done before. If the entry came from kernel mode, then use
643 * nmi_enter() because the INT3 could have been hit in any context
644 * including NMI.
645 */
646 if (user_mode(regs)) {
647 irqentry_enter_from_user_mode(regs);
648 instrumentation_begin();
649 do_int3_user(regs);
650 instrumentation_end();
651 irqentry_exit_to_user_mode(regs);
652 } else {
653 bool irq_state = idtentry_enter_nmi(regs);
654 instrumentation_begin();
655 if (!do_int3(regs))
656 die("int3", regs, 0);
657 instrumentation_end();
658 idtentry_exit_nmi(regs, irq_state);
659 }
660 }
661
662 #ifdef CONFIG_X86_64
663 /*
664 * Help handler running on a per-cpu (IST or entry trampoline) stack
665 * to switch to the normal thread stack if the interrupted code was in
666 * user mode. The actual stack switch is done in entry_64.S
667 */
668 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
669 {
670 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
671 if (regs != eregs)
672 *regs = *eregs;
673 return regs;
674 }
675
676 struct bad_iret_stack {
677 void *error_entry_ret;
678 struct pt_regs regs;
679 };
680
681 asmlinkage __visible noinstr
682 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
683 {
684 /*
685 * This is called from entry_64.S early in handling a fault
686 * caused by a bad iret to user mode. To handle the fault
687 * correctly, we want to move our stack frame to where it would
688 * be had we entered directly on the entry stack (rather than
689 * just below the IRET frame) and we want to pretend that the
690 * exception came from the IRET target.
691 */
692 struct bad_iret_stack tmp, *new_stack =
693 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
694
695 /* Copy the IRET target to the temporary storage. */
696 __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
697
698 /* Copy the remainder of the stack from the current stack. */
699 __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
700
701 /* Update the entry stack */
702 __memcpy(new_stack, &tmp, sizeof(tmp));
703
704 BUG_ON(!user_mode(&new_stack->regs));
705 return new_stack;
706 }
707 #endif
708
709 static bool is_sysenter_singlestep(struct pt_regs *regs)
710 {
711 /*
712 * We don't try for precision here. If we're anywhere in the region of
713 * code that can be single-stepped in the SYSENTER entry path, then
714 * assume that this is a useless single-step trap due to SYSENTER
715 * being invoked with TF set. (We don't know in advance exactly
716 * which instructions will be hit because BTF could plausibly
717 * be set.)
718 */
719 #ifdef CONFIG_X86_32
720 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
721 (unsigned long)__end_SYSENTER_singlestep_region -
722 (unsigned long)__begin_SYSENTER_singlestep_region;
723 #elif defined(CONFIG_IA32_EMULATION)
724 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
725 (unsigned long)__end_entry_SYSENTER_compat -
726 (unsigned long)entry_SYSENTER_compat;
727 #else
728 return false;
729 #endif
730 }
731
732 static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7)
733 {
734 /*
735 * Disable breakpoints during exception handling; recursive exceptions
736 * are exceedingly 'fun'.
737 *
738 * Since this function is NOKPROBE, and that also applies to
739 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
740 * HW_BREAKPOINT_W on our stack)
741 *
742 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
743 * includes the entry stack is excluded for everything.
744 */
745 *dr7 = local_db_save();
746
747 /*
748 * The Intel SDM says:
749 *
750 * Certain debug exceptions may clear bits 0-3. The remaining
751 * contents of the DR6 register are never cleared by the
752 * processor. To avoid confusion in identifying debug
753 * exceptions, debug handlers should clear the register before
754 * returning to the interrupted task.
755 *
756 * Keep it simple: clear DR6 immediately.
757 */
758 get_debugreg(*dr6, 6);
759 set_debugreg(0, 6);
760 /* Filter out all the reserved bits which are preset to 1 */
761 *dr6 &= ~DR6_RESERVED;
762 }
763
764 static __always_inline void debug_exit(unsigned long dr7)
765 {
766 local_db_restore(dr7);
767 }
768
769 /*
770 * Our handling of the processor debug registers is non-trivial.
771 * We do not clear them on entry and exit from the kernel. Therefore
772 * it is possible to get a watchpoint trap here from inside the kernel.
773 * However, the code in ./ptrace.c has ensured that the user can
774 * only set watchpoints on userspace addresses. Therefore the in-kernel
775 * watchpoint trap can only occur in code which is reading/writing
776 * from user space. Such code must not hold kernel locks (since it
777 * can equally take a page fault), therefore it is safe to call
778 * force_sig_info even though that claims and releases locks.
779 *
780 * Code in ./signal.c ensures that the debug control register
781 * is restored before we deliver any signal, and therefore that
782 * user code runs with the correct debug control register even though
783 * we clear it here.
784 *
785 * Being careful here means that we don't have to be as careful in a
786 * lot of more complicated places (task switching can be a bit lazy
787 * about restoring all the debug state, and ptrace doesn't have to
788 * find every occurrence of the TF bit that could be saved away even
789 * by user code)
790 *
791 * May run on IST stack.
792 */
793 static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user)
794 {
795 struct task_struct *tsk = current;
796 bool user_icebp;
797 int si_code;
798
799 /*
800 * The SDM says "The processor clears the BTF flag when it
801 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
802 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
803 */
804 clear_thread_flag(TIF_BLOCKSTEP);
805
806 /*
807 * If DR6 is zero, no point in trying to handle it. The kernel is
808 * not using INT1.
809 */
810 if (!user && !dr6)
811 return;
812
813 /*
814 * If dr6 has no reason to give us about the origin of this trap,
815 * then it's very likely the result of an icebp/int01 trap.
816 * User wants a sigtrap for that.
817 */
818 user_icebp = user && !dr6;
819
820 /* Store the virtualized DR6 value */
821 tsk->thread.debugreg6 = dr6;
822
823 #ifdef CONFIG_KPROBES
824 if (kprobe_debug_handler(regs)) {
825 return;
826 }
827 #endif
828
829 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
830 SIGTRAP) == NOTIFY_STOP) {
831 return;
832 }
833
834 /* It's safe to allow irq's after DR6 has been saved */
835 cond_local_irq_enable(regs);
836
837 if (v8086_mode(regs)) {
838 handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
839 X86_TRAP_DB);
840 goto out;
841 }
842
843 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
844 /*
845 * Historical junk that used to handle SYSENTER single-stepping.
846 * This should be unreachable now. If we survive for a while
847 * without anyone hitting this warning, we'll turn this into
848 * an oops.
849 */
850 tsk->thread.debugreg6 &= ~DR_STEP;
851 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
852 regs->flags &= ~X86_EFLAGS_TF;
853 }
854
855 si_code = get_si_code(tsk->thread.debugreg6);
856 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
857 send_sigtrap(regs, 0, si_code);
858
859 out:
860 cond_local_irq_disable(regs);
861 }
862
863 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
864 unsigned long dr6)
865 {
866 bool irq_state = idtentry_enter_nmi(regs);
867 instrumentation_begin();
868
869 /*
870 * If something gets miswired and we end up here for a user mode
871 * #DB, we will malfunction.
872 */
873 WARN_ON_ONCE(user_mode(regs));
874
875 /*
876 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
877 * watchpoint at the same time then that will still be handled.
878 */
879 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
880 dr6 &= ~DR_STEP;
881
882 handle_debug(regs, dr6, false);
883
884 instrumentation_end();
885 idtentry_exit_nmi(regs, irq_state);
886 }
887
888 static __always_inline void exc_debug_user(struct pt_regs *regs,
889 unsigned long dr6)
890 {
891 /*
892 * If something gets miswired and we end up here for a kernel mode
893 * #DB, we will malfunction.
894 */
895 WARN_ON_ONCE(!user_mode(regs));
896
897 irqentry_enter_from_user_mode(regs);
898 instrumentation_begin();
899
900 handle_debug(regs, dr6, true);
901
902 instrumentation_end();
903 irqentry_exit_to_user_mode(regs);
904 }
905
906 #ifdef CONFIG_X86_64
907 /* IST stack entry */
908 DEFINE_IDTENTRY_DEBUG(exc_debug)
909 {
910 unsigned long dr6, dr7;
911
912 debug_enter(&dr6, &dr7);
913 exc_debug_kernel(regs, dr6);
914 debug_exit(dr7);
915 }
916
917 /* User entry, runs on regular task stack */
918 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
919 {
920 unsigned long dr6, dr7;
921
922 debug_enter(&dr6, &dr7);
923 exc_debug_user(regs, dr6);
924 debug_exit(dr7);
925 }
926 #else
927 /* 32 bit does not have separate entry points. */
928 DEFINE_IDTENTRY_RAW(exc_debug)
929 {
930 unsigned long dr6, dr7;
931
932 debug_enter(&dr6, &dr7);
933
934 if (user_mode(regs))
935 exc_debug_user(regs, dr6);
936 else
937 exc_debug_kernel(regs, dr6);
938
939 debug_exit(dr7);
940 }
941 #endif
942
943 /*
944 * Note that we play around with the 'TS' bit in an attempt to get
945 * the correct behaviour even in the presence of the asynchronous
946 * IRQ13 behaviour
947 */
948 static void math_error(struct pt_regs *regs, int trapnr)
949 {
950 struct task_struct *task = current;
951 struct fpu *fpu = &task->thread.fpu;
952 int si_code;
953 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
954 "simd exception";
955
956 cond_local_irq_enable(regs);
957
958 if (!user_mode(regs)) {
959 if (fixup_exception(regs, trapnr, 0, 0))
960 goto exit;
961
962 task->thread.error_code = 0;
963 task->thread.trap_nr = trapnr;
964
965 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
966 SIGFPE) != NOTIFY_STOP)
967 die(str, regs, 0);
968 goto exit;
969 }
970
971 /*
972 * Save the info for the exception handler and clear the error.
973 */
974 fpu__save(fpu);
975
976 task->thread.trap_nr = trapnr;
977 task->thread.error_code = 0;
978
979 si_code = fpu__exception_code(fpu, trapnr);
980 /* Retry when we get spurious exceptions: */
981 if (!si_code)
982 goto exit;
983
984 force_sig_fault(SIGFPE, si_code,
985 (void __user *)uprobe_get_trap_addr(regs));
986 exit:
987 cond_local_irq_disable(regs);
988 }
989
990 DEFINE_IDTENTRY(exc_coprocessor_error)
991 {
992 math_error(regs, X86_TRAP_MF);
993 }
994
995 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
996 {
997 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
998 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
999 if (!static_cpu_has(X86_FEATURE_XMM)) {
1000 __exc_general_protection(regs, 0);
1001 return;
1002 }
1003 }
1004 math_error(regs, X86_TRAP_XF);
1005 }
1006
1007 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1008 {
1009 /*
1010 * This addresses a Pentium Pro Erratum:
1011 *
1012 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1013 * Virtual Wire mode implemented through the local APIC, an
1014 * interrupt vector of 0Fh (Intel reserved encoding) may be
1015 * generated by the local APIC (Int 15). This vector may be
1016 * generated upon receipt of a spurious interrupt (an interrupt
1017 * which is removed before the system receives the INTA sequence)
1018 * instead of the programmed 8259 spurious interrupt vector.
1019 *
1020 * IMPLICATION: The spurious interrupt vector programmed in the
1021 * 8259 is normally handled by an operating system's spurious
1022 * interrupt handler. However, a vector of 0Fh is unknown to some
1023 * operating systems, which would crash if this erratum occurred.
1024 *
1025 * In theory this could be limited to 32bit, but the handler is not
1026 * hurting and who knows which other CPUs suffer from this.
1027 */
1028 }
1029
1030 DEFINE_IDTENTRY(exc_device_not_available)
1031 {
1032 unsigned long cr0 = read_cr0();
1033
1034 #ifdef CONFIG_MATH_EMULATION
1035 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1036 struct math_emu_info info = { };
1037
1038 cond_local_irq_enable(regs);
1039
1040 info.regs = regs;
1041 math_emulate(&info);
1042
1043 cond_local_irq_disable(regs);
1044 return;
1045 }
1046 #endif
1047
1048 /* This should not happen. */
1049 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1050 /* Try to fix it up and carry on. */
1051 write_cr0(cr0 & ~X86_CR0_TS);
1052 } else {
1053 /*
1054 * Something terrible happened, and we're better off trying
1055 * to kill the task than getting stuck in a never-ending
1056 * loop of #NM faults.
1057 */
1058 die("unexpected #NM exception", regs, 0);
1059 }
1060 }
1061
1062 #ifdef CONFIG_X86_32
1063 DEFINE_IDTENTRY_SW(iret_error)
1064 {
1065 local_irq_enable();
1066 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1067 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1068 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1069 ILL_BADSTK, (void __user *)NULL);
1070 }
1071 local_irq_disable();
1072 }
1073 #endif
1074
1075 void __init trap_init(void)
1076 {
1077 /* Init cpu_entry_area before IST entries are set up */
1078 setup_cpu_entry_areas();
1079
1080 idt_setup_traps();
1081
1082 /*
1083 * Should be a barrier for any external CPU state:
1084 */
1085 cpu_init();
1086
1087 idt_setup_ist_traps();
1088 }