]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/emulate.c
KVM: x86: Use KVM_BUG/KVM_BUG_ON to handle bugs that are fatal to the VM
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / emulate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 * emulate.c
4 *
5 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
6 *
7 * Copyright (c) 2005 Keir Fraser
8 *
9 * Linux coding style, mod r/m decoder, segment base fixes, real-mode
10 * privileged instructions:
11 *
12 * Copyright (C) 2006 Qumranet
13 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14 *
15 * Avi Kivity <avi@qumranet.com>
16 * Yaniv Kamay <yaniv@qumranet.com>
17 *
18 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
19 */
20
21 #include <linux/kvm_host.h>
22 #include "kvm_cache_regs.h"
23 #include "kvm_emulate.h"
24 #include <linux/stringify.h>
25 #include <asm/debugreg.h>
26 #include <asm/nospec-branch.h>
27
28 #include "x86.h"
29 #include "tss.h"
30 #include "mmu.h"
31 #include "pmu.h"
32
33 /*
34 * Operand types
35 */
36 #define OpNone 0ull
37 #define OpImplicit 1ull /* No generic decode */
38 #define OpReg 2ull /* Register */
39 #define OpMem 3ull /* Memory */
40 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
41 #define OpDI 5ull /* ES:DI/EDI/RDI */
42 #define OpMem64 6ull /* Memory, 64-bit */
43 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
44 #define OpDX 8ull /* DX register */
45 #define OpCL 9ull /* CL register (for shifts) */
46 #define OpImmByte 10ull /* 8-bit sign extended immediate */
47 #define OpOne 11ull /* Implied 1 */
48 #define OpImm 12ull /* Sign extended up to 32-bit immediate */
49 #define OpMem16 13ull /* Memory operand (16-bit). */
50 #define OpMem32 14ull /* Memory operand (32-bit). */
51 #define OpImmU 15ull /* Immediate operand, zero extended */
52 #define OpSI 16ull /* SI/ESI/RSI */
53 #define OpImmFAddr 17ull /* Immediate far address */
54 #define OpMemFAddr 18ull /* Far address in memory */
55 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
56 #define OpES 20ull /* ES */
57 #define OpCS 21ull /* CS */
58 #define OpSS 22ull /* SS */
59 #define OpDS 23ull /* DS */
60 #define OpFS 24ull /* FS */
61 #define OpGS 25ull /* GS */
62 #define OpMem8 26ull /* 8-bit zero extended memory operand */
63 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
64 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
65 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
66 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
67
68 #define OpBits 5 /* Width of operand field */
69 #define OpMask ((1ull << OpBits) - 1)
70
71 /*
72 * Opcode effective-address decode tables.
73 * Note that we only emulate instructions that have at least one memory
74 * operand (excluding implicit stack references). We assume that stack
75 * references and instruction fetches will never occur in special memory
76 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
77 * not be handled.
78 */
79
80 /* Operand sizes: 8-bit operands or specified/overridden size. */
81 #define ByteOp (1<<0) /* 8-bit operands. */
82 /* Destination operand type. */
83 #define DstShift 1
84 #define ImplicitOps (OpImplicit << DstShift)
85 #define DstReg (OpReg << DstShift)
86 #define DstMem (OpMem << DstShift)
87 #define DstAcc (OpAcc << DstShift)
88 #define DstDI (OpDI << DstShift)
89 #define DstMem64 (OpMem64 << DstShift)
90 #define DstMem16 (OpMem16 << DstShift)
91 #define DstImmUByte (OpImmUByte << DstShift)
92 #define DstDX (OpDX << DstShift)
93 #define DstAccLo (OpAccLo << DstShift)
94 #define DstMask (OpMask << DstShift)
95 /* Source operand type. */
96 #define SrcShift 6
97 #define SrcNone (OpNone << SrcShift)
98 #define SrcReg (OpReg << SrcShift)
99 #define SrcMem (OpMem << SrcShift)
100 #define SrcMem16 (OpMem16 << SrcShift)
101 #define SrcMem32 (OpMem32 << SrcShift)
102 #define SrcImm (OpImm << SrcShift)
103 #define SrcImmByte (OpImmByte << SrcShift)
104 #define SrcOne (OpOne << SrcShift)
105 #define SrcImmUByte (OpImmUByte << SrcShift)
106 #define SrcImmU (OpImmU << SrcShift)
107 #define SrcSI (OpSI << SrcShift)
108 #define SrcXLat (OpXLat << SrcShift)
109 #define SrcImmFAddr (OpImmFAddr << SrcShift)
110 #define SrcMemFAddr (OpMemFAddr << SrcShift)
111 #define SrcAcc (OpAcc << SrcShift)
112 #define SrcImmU16 (OpImmU16 << SrcShift)
113 #define SrcImm64 (OpImm64 << SrcShift)
114 #define SrcDX (OpDX << SrcShift)
115 #define SrcMem8 (OpMem8 << SrcShift)
116 #define SrcAccHi (OpAccHi << SrcShift)
117 #define SrcMask (OpMask << SrcShift)
118 #define BitOp (1<<11)
119 #define MemAbs (1<<12) /* Memory operand is absolute displacement */
120 #define String (1<<13) /* String instruction (rep capable) */
121 #define Stack (1<<14) /* Stack instruction (push/pop) */
122 #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
123 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
124 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
125 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
126 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
127 #define Escape (5<<15) /* Escape to coprocessor instruction */
128 #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
129 #define ModeDual (7<<15) /* Different instruction for 32/64 bit */
130 #define Sse (1<<18) /* SSE Vector instruction */
131 /* Generic ModRM decode. */
132 #define ModRM (1<<19)
133 /* Destination is only written; never read. */
134 #define Mov (1<<20)
135 /* Misc flags */
136 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
137 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
138 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
139 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
140 #define Undefined (1<<25) /* No Such Instruction */
141 #define Lock (1<<26) /* lock prefix is allowed for the instruction */
142 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
143 #define No64 (1<<28)
144 #define PageTable (1 << 29) /* instruction used to write page table */
145 #define NotImpl (1 << 30) /* instruction is not implemented */
146 /* Source 2 operand type */
147 #define Src2Shift (31)
148 #define Src2None (OpNone << Src2Shift)
149 #define Src2Mem (OpMem << Src2Shift)
150 #define Src2CL (OpCL << Src2Shift)
151 #define Src2ImmByte (OpImmByte << Src2Shift)
152 #define Src2One (OpOne << Src2Shift)
153 #define Src2Imm (OpImm << Src2Shift)
154 #define Src2ES (OpES << Src2Shift)
155 #define Src2CS (OpCS << Src2Shift)
156 #define Src2SS (OpSS << Src2Shift)
157 #define Src2DS (OpDS << Src2Shift)
158 #define Src2FS (OpFS << Src2Shift)
159 #define Src2GS (OpGS << Src2Shift)
160 #define Src2Mask (OpMask << Src2Shift)
161 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
162 #define AlignMask ((u64)7 << 41)
163 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
164 #define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */
165 #define Avx ((u64)3 << 41) /* Advanced Vector Extensions */
166 #define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */
167 #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
168 #define NoWrite ((u64)1 << 45) /* No writeback */
169 #define SrcWrite ((u64)1 << 46) /* Write back src operand */
170 #define NoMod ((u64)1 << 47) /* Mod field is ignored */
171 #define Intercept ((u64)1 << 48) /* Has valid intercept field */
172 #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
173 #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
174 #define NearBranch ((u64)1 << 52) /* Near branches */
175 #define No16 ((u64)1 << 53) /* No 16 bit operand */
176 #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
177 #define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */
178
179 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
180
181 #define X2(x...) x, x
182 #define X3(x...) X2(x), x
183 #define X4(x...) X2(x), X2(x)
184 #define X5(x...) X4(x), x
185 #define X6(x...) X4(x), X2(x)
186 #define X7(x...) X4(x), X3(x)
187 #define X8(x...) X4(x), X4(x)
188 #define X16(x...) X8(x), X8(x)
189
190 #define NR_FASTOP (ilog2(sizeof(ulong)) + 1)
191 #define FASTOP_SIZE 8
192
193 struct opcode {
194 u64 flags : 56;
195 u64 intercept : 8;
196 union {
197 int (*execute)(struct x86_emulate_ctxt *ctxt);
198 const struct opcode *group;
199 const struct group_dual *gdual;
200 const struct gprefix *gprefix;
201 const struct escape *esc;
202 const struct instr_dual *idual;
203 const struct mode_dual *mdual;
204 void (*fastop)(struct fastop *fake);
205 } u;
206 int (*check_perm)(struct x86_emulate_ctxt *ctxt);
207 };
208
209 struct group_dual {
210 struct opcode mod012[8];
211 struct opcode mod3[8];
212 };
213
214 struct gprefix {
215 struct opcode pfx_no;
216 struct opcode pfx_66;
217 struct opcode pfx_f2;
218 struct opcode pfx_f3;
219 };
220
221 struct escape {
222 struct opcode op[8];
223 struct opcode high[64];
224 };
225
226 struct instr_dual {
227 struct opcode mod012;
228 struct opcode mod3;
229 };
230
231 struct mode_dual {
232 struct opcode mode32;
233 struct opcode mode64;
234 };
235
236 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
237
238 enum x86_transfer_type {
239 X86_TRANSFER_NONE,
240 X86_TRANSFER_CALL_JMP,
241 X86_TRANSFER_RET,
242 X86_TRANSFER_TASK_SWITCH,
243 };
244
245 static ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr)
246 {
247 if (!(ctxt->regs_valid & (1 << nr))) {
248 ctxt->regs_valid |= 1 << nr;
249 ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr);
250 }
251 return ctxt->_regs[nr];
252 }
253
254 static ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr)
255 {
256 ctxt->regs_valid |= 1 << nr;
257 ctxt->regs_dirty |= 1 << nr;
258 return &ctxt->_regs[nr];
259 }
260
261 static ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr)
262 {
263 reg_read(ctxt, nr);
264 return reg_write(ctxt, nr);
265 }
266
267 static void writeback_registers(struct x86_emulate_ctxt *ctxt)
268 {
269 unsigned reg;
270
271 for_each_set_bit(reg, (ulong *)&ctxt->regs_dirty, 16)
272 ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
273 }
274
275 static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
276 {
277 ctxt->regs_dirty = 0;
278 ctxt->regs_valid = 0;
279 }
280
281 /*
282 * These EFLAGS bits are restored from saved value during emulation, and
283 * any changes are written back to the saved value after emulation.
284 */
285 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
286 X86_EFLAGS_PF|X86_EFLAGS_CF)
287
288 #ifdef CONFIG_X86_64
289 #define ON64(x) x
290 #else
291 #define ON64(x)
292 #endif
293
294 /*
295 * fastop functions have a special calling convention:
296 *
297 * dst: rax (in/out)
298 * src: rdx (in/out)
299 * src2: rcx (in)
300 * flags: rflags (in/out)
301 * ex: rsi (in:fastop pointer, out:zero if exception)
302 *
303 * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
304 * different operand sizes can be reached by calculation, rather than a jump
305 * table (which would be bigger than the code).
306 */
307 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop);
308
309 #define __FOP_FUNC(name) \
310 ".align " __stringify(FASTOP_SIZE) " \n\t" \
311 ".type " name ", @function \n\t" \
312 name ":\n\t"
313
314 #define FOP_FUNC(name) \
315 __FOP_FUNC(#name)
316
317 #define __FOP_RET(name) \
318 "ret \n\t" \
319 ".size " name ", .-" name "\n\t"
320
321 #define FOP_RET(name) \
322 __FOP_RET(#name)
323
324 #define FOP_START(op) \
325 extern void em_##op(struct fastop *fake); \
326 asm(".pushsection .text, \"ax\" \n\t" \
327 ".global em_" #op " \n\t" \
328 ".align " __stringify(FASTOP_SIZE) " \n\t" \
329 "em_" #op ":\n\t"
330
331 #define FOP_END \
332 ".popsection")
333
334 #define __FOPNOP(name) \
335 __FOP_FUNC(name) \
336 __FOP_RET(name)
337
338 #define FOPNOP() \
339 __FOPNOP(__stringify(__UNIQUE_ID(nop)))
340
341 #define FOP1E(op, dst) \
342 __FOP_FUNC(#op "_" #dst) \
343 "10: " #op " %" #dst " \n\t" \
344 __FOP_RET(#op "_" #dst)
345
346 #define FOP1EEX(op, dst) \
347 FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception)
348
349 #define FASTOP1(op) \
350 FOP_START(op) \
351 FOP1E(op##b, al) \
352 FOP1E(op##w, ax) \
353 FOP1E(op##l, eax) \
354 ON64(FOP1E(op##q, rax)) \
355 FOP_END
356
357 /* 1-operand, using src2 (for MUL/DIV r/m) */
358 #define FASTOP1SRC2(op, name) \
359 FOP_START(name) \
360 FOP1E(op, cl) \
361 FOP1E(op, cx) \
362 FOP1E(op, ecx) \
363 ON64(FOP1E(op, rcx)) \
364 FOP_END
365
366 /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
367 #define FASTOP1SRC2EX(op, name) \
368 FOP_START(name) \
369 FOP1EEX(op, cl) \
370 FOP1EEX(op, cx) \
371 FOP1EEX(op, ecx) \
372 ON64(FOP1EEX(op, rcx)) \
373 FOP_END
374
375 #define FOP2E(op, dst, src) \
376 __FOP_FUNC(#op "_" #dst "_" #src) \
377 #op " %" #src ", %" #dst " \n\t" \
378 __FOP_RET(#op "_" #dst "_" #src)
379
380 #define FASTOP2(op) \
381 FOP_START(op) \
382 FOP2E(op##b, al, dl) \
383 FOP2E(op##w, ax, dx) \
384 FOP2E(op##l, eax, edx) \
385 ON64(FOP2E(op##q, rax, rdx)) \
386 FOP_END
387
388 /* 2 operand, word only */
389 #define FASTOP2W(op) \
390 FOP_START(op) \
391 FOPNOP() \
392 FOP2E(op##w, ax, dx) \
393 FOP2E(op##l, eax, edx) \
394 ON64(FOP2E(op##q, rax, rdx)) \
395 FOP_END
396
397 /* 2 operand, src is CL */
398 #define FASTOP2CL(op) \
399 FOP_START(op) \
400 FOP2E(op##b, al, cl) \
401 FOP2E(op##w, ax, cl) \
402 FOP2E(op##l, eax, cl) \
403 ON64(FOP2E(op##q, rax, cl)) \
404 FOP_END
405
406 /* 2 operand, src and dest are reversed */
407 #define FASTOP2R(op, name) \
408 FOP_START(name) \
409 FOP2E(op##b, dl, al) \
410 FOP2E(op##w, dx, ax) \
411 FOP2E(op##l, edx, eax) \
412 ON64(FOP2E(op##q, rdx, rax)) \
413 FOP_END
414
415 #define FOP3E(op, dst, src, src2) \
416 __FOP_FUNC(#op "_" #dst "_" #src "_" #src2) \
417 #op " %" #src2 ", %" #src ", %" #dst " \n\t"\
418 __FOP_RET(#op "_" #dst "_" #src "_" #src2)
419
420 /* 3-operand, word-only, src2=cl */
421 #define FASTOP3WCL(op) \
422 FOP_START(op) \
423 FOPNOP() \
424 FOP3E(op##w, ax, dx, cl) \
425 FOP3E(op##l, eax, edx, cl) \
426 ON64(FOP3E(op##q, rax, rdx, cl)) \
427 FOP_END
428
429 /* Special case for SETcc - 1 instruction per cc */
430 #define FOP_SETCC(op) \
431 ".align 4 \n\t" \
432 ".type " #op ", @function \n\t" \
433 #op ": \n\t" \
434 #op " %al \n\t" \
435 __FOP_RET(#op)
436
437 asm(".pushsection .fixup, \"ax\"\n"
438 ".global kvm_fastop_exception \n"
439 "kvm_fastop_exception: xor %esi, %esi; ret\n"
440 ".popsection");
441
442 FOP_START(setcc)
443 FOP_SETCC(seto)
444 FOP_SETCC(setno)
445 FOP_SETCC(setc)
446 FOP_SETCC(setnc)
447 FOP_SETCC(setz)
448 FOP_SETCC(setnz)
449 FOP_SETCC(setbe)
450 FOP_SETCC(setnbe)
451 FOP_SETCC(sets)
452 FOP_SETCC(setns)
453 FOP_SETCC(setp)
454 FOP_SETCC(setnp)
455 FOP_SETCC(setl)
456 FOP_SETCC(setnl)
457 FOP_SETCC(setle)
458 FOP_SETCC(setnle)
459 FOP_END;
460
461 FOP_START(salc)
462 FOP_FUNC(salc)
463 "pushf; sbb %al, %al; popf \n\t"
464 FOP_RET(salc)
465 FOP_END;
466
467 /*
468 * XXX: inoutclob user must know where the argument is being expanded.
469 * Relying on CONFIG_CC_HAS_ASM_GOTO would allow us to remove _fault.
470 */
471 #define asm_safe(insn, inoutclob...) \
472 ({ \
473 int _fault = 0; \
474 \
475 asm volatile("1:" insn "\n" \
476 "2:\n" \
477 ".pushsection .fixup, \"ax\"\n" \
478 "3: movl $1, %[_fault]\n" \
479 " jmp 2b\n" \
480 ".popsection\n" \
481 _ASM_EXTABLE(1b, 3b) \
482 : [_fault] "+qm"(_fault) inoutclob ); \
483 \
484 _fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
485 })
486
487 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
488 enum x86_intercept intercept,
489 enum x86_intercept_stage stage)
490 {
491 struct x86_instruction_info info = {
492 .intercept = intercept,
493 .rep_prefix = ctxt->rep_prefix,
494 .modrm_mod = ctxt->modrm_mod,
495 .modrm_reg = ctxt->modrm_reg,
496 .modrm_rm = ctxt->modrm_rm,
497 .src_val = ctxt->src.val64,
498 .dst_val = ctxt->dst.val64,
499 .src_bytes = ctxt->src.bytes,
500 .dst_bytes = ctxt->dst.bytes,
501 .ad_bytes = ctxt->ad_bytes,
502 .next_rip = ctxt->eip,
503 };
504
505 return ctxt->ops->intercept(ctxt, &info, stage);
506 }
507
508 static void assign_masked(ulong *dest, ulong src, ulong mask)
509 {
510 *dest = (*dest & ~mask) | (src & mask);
511 }
512
513 static void assign_register(unsigned long *reg, u64 val, int bytes)
514 {
515 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
516 switch (bytes) {
517 case 1:
518 *(u8 *)reg = (u8)val;
519 break;
520 case 2:
521 *(u16 *)reg = (u16)val;
522 break;
523 case 4:
524 *reg = (u32)val;
525 break; /* 64b: zero-extend */
526 case 8:
527 *reg = val;
528 break;
529 }
530 }
531
532 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
533 {
534 return (1UL << (ctxt->ad_bytes << 3)) - 1;
535 }
536
537 static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
538 {
539 u16 sel;
540 struct desc_struct ss;
541
542 if (ctxt->mode == X86EMUL_MODE_PROT64)
543 return ~0UL;
544 ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
545 return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
546 }
547
548 static int stack_size(struct x86_emulate_ctxt *ctxt)
549 {
550 return (__fls(stack_mask(ctxt)) + 1) >> 3;
551 }
552
553 /* Access/update address held in a register, based on addressing mode. */
554 static inline unsigned long
555 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
556 {
557 if (ctxt->ad_bytes == sizeof(unsigned long))
558 return reg;
559 else
560 return reg & ad_mask(ctxt);
561 }
562
563 static inline unsigned long
564 register_address(struct x86_emulate_ctxt *ctxt, int reg)
565 {
566 return address_mask(ctxt, reg_read(ctxt, reg));
567 }
568
569 static void masked_increment(ulong *reg, ulong mask, int inc)
570 {
571 assign_masked(reg, *reg + inc, mask);
572 }
573
574 static inline void
575 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
576 {
577 ulong *preg = reg_rmw(ctxt, reg);
578
579 assign_register(preg, *preg + inc, ctxt->ad_bytes);
580 }
581
582 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
583 {
584 masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
585 }
586
587 static u32 desc_limit_scaled(struct desc_struct *desc)
588 {
589 u32 limit = get_desc_limit(desc);
590
591 return desc->g ? (limit << 12) | 0xfff : limit;
592 }
593
594 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
595 {
596 if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
597 return 0;
598
599 return ctxt->ops->get_cached_segment_base(ctxt, seg);
600 }
601
602 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
603 u32 error, bool valid)
604 {
605 WARN_ON(vec > 0x1f);
606 ctxt->exception.vector = vec;
607 ctxt->exception.error_code = error;
608 ctxt->exception.error_code_valid = valid;
609 return X86EMUL_PROPAGATE_FAULT;
610 }
611
612 static int emulate_db(struct x86_emulate_ctxt *ctxt)
613 {
614 return emulate_exception(ctxt, DB_VECTOR, 0, false);
615 }
616
617 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
618 {
619 return emulate_exception(ctxt, GP_VECTOR, err, true);
620 }
621
622 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
623 {
624 return emulate_exception(ctxt, SS_VECTOR, err, true);
625 }
626
627 static int emulate_ud(struct x86_emulate_ctxt *ctxt)
628 {
629 return emulate_exception(ctxt, UD_VECTOR, 0, false);
630 }
631
632 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
633 {
634 return emulate_exception(ctxt, TS_VECTOR, err, true);
635 }
636
637 static int emulate_de(struct x86_emulate_ctxt *ctxt)
638 {
639 return emulate_exception(ctxt, DE_VECTOR, 0, false);
640 }
641
642 static int emulate_nm(struct x86_emulate_ctxt *ctxt)
643 {
644 return emulate_exception(ctxt, NM_VECTOR, 0, false);
645 }
646
647 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
648 {
649 u16 selector;
650 struct desc_struct desc;
651
652 ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
653 return selector;
654 }
655
656 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
657 unsigned seg)
658 {
659 u16 dummy;
660 u32 base3;
661 struct desc_struct desc;
662
663 ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
664 ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
665 }
666
667 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
668 {
669 return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
670 }
671
672 static inline bool emul_is_noncanonical_address(u64 la,
673 struct x86_emulate_ctxt *ctxt)
674 {
675 return get_canonical(la, ctxt_virt_addr_bits(ctxt)) != la;
676 }
677
678 /*
679 * x86 defines three classes of vector instructions: explicitly
680 * aligned, explicitly unaligned, and the rest, which change behaviour
681 * depending on whether they're AVX encoded or not.
682 *
683 * Also included is CMPXCHG16B which is not a vector instruction, yet it is
684 * subject to the same check. FXSAVE and FXRSTOR are checked here too as their
685 * 512 bytes of data must be aligned to a 16 byte boundary.
686 */
687 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
688 {
689 u64 alignment = ctxt->d & AlignMask;
690
691 if (likely(size < 16))
692 return 1;
693
694 switch (alignment) {
695 case Unaligned:
696 case Avx:
697 return 1;
698 case Aligned16:
699 return 16;
700 case Aligned:
701 default:
702 return size;
703 }
704 }
705
706 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
707 struct segmented_address addr,
708 unsigned *max_size, unsigned size,
709 bool write, bool fetch,
710 enum x86emul_mode mode, ulong *linear)
711 {
712 struct desc_struct desc;
713 bool usable;
714 ulong la;
715 u32 lim;
716 u16 sel;
717 u8 va_bits;
718
719 la = seg_base(ctxt, addr.seg) + addr.ea;
720 *max_size = 0;
721 switch (mode) {
722 case X86EMUL_MODE_PROT64:
723 *linear = la;
724 va_bits = ctxt_virt_addr_bits(ctxt);
725 if (get_canonical(la, va_bits) != la)
726 goto bad;
727
728 *max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
729 if (size > *max_size)
730 goto bad;
731 break;
732 default:
733 *linear = la = (u32)la;
734 usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
735 addr.seg);
736 if (!usable)
737 goto bad;
738 /* code segment in protected mode or read-only data segment */
739 if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8))
740 || !(desc.type & 2)) && write)
741 goto bad;
742 /* unreadable code segment */
743 if (!fetch && (desc.type & 8) && !(desc.type & 2))
744 goto bad;
745 lim = desc_limit_scaled(&desc);
746 if (!(desc.type & 8) && (desc.type & 4)) {
747 /* expand-down segment */
748 if (addr.ea <= lim)
749 goto bad;
750 lim = desc.d ? 0xffffffff : 0xffff;
751 }
752 if (addr.ea > lim)
753 goto bad;
754 if (lim == 0xffffffff)
755 *max_size = ~0u;
756 else {
757 *max_size = (u64)lim + 1 - addr.ea;
758 if (size > *max_size)
759 goto bad;
760 }
761 break;
762 }
763 if (la & (insn_alignment(ctxt, size) - 1))
764 return emulate_gp(ctxt, 0);
765 return X86EMUL_CONTINUE;
766 bad:
767 if (addr.seg == VCPU_SREG_SS)
768 return emulate_ss(ctxt, 0);
769 else
770 return emulate_gp(ctxt, 0);
771 }
772
773 static int linearize(struct x86_emulate_ctxt *ctxt,
774 struct segmented_address addr,
775 unsigned size, bool write,
776 ulong *linear)
777 {
778 unsigned max_size;
779 return __linearize(ctxt, addr, &max_size, size, write, false,
780 ctxt->mode, linear);
781 }
782
783 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst,
784 enum x86emul_mode mode)
785 {
786 ulong linear;
787 int rc;
788 unsigned max_size;
789 struct segmented_address addr = { .seg = VCPU_SREG_CS,
790 .ea = dst };
791
792 if (ctxt->op_bytes != sizeof(unsigned long))
793 addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
794 rc = __linearize(ctxt, addr, &max_size, 1, false, true, mode, &linear);
795 if (rc == X86EMUL_CONTINUE)
796 ctxt->_eip = addr.ea;
797 return rc;
798 }
799
800 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
801 {
802 return assign_eip(ctxt, dst, ctxt->mode);
803 }
804
805 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst,
806 const struct desc_struct *cs_desc)
807 {
808 enum x86emul_mode mode = ctxt->mode;
809 int rc;
810
811 #ifdef CONFIG_X86_64
812 if (ctxt->mode >= X86EMUL_MODE_PROT16) {
813 if (cs_desc->l) {
814 u64 efer = 0;
815
816 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
817 if (efer & EFER_LMA)
818 mode = X86EMUL_MODE_PROT64;
819 } else
820 mode = X86EMUL_MODE_PROT32; /* temporary value */
821 }
822 #endif
823 if (mode == X86EMUL_MODE_PROT16 || mode == X86EMUL_MODE_PROT32)
824 mode = cs_desc->d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
825 rc = assign_eip(ctxt, dst, mode);
826 if (rc == X86EMUL_CONTINUE)
827 ctxt->mode = mode;
828 return rc;
829 }
830
831 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
832 {
833 return assign_eip_near(ctxt, ctxt->_eip + rel);
834 }
835
836 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear,
837 void *data, unsigned size)
838 {
839 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true);
840 }
841
842 static int linear_write_system(struct x86_emulate_ctxt *ctxt,
843 ulong linear, void *data,
844 unsigned int size)
845 {
846 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true);
847 }
848
849 static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
850 struct segmented_address addr,
851 void *data,
852 unsigned size)
853 {
854 int rc;
855 ulong linear;
856
857 rc = linearize(ctxt, addr, size, false, &linear);
858 if (rc != X86EMUL_CONTINUE)
859 return rc;
860 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false);
861 }
862
863 static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
864 struct segmented_address addr,
865 void *data,
866 unsigned int size)
867 {
868 int rc;
869 ulong linear;
870
871 rc = linearize(ctxt, addr, size, true, &linear);
872 if (rc != X86EMUL_CONTINUE)
873 return rc;
874 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false);
875 }
876
877 /*
878 * Prefetch the remaining bytes of the instruction without crossing page
879 * boundary if they are not in fetch_cache yet.
880 */
881 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
882 {
883 int rc;
884 unsigned size, max_size;
885 unsigned long linear;
886 int cur_size = ctxt->fetch.end - ctxt->fetch.data;
887 struct segmented_address addr = { .seg = VCPU_SREG_CS,
888 .ea = ctxt->eip + cur_size };
889
890 /*
891 * We do not know exactly how many bytes will be needed, and
892 * __linearize is expensive, so fetch as much as possible. We
893 * just have to avoid going beyond the 15 byte limit, the end
894 * of the segment, or the end of the page.
895 *
896 * __linearize is called with size 0 so that it does not do any
897 * boundary check itself. Instead, we use max_size to check
898 * against op_size.
899 */
900 rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode,
901 &linear);
902 if (unlikely(rc != X86EMUL_CONTINUE))
903 return rc;
904
905 size = min_t(unsigned, 15UL ^ cur_size, max_size);
906 size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
907
908 /*
909 * One instruction can only straddle two pages,
910 * and one has been loaded at the beginning of
911 * x86_decode_insn. So, if not enough bytes
912 * still, we must have hit the 15-byte boundary.
913 */
914 if (unlikely(size < op_size))
915 return emulate_gp(ctxt, 0);
916
917 rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
918 size, &ctxt->exception);
919 if (unlikely(rc != X86EMUL_CONTINUE))
920 return rc;
921 ctxt->fetch.end += size;
922 return X86EMUL_CONTINUE;
923 }
924
925 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
926 unsigned size)
927 {
928 unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
929
930 if (unlikely(done_size < size))
931 return __do_insn_fetch_bytes(ctxt, size - done_size);
932 else
933 return X86EMUL_CONTINUE;
934 }
935
936 /* Fetch next part of the instruction being emulated. */
937 #define insn_fetch(_type, _ctxt) \
938 ({ _type _x; \
939 \
940 rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
941 if (rc != X86EMUL_CONTINUE) \
942 goto done; \
943 ctxt->_eip += sizeof(_type); \
944 memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \
945 ctxt->fetch.ptr += sizeof(_type); \
946 _x; \
947 })
948
949 #define insn_fetch_arr(_arr, _size, _ctxt) \
950 ({ \
951 rc = do_insn_fetch_bytes(_ctxt, _size); \
952 if (rc != X86EMUL_CONTINUE) \
953 goto done; \
954 ctxt->_eip += (_size); \
955 memcpy(_arr, ctxt->fetch.ptr, _size); \
956 ctxt->fetch.ptr += (_size); \
957 })
958
959 /*
960 * Given the 'reg' portion of a ModRM byte, and a register block, return a
961 * pointer into the block that addresses the relevant register.
962 * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
963 */
964 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
965 int byteop)
966 {
967 void *p;
968 int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
969
970 if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
971 p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
972 else
973 p = reg_rmw(ctxt, modrm_reg);
974 return p;
975 }
976
977 static int read_descriptor(struct x86_emulate_ctxt *ctxt,
978 struct segmented_address addr,
979 u16 *size, unsigned long *address, int op_bytes)
980 {
981 int rc;
982
983 if (op_bytes == 2)
984 op_bytes = 3;
985 *address = 0;
986 rc = segmented_read_std(ctxt, addr, size, 2);
987 if (rc != X86EMUL_CONTINUE)
988 return rc;
989 addr.ea += 2;
990 rc = segmented_read_std(ctxt, addr, address, op_bytes);
991 return rc;
992 }
993
994 FASTOP2(add);
995 FASTOP2(or);
996 FASTOP2(adc);
997 FASTOP2(sbb);
998 FASTOP2(and);
999 FASTOP2(sub);
1000 FASTOP2(xor);
1001 FASTOP2(cmp);
1002 FASTOP2(test);
1003
1004 FASTOP1SRC2(mul, mul_ex);
1005 FASTOP1SRC2(imul, imul_ex);
1006 FASTOP1SRC2EX(div, div_ex);
1007 FASTOP1SRC2EX(idiv, idiv_ex);
1008
1009 FASTOP3WCL(shld);
1010 FASTOP3WCL(shrd);
1011
1012 FASTOP2W(imul);
1013
1014 FASTOP1(not);
1015 FASTOP1(neg);
1016 FASTOP1(inc);
1017 FASTOP1(dec);
1018
1019 FASTOP2CL(rol);
1020 FASTOP2CL(ror);
1021 FASTOP2CL(rcl);
1022 FASTOP2CL(rcr);
1023 FASTOP2CL(shl);
1024 FASTOP2CL(shr);
1025 FASTOP2CL(sar);
1026
1027 FASTOP2W(bsf);
1028 FASTOP2W(bsr);
1029 FASTOP2W(bt);
1030 FASTOP2W(bts);
1031 FASTOP2W(btr);
1032 FASTOP2W(btc);
1033
1034 FASTOP2(xadd);
1035
1036 FASTOP2R(cmp, cmp_r);
1037
1038 static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
1039 {
1040 /* If src is zero, do not writeback, but update flags */
1041 if (ctxt->src.val == 0)
1042 ctxt->dst.type = OP_NONE;
1043 return fastop(ctxt, em_bsf);
1044 }
1045
1046 static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
1047 {
1048 /* If src is zero, do not writeback, but update flags */
1049 if (ctxt->src.val == 0)
1050 ctxt->dst.type = OP_NONE;
1051 return fastop(ctxt, em_bsr);
1052 }
1053
1054 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
1055 {
1056 u8 rc;
1057 void (*fop)(void) = (void *)em_setcc + 4 * (condition & 0xf);
1058
1059 flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
1060 asm("push %[flags]; popf; " CALL_NOSPEC
1061 : "=a"(rc) : [thunk_target]"r"(fop), [flags]"r"(flags));
1062 return rc;
1063 }
1064
1065 static void fetch_register_operand(struct operand *op)
1066 {
1067 switch (op->bytes) {
1068 case 1:
1069 op->val = *(u8 *)op->addr.reg;
1070 break;
1071 case 2:
1072 op->val = *(u16 *)op->addr.reg;
1073 break;
1074 case 4:
1075 op->val = *(u32 *)op->addr.reg;
1076 break;
1077 case 8:
1078 op->val = *(u64 *)op->addr.reg;
1079 break;
1080 }
1081 }
1082
1083 static int em_fninit(struct x86_emulate_ctxt *ctxt)
1084 {
1085 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1086 return emulate_nm(ctxt);
1087
1088 kvm_fpu_get();
1089 asm volatile("fninit");
1090 kvm_fpu_put();
1091 return X86EMUL_CONTINUE;
1092 }
1093
1094 static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1095 {
1096 u16 fcw;
1097
1098 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1099 return emulate_nm(ctxt);
1100
1101 kvm_fpu_get();
1102 asm volatile("fnstcw %0": "+m"(fcw));
1103 kvm_fpu_put();
1104
1105 ctxt->dst.val = fcw;
1106
1107 return X86EMUL_CONTINUE;
1108 }
1109
1110 static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1111 {
1112 u16 fsw;
1113
1114 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1115 return emulate_nm(ctxt);
1116
1117 kvm_fpu_get();
1118 asm volatile("fnstsw %0": "+m"(fsw));
1119 kvm_fpu_put();
1120
1121 ctxt->dst.val = fsw;
1122
1123 return X86EMUL_CONTINUE;
1124 }
1125
1126 static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1127 struct operand *op)
1128 {
1129 unsigned reg = ctxt->modrm_reg;
1130
1131 if (!(ctxt->d & ModRM))
1132 reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
1133
1134 if (ctxt->d & Sse) {
1135 op->type = OP_XMM;
1136 op->bytes = 16;
1137 op->addr.xmm = reg;
1138 kvm_read_sse_reg(reg, &op->vec_val);
1139 return;
1140 }
1141 if (ctxt->d & Mmx) {
1142 reg &= 7;
1143 op->type = OP_MM;
1144 op->bytes = 8;
1145 op->addr.mm = reg;
1146 return;
1147 }
1148
1149 op->type = OP_REG;
1150 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1151 op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1152
1153 fetch_register_operand(op);
1154 op->orig_val = op->val;
1155 }
1156
1157 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1158 {
1159 if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1160 ctxt->modrm_seg = VCPU_SREG_SS;
1161 }
1162
1163 static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1164 struct operand *op)
1165 {
1166 u8 sib;
1167 int index_reg, base_reg, scale;
1168 int rc = X86EMUL_CONTINUE;
1169 ulong modrm_ea = 0;
1170
1171 ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
1172 index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
1173 base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
1174
1175 ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1176 ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1177 ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1178 ctxt->modrm_seg = VCPU_SREG_DS;
1179
1180 if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1181 op->type = OP_REG;
1182 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1183 op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
1184 ctxt->d & ByteOp);
1185 if (ctxt->d & Sse) {
1186 op->type = OP_XMM;
1187 op->bytes = 16;
1188 op->addr.xmm = ctxt->modrm_rm;
1189 kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val);
1190 return rc;
1191 }
1192 if (ctxt->d & Mmx) {
1193 op->type = OP_MM;
1194 op->bytes = 8;
1195 op->addr.mm = ctxt->modrm_rm & 7;
1196 return rc;
1197 }
1198 fetch_register_operand(op);
1199 return rc;
1200 }
1201
1202 op->type = OP_MEM;
1203
1204 if (ctxt->ad_bytes == 2) {
1205 unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1206 unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1207 unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1208 unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1209
1210 /* 16-bit ModR/M decode. */
1211 switch (ctxt->modrm_mod) {
1212 case 0:
1213 if (ctxt->modrm_rm == 6)
1214 modrm_ea += insn_fetch(u16, ctxt);
1215 break;
1216 case 1:
1217 modrm_ea += insn_fetch(s8, ctxt);
1218 break;
1219 case 2:
1220 modrm_ea += insn_fetch(u16, ctxt);
1221 break;
1222 }
1223 switch (ctxt->modrm_rm) {
1224 case 0:
1225 modrm_ea += bx + si;
1226 break;
1227 case 1:
1228 modrm_ea += bx + di;
1229 break;
1230 case 2:
1231 modrm_ea += bp + si;
1232 break;
1233 case 3:
1234 modrm_ea += bp + di;
1235 break;
1236 case 4:
1237 modrm_ea += si;
1238 break;
1239 case 5:
1240 modrm_ea += di;
1241 break;
1242 case 6:
1243 if (ctxt->modrm_mod != 0)
1244 modrm_ea += bp;
1245 break;
1246 case 7:
1247 modrm_ea += bx;
1248 break;
1249 }
1250 if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1251 (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1252 ctxt->modrm_seg = VCPU_SREG_SS;
1253 modrm_ea = (u16)modrm_ea;
1254 } else {
1255 /* 32/64-bit ModR/M decode. */
1256 if ((ctxt->modrm_rm & 7) == 4) {
1257 sib = insn_fetch(u8, ctxt);
1258 index_reg |= (sib >> 3) & 7;
1259 base_reg |= sib & 7;
1260 scale = sib >> 6;
1261
1262 if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1263 modrm_ea += insn_fetch(s32, ctxt);
1264 else {
1265 modrm_ea += reg_read(ctxt, base_reg);
1266 adjust_modrm_seg(ctxt, base_reg);
1267 /* Increment ESP on POP [ESP] */
1268 if ((ctxt->d & IncSP) &&
1269 base_reg == VCPU_REGS_RSP)
1270 modrm_ea += ctxt->op_bytes;
1271 }
1272 if (index_reg != 4)
1273 modrm_ea += reg_read(ctxt, index_reg) << scale;
1274 } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1275 modrm_ea += insn_fetch(s32, ctxt);
1276 if (ctxt->mode == X86EMUL_MODE_PROT64)
1277 ctxt->rip_relative = 1;
1278 } else {
1279 base_reg = ctxt->modrm_rm;
1280 modrm_ea += reg_read(ctxt, base_reg);
1281 adjust_modrm_seg(ctxt, base_reg);
1282 }
1283 switch (ctxt->modrm_mod) {
1284 case 1:
1285 modrm_ea += insn_fetch(s8, ctxt);
1286 break;
1287 case 2:
1288 modrm_ea += insn_fetch(s32, ctxt);
1289 break;
1290 }
1291 }
1292 op->addr.mem.ea = modrm_ea;
1293 if (ctxt->ad_bytes != 8)
1294 ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1295
1296 done:
1297 return rc;
1298 }
1299
1300 static int decode_abs(struct x86_emulate_ctxt *ctxt,
1301 struct operand *op)
1302 {
1303 int rc = X86EMUL_CONTINUE;
1304
1305 op->type = OP_MEM;
1306 switch (ctxt->ad_bytes) {
1307 case 2:
1308 op->addr.mem.ea = insn_fetch(u16, ctxt);
1309 break;
1310 case 4:
1311 op->addr.mem.ea = insn_fetch(u32, ctxt);
1312 break;
1313 case 8:
1314 op->addr.mem.ea = insn_fetch(u64, ctxt);
1315 break;
1316 }
1317 done:
1318 return rc;
1319 }
1320
1321 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1322 {
1323 long sv = 0, mask;
1324
1325 if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1326 mask = ~((long)ctxt->dst.bytes * 8 - 1);
1327
1328 if (ctxt->src.bytes == 2)
1329 sv = (s16)ctxt->src.val & (s16)mask;
1330 else if (ctxt->src.bytes == 4)
1331 sv = (s32)ctxt->src.val & (s32)mask;
1332 else
1333 sv = (s64)ctxt->src.val & (s64)mask;
1334
1335 ctxt->dst.addr.mem.ea = address_mask(ctxt,
1336 ctxt->dst.addr.mem.ea + (sv >> 3));
1337 }
1338
1339 /* only subword offset */
1340 ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1341 }
1342
1343 static int read_emulated(struct x86_emulate_ctxt *ctxt,
1344 unsigned long addr, void *dest, unsigned size)
1345 {
1346 int rc;
1347 struct read_cache *mc = &ctxt->mem_read;
1348
1349 if (mc->pos < mc->end)
1350 goto read_cached;
1351
1352 WARN_ON((mc->end + size) >= sizeof(mc->data));
1353
1354 rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1355 &ctxt->exception);
1356 if (rc != X86EMUL_CONTINUE)
1357 return rc;
1358
1359 mc->end += size;
1360
1361 read_cached:
1362 memcpy(dest, mc->data + mc->pos, size);
1363 mc->pos += size;
1364 return X86EMUL_CONTINUE;
1365 }
1366
1367 static int segmented_read(struct x86_emulate_ctxt *ctxt,
1368 struct segmented_address addr,
1369 void *data,
1370 unsigned size)
1371 {
1372 int rc;
1373 ulong linear;
1374
1375 rc = linearize(ctxt, addr, size, false, &linear);
1376 if (rc != X86EMUL_CONTINUE)
1377 return rc;
1378 return read_emulated(ctxt, linear, data, size);
1379 }
1380
1381 static int segmented_write(struct x86_emulate_ctxt *ctxt,
1382 struct segmented_address addr,
1383 const void *data,
1384 unsigned size)
1385 {
1386 int rc;
1387 ulong linear;
1388
1389 rc = linearize(ctxt, addr, size, true, &linear);
1390 if (rc != X86EMUL_CONTINUE)
1391 return rc;
1392 return ctxt->ops->write_emulated(ctxt, linear, data, size,
1393 &ctxt->exception);
1394 }
1395
1396 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1397 struct segmented_address addr,
1398 const void *orig_data, const void *data,
1399 unsigned size)
1400 {
1401 int rc;
1402 ulong linear;
1403
1404 rc = linearize(ctxt, addr, size, true, &linear);
1405 if (rc != X86EMUL_CONTINUE)
1406 return rc;
1407 return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1408 size, &ctxt->exception);
1409 }
1410
1411 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1412 unsigned int size, unsigned short port,
1413 void *dest)
1414 {
1415 struct read_cache *rc = &ctxt->io_read;
1416
1417 if (rc->pos == rc->end) { /* refill pio read ahead */
1418 unsigned int in_page, n;
1419 unsigned int count = ctxt->rep_prefix ?
1420 address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1421 in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
1422 offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1423 PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1424 n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1425 if (n == 0)
1426 n = 1;
1427 rc->pos = rc->end = 0;
1428 if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1429 return 0;
1430 rc->end = n * size;
1431 }
1432
1433 if (ctxt->rep_prefix && (ctxt->d & String) &&
1434 !(ctxt->eflags & X86_EFLAGS_DF)) {
1435 ctxt->dst.data = rc->data + rc->pos;
1436 ctxt->dst.type = OP_MEM_STR;
1437 ctxt->dst.count = (rc->end - rc->pos) / size;
1438 rc->pos = rc->end;
1439 } else {
1440 memcpy(dest, rc->data + rc->pos, size);
1441 rc->pos += size;
1442 }
1443 return 1;
1444 }
1445
1446 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1447 u16 index, struct desc_struct *desc)
1448 {
1449 struct desc_ptr dt;
1450 ulong addr;
1451
1452 ctxt->ops->get_idt(ctxt, &dt);
1453
1454 if (dt.size < index * 8 + 7)
1455 return emulate_gp(ctxt, index << 3 | 0x2);
1456
1457 addr = dt.address + index * 8;
1458 return linear_read_system(ctxt, addr, desc, sizeof(*desc));
1459 }
1460
1461 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1462 u16 selector, struct desc_ptr *dt)
1463 {
1464 const struct x86_emulate_ops *ops = ctxt->ops;
1465 u32 base3 = 0;
1466
1467 if (selector & 1 << 2) {
1468 struct desc_struct desc;
1469 u16 sel;
1470
1471 memset(dt, 0, sizeof(*dt));
1472 if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1473 VCPU_SREG_LDTR))
1474 return;
1475
1476 dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1477 dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1478 } else
1479 ops->get_gdt(ctxt, dt);
1480 }
1481
1482 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1483 u16 selector, ulong *desc_addr_p)
1484 {
1485 struct desc_ptr dt;
1486 u16 index = selector >> 3;
1487 ulong addr;
1488
1489 get_descriptor_table_ptr(ctxt, selector, &dt);
1490
1491 if (dt.size < index * 8 + 7)
1492 return emulate_gp(ctxt, selector & 0xfffc);
1493
1494 addr = dt.address + index * 8;
1495
1496 #ifdef CONFIG_X86_64
1497 if (addr >> 32 != 0) {
1498 u64 efer = 0;
1499
1500 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1501 if (!(efer & EFER_LMA))
1502 addr &= (u32)-1;
1503 }
1504 #endif
1505
1506 *desc_addr_p = addr;
1507 return X86EMUL_CONTINUE;
1508 }
1509
1510 /* allowed just for 8 bytes segments */
1511 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1512 u16 selector, struct desc_struct *desc,
1513 ulong *desc_addr_p)
1514 {
1515 int rc;
1516
1517 rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1518 if (rc != X86EMUL_CONTINUE)
1519 return rc;
1520
1521 return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc));
1522 }
1523
1524 /* allowed just for 8 bytes segments */
1525 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1526 u16 selector, struct desc_struct *desc)
1527 {
1528 int rc;
1529 ulong addr;
1530
1531 rc = get_descriptor_ptr(ctxt, selector, &addr);
1532 if (rc != X86EMUL_CONTINUE)
1533 return rc;
1534
1535 return linear_write_system(ctxt, addr, desc, sizeof(*desc));
1536 }
1537
1538 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1539 u16 selector, int seg, u8 cpl,
1540 enum x86_transfer_type transfer,
1541 struct desc_struct *desc)
1542 {
1543 struct desc_struct seg_desc, old_desc;
1544 u8 dpl, rpl;
1545 unsigned err_vec = GP_VECTOR;
1546 u32 err_code = 0;
1547 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1548 ulong desc_addr;
1549 int ret;
1550 u16 dummy;
1551 u32 base3 = 0;
1552
1553 memset(&seg_desc, 0, sizeof(seg_desc));
1554
1555 if (ctxt->mode == X86EMUL_MODE_REAL) {
1556 /* set real mode segment descriptor (keep limit etc. for
1557 * unreal mode) */
1558 ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1559 set_desc_base(&seg_desc, selector << 4);
1560 goto load;
1561 } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1562 /* VM86 needs a clean new segment descriptor */
1563 set_desc_base(&seg_desc, selector << 4);
1564 set_desc_limit(&seg_desc, 0xffff);
1565 seg_desc.type = 3;
1566 seg_desc.p = 1;
1567 seg_desc.s = 1;
1568 seg_desc.dpl = 3;
1569 goto load;
1570 }
1571
1572 rpl = selector & 3;
1573
1574 /* TR should be in GDT only */
1575 if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1576 goto exception;
1577
1578 /* NULL selector is not valid for TR, CS and (except for long mode) SS */
1579 if (null_selector) {
1580 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
1581 goto exception;
1582
1583 if (seg == VCPU_SREG_SS) {
1584 if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
1585 goto exception;
1586
1587 /*
1588 * ctxt->ops->set_segment expects the CPL to be in
1589 * SS.DPL, so fake an expand-up 32-bit data segment.
1590 */
1591 seg_desc.type = 3;
1592 seg_desc.p = 1;
1593 seg_desc.s = 1;
1594 seg_desc.dpl = cpl;
1595 seg_desc.d = 1;
1596 seg_desc.g = 1;
1597 }
1598
1599 /* Skip all following checks */
1600 goto load;
1601 }
1602
1603 ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1604 if (ret != X86EMUL_CONTINUE)
1605 return ret;
1606
1607 err_code = selector & 0xfffc;
1608 err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1609 GP_VECTOR;
1610
1611 /* can't load system descriptor into segment selector */
1612 if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1613 if (transfer == X86_TRANSFER_CALL_JMP)
1614 return X86EMUL_UNHANDLEABLE;
1615 goto exception;
1616 }
1617
1618 if (!seg_desc.p) {
1619 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1620 goto exception;
1621 }
1622
1623 dpl = seg_desc.dpl;
1624
1625 switch (seg) {
1626 case VCPU_SREG_SS:
1627 /*
1628 * segment is not a writable data segment or segment
1629 * selector's RPL != CPL or segment selector's RPL != CPL
1630 */
1631 if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1632 goto exception;
1633 break;
1634 case VCPU_SREG_CS:
1635 if (!(seg_desc.type & 8))
1636 goto exception;
1637
1638 if (seg_desc.type & 4) {
1639 /* conforming */
1640 if (dpl > cpl)
1641 goto exception;
1642 } else {
1643 /* nonconforming */
1644 if (rpl > cpl || dpl != cpl)
1645 goto exception;
1646 }
1647 /* in long-mode d/b must be clear if l is set */
1648 if (seg_desc.d && seg_desc.l) {
1649 u64 efer = 0;
1650
1651 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1652 if (efer & EFER_LMA)
1653 goto exception;
1654 }
1655
1656 /* CS(RPL) <- CPL */
1657 selector = (selector & 0xfffc) | cpl;
1658 break;
1659 case VCPU_SREG_TR:
1660 if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1661 goto exception;
1662 old_desc = seg_desc;
1663 seg_desc.type |= 2; /* busy */
1664 ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1665 sizeof(seg_desc), &ctxt->exception);
1666 if (ret != X86EMUL_CONTINUE)
1667 return ret;
1668 break;
1669 case VCPU_SREG_LDTR:
1670 if (seg_desc.s || seg_desc.type != 2)
1671 goto exception;
1672 break;
1673 default: /* DS, ES, FS, or GS */
1674 /*
1675 * segment is not a data or readable code segment or
1676 * ((segment is a data or nonconforming code segment)
1677 * and (both RPL and CPL > DPL))
1678 */
1679 if ((seg_desc.type & 0xa) == 0x8 ||
1680 (((seg_desc.type & 0xc) != 0xc) &&
1681 (rpl > dpl && cpl > dpl)))
1682 goto exception;
1683 break;
1684 }
1685
1686 if (seg_desc.s) {
1687 /* mark segment as accessed */
1688 if (!(seg_desc.type & 1)) {
1689 seg_desc.type |= 1;
1690 ret = write_segment_descriptor(ctxt, selector,
1691 &seg_desc);
1692 if (ret != X86EMUL_CONTINUE)
1693 return ret;
1694 }
1695 } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1696 ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3));
1697 if (ret != X86EMUL_CONTINUE)
1698 return ret;
1699 if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
1700 ((u64)base3 << 32), ctxt))
1701 return emulate_gp(ctxt, 0);
1702 }
1703 load:
1704 ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1705 if (desc)
1706 *desc = seg_desc;
1707 return X86EMUL_CONTINUE;
1708 exception:
1709 return emulate_exception(ctxt, err_vec, err_code, true);
1710 }
1711
1712 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1713 u16 selector, int seg)
1714 {
1715 u8 cpl = ctxt->ops->cpl(ctxt);
1716
1717 /*
1718 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but
1719 * they can load it at CPL<3 (Intel's manual says only LSS can,
1720 * but it's wrong).
1721 *
1722 * However, the Intel manual says that putting IST=1/DPL=3 in
1723 * an interrupt gate will result in SS=3 (the AMD manual instead
1724 * says it doesn't), so allow SS=3 in __load_segment_descriptor
1725 * and only forbid it here.
1726 */
1727 if (seg == VCPU_SREG_SS && selector == 3 &&
1728 ctxt->mode == X86EMUL_MODE_PROT64)
1729 return emulate_exception(ctxt, GP_VECTOR, 0, true);
1730
1731 return __load_segment_descriptor(ctxt, selector, seg, cpl,
1732 X86_TRANSFER_NONE, NULL);
1733 }
1734
1735 static void write_register_operand(struct operand *op)
1736 {
1737 return assign_register(op->addr.reg, op->val, op->bytes);
1738 }
1739
1740 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1741 {
1742 switch (op->type) {
1743 case OP_REG:
1744 write_register_operand(op);
1745 break;
1746 case OP_MEM:
1747 if (ctxt->lock_prefix)
1748 return segmented_cmpxchg(ctxt,
1749 op->addr.mem,
1750 &op->orig_val,
1751 &op->val,
1752 op->bytes);
1753 else
1754 return segmented_write(ctxt,
1755 op->addr.mem,
1756 &op->val,
1757 op->bytes);
1758 break;
1759 case OP_MEM_STR:
1760 return segmented_write(ctxt,
1761 op->addr.mem,
1762 op->data,
1763 op->bytes * op->count);
1764 break;
1765 case OP_XMM:
1766 kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
1767 break;
1768 case OP_MM:
1769 kvm_write_mmx_reg(op->addr.mm, &op->mm_val);
1770 break;
1771 case OP_NONE:
1772 /* no writeback */
1773 break;
1774 default:
1775 break;
1776 }
1777 return X86EMUL_CONTINUE;
1778 }
1779
1780 static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes)
1781 {
1782 struct segmented_address addr;
1783
1784 rsp_increment(ctxt, -bytes);
1785 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1786 addr.seg = VCPU_SREG_SS;
1787
1788 return segmented_write(ctxt, addr, data, bytes);
1789 }
1790
1791 static int em_push(struct x86_emulate_ctxt *ctxt)
1792 {
1793 /* Disable writeback. */
1794 ctxt->dst.type = OP_NONE;
1795 return push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1796 }
1797
1798 static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1799 void *dest, int len)
1800 {
1801 int rc;
1802 struct segmented_address addr;
1803
1804 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1805 addr.seg = VCPU_SREG_SS;
1806 rc = segmented_read(ctxt, addr, dest, len);
1807 if (rc != X86EMUL_CONTINUE)
1808 return rc;
1809
1810 rsp_increment(ctxt, len);
1811 return rc;
1812 }
1813
1814 static int em_pop(struct x86_emulate_ctxt *ctxt)
1815 {
1816 return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1817 }
1818
1819 static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1820 void *dest, int len)
1821 {
1822 int rc;
1823 unsigned long val, change_mask;
1824 int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
1825 int cpl = ctxt->ops->cpl(ctxt);
1826
1827 rc = emulate_pop(ctxt, &val, len);
1828 if (rc != X86EMUL_CONTINUE)
1829 return rc;
1830
1831 change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
1832 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
1833 X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
1834 X86_EFLAGS_AC | X86_EFLAGS_ID;
1835
1836 switch(ctxt->mode) {
1837 case X86EMUL_MODE_PROT64:
1838 case X86EMUL_MODE_PROT32:
1839 case X86EMUL_MODE_PROT16:
1840 if (cpl == 0)
1841 change_mask |= X86_EFLAGS_IOPL;
1842 if (cpl <= iopl)
1843 change_mask |= X86_EFLAGS_IF;
1844 break;
1845 case X86EMUL_MODE_VM86:
1846 if (iopl < 3)
1847 return emulate_gp(ctxt, 0);
1848 change_mask |= X86_EFLAGS_IF;
1849 break;
1850 default: /* real mode */
1851 change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
1852 break;
1853 }
1854
1855 *(unsigned long *)dest =
1856 (ctxt->eflags & ~change_mask) | (val & change_mask);
1857
1858 return rc;
1859 }
1860
1861 static int em_popf(struct x86_emulate_ctxt *ctxt)
1862 {
1863 ctxt->dst.type = OP_REG;
1864 ctxt->dst.addr.reg = &ctxt->eflags;
1865 ctxt->dst.bytes = ctxt->op_bytes;
1866 return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1867 }
1868
1869 static int em_enter(struct x86_emulate_ctxt *ctxt)
1870 {
1871 int rc;
1872 unsigned frame_size = ctxt->src.val;
1873 unsigned nesting_level = ctxt->src2.val & 31;
1874 ulong rbp;
1875
1876 if (nesting_level)
1877 return X86EMUL_UNHANDLEABLE;
1878
1879 rbp = reg_read(ctxt, VCPU_REGS_RBP);
1880 rc = push(ctxt, &rbp, stack_size(ctxt));
1881 if (rc != X86EMUL_CONTINUE)
1882 return rc;
1883 assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1884 stack_mask(ctxt));
1885 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1886 reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1887 stack_mask(ctxt));
1888 return X86EMUL_CONTINUE;
1889 }
1890
1891 static int em_leave(struct x86_emulate_ctxt *ctxt)
1892 {
1893 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1894 stack_mask(ctxt));
1895 return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1896 }
1897
1898 static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1899 {
1900 int seg = ctxt->src2.val;
1901
1902 ctxt->src.val = get_segment_selector(ctxt, seg);
1903 if (ctxt->op_bytes == 4) {
1904 rsp_increment(ctxt, -2);
1905 ctxt->op_bytes = 2;
1906 }
1907
1908 return em_push(ctxt);
1909 }
1910
1911 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1912 {
1913 int seg = ctxt->src2.val;
1914 unsigned long selector;
1915 int rc;
1916
1917 rc = emulate_pop(ctxt, &selector, 2);
1918 if (rc != X86EMUL_CONTINUE)
1919 return rc;
1920
1921 if (ctxt->modrm_reg == VCPU_SREG_SS)
1922 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
1923 if (ctxt->op_bytes > 2)
1924 rsp_increment(ctxt, ctxt->op_bytes - 2);
1925
1926 rc = load_segment_descriptor(ctxt, (u16)selector, seg);
1927 return rc;
1928 }
1929
1930 static int em_pusha(struct x86_emulate_ctxt *ctxt)
1931 {
1932 unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
1933 int rc = X86EMUL_CONTINUE;
1934 int reg = VCPU_REGS_RAX;
1935
1936 while (reg <= VCPU_REGS_RDI) {
1937 (reg == VCPU_REGS_RSP) ?
1938 (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
1939
1940 rc = em_push(ctxt);
1941 if (rc != X86EMUL_CONTINUE)
1942 return rc;
1943
1944 ++reg;
1945 }
1946
1947 return rc;
1948 }
1949
1950 static int em_pushf(struct x86_emulate_ctxt *ctxt)
1951 {
1952 ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
1953 return em_push(ctxt);
1954 }
1955
1956 static int em_popa(struct x86_emulate_ctxt *ctxt)
1957 {
1958 int rc = X86EMUL_CONTINUE;
1959 int reg = VCPU_REGS_RDI;
1960 u32 val;
1961
1962 while (reg >= VCPU_REGS_RAX) {
1963 if (reg == VCPU_REGS_RSP) {
1964 rsp_increment(ctxt, ctxt->op_bytes);
1965 --reg;
1966 }
1967
1968 rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
1969 if (rc != X86EMUL_CONTINUE)
1970 break;
1971 assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
1972 --reg;
1973 }
1974 return rc;
1975 }
1976
1977 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
1978 {
1979 const struct x86_emulate_ops *ops = ctxt->ops;
1980 int rc;
1981 struct desc_ptr dt;
1982 gva_t cs_addr;
1983 gva_t eip_addr;
1984 u16 cs, eip;
1985
1986 /* TODO: Add limit checks */
1987 ctxt->src.val = ctxt->eflags;
1988 rc = em_push(ctxt);
1989 if (rc != X86EMUL_CONTINUE)
1990 return rc;
1991
1992 ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
1993
1994 ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
1995 rc = em_push(ctxt);
1996 if (rc != X86EMUL_CONTINUE)
1997 return rc;
1998
1999 ctxt->src.val = ctxt->_eip;
2000 rc = em_push(ctxt);
2001 if (rc != X86EMUL_CONTINUE)
2002 return rc;
2003
2004 ops->get_idt(ctxt, &dt);
2005
2006 eip_addr = dt.address + (irq << 2);
2007 cs_addr = dt.address + (irq << 2) + 2;
2008
2009 rc = linear_read_system(ctxt, cs_addr, &cs, 2);
2010 if (rc != X86EMUL_CONTINUE)
2011 return rc;
2012
2013 rc = linear_read_system(ctxt, eip_addr, &eip, 2);
2014 if (rc != X86EMUL_CONTINUE)
2015 return rc;
2016
2017 rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2018 if (rc != X86EMUL_CONTINUE)
2019 return rc;
2020
2021 ctxt->_eip = eip;
2022
2023 return rc;
2024 }
2025
2026 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2027 {
2028 int rc;
2029
2030 invalidate_registers(ctxt);
2031 rc = __emulate_int_real(ctxt, irq);
2032 if (rc == X86EMUL_CONTINUE)
2033 writeback_registers(ctxt);
2034 return rc;
2035 }
2036
2037 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2038 {
2039 switch(ctxt->mode) {
2040 case X86EMUL_MODE_REAL:
2041 return __emulate_int_real(ctxt, irq);
2042 case X86EMUL_MODE_VM86:
2043 case X86EMUL_MODE_PROT16:
2044 case X86EMUL_MODE_PROT32:
2045 case X86EMUL_MODE_PROT64:
2046 default:
2047 /* Protected mode interrupts unimplemented yet */
2048 return X86EMUL_UNHANDLEABLE;
2049 }
2050 }
2051
2052 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2053 {
2054 int rc = X86EMUL_CONTINUE;
2055 unsigned long temp_eip = 0;
2056 unsigned long temp_eflags = 0;
2057 unsigned long cs = 0;
2058 unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
2059 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
2060 X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
2061 X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
2062 X86_EFLAGS_AC | X86_EFLAGS_ID |
2063 X86_EFLAGS_FIXED;
2064 unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
2065 X86_EFLAGS_VIP;
2066
2067 /* TODO: Add stack limit check */
2068
2069 rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2070
2071 if (rc != X86EMUL_CONTINUE)
2072 return rc;
2073
2074 if (temp_eip & ~0xffff)
2075 return emulate_gp(ctxt, 0);
2076
2077 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2078
2079 if (rc != X86EMUL_CONTINUE)
2080 return rc;
2081
2082 rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2083
2084 if (rc != X86EMUL_CONTINUE)
2085 return rc;
2086
2087 rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2088
2089 if (rc != X86EMUL_CONTINUE)
2090 return rc;
2091
2092 ctxt->_eip = temp_eip;
2093
2094 if (ctxt->op_bytes == 4)
2095 ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2096 else if (ctxt->op_bytes == 2) {
2097 ctxt->eflags &= ~0xffff;
2098 ctxt->eflags |= temp_eflags;
2099 }
2100
2101 ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2102 ctxt->eflags |= X86_EFLAGS_FIXED;
2103 ctxt->ops->set_nmi_mask(ctxt, false);
2104
2105 return rc;
2106 }
2107
2108 static int em_iret(struct x86_emulate_ctxt *ctxt)
2109 {
2110 switch(ctxt->mode) {
2111 case X86EMUL_MODE_REAL:
2112 return emulate_iret_real(ctxt);
2113 case X86EMUL_MODE_VM86:
2114 case X86EMUL_MODE_PROT16:
2115 case X86EMUL_MODE_PROT32:
2116 case X86EMUL_MODE_PROT64:
2117 default:
2118 /* iret from protected mode unimplemented yet */
2119 return X86EMUL_UNHANDLEABLE;
2120 }
2121 }
2122
2123 static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2124 {
2125 int rc;
2126 unsigned short sel;
2127 struct desc_struct new_desc;
2128 u8 cpl = ctxt->ops->cpl(ctxt);
2129
2130 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2131
2132 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2133 X86_TRANSFER_CALL_JMP,
2134 &new_desc);
2135 if (rc != X86EMUL_CONTINUE)
2136 return rc;
2137
2138 rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
2139 /* Error handling is not implemented. */
2140 if (rc != X86EMUL_CONTINUE)
2141 return X86EMUL_UNHANDLEABLE;
2142
2143 return rc;
2144 }
2145
2146 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2147 {
2148 return assign_eip_near(ctxt, ctxt->src.val);
2149 }
2150
2151 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2152 {
2153 int rc;
2154 long int old_eip;
2155
2156 old_eip = ctxt->_eip;
2157 rc = assign_eip_near(ctxt, ctxt->src.val);
2158 if (rc != X86EMUL_CONTINUE)
2159 return rc;
2160 ctxt->src.val = old_eip;
2161 rc = em_push(ctxt);
2162 return rc;
2163 }
2164
2165 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2166 {
2167 u64 old = ctxt->dst.orig_val64;
2168
2169 if (ctxt->dst.bytes == 16)
2170 return X86EMUL_UNHANDLEABLE;
2171
2172 if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2173 ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2174 *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2175 *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2176 ctxt->eflags &= ~X86_EFLAGS_ZF;
2177 } else {
2178 ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2179 (u32) reg_read(ctxt, VCPU_REGS_RBX);
2180
2181 ctxt->eflags |= X86_EFLAGS_ZF;
2182 }
2183 return X86EMUL_CONTINUE;
2184 }
2185
2186 static int em_ret(struct x86_emulate_ctxt *ctxt)
2187 {
2188 int rc;
2189 unsigned long eip;
2190
2191 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2192 if (rc != X86EMUL_CONTINUE)
2193 return rc;
2194
2195 return assign_eip_near(ctxt, eip);
2196 }
2197
2198 static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2199 {
2200 int rc;
2201 unsigned long eip, cs;
2202 int cpl = ctxt->ops->cpl(ctxt);
2203 struct desc_struct new_desc;
2204
2205 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2206 if (rc != X86EMUL_CONTINUE)
2207 return rc;
2208 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2209 if (rc != X86EMUL_CONTINUE)
2210 return rc;
2211 /* Outer-privilege level return is not implemented */
2212 if (ctxt->mode >= X86EMUL_MODE_PROT16 && (cs & 3) > cpl)
2213 return X86EMUL_UNHANDLEABLE;
2214 rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2215 X86_TRANSFER_RET,
2216 &new_desc);
2217 if (rc != X86EMUL_CONTINUE)
2218 return rc;
2219 rc = assign_eip_far(ctxt, eip, &new_desc);
2220 /* Error handling is not implemented. */
2221 if (rc != X86EMUL_CONTINUE)
2222 return X86EMUL_UNHANDLEABLE;
2223
2224 return rc;
2225 }
2226
2227 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2228 {
2229 int rc;
2230
2231 rc = em_ret_far(ctxt);
2232 if (rc != X86EMUL_CONTINUE)
2233 return rc;
2234 rsp_increment(ctxt, ctxt->src.val);
2235 return X86EMUL_CONTINUE;
2236 }
2237
2238 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2239 {
2240 /* Save real source value, then compare EAX against destination. */
2241 ctxt->dst.orig_val = ctxt->dst.val;
2242 ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2243 ctxt->src.orig_val = ctxt->src.val;
2244 ctxt->src.val = ctxt->dst.orig_val;
2245 fastop(ctxt, em_cmp);
2246
2247 if (ctxt->eflags & X86_EFLAGS_ZF) {
2248 /* Success: write back to memory; no update of EAX */
2249 ctxt->src.type = OP_NONE;
2250 ctxt->dst.val = ctxt->src.orig_val;
2251 } else {
2252 /* Failure: write the value we saw to EAX. */
2253 ctxt->src.type = OP_REG;
2254 ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2255 ctxt->src.val = ctxt->dst.orig_val;
2256 /* Create write-cycle to dest by writing the same value */
2257 ctxt->dst.val = ctxt->dst.orig_val;
2258 }
2259 return X86EMUL_CONTINUE;
2260 }
2261
2262 static int em_lseg(struct x86_emulate_ctxt *ctxt)
2263 {
2264 int seg = ctxt->src2.val;
2265 unsigned short sel;
2266 int rc;
2267
2268 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2269
2270 rc = load_segment_descriptor(ctxt, sel, seg);
2271 if (rc != X86EMUL_CONTINUE)
2272 return rc;
2273
2274 ctxt->dst.val = ctxt->src.val;
2275 return rc;
2276 }
2277
2278 static int emulator_has_longmode(struct x86_emulate_ctxt *ctxt)
2279 {
2280 #ifdef CONFIG_X86_64
2281 return ctxt->ops->guest_has_long_mode(ctxt);
2282 #else
2283 return false;
2284 #endif
2285 }
2286
2287 static void rsm_set_desc_flags(struct desc_struct *desc, u32 flags)
2288 {
2289 desc->g = (flags >> 23) & 1;
2290 desc->d = (flags >> 22) & 1;
2291 desc->l = (flags >> 21) & 1;
2292 desc->avl = (flags >> 20) & 1;
2293 desc->p = (flags >> 15) & 1;
2294 desc->dpl = (flags >> 13) & 3;
2295 desc->s = (flags >> 12) & 1;
2296 desc->type = (flags >> 8) & 15;
2297 }
2298
2299 static int rsm_load_seg_32(struct x86_emulate_ctxt *ctxt, const char *smstate,
2300 int n)
2301 {
2302 struct desc_struct desc;
2303 int offset;
2304 u16 selector;
2305
2306 selector = GET_SMSTATE(u32, smstate, 0x7fa8 + n * 4);
2307
2308 if (n < 3)
2309 offset = 0x7f84 + n * 12;
2310 else
2311 offset = 0x7f2c + (n - 3) * 12;
2312
2313 set_desc_base(&desc, GET_SMSTATE(u32, smstate, offset + 8));
2314 set_desc_limit(&desc, GET_SMSTATE(u32, smstate, offset + 4));
2315 rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smstate, offset));
2316 ctxt->ops->set_segment(ctxt, selector, &desc, 0, n);
2317 return X86EMUL_CONTINUE;
2318 }
2319
2320 #ifdef CONFIG_X86_64
2321 static int rsm_load_seg_64(struct x86_emulate_ctxt *ctxt, const char *smstate,
2322 int n)
2323 {
2324 struct desc_struct desc;
2325 int offset;
2326 u16 selector;
2327 u32 base3;
2328
2329 offset = 0x7e00 + n * 16;
2330
2331 selector = GET_SMSTATE(u16, smstate, offset);
2332 rsm_set_desc_flags(&desc, GET_SMSTATE(u16, smstate, offset + 2) << 8);
2333 set_desc_limit(&desc, GET_SMSTATE(u32, smstate, offset + 4));
2334 set_desc_base(&desc, GET_SMSTATE(u32, smstate, offset + 8));
2335 base3 = GET_SMSTATE(u32, smstate, offset + 12);
2336
2337 ctxt->ops->set_segment(ctxt, selector, &desc, base3, n);
2338 return X86EMUL_CONTINUE;
2339 }
2340 #endif
2341
2342 static int rsm_enter_protected_mode(struct x86_emulate_ctxt *ctxt,
2343 u64 cr0, u64 cr3, u64 cr4)
2344 {
2345 int bad;
2346 u64 pcid;
2347
2348 /* In order to later set CR4.PCIDE, CR3[11:0] must be zero. */
2349 pcid = 0;
2350 if (cr4 & X86_CR4_PCIDE) {
2351 pcid = cr3 & 0xfff;
2352 cr3 &= ~0xfff;
2353 }
2354
2355 bad = ctxt->ops->set_cr(ctxt, 3, cr3);
2356 if (bad)
2357 return X86EMUL_UNHANDLEABLE;
2358
2359 /*
2360 * First enable PAE, long mode needs it before CR0.PG = 1 is set.
2361 * Then enable protected mode. However, PCID cannot be enabled
2362 * if EFER.LMA=0, so set it separately.
2363 */
2364 bad = ctxt->ops->set_cr(ctxt, 4, cr4 & ~X86_CR4_PCIDE);
2365 if (bad)
2366 return X86EMUL_UNHANDLEABLE;
2367
2368 bad = ctxt->ops->set_cr(ctxt, 0, cr0);
2369 if (bad)
2370 return X86EMUL_UNHANDLEABLE;
2371
2372 if (cr4 & X86_CR4_PCIDE) {
2373 bad = ctxt->ops->set_cr(ctxt, 4, cr4);
2374 if (bad)
2375 return X86EMUL_UNHANDLEABLE;
2376 if (pcid) {
2377 bad = ctxt->ops->set_cr(ctxt, 3, cr3 | pcid);
2378 if (bad)
2379 return X86EMUL_UNHANDLEABLE;
2380 }
2381
2382 }
2383
2384 return X86EMUL_CONTINUE;
2385 }
2386
2387 static int rsm_load_state_32(struct x86_emulate_ctxt *ctxt,
2388 const char *smstate)
2389 {
2390 struct desc_struct desc;
2391 struct desc_ptr dt;
2392 u16 selector;
2393 u32 val, cr0, cr3, cr4;
2394 int i;
2395
2396 cr0 = GET_SMSTATE(u32, smstate, 0x7ffc);
2397 cr3 = GET_SMSTATE(u32, smstate, 0x7ff8);
2398 ctxt->eflags = GET_SMSTATE(u32, smstate, 0x7ff4) | X86_EFLAGS_FIXED;
2399 ctxt->_eip = GET_SMSTATE(u32, smstate, 0x7ff0);
2400
2401 for (i = 0; i < 8; i++)
2402 *reg_write(ctxt, i) = GET_SMSTATE(u32, smstate, 0x7fd0 + i * 4);
2403
2404 val = GET_SMSTATE(u32, smstate, 0x7fcc);
2405
2406 if (ctxt->ops->set_dr(ctxt, 6, val))
2407 return X86EMUL_UNHANDLEABLE;
2408
2409 val = GET_SMSTATE(u32, smstate, 0x7fc8);
2410
2411 if (ctxt->ops->set_dr(ctxt, 7, val))
2412 return X86EMUL_UNHANDLEABLE;
2413
2414 selector = GET_SMSTATE(u32, smstate, 0x7fc4);
2415 set_desc_base(&desc, GET_SMSTATE(u32, smstate, 0x7f64));
2416 set_desc_limit(&desc, GET_SMSTATE(u32, smstate, 0x7f60));
2417 rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smstate, 0x7f5c));
2418 ctxt->ops->set_segment(ctxt, selector, &desc, 0, VCPU_SREG_TR);
2419
2420 selector = GET_SMSTATE(u32, smstate, 0x7fc0);
2421 set_desc_base(&desc, GET_SMSTATE(u32, smstate, 0x7f80));
2422 set_desc_limit(&desc, GET_SMSTATE(u32, smstate, 0x7f7c));
2423 rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smstate, 0x7f78));
2424 ctxt->ops->set_segment(ctxt, selector, &desc, 0, VCPU_SREG_LDTR);
2425
2426 dt.address = GET_SMSTATE(u32, smstate, 0x7f74);
2427 dt.size = GET_SMSTATE(u32, smstate, 0x7f70);
2428 ctxt->ops->set_gdt(ctxt, &dt);
2429
2430 dt.address = GET_SMSTATE(u32, smstate, 0x7f58);
2431 dt.size = GET_SMSTATE(u32, smstate, 0x7f54);
2432 ctxt->ops->set_idt(ctxt, &dt);
2433
2434 for (i = 0; i < 6; i++) {
2435 int r = rsm_load_seg_32(ctxt, smstate, i);
2436 if (r != X86EMUL_CONTINUE)
2437 return r;
2438 }
2439
2440 cr4 = GET_SMSTATE(u32, smstate, 0x7f14);
2441
2442 ctxt->ops->set_smbase(ctxt, GET_SMSTATE(u32, smstate, 0x7ef8));
2443
2444 return rsm_enter_protected_mode(ctxt, cr0, cr3, cr4);
2445 }
2446
2447 #ifdef CONFIG_X86_64
2448 static int rsm_load_state_64(struct x86_emulate_ctxt *ctxt,
2449 const char *smstate)
2450 {
2451 struct desc_struct desc;
2452 struct desc_ptr dt;
2453 u64 val, cr0, cr3, cr4;
2454 u32 base3;
2455 u16 selector;
2456 int i, r;
2457
2458 for (i = 0; i < 16; i++)
2459 *reg_write(ctxt, i) = GET_SMSTATE(u64, smstate, 0x7ff8 - i * 8);
2460
2461 ctxt->_eip = GET_SMSTATE(u64, smstate, 0x7f78);
2462 ctxt->eflags = GET_SMSTATE(u32, smstate, 0x7f70) | X86_EFLAGS_FIXED;
2463
2464 val = GET_SMSTATE(u64, smstate, 0x7f68);
2465
2466 if (ctxt->ops->set_dr(ctxt, 6, val))
2467 return X86EMUL_UNHANDLEABLE;
2468
2469 val = GET_SMSTATE(u64, smstate, 0x7f60);
2470
2471 if (ctxt->ops->set_dr(ctxt, 7, val))
2472 return X86EMUL_UNHANDLEABLE;
2473
2474 cr0 = GET_SMSTATE(u64, smstate, 0x7f58);
2475 cr3 = GET_SMSTATE(u64, smstate, 0x7f50);
2476 cr4 = GET_SMSTATE(u64, smstate, 0x7f48);
2477 ctxt->ops->set_smbase(ctxt, GET_SMSTATE(u32, smstate, 0x7f00));
2478 val = GET_SMSTATE(u64, smstate, 0x7ed0);
2479
2480 if (ctxt->ops->set_msr(ctxt, MSR_EFER, val & ~EFER_LMA))
2481 return X86EMUL_UNHANDLEABLE;
2482
2483 selector = GET_SMSTATE(u32, smstate, 0x7e90);
2484 rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smstate, 0x7e92) << 8);
2485 set_desc_limit(&desc, GET_SMSTATE(u32, smstate, 0x7e94));
2486 set_desc_base(&desc, GET_SMSTATE(u32, smstate, 0x7e98));
2487 base3 = GET_SMSTATE(u32, smstate, 0x7e9c);
2488 ctxt->ops->set_segment(ctxt, selector, &desc, base3, VCPU_SREG_TR);
2489
2490 dt.size = GET_SMSTATE(u32, smstate, 0x7e84);
2491 dt.address = GET_SMSTATE(u64, smstate, 0x7e88);
2492 ctxt->ops->set_idt(ctxt, &dt);
2493
2494 selector = GET_SMSTATE(u32, smstate, 0x7e70);
2495 rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smstate, 0x7e72) << 8);
2496 set_desc_limit(&desc, GET_SMSTATE(u32, smstate, 0x7e74));
2497 set_desc_base(&desc, GET_SMSTATE(u32, smstate, 0x7e78));
2498 base3 = GET_SMSTATE(u32, smstate, 0x7e7c);
2499 ctxt->ops->set_segment(ctxt, selector, &desc, base3, VCPU_SREG_LDTR);
2500
2501 dt.size = GET_SMSTATE(u32, smstate, 0x7e64);
2502 dt.address = GET_SMSTATE(u64, smstate, 0x7e68);
2503 ctxt->ops->set_gdt(ctxt, &dt);
2504
2505 r = rsm_enter_protected_mode(ctxt, cr0, cr3, cr4);
2506 if (r != X86EMUL_CONTINUE)
2507 return r;
2508
2509 for (i = 0; i < 6; i++) {
2510 r = rsm_load_seg_64(ctxt, smstate, i);
2511 if (r != X86EMUL_CONTINUE)
2512 return r;
2513 }
2514
2515 return X86EMUL_CONTINUE;
2516 }
2517 #endif
2518
2519 static int em_rsm(struct x86_emulate_ctxt *ctxt)
2520 {
2521 unsigned long cr0, cr4, efer;
2522 char buf[512];
2523 u64 smbase;
2524 int ret;
2525
2526 if ((ctxt->ops->get_hflags(ctxt) & X86EMUL_SMM_MASK) == 0)
2527 return emulate_ud(ctxt);
2528
2529 smbase = ctxt->ops->get_smbase(ctxt);
2530
2531 ret = ctxt->ops->read_phys(ctxt, smbase + 0xfe00, buf, sizeof(buf));
2532 if (ret != X86EMUL_CONTINUE)
2533 return X86EMUL_UNHANDLEABLE;
2534
2535 if ((ctxt->ops->get_hflags(ctxt) & X86EMUL_SMM_INSIDE_NMI_MASK) == 0)
2536 ctxt->ops->set_nmi_mask(ctxt, false);
2537
2538 ctxt->ops->exiting_smm(ctxt);
2539
2540 /*
2541 * Get back to real mode, to prepare a safe state in which to load
2542 * CR0/CR3/CR4/EFER. It's all a bit more complicated if the vCPU
2543 * supports long mode.
2544 */
2545 if (emulator_has_longmode(ctxt)) {
2546 struct desc_struct cs_desc;
2547
2548 /* Zero CR4.PCIDE before CR0.PG. */
2549 cr4 = ctxt->ops->get_cr(ctxt, 4);
2550 if (cr4 & X86_CR4_PCIDE)
2551 ctxt->ops->set_cr(ctxt, 4, cr4 & ~X86_CR4_PCIDE);
2552
2553 /* A 32-bit code segment is required to clear EFER.LMA. */
2554 memset(&cs_desc, 0, sizeof(cs_desc));
2555 cs_desc.type = 0xb;
2556 cs_desc.s = cs_desc.g = cs_desc.p = 1;
2557 ctxt->ops->set_segment(ctxt, 0, &cs_desc, 0, VCPU_SREG_CS);
2558 }
2559
2560 /* For the 64-bit case, this will clear EFER.LMA. */
2561 cr0 = ctxt->ops->get_cr(ctxt, 0);
2562 if (cr0 & X86_CR0_PE)
2563 ctxt->ops->set_cr(ctxt, 0, cr0 & ~(X86_CR0_PG | X86_CR0_PE));
2564
2565 if (emulator_has_longmode(ctxt)) {
2566 /* Clear CR4.PAE before clearing EFER.LME. */
2567 cr4 = ctxt->ops->get_cr(ctxt, 4);
2568 if (cr4 & X86_CR4_PAE)
2569 ctxt->ops->set_cr(ctxt, 4, cr4 & ~X86_CR4_PAE);
2570
2571 /* And finally go back to 32-bit mode. */
2572 efer = 0;
2573 ctxt->ops->set_msr(ctxt, MSR_EFER, efer);
2574 }
2575
2576 /*
2577 * Give leave_smm() a chance to make ISA-specific changes to the vCPU
2578 * state (e.g. enter guest mode) before loading state from the SMM
2579 * state-save area.
2580 */
2581 if (ctxt->ops->leave_smm(ctxt, buf))
2582 goto emulate_shutdown;
2583
2584 #ifdef CONFIG_X86_64
2585 if (emulator_has_longmode(ctxt))
2586 ret = rsm_load_state_64(ctxt, buf);
2587 else
2588 #endif
2589 ret = rsm_load_state_32(ctxt, buf);
2590
2591 if (ret != X86EMUL_CONTINUE)
2592 goto emulate_shutdown;
2593
2594 /*
2595 * Note, the ctxt->ops callbacks are responsible for handling side
2596 * effects when writing MSRs and CRs, e.g. MMU context resets, CPUID
2597 * runtime updates, etc... If that changes, e.g. this flow is moved
2598 * out of the emulator to make it look more like enter_smm(), then
2599 * those side effects need to be explicitly handled for both success
2600 * and shutdown.
2601 */
2602 return X86EMUL_CONTINUE;
2603
2604 emulate_shutdown:
2605 ctxt->ops->triple_fault(ctxt);
2606 return X86EMUL_CONTINUE;
2607 }
2608
2609 static void
2610 setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
2611 struct desc_struct *cs, struct desc_struct *ss)
2612 {
2613 cs->l = 0; /* will be adjusted later */
2614 set_desc_base(cs, 0); /* flat segment */
2615 cs->g = 1; /* 4kb granularity */
2616 set_desc_limit(cs, 0xfffff); /* 4GB limit */
2617 cs->type = 0x0b; /* Read, Execute, Accessed */
2618 cs->s = 1;
2619 cs->dpl = 0; /* will be adjusted later */
2620 cs->p = 1;
2621 cs->d = 1;
2622 cs->avl = 0;
2623
2624 set_desc_base(ss, 0); /* flat segment */
2625 set_desc_limit(ss, 0xfffff); /* 4GB limit */
2626 ss->g = 1; /* 4kb granularity */
2627 ss->s = 1;
2628 ss->type = 0x03; /* Read/Write, Accessed */
2629 ss->d = 1; /* 32bit stack segment */
2630 ss->dpl = 0;
2631 ss->p = 1;
2632 ss->l = 0;
2633 ss->avl = 0;
2634 }
2635
2636 static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
2637 {
2638 u32 eax, ebx, ecx, edx;
2639
2640 eax = ecx = 0;
2641 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2642 return is_guest_vendor_intel(ebx, ecx, edx);
2643 }
2644
2645 static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
2646 {
2647 const struct x86_emulate_ops *ops = ctxt->ops;
2648 u32 eax, ebx, ecx, edx;
2649
2650 /*
2651 * syscall should always be enabled in longmode - so only become
2652 * vendor specific (cpuid) if other modes are active...
2653 */
2654 if (ctxt->mode == X86EMUL_MODE_PROT64)
2655 return true;
2656
2657 eax = 0x00000000;
2658 ecx = 0x00000000;
2659 ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2660 /*
2661 * remark: Intel CPUs only support "syscall" in 64bit longmode. Also a
2662 * 64bit guest with a 32bit compat-app running will #UD !! While this
2663 * behaviour can be fixed (by emulating) into AMD response - CPUs of
2664 * AMD can't behave like Intel.
2665 */
2666 if (is_guest_vendor_intel(ebx, ecx, edx))
2667 return false;
2668
2669 if (is_guest_vendor_amd(ebx, ecx, edx) ||
2670 is_guest_vendor_hygon(ebx, ecx, edx))
2671 return true;
2672
2673 /*
2674 * default: (not Intel, not AMD, not Hygon), apply Intel's
2675 * stricter rules...
2676 */
2677 return false;
2678 }
2679
2680 static int em_syscall(struct x86_emulate_ctxt *ctxt)
2681 {
2682 const struct x86_emulate_ops *ops = ctxt->ops;
2683 struct desc_struct cs, ss;
2684 u64 msr_data;
2685 u16 cs_sel, ss_sel;
2686 u64 efer = 0;
2687
2688 /* syscall is not available in real mode */
2689 if (ctxt->mode == X86EMUL_MODE_REAL ||
2690 ctxt->mode == X86EMUL_MODE_VM86)
2691 return emulate_ud(ctxt);
2692
2693 if (!(em_syscall_is_enabled(ctxt)))
2694 return emulate_ud(ctxt);
2695
2696 ops->get_msr(ctxt, MSR_EFER, &efer);
2697 if (!(efer & EFER_SCE))
2698 return emulate_ud(ctxt);
2699
2700 setup_syscalls_segments(ctxt, &cs, &ss);
2701 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2702 msr_data >>= 32;
2703 cs_sel = (u16)(msr_data & 0xfffc);
2704 ss_sel = (u16)(msr_data + 8);
2705
2706 if (efer & EFER_LMA) {
2707 cs.d = 0;
2708 cs.l = 1;
2709 }
2710 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2711 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2712
2713 *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2714 if (efer & EFER_LMA) {
2715 #ifdef CONFIG_X86_64
2716 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2717
2718 ops->get_msr(ctxt,
2719 ctxt->mode == X86EMUL_MODE_PROT64 ?
2720 MSR_LSTAR : MSR_CSTAR, &msr_data);
2721 ctxt->_eip = msr_data;
2722
2723 ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2724 ctxt->eflags &= ~msr_data;
2725 ctxt->eflags |= X86_EFLAGS_FIXED;
2726 #endif
2727 } else {
2728 /* legacy mode */
2729 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2730 ctxt->_eip = (u32)msr_data;
2731
2732 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2733 }
2734
2735 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
2736 return X86EMUL_CONTINUE;
2737 }
2738
2739 static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2740 {
2741 const struct x86_emulate_ops *ops = ctxt->ops;
2742 struct desc_struct cs, ss;
2743 u64 msr_data;
2744 u16 cs_sel, ss_sel;
2745 u64 efer = 0;
2746
2747 ops->get_msr(ctxt, MSR_EFER, &efer);
2748 /* inject #GP if in real mode */
2749 if (ctxt->mode == X86EMUL_MODE_REAL)
2750 return emulate_gp(ctxt, 0);
2751
2752 /*
2753 * Not recognized on AMD in compat mode (but is recognized in legacy
2754 * mode).
2755 */
2756 if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA)
2757 && !vendor_intel(ctxt))
2758 return emulate_ud(ctxt);
2759
2760 /* sysenter/sysexit have not been tested in 64bit mode. */
2761 if (ctxt->mode == X86EMUL_MODE_PROT64)
2762 return X86EMUL_UNHANDLEABLE;
2763
2764 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2765 if ((msr_data & 0xfffc) == 0x0)
2766 return emulate_gp(ctxt, 0);
2767
2768 setup_syscalls_segments(ctxt, &cs, &ss);
2769 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2770 cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
2771 ss_sel = cs_sel + 8;
2772 if (efer & EFER_LMA) {
2773 cs.d = 0;
2774 cs.l = 1;
2775 }
2776
2777 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2778 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2779
2780 ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2781 ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2782
2783 ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2784 *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2785 (u32)msr_data;
2786 if (efer & EFER_LMA)
2787 ctxt->mode = X86EMUL_MODE_PROT64;
2788
2789 return X86EMUL_CONTINUE;
2790 }
2791
2792 static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2793 {
2794 const struct x86_emulate_ops *ops = ctxt->ops;
2795 struct desc_struct cs, ss;
2796 u64 msr_data, rcx, rdx;
2797 int usermode;
2798 u16 cs_sel = 0, ss_sel = 0;
2799
2800 /* inject #GP if in real mode or Virtual 8086 mode */
2801 if (ctxt->mode == X86EMUL_MODE_REAL ||
2802 ctxt->mode == X86EMUL_MODE_VM86)
2803 return emulate_gp(ctxt, 0);
2804
2805 setup_syscalls_segments(ctxt, &cs, &ss);
2806
2807 if ((ctxt->rex_prefix & 0x8) != 0x0)
2808 usermode = X86EMUL_MODE_PROT64;
2809 else
2810 usermode = X86EMUL_MODE_PROT32;
2811
2812 rcx = reg_read(ctxt, VCPU_REGS_RCX);
2813 rdx = reg_read(ctxt, VCPU_REGS_RDX);
2814
2815 cs.dpl = 3;
2816 ss.dpl = 3;
2817 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2818 switch (usermode) {
2819 case X86EMUL_MODE_PROT32:
2820 cs_sel = (u16)(msr_data + 16);
2821 if ((msr_data & 0xfffc) == 0x0)
2822 return emulate_gp(ctxt, 0);
2823 ss_sel = (u16)(msr_data + 24);
2824 rcx = (u32)rcx;
2825 rdx = (u32)rdx;
2826 break;
2827 case X86EMUL_MODE_PROT64:
2828 cs_sel = (u16)(msr_data + 32);
2829 if (msr_data == 0x0)
2830 return emulate_gp(ctxt, 0);
2831 ss_sel = cs_sel + 8;
2832 cs.d = 0;
2833 cs.l = 1;
2834 if (emul_is_noncanonical_address(rcx, ctxt) ||
2835 emul_is_noncanonical_address(rdx, ctxt))
2836 return emulate_gp(ctxt, 0);
2837 break;
2838 }
2839 cs_sel |= SEGMENT_RPL_MASK;
2840 ss_sel |= SEGMENT_RPL_MASK;
2841
2842 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2843 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2844
2845 ctxt->_eip = rdx;
2846 *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2847
2848 return X86EMUL_CONTINUE;
2849 }
2850
2851 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2852 {
2853 int iopl;
2854 if (ctxt->mode == X86EMUL_MODE_REAL)
2855 return false;
2856 if (ctxt->mode == X86EMUL_MODE_VM86)
2857 return true;
2858 iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
2859 return ctxt->ops->cpl(ctxt) > iopl;
2860 }
2861
2862 #define VMWARE_PORT_VMPORT (0x5658)
2863 #define VMWARE_PORT_VMRPC (0x5659)
2864
2865 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2866 u16 port, u16 len)
2867 {
2868 const struct x86_emulate_ops *ops = ctxt->ops;
2869 struct desc_struct tr_seg;
2870 u32 base3;
2871 int r;
2872 u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2873 unsigned mask = (1 << len) - 1;
2874 unsigned long base;
2875
2876 /*
2877 * VMware allows access to these ports even if denied
2878 * by TSS I/O permission bitmap. Mimic behavior.
2879 */
2880 if (enable_vmware_backdoor &&
2881 ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC)))
2882 return true;
2883
2884 ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2885 if (!tr_seg.p)
2886 return false;
2887 if (desc_limit_scaled(&tr_seg) < 103)
2888 return false;
2889 base = get_desc_base(&tr_seg);
2890 #ifdef CONFIG_X86_64
2891 base |= ((u64)base3) << 32;
2892 #endif
2893 r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true);
2894 if (r != X86EMUL_CONTINUE)
2895 return false;
2896 if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2897 return false;
2898 r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true);
2899 if (r != X86EMUL_CONTINUE)
2900 return false;
2901 if ((perm >> bit_idx) & mask)
2902 return false;
2903 return true;
2904 }
2905
2906 static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
2907 u16 port, u16 len)
2908 {
2909 if (ctxt->perm_ok)
2910 return true;
2911
2912 if (emulator_bad_iopl(ctxt))
2913 if (!emulator_io_port_access_allowed(ctxt, port, len))
2914 return false;
2915
2916 ctxt->perm_ok = true;
2917
2918 return true;
2919 }
2920
2921 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
2922 {
2923 /*
2924 * Intel CPUs mask the counter and pointers in quite strange
2925 * manner when ECX is zero due to REP-string optimizations.
2926 */
2927 #ifdef CONFIG_X86_64
2928 if (ctxt->ad_bytes != 4 || !vendor_intel(ctxt))
2929 return;
2930
2931 *reg_write(ctxt, VCPU_REGS_RCX) = 0;
2932
2933 switch (ctxt->b) {
2934 case 0xa4: /* movsb */
2935 case 0xa5: /* movsd/w */
2936 *reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
2937 fallthrough;
2938 case 0xaa: /* stosb */
2939 case 0xab: /* stosd/w */
2940 *reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
2941 }
2942 #endif
2943 }
2944
2945 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2946 struct tss_segment_16 *tss)
2947 {
2948 tss->ip = ctxt->_eip;
2949 tss->flag = ctxt->eflags;
2950 tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2951 tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2952 tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2953 tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2954 tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2955 tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2956 tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2957 tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2958
2959 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2960 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2961 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2962 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2963 tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2964 }
2965
2966 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2967 struct tss_segment_16 *tss)
2968 {
2969 int ret;
2970 u8 cpl;
2971
2972 ctxt->_eip = tss->ip;
2973 ctxt->eflags = tss->flag | 2;
2974 *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2975 *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2976 *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2977 *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2978 *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2979 *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2980 *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2981 *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2982
2983 /*
2984 * SDM says that segment selectors are loaded before segment
2985 * descriptors
2986 */
2987 set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2988 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2989 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2990 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2991 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2992
2993 cpl = tss->cs & 3;
2994
2995 /*
2996 * Now load segment descriptors. If fault happens at this stage
2997 * it is handled in a context of new task
2998 */
2999 ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
3000 X86_TRANSFER_TASK_SWITCH, NULL);
3001 if (ret != X86EMUL_CONTINUE)
3002 return ret;
3003 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
3004 X86_TRANSFER_TASK_SWITCH, NULL);
3005 if (ret != X86EMUL_CONTINUE)
3006 return ret;
3007 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
3008 X86_TRANSFER_TASK_SWITCH, NULL);
3009 if (ret != X86EMUL_CONTINUE)
3010 return ret;
3011 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
3012 X86_TRANSFER_TASK_SWITCH, NULL);
3013 if (ret != X86EMUL_CONTINUE)
3014 return ret;
3015 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
3016 X86_TRANSFER_TASK_SWITCH, NULL);
3017 if (ret != X86EMUL_CONTINUE)
3018 return ret;
3019
3020 return X86EMUL_CONTINUE;
3021 }
3022
3023 static int task_switch_16(struct x86_emulate_ctxt *ctxt,
3024 u16 tss_selector, u16 old_tss_sel,
3025 ulong old_tss_base, struct desc_struct *new_desc)
3026 {
3027 struct tss_segment_16 tss_seg;
3028 int ret;
3029 u32 new_tss_base = get_desc_base(new_desc);
3030
3031 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
3032 if (ret != X86EMUL_CONTINUE)
3033 return ret;
3034
3035 save_state_to_tss16(ctxt, &tss_seg);
3036
3037 ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
3038 if (ret != X86EMUL_CONTINUE)
3039 return ret;
3040
3041 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
3042 if (ret != X86EMUL_CONTINUE)
3043 return ret;
3044
3045 if (old_tss_sel != 0xffff) {
3046 tss_seg.prev_task_link = old_tss_sel;
3047
3048 ret = linear_write_system(ctxt, new_tss_base,
3049 &tss_seg.prev_task_link,
3050 sizeof(tss_seg.prev_task_link));
3051 if (ret != X86EMUL_CONTINUE)
3052 return ret;
3053 }
3054
3055 return load_state_from_tss16(ctxt, &tss_seg);
3056 }
3057
3058 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
3059 struct tss_segment_32 *tss)
3060 {
3061 /* CR3 and ldt selector are not saved intentionally */
3062 tss->eip = ctxt->_eip;
3063 tss->eflags = ctxt->eflags;
3064 tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
3065 tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
3066 tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
3067 tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
3068 tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
3069 tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
3070 tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
3071 tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
3072
3073 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
3074 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
3075 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
3076 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
3077 tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
3078 tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
3079 }
3080
3081 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
3082 struct tss_segment_32 *tss)
3083 {
3084 int ret;
3085 u8 cpl;
3086
3087 if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
3088 return emulate_gp(ctxt, 0);
3089 ctxt->_eip = tss->eip;
3090 ctxt->eflags = tss->eflags | 2;
3091
3092 /* General purpose registers */
3093 *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
3094 *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
3095 *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
3096 *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
3097 *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
3098 *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
3099 *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
3100 *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
3101
3102 /*
3103 * SDM says that segment selectors are loaded before segment
3104 * descriptors. This is important because CPL checks will
3105 * use CS.RPL.
3106 */
3107 set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
3108 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
3109 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
3110 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
3111 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
3112 set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
3113 set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
3114
3115 /*
3116 * If we're switching between Protected Mode and VM86, we need to make
3117 * sure to update the mode before loading the segment descriptors so
3118 * that the selectors are interpreted correctly.
3119 */
3120 if (ctxt->eflags & X86_EFLAGS_VM) {
3121 ctxt->mode = X86EMUL_MODE_VM86;
3122 cpl = 3;
3123 } else {
3124 ctxt->mode = X86EMUL_MODE_PROT32;
3125 cpl = tss->cs & 3;
3126 }
3127
3128 /*
3129 * Now load segment descriptors. If fault happens at this stage
3130 * it is handled in a context of new task
3131 */
3132 ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
3133 cpl, X86_TRANSFER_TASK_SWITCH, NULL);
3134 if (ret != X86EMUL_CONTINUE)
3135 return ret;
3136 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
3137 X86_TRANSFER_TASK_SWITCH, NULL);
3138 if (ret != X86EMUL_CONTINUE)
3139 return ret;
3140 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
3141 X86_TRANSFER_TASK_SWITCH, NULL);
3142 if (ret != X86EMUL_CONTINUE)
3143 return ret;
3144 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
3145 X86_TRANSFER_TASK_SWITCH, NULL);
3146 if (ret != X86EMUL_CONTINUE)
3147 return ret;
3148 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
3149 X86_TRANSFER_TASK_SWITCH, NULL);
3150 if (ret != X86EMUL_CONTINUE)
3151 return ret;
3152 ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
3153 X86_TRANSFER_TASK_SWITCH, NULL);
3154 if (ret != X86EMUL_CONTINUE)
3155 return ret;
3156 ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
3157 X86_TRANSFER_TASK_SWITCH, NULL);
3158
3159 return ret;
3160 }
3161
3162 static int task_switch_32(struct x86_emulate_ctxt *ctxt,
3163 u16 tss_selector, u16 old_tss_sel,
3164 ulong old_tss_base, struct desc_struct *new_desc)
3165 {
3166 struct tss_segment_32 tss_seg;
3167 int ret;
3168 u32 new_tss_base = get_desc_base(new_desc);
3169 u32 eip_offset = offsetof(struct tss_segment_32, eip);
3170 u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
3171
3172 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
3173 if (ret != X86EMUL_CONTINUE)
3174 return ret;
3175
3176 save_state_to_tss32(ctxt, &tss_seg);
3177
3178 /* Only GP registers and segment selectors are saved */
3179 ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
3180 ldt_sel_offset - eip_offset);
3181 if (ret != X86EMUL_CONTINUE)
3182 return ret;
3183
3184 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
3185 if (ret != X86EMUL_CONTINUE)
3186 return ret;
3187
3188 if (old_tss_sel != 0xffff) {
3189 tss_seg.prev_task_link = old_tss_sel;
3190
3191 ret = linear_write_system(ctxt, new_tss_base,
3192 &tss_seg.prev_task_link,
3193 sizeof(tss_seg.prev_task_link));
3194 if (ret != X86EMUL_CONTINUE)
3195 return ret;
3196 }
3197
3198 return load_state_from_tss32(ctxt, &tss_seg);
3199 }
3200
3201 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
3202 u16 tss_selector, int idt_index, int reason,
3203 bool has_error_code, u32 error_code)
3204 {
3205 const struct x86_emulate_ops *ops = ctxt->ops;
3206 struct desc_struct curr_tss_desc, next_tss_desc;
3207 int ret;
3208 u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
3209 ulong old_tss_base =
3210 ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
3211 u32 desc_limit;
3212 ulong desc_addr, dr7;
3213
3214 /* FIXME: old_tss_base == ~0 ? */
3215
3216 ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
3217 if (ret != X86EMUL_CONTINUE)
3218 return ret;
3219 ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
3220 if (ret != X86EMUL_CONTINUE)
3221 return ret;
3222
3223 /* FIXME: check that next_tss_desc is tss */
3224
3225 /*
3226 * Check privileges. The three cases are task switch caused by...
3227 *
3228 * 1. jmp/call/int to task gate: Check against DPL of the task gate
3229 * 2. Exception/IRQ/iret: No check is performed
3230 * 3. jmp/call to TSS/task-gate: No check is performed since the
3231 * hardware checks it before exiting.
3232 */
3233 if (reason == TASK_SWITCH_GATE) {
3234 if (idt_index != -1) {
3235 /* Software interrupts */
3236 struct desc_struct task_gate_desc;
3237 int dpl;
3238
3239 ret = read_interrupt_descriptor(ctxt, idt_index,
3240 &task_gate_desc);
3241 if (ret != X86EMUL_CONTINUE)
3242 return ret;
3243
3244 dpl = task_gate_desc.dpl;
3245 if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
3246 return emulate_gp(ctxt, (idt_index << 3) | 0x2);
3247 }
3248 }
3249
3250 desc_limit = desc_limit_scaled(&next_tss_desc);
3251 if (!next_tss_desc.p ||
3252 ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
3253 desc_limit < 0x2b)) {
3254 return emulate_ts(ctxt, tss_selector & 0xfffc);
3255 }
3256
3257 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3258 curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
3259 write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
3260 }
3261
3262 if (reason == TASK_SWITCH_IRET)
3263 ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
3264
3265 /* set back link to prev task only if NT bit is set in eflags
3266 note that old_tss_sel is not used after this point */
3267 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
3268 old_tss_sel = 0xffff;
3269
3270 if (next_tss_desc.type & 8)
3271 ret = task_switch_32(ctxt, tss_selector, old_tss_sel,
3272 old_tss_base, &next_tss_desc);
3273 else
3274 ret = task_switch_16(ctxt, tss_selector, old_tss_sel,
3275 old_tss_base, &next_tss_desc);
3276 if (ret != X86EMUL_CONTINUE)
3277 return ret;
3278
3279 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
3280 ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
3281
3282 if (reason != TASK_SWITCH_IRET) {
3283 next_tss_desc.type |= (1 << 1); /* set busy flag */
3284 write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
3285 }
3286
3287 ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
3288 ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
3289
3290 if (has_error_code) {
3291 ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
3292 ctxt->lock_prefix = 0;
3293 ctxt->src.val = (unsigned long) error_code;
3294 ret = em_push(ctxt);
3295 }
3296
3297 ops->get_dr(ctxt, 7, &dr7);
3298 ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
3299
3300 return ret;
3301 }
3302
3303 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
3304 u16 tss_selector, int idt_index, int reason,
3305 bool has_error_code, u32 error_code)
3306 {
3307 int rc;
3308
3309 invalidate_registers(ctxt);
3310 ctxt->_eip = ctxt->eip;
3311 ctxt->dst.type = OP_NONE;
3312
3313 rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
3314 has_error_code, error_code);
3315
3316 if (rc == X86EMUL_CONTINUE) {
3317 ctxt->eip = ctxt->_eip;
3318 writeback_registers(ctxt);
3319 }
3320
3321 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
3322 }
3323
3324 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
3325 struct operand *op)
3326 {
3327 int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
3328
3329 register_address_increment(ctxt, reg, df * op->bytes);
3330 op->addr.mem.ea = register_address(ctxt, reg);
3331 }
3332
3333 static int em_das(struct x86_emulate_ctxt *ctxt)
3334 {
3335 u8 al, old_al;
3336 bool af, cf, old_cf;
3337
3338 cf = ctxt->eflags & X86_EFLAGS_CF;
3339 al = ctxt->dst.val;
3340
3341 old_al = al;
3342 old_cf = cf;
3343 cf = false;
3344 af = ctxt->eflags & X86_EFLAGS_AF;
3345 if ((al & 0x0f) > 9 || af) {
3346 al -= 6;
3347 cf = old_cf | (al >= 250);
3348 af = true;
3349 } else {
3350 af = false;
3351 }
3352 if (old_al > 0x99 || old_cf) {
3353 al -= 0x60;
3354 cf = true;
3355 }
3356
3357 ctxt->dst.val = al;
3358 /* Set PF, ZF, SF */
3359 ctxt->src.type = OP_IMM;
3360 ctxt->src.val = 0;
3361 ctxt->src.bytes = 1;
3362 fastop(ctxt, em_or);
3363 ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3364 if (cf)
3365 ctxt->eflags |= X86_EFLAGS_CF;
3366 if (af)
3367 ctxt->eflags |= X86_EFLAGS_AF;
3368 return X86EMUL_CONTINUE;
3369 }
3370
3371 static int em_aam(struct x86_emulate_ctxt *ctxt)
3372 {
3373 u8 al, ah;
3374
3375 if (ctxt->src.val == 0)
3376 return emulate_de(ctxt);
3377
3378 al = ctxt->dst.val & 0xff;
3379 ah = al / ctxt->src.val;
3380 al %= ctxt->src.val;
3381
3382 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3383
3384 /* Set PF, ZF, SF */
3385 ctxt->src.type = OP_IMM;
3386 ctxt->src.val = 0;
3387 ctxt->src.bytes = 1;
3388 fastop(ctxt, em_or);
3389
3390 return X86EMUL_CONTINUE;
3391 }
3392
3393 static int em_aad(struct x86_emulate_ctxt *ctxt)
3394 {
3395 u8 al = ctxt->dst.val & 0xff;
3396 u8 ah = (ctxt->dst.val >> 8) & 0xff;
3397
3398 al = (al + (ah * ctxt->src.val)) & 0xff;
3399
3400 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3401
3402 /* Set PF, ZF, SF */
3403 ctxt->src.type = OP_IMM;
3404 ctxt->src.val = 0;
3405 ctxt->src.bytes = 1;
3406 fastop(ctxt, em_or);
3407
3408 return X86EMUL_CONTINUE;
3409 }
3410
3411 static int em_call(struct x86_emulate_ctxt *ctxt)
3412 {
3413 int rc;
3414 long rel = ctxt->src.val;
3415
3416 ctxt->src.val = (unsigned long)ctxt->_eip;
3417 rc = jmp_rel(ctxt, rel);
3418 if (rc != X86EMUL_CONTINUE)
3419 return rc;
3420 return em_push(ctxt);
3421 }
3422
3423 static int em_call_far(struct x86_emulate_ctxt *ctxt)
3424 {
3425 u16 sel, old_cs;
3426 ulong old_eip;
3427 int rc;
3428 struct desc_struct old_desc, new_desc;
3429 const struct x86_emulate_ops *ops = ctxt->ops;
3430 int cpl = ctxt->ops->cpl(ctxt);
3431 enum x86emul_mode prev_mode = ctxt->mode;
3432
3433 old_eip = ctxt->_eip;
3434 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3435
3436 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3437 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3438 X86_TRANSFER_CALL_JMP, &new_desc);
3439 if (rc != X86EMUL_CONTINUE)
3440 return rc;
3441
3442 rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
3443 if (rc != X86EMUL_CONTINUE)
3444 goto fail;
3445
3446 ctxt->src.val = old_cs;
3447 rc = em_push(ctxt);
3448 if (rc != X86EMUL_CONTINUE)
3449 goto fail;
3450
3451 ctxt->src.val = old_eip;
3452 rc = em_push(ctxt);
3453 /* If we failed, we tainted the memory, but the very least we should
3454 restore cs */
3455 if (rc != X86EMUL_CONTINUE) {
3456 pr_warn_once("faulting far call emulation tainted memory\n");
3457 goto fail;
3458 }
3459 return rc;
3460 fail:
3461 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3462 ctxt->mode = prev_mode;
3463 return rc;
3464
3465 }
3466
3467 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3468 {
3469 int rc;
3470 unsigned long eip;
3471
3472 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3473 if (rc != X86EMUL_CONTINUE)
3474 return rc;
3475 rc = assign_eip_near(ctxt, eip);
3476 if (rc != X86EMUL_CONTINUE)
3477 return rc;
3478 rsp_increment(ctxt, ctxt->src.val);
3479 return X86EMUL_CONTINUE;
3480 }
3481
3482 static int em_xchg(struct x86_emulate_ctxt *ctxt)
3483 {
3484 /* Write back the register source. */
3485 ctxt->src.val = ctxt->dst.val;
3486 write_register_operand(&ctxt->src);
3487
3488 /* Write back the memory destination with implicit LOCK prefix. */
3489 ctxt->dst.val = ctxt->src.orig_val;
3490 ctxt->lock_prefix = 1;
3491 return X86EMUL_CONTINUE;
3492 }
3493
3494 static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3495 {
3496 ctxt->dst.val = ctxt->src2.val;
3497 return fastop(ctxt, em_imul);
3498 }
3499
3500 static int em_cwd(struct x86_emulate_ctxt *ctxt)
3501 {
3502 ctxt->dst.type = OP_REG;
3503 ctxt->dst.bytes = ctxt->src.bytes;
3504 ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3505 ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3506
3507 return X86EMUL_CONTINUE;
3508 }
3509
3510 static int em_rdpid(struct x86_emulate_ctxt *ctxt)
3511 {
3512 u64 tsc_aux = 0;
3513
3514 if (ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux))
3515 return emulate_ud(ctxt);
3516 ctxt->dst.val = tsc_aux;
3517 return X86EMUL_CONTINUE;
3518 }
3519
3520 static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3521 {
3522 u64 tsc = 0;
3523
3524 ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3525 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3526 *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3527 return X86EMUL_CONTINUE;
3528 }
3529
3530 static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3531 {
3532 u64 pmc;
3533
3534 if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3535 return emulate_gp(ctxt, 0);
3536 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3537 *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3538 return X86EMUL_CONTINUE;
3539 }
3540
3541 static int em_mov(struct x86_emulate_ctxt *ctxt)
3542 {
3543 memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3544 return X86EMUL_CONTINUE;
3545 }
3546
3547 static int em_movbe(struct x86_emulate_ctxt *ctxt)
3548 {
3549 u16 tmp;
3550
3551 if (!ctxt->ops->guest_has_movbe(ctxt))
3552 return emulate_ud(ctxt);
3553
3554 switch (ctxt->op_bytes) {
3555 case 2:
3556 /*
3557 * From MOVBE definition: "...When the operand size is 16 bits,
3558 * the upper word of the destination register remains unchanged
3559 * ..."
3560 *
3561 * Both casting ->valptr and ->val to u16 breaks strict aliasing
3562 * rules so we have to do the operation almost per hand.
3563 */
3564 tmp = (u16)ctxt->src.val;
3565 ctxt->dst.val &= ~0xffffUL;
3566 ctxt->dst.val |= (unsigned long)swab16(tmp);
3567 break;
3568 case 4:
3569 ctxt->dst.val = swab32((u32)ctxt->src.val);
3570 break;
3571 case 8:
3572 ctxt->dst.val = swab64(ctxt->src.val);
3573 break;
3574 default:
3575 BUG();
3576 }
3577 return X86EMUL_CONTINUE;
3578 }
3579
3580 static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3581 {
3582 if (ctxt->ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val))
3583 return emulate_gp(ctxt, 0);
3584
3585 /* Disable writeback. */
3586 ctxt->dst.type = OP_NONE;
3587 return X86EMUL_CONTINUE;
3588 }
3589
3590 static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3591 {
3592 unsigned long val;
3593
3594 if (ctxt->mode == X86EMUL_MODE_PROT64)
3595 val = ctxt->src.val & ~0ULL;
3596 else
3597 val = ctxt->src.val & ~0U;
3598
3599 /* #UD condition is already handled. */
3600 if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3601 return emulate_gp(ctxt, 0);
3602
3603 /* Disable writeback. */
3604 ctxt->dst.type = OP_NONE;
3605 return X86EMUL_CONTINUE;
3606 }
3607
3608 static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3609 {
3610 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3611 u64 msr_data;
3612 int r;
3613
3614 msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3615 | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3616 r = ctxt->ops->set_msr(ctxt, msr_index, msr_data);
3617
3618 if (r == X86EMUL_IO_NEEDED)
3619 return r;
3620
3621 if (r > 0)
3622 return emulate_gp(ctxt, 0);
3623
3624 return r < 0 ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
3625 }
3626
3627 static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3628 {
3629 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3630 u64 msr_data;
3631 int r;
3632
3633 r = ctxt->ops->get_msr(ctxt, msr_index, &msr_data);
3634
3635 if (r == X86EMUL_IO_NEEDED)
3636 return r;
3637
3638 if (r)
3639 return emulate_gp(ctxt, 0);
3640
3641 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3642 *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3643 return X86EMUL_CONTINUE;
3644 }
3645
3646 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment)
3647 {
3648 if (segment > VCPU_SREG_GS &&
3649 (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3650 ctxt->ops->cpl(ctxt) > 0)
3651 return emulate_gp(ctxt, 0);
3652
3653 ctxt->dst.val = get_segment_selector(ctxt, segment);
3654 if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3655 ctxt->dst.bytes = 2;
3656 return X86EMUL_CONTINUE;
3657 }
3658
3659 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3660 {
3661 if (ctxt->modrm_reg > VCPU_SREG_GS)
3662 return emulate_ud(ctxt);
3663
3664 return em_store_sreg(ctxt, ctxt->modrm_reg);
3665 }
3666
3667 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3668 {
3669 u16 sel = ctxt->src.val;
3670
3671 if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3672 return emulate_ud(ctxt);
3673
3674 if (ctxt->modrm_reg == VCPU_SREG_SS)
3675 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3676
3677 /* Disable writeback. */
3678 ctxt->dst.type = OP_NONE;
3679 return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3680 }
3681
3682 static int em_sldt(struct x86_emulate_ctxt *ctxt)
3683 {
3684 return em_store_sreg(ctxt, VCPU_SREG_LDTR);
3685 }
3686
3687 static int em_lldt(struct x86_emulate_ctxt *ctxt)
3688 {
3689 u16 sel = ctxt->src.val;
3690
3691 /* Disable writeback. */
3692 ctxt->dst.type = OP_NONE;
3693 return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3694 }
3695
3696 static int em_str(struct x86_emulate_ctxt *ctxt)
3697 {
3698 return em_store_sreg(ctxt, VCPU_SREG_TR);
3699 }
3700
3701 static int em_ltr(struct x86_emulate_ctxt *ctxt)
3702 {
3703 u16 sel = ctxt->src.val;
3704
3705 /* Disable writeback. */
3706 ctxt->dst.type = OP_NONE;
3707 return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3708 }
3709
3710 static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3711 {
3712 int rc;
3713 ulong linear;
3714
3715 rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
3716 if (rc == X86EMUL_CONTINUE)
3717 ctxt->ops->invlpg(ctxt, linear);
3718 /* Disable writeback. */
3719 ctxt->dst.type = OP_NONE;
3720 return X86EMUL_CONTINUE;
3721 }
3722
3723 static int em_clts(struct x86_emulate_ctxt *ctxt)
3724 {
3725 ulong cr0;
3726
3727 cr0 = ctxt->ops->get_cr(ctxt, 0);
3728 cr0 &= ~X86_CR0_TS;
3729 ctxt->ops->set_cr(ctxt, 0, cr0);
3730 return X86EMUL_CONTINUE;
3731 }
3732
3733 static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3734 {
3735 int rc = ctxt->ops->fix_hypercall(ctxt);
3736
3737 if (rc != X86EMUL_CONTINUE)
3738 return rc;
3739
3740 /* Let the processor re-execute the fixed hypercall */
3741 ctxt->_eip = ctxt->eip;
3742 /* Disable writeback. */
3743 ctxt->dst.type = OP_NONE;
3744 return X86EMUL_CONTINUE;
3745 }
3746
3747 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3748 void (*get)(struct x86_emulate_ctxt *ctxt,
3749 struct desc_ptr *ptr))
3750 {
3751 struct desc_ptr desc_ptr;
3752
3753 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3754 ctxt->ops->cpl(ctxt) > 0)
3755 return emulate_gp(ctxt, 0);
3756
3757 if (ctxt->mode == X86EMUL_MODE_PROT64)
3758 ctxt->op_bytes = 8;
3759 get(ctxt, &desc_ptr);
3760 if (ctxt->op_bytes == 2) {
3761 ctxt->op_bytes = 4;
3762 desc_ptr.address &= 0x00ffffff;
3763 }
3764 /* Disable writeback. */
3765 ctxt->dst.type = OP_NONE;
3766 return segmented_write_std(ctxt, ctxt->dst.addr.mem,
3767 &desc_ptr, 2 + ctxt->op_bytes);
3768 }
3769
3770 static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3771 {
3772 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3773 }
3774
3775 static int em_sidt(struct x86_emulate_ctxt *ctxt)
3776 {
3777 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3778 }
3779
3780 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3781 {
3782 struct desc_ptr desc_ptr;
3783 int rc;
3784
3785 if (ctxt->mode == X86EMUL_MODE_PROT64)
3786 ctxt->op_bytes = 8;
3787 rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3788 &desc_ptr.size, &desc_ptr.address,
3789 ctxt->op_bytes);
3790 if (rc != X86EMUL_CONTINUE)
3791 return rc;
3792 if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3793 emul_is_noncanonical_address(desc_ptr.address, ctxt))
3794 return emulate_gp(ctxt, 0);
3795 if (lgdt)
3796 ctxt->ops->set_gdt(ctxt, &desc_ptr);
3797 else
3798 ctxt->ops->set_idt(ctxt, &desc_ptr);
3799 /* Disable writeback. */
3800 ctxt->dst.type = OP_NONE;
3801 return X86EMUL_CONTINUE;
3802 }
3803
3804 static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3805 {
3806 return em_lgdt_lidt(ctxt, true);
3807 }
3808
3809 static int em_lidt(struct x86_emulate_ctxt *ctxt)
3810 {
3811 return em_lgdt_lidt(ctxt, false);
3812 }
3813
3814 static int em_smsw(struct x86_emulate_ctxt *ctxt)
3815 {
3816 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3817 ctxt->ops->cpl(ctxt) > 0)
3818 return emulate_gp(ctxt, 0);
3819
3820 if (ctxt->dst.type == OP_MEM)
3821 ctxt->dst.bytes = 2;
3822 ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3823 return X86EMUL_CONTINUE;
3824 }
3825
3826 static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3827 {
3828 ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3829 | (ctxt->src.val & 0x0f));
3830 ctxt->dst.type = OP_NONE;
3831 return X86EMUL_CONTINUE;
3832 }
3833
3834 static int em_loop(struct x86_emulate_ctxt *ctxt)
3835 {
3836 int rc = X86EMUL_CONTINUE;
3837
3838 register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3839 if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3840 (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3841 rc = jmp_rel(ctxt, ctxt->src.val);
3842
3843 return rc;
3844 }
3845
3846 static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3847 {
3848 int rc = X86EMUL_CONTINUE;
3849
3850 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3851 rc = jmp_rel(ctxt, ctxt->src.val);
3852
3853 return rc;
3854 }
3855
3856 static int em_in(struct x86_emulate_ctxt *ctxt)
3857 {
3858 if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3859 &ctxt->dst.val))
3860 return X86EMUL_IO_NEEDED;
3861
3862 return X86EMUL_CONTINUE;
3863 }
3864
3865 static int em_out(struct x86_emulate_ctxt *ctxt)
3866 {
3867 ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3868 &ctxt->src.val, 1);
3869 /* Disable writeback. */
3870 ctxt->dst.type = OP_NONE;
3871 return X86EMUL_CONTINUE;
3872 }
3873
3874 static int em_cli(struct x86_emulate_ctxt *ctxt)
3875 {
3876 if (emulator_bad_iopl(ctxt))
3877 return emulate_gp(ctxt, 0);
3878
3879 ctxt->eflags &= ~X86_EFLAGS_IF;
3880 return X86EMUL_CONTINUE;
3881 }
3882
3883 static int em_sti(struct x86_emulate_ctxt *ctxt)
3884 {
3885 if (emulator_bad_iopl(ctxt))
3886 return emulate_gp(ctxt, 0);
3887
3888 ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3889 ctxt->eflags |= X86_EFLAGS_IF;
3890 return X86EMUL_CONTINUE;
3891 }
3892
3893 static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3894 {
3895 u32 eax, ebx, ecx, edx;
3896 u64 msr = 0;
3897
3898 ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
3899 if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3900 ctxt->ops->cpl(ctxt)) {
3901 return emulate_gp(ctxt, 0);
3902 }
3903
3904 eax = reg_read(ctxt, VCPU_REGS_RAX);
3905 ecx = reg_read(ctxt, VCPU_REGS_RCX);
3906 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3907 *reg_write(ctxt, VCPU_REGS_RAX) = eax;
3908 *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3909 *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3910 *reg_write(ctxt, VCPU_REGS_RDX) = edx;
3911 return X86EMUL_CONTINUE;
3912 }
3913
3914 static int em_sahf(struct x86_emulate_ctxt *ctxt)
3915 {
3916 u32 flags;
3917
3918 flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
3919 X86_EFLAGS_SF;
3920 flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3921
3922 ctxt->eflags &= ~0xffUL;
3923 ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3924 return X86EMUL_CONTINUE;
3925 }
3926
3927 static int em_lahf(struct x86_emulate_ctxt *ctxt)
3928 {
3929 *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3930 *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3931 return X86EMUL_CONTINUE;
3932 }
3933
3934 static int em_bswap(struct x86_emulate_ctxt *ctxt)
3935 {
3936 switch (ctxt->op_bytes) {
3937 #ifdef CONFIG_X86_64
3938 case 8:
3939 asm("bswap %0" : "+r"(ctxt->dst.val));
3940 break;
3941 #endif
3942 default:
3943 asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3944 break;
3945 }
3946 return X86EMUL_CONTINUE;
3947 }
3948
3949 static int em_clflush(struct x86_emulate_ctxt *ctxt)
3950 {
3951 /* emulating clflush regardless of cpuid */
3952 return X86EMUL_CONTINUE;
3953 }
3954
3955 static int em_clflushopt(struct x86_emulate_ctxt *ctxt)
3956 {
3957 /* emulating clflushopt regardless of cpuid */
3958 return X86EMUL_CONTINUE;
3959 }
3960
3961 static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3962 {
3963 ctxt->dst.val = (s32) ctxt->src.val;
3964 return X86EMUL_CONTINUE;
3965 }
3966
3967 static int check_fxsr(struct x86_emulate_ctxt *ctxt)
3968 {
3969 if (!ctxt->ops->guest_has_fxsr(ctxt))
3970 return emulate_ud(ctxt);
3971
3972 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
3973 return emulate_nm(ctxt);
3974
3975 /*
3976 * Don't emulate a case that should never be hit, instead of working
3977 * around a lack of fxsave64/fxrstor64 on old compilers.
3978 */
3979 if (ctxt->mode >= X86EMUL_MODE_PROT64)
3980 return X86EMUL_UNHANDLEABLE;
3981
3982 return X86EMUL_CONTINUE;
3983 }
3984
3985 /*
3986 * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
3987 * and restore MXCSR.
3988 */
3989 static size_t __fxstate_size(int nregs)
3990 {
3991 return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
3992 }
3993
3994 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
3995 {
3996 bool cr4_osfxsr;
3997 if (ctxt->mode == X86EMUL_MODE_PROT64)
3998 return __fxstate_size(16);
3999
4000 cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
4001 return __fxstate_size(cr4_osfxsr ? 8 : 0);
4002 }
4003
4004 /*
4005 * FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
4006 * 1) 16 bit mode
4007 * 2) 32 bit mode
4008 * - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs
4009 * preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
4010 * save and restore
4011 * 3) 64-bit mode with REX.W prefix
4012 * - like (2), but XMM 8-15 are being saved and restored
4013 * 4) 64-bit mode without REX.W prefix
4014 * - like (3), but FIP and FDP are 64 bit
4015 *
4016 * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
4017 * desired result. (4) is not emulated.
4018 *
4019 * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
4020 * and FPU DS) should match.
4021 */
4022 static int em_fxsave(struct x86_emulate_ctxt *ctxt)
4023 {
4024 struct fxregs_state fx_state;
4025 int rc;
4026
4027 rc = check_fxsr(ctxt);
4028 if (rc != X86EMUL_CONTINUE)
4029 return rc;
4030
4031 kvm_fpu_get();
4032
4033 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
4034
4035 kvm_fpu_put();
4036
4037 if (rc != X86EMUL_CONTINUE)
4038 return rc;
4039
4040 return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
4041 fxstate_size(ctxt));
4042 }
4043
4044 /*
4045 * FXRSTOR might restore XMM registers not provided by the guest. Fill
4046 * in the host registers (via FXSAVE) instead, so they won't be modified.
4047 * (preemption has to stay disabled until FXRSTOR).
4048 *
4049 * Use noinline to keep the stack for other functions called by callers small.
4050 */
4051 static noinline int fxregs_fixup(struct fxregs_state *fx_state,
4052 const size_t used_size)
4053 {
4054 struct fxregs_state fx_tmp;
4055 int rc;
4056
4057 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
4058 memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
4059 __fxstate_size(16) - used_size);
4060
4061 return rc;
4062 }
4063
4064 static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
4065 {
4066 struct fxregs_state fx_state;
4067 int rc;
4068 size_t size;
4069
4070 rc = check_fxsr(ctxt);
4071 if (rc != X86EMUL_CONTINUE)
4072 return rc;
4073
4074 size = fxstate_size(ctxt);
4075 rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
4076 if (rc != X86EMUL_CONTINUE)
4077 return rc;
4078
4079 kvm_fpu_get();
4080
4081 if (size < __fxstate_size(16)) {
4082 rc = fxregs_fixup(&fx_state, size);
4083 if (rc != X86EMUL_CONTINUE)
4084 goto out;
4085 }
4086
4087 if (fx_state.mxcsr >> 16) {
4088 rc = emulate_gp(ctxt, 0);
4089 goto out;
4090 }
4091
4092 if (rc == X86EMUL_CONTINUE)
4093 rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
4094
4095 out:
4096 kvm_fpu_put();
4097
4098 return rc;
4099 }
4100
4101 static int em_xsetbv(struct x86_emulate_ctxt *ctxt)
4102 {
4103 u32 eax, ecx, edx;
4104
4105 eax = reg_read(ctxt, VCPU_REGS_RAX);
4106 edx = reg_read(ctxt, VCPU_REGS_RDX);
4107 ecx = reg_read(ctxt, VCPU_REGS_RCX);
4108
4109 if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax))
4110 return emulate_gp(ctxt, 0);
4111
4112 return X86EMUL_CONTINUE;
4113 }
4114
4115 static bool valid_cr(int nr)
4116 {
4117 switch (nr) {
4118 case 0:
4119 case 2 ... 4:
4120 case 8:
4121 return true;
4122 default:
4123 return false;
4124 }
4125 }
4126
4127 static int check_cr_access(struct x86_emulate_ctxt *ctxt)
4128 {
4129 if (!valid_cr(ctxt->modrm_reg))
4130 return emulate_ud(ctxt);
4131
4132 return X86EMUL_CONTINUE;
4133 }
4134
4135 static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
4136 {
4137 unsigned long dr7;
4138
4139 ctxt->ops->get_dr(ctxt, 7, &dr7);
4140
4141 /* Check if DR7.Global_Enable is set */
4142 return dr7 & (1 << 13);
4143 }
4144
4145 static int check_dr_read(struct x86_emulate_ctxt *ctxt)
4146 {
4147 int dr = ctxt->modrm_reg;
4148 u64 cr4;
4149
4150 if (dr > 7)
4151 return emulate_ud(ctxt);
4152
4153 cr4 = ctxt->ops->get_cr(ctxt, 4);
4154 if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
4155 return emulate_ud(ctxt);
4156
4157 if (check_dr7_gd(ctxt)) {
4158 ulong dr6;
4159
4160 ctxt->ops->get_dr(ctxt, 6, &dr6);
4161 dr6 &= ~DR_TRAP_BITS;
4162 dr6 |= DR6_BD | DR6_ACTIVE_LOW;
4163 ctxt->ops->set_dr(ctxt, 6, dr6);
4164 return emulate_db(ctxt);
4165 }
4166
4167 return X86EMUL_CONTINUE;
4168 }
4169
4170 static int check_dr_write(struct x86_emulate_ctxt *ctxt)
4171 {
4172 u64 new_val = ctxt->src.val64;
4173 int dr = ctxt->modrm_reg;
4174
4175 if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
4176 return emulate_gp(ctxt, 0);
4177
4178 return check_dr_read(ctxt);
4179 }
4180
4181 static int check_svme(struct x86_emulate_ctxt *ctxt)
4182 {
4183 u64 efer = 0;
4184
4185 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
4186
4187 if (!(efer & EFER_SVME))
4188 return emulate_ud(ctxt);
4189
4190 return X86EMUL_CONTINUE;
4191 }
4192
4193 static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
4194 {
4195 u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
4196
4197 /* Valid physical address? */
4198 if (rax & 0xffff000000000000ULL)
4199 return emulate_gp(ctxt, 0);
4200
4201 return check_svme(ctxt);
4202 }
4203
4204 static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
4205 {
4206 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
4207
4208 if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
4209 return emulate_ud(ctxt);
4210
4211 return X86EMUL_CONTINUE;
4212 }
4213
4214 static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
4215 {
4216 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
4217 u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
4218
4219 /*
4220 * VMware allows access to these Pseduo-PMCs even when read via RDPMC
4221 * in Ring3 when CR4.PCE=0.
4222 */
4223 if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx))
4224 return X86EMUL_CONTINUE;
4225
4226 if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
4227 ctxt->ops->check_pmc(ctxt, rcx))
4228 return emulate_gp(ctxt, 0);
4229
4230 return X86EMUL_CONTINUE;
4231 }
4232
4233 static int check_perm_in(struct x86_emulate_ctxt *ctxt)
4234 {
4235 ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
4236 if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes))
4237 return emulate_gp(ctxt, 0);
4238
4239 return X86EMUL_CONTINUE;
4240 }
4241
4242 static int check_perm_out(struct x86_emulate_ctxt *ctxt)
4243 {
4244 ctxt->src.bytes = min(ctxt->src.bytes, 4u);
4245 if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes))
4246 return emulate_gp(ctxt, 0);
4247
4248 return X86EMUL_CONTINUE;
4249 }
4250
4251 #define D(_y) { .flags = (_y) }
4252 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
4253 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
4254 .intercept = x86_intercept_##_i, .check_perm = (_p) }
4255 #define N D(NotImpl)
4256 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
4257 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
4258 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
4259 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
4260 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
4261 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
4262 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
4263 #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
4264 #define II(_f, _e, _i) \
4265 { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
4266 #define IIP(_f, _e, _i, _p) \
4267 { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
4268 .intercept = x86_intercept_##_i, .check_perm = (_p) }
4269 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
4270
4271 #define D2bv(_f) D((_f) | ByteOp), D(_f)
4272 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
4273 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
4274 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
4275 #define I2bvIP(_f, _e, _i, _p) \
4276 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
4277
4278 #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
4279 F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
4280 F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
4281
4282 static const struct opcode group7_rm0[] = {
4283 N,
4284 I(SrcNone | Priv | EmulateOnUD, em_hypercall),
4285 N, N, N, N, N, N,
4286 };
4287
4288 static const struct opcode group7_rm1[] = {
4289 DI(SrcNone | Priv, monitor),
4290 DI(SrcNone | Priv, mwait),
4291 N, N, N, N, N, N,
4292 };
4293
4294 static const struct opcode group7_rm2[] = {
4295 N,
4296 II(ImplicitOps | Priv, em_xsetbv, xsetbv),
4297 N, N, N, N, N, N,
4298 };
4299
4300 static const struct opcode group7_rm3[] = {
4301 DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
4302 II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall),
4303 DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
4304 DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
4305 DIP(SrcNone | Prot | Priv, stgi, check_svme),
4306 DIP(SrcNone | Prot | Priv, clgi, check_svme),
4307 DIP(SrcNone | Prot | Priv, skinit, check_svme),
4308 DIP(SrcNone | Prot | Priv, invlpga, check_svme),
4309 };
4310
4311 static const struct opcode group7_rm7[] = {
4312 N,
4313 DIP(SrcNone, rdtscp, check_rdtsc),
4314 N, N, N, N, N, N,
4315 };
4316
4317 static const struct opcode group1[] = {
4318 F(Lock, em_add),
4319 F(Lock | PageTable, em_or),
4320 F(Lock, em_adc),
4321 F(Lock, em_sbb),
4322 F(Lock | PageTable, em_and),
4323 F(Lock, em_sub),
4324 F(Lock, em_xor),
4325 F(NoWrite, em_cmp),
4326 };
4327
4328 static const struct opcode group1A[] = {
4329 I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
4330 };
4331
4332 static const struct opcode group2[] = {
4333 F(DstMem | ModRM, em_rol),
4334 F(DstMem | ModRM, em_ror),
4335 F(DstMem | ModRM, em_rcl),
4336 F(DstMem | ModRM, em_rcr),
4337 F(DstMem | ModRM, em_shl),
4338 F(DstMem | ModRM, em_shr),
4339 F(DstMem | ModRM, em_shl),
4340 F(DstMem | ModRM, em_sar),
4341 };
4342
4343 static const struct opcode group3[] = {
4344 F(DstMem | SrcImm | NoWrite, em_test),
4345 F(DstMem | SrcImm | NoWrite, em_test),
4346 F(DstMem | SrcNone | Lock, em_not),
4347 F(DstMem | SrcNone | Lock, em_neg),
4348 F(DstXacc | Src2Mem, em_mul_ex),
4349 F(DstXacc | Src2Mem, em_imul_ex),
4350 F(DstXacc | Src2Mem, em_div_ex),
4351 F(DstXacc | Src2Mem, em_idiv_ex),
4352 };
4353
4354 static const struct opcode group4[] = {
4355 F(ByteOp | DstMem | SrcNone | Lock, em_inc),
4356 F(ByteOp | DstMem | SrcNone | Lock, em_dec),
4357 N, N, N, N, N, N,
4358 };
4359
4360 static const struct opcode group5[] = {
4361 F(DstMem | SrcNone | Lock, em_inc),
4362 F(DstMem | SrcNone | Lock, em_dec),
4363 I(SrcMem | NearBranch, em_call_near_abs),
4364 I(SrcMemFAddr | ImplicitOps, em_call_far),
4365 I(SrcMem | NearBranch, em_jmp_abs),
4366 I(SrcMemFAddr | ImplicitOps, em_jmp_far),
4367 I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined),
4368 };
4369
4370 static const struct opcode group6[] = {
4371 II(Prot | DstMem, em_sldt, sldt),
4372 II(Prot | DstMem, em_str, str),
4373 II(Prot | Priv | SrcMem16, em_lldt, lldt),
4374 II(Prot | Priv | SrcMem16, em_ltr, ltr),
4375 N, N, N, N,
4376 };
4377
4378 static const struct group_dual group7 = { {
4379 II(Mov | DstMem, em_sgdt, sgdt),
4380 II(Mov | DstMem, em_sidt, sidt),
4381 II(SrcMem | Priv, em_lgdt, lgdt),
4382 II(SrcMem | Priv, em_lidt, lidt),
4383 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4384 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4385 II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
4386 }, {
4387 EXT(0, group7_rm0),
4388 EXT(0, group7_rm1),
4389 EXT(0, group7_rm2),
4390 EXT(0, group7_rm3),
4391 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4392 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4393 EXT(0, group7_rm7),
4394 } };
4395
4396 static const struct opcode group8[] = {
4397 N, N, N, N,
4398 F(DstMem | SrcImmByte | NoWrite, em_bt),
4399 F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
4400 F(DstMem | SrcImmByte | Lock, em_btr),
4401 F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
4402 };
4403
4404 /*
4405 * The "memory" destination is actually always a register, since we come
4406 * from the register case of group9.
4407 */
4408 static const struct gprefix pfx_0f_c7_7 = {
4409 N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid),
4410 };
4411
4412
4413 static const struct group_dual group9 = { {
4414 N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
4415 }, {
4416 N, N, N, N, N, N, N,
4417 GP(0, &pfx_0f_c7_7),
4418 } };
4419
4420 static const struct opcode group11[] = {
4421 I(DstMem | SrcImm | Mov | PageTable, em_mov),
4422 X7(D(Undefined)),
4423 };
4424
4425 static const struct gprefix pfx_0f_ae_7 = {
4426 I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N,
4427 };
4428
4429 static const struct group_dual group15 = { {
4430 I(ModRM | Aligned16, em_fxsave),
4431 I(ModRM | Aligned16, em_fxrstor),
4432 N, N, N, N, N, GP(0, &pfx_0f_ae_7),
4433 }, {
4434 N, N, N, N, N, N, N, N,
4435 } };
4436
4437 static const struct gprefix pfx_0f_6f_0f_7f = {
4438 I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
4439 };
4440
4441 static const struct instr_dual instr_dual_0f_2b = {
4442 I(0, em_mov), N
4443 };
4444
4445 static const struct gprefix pfx_0f_2b = {
4446 ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
4447 };
4448
4449 static const struct gprefix pfx_0f_10_0f_11 = {
4450 I(Unaligned, em_mov), I(Unaligned, em_mov), N, N,
4451 };
4452
4453 static const struct gprefix pfx_0f_28_0f_29 = {
4454 I(Aligned, em_mov), I(Aligned, em_mov), N, N,
4455 };
4456
4457 static const struct gprefix pfx_0f_e7 = {
4458 N, I(Sse, em_mov), N, N,
4459 };
4460
4461 static const struct escape escape_d9 = { {
4462 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
4463 }, {
4464 /* 0xC0 - 0xC7 */
4465 N, N, N, N, N, N, N, N,
4466 /* 0xC8 - 0xCF */
4467 N, N, N, N, N, N, N, N,
4468 /* 0xD0 - 0xC7 */
4469 N, N, N, N, N, N, N, N,
4470 /* 0xD8 - 0xDF */
4471 N, N, N, N, N, N, N, N,
4472 /* 0xE0 - 0xE7 */
4473 N, N, N, N, N, N, N, N,
4474 /* 0xE8 - 0xEF */
4475 N, N, N, N, N, N, N, N,
4476 /* 0xF0 - 0xF7 */
4477 N, N, N, N, N, N, N, N,
4478 /* 0xF8 - 0xFF */
4479 N, N, N, N, N, N, N, N,
4480 } };
4481
4482 static const struct escape escape_db = { {
4483 N, N, N, N, N, N, N, N,
4484 }, {
4485 /* 0xC0 - 0xC7 */
4486 N, N, N, N, N, N, N, N,
4487 /* 0xC8 - 0xCF */
4488 N, N, N, N, N, N, N, N,
4489 /* 0xD0 - 0xC7 */
4490 N, N, N, N, N, N, N, N,
4491 /* 0xD8 - 0xDF */
4492 N, N, N, N, N, N, N, N,
4493 /* 0xE0 - 0xE7 */
4494 N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
4495 /* 0xE8 - 0xEF */
4496 N, N, N, N, N, N, N, N,
4497 /* 0xF0 - 0xF7 */
4498 N, N, N, N, N, N, N, N,
4499 /* 0xF8 - 0xFF */
4500 N, N, N, N, N, N, N, N,
4501 } };
4502
4503 static const struct escape escape_dd = { {
4504 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
4505 }, {
4506 /* 0xC0 - 0xC7 */
4507 N, N, N, N, N, N, N, N,
4508 /* 0xC8 - 0xCF */
4509 N, N, N, N, N, N, N, N,
4510 /* 0xD0 - 0xC7 */
4511 N, N, N, N, N, N, N, N,
4512 /* 0xD8 - 0xDF */
4513 N, N, N, N, N, N, N, N,
4514 /* 0xE0 - 0xE7 */
4515 N, N, N, N, N, N, N, N,
4516 /* 0xE8 - 0xEF */
4517 N, N, N, N, N, N, N, N,
4518 /* 0xF0 - 0xF7 */
4519 N, N, N, N, N, N, N, N,
4520 /* 0xF8 - 0xFF */
4521 N, N, N, N, N, N, N, N,
4522 } };
4523
4524 static const struct instr_dual instr_dual_0f_c3 = {
4525 I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4526 };
4527
4528 static const struct mode_dual mode_dual_63 = {
4529 N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4530 };
4531
4532 static const struct opcode opcode_table[256] = {
4533 /* 0x00 - 0x07 */
4534 F6ALU(Lock, em_add),
4535 I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4536 I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4537 /* 0x08 - 0x0F */
4538 F6ALU(Lock | PageTable, em_or),
4539 I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4540 N,
4541 /* 0x10 - 0x17 */
4542 F6ALU(Lock, em_adc),
4543 I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4544 I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4545 /* 0x18 - 0x1F */
4546 F6ALU(Lock, em_sbb),
4547 I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4548 I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4549 /* 0x20 - 0x27 */
4550 F6ALU(Lock | PageTable, em_and), N, N,
4551 /* 0x28 - 0x2F */
4552 F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4553 /* 0x30 - 0x37 */
4554 F6ALU(Lock, em_xor), N, N,
4555 /* 0x38 - 0x3F */
4556 F6ALU(NoWrite, em_cmp), N, N,
4557 /* 0x40 - 0x4F */
4558 X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
4559 /* 0x50 - 0x57 */
4560 X8(I(SrcReg | Stack, em_push)),
4561 /* 0x58 - 0x5F */
4562 X8(I(DstReg | Stack, em_pop)),
4563 /* 0x60 - 0x67 */
4564 I(ImplicitOps | Stack | No64, em_pusha),
4565 I(ImplicitOps | Stack | No64, em_popa),
4566 N, MD(ModRM, &mode_dual_63),
4567 N, N, N, N,
4568 /* 0x68 - 0x6F */
4569 I(SrcImm | Mov | Stack, em_push),
4570 I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4571 I(SrcImmByte | Mov | Stack, em_push),
4572 I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4573 I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4574 I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4575 /* 0x70 - 0x7F */
4576 X16(D(SrcImmByte | NearBranch)),
4577 /* 0x80 - 0x87 */
4578 G(ByteOp | DstMem | SrcImm, group1),
4579 G(DstMem | SrcImm, group1),
4580 G(ByteOp | DstMem | SrcImm | No64, group1),
4581 G(DstMem | SrcImmByte, group1),
4582 F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4583 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4584 /* 0x88 - 0x8F */
4585 I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4586 I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4587 I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4588 D(ModRM | SrcMem | NoAccess | DstReg),
4589 I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4590 G(0, group1A),
4591 /* 0x90 - 0x97 */
4592 DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4593 /* 0x98 - 0x9F */
4594 D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4595 I(SrcImmFAddr | No64, em_call_far), N,
4596 II(ImplicitOps | Stack, em_pushf, pushf),
4597 II(ImplicitOps | Stack, em_popf, popf),
4598 I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4599 /* 0xA0 - 0xA7 */
4600 I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4601 I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4602 I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
4603 F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
4604 /* 0xA8 - 0xAF */
4605 F2bv(DstAcc | SrcImm | NoWrite, em_test),
4606 I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4607 I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4608 F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4609 /* 0xB0 - 0xB7 */
4610 X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4611 /* 0xB8 - 0xBF */
4612 X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4613 /* 0xC0 - 0xC7 */
4614 G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4615 I(ImplicitOps | NearBranch | SrcImmU16, em_ret_near_imm),
4616 I(ImplicitOps | NearBranch, em_ret),
4617 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4618 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4619 G(ByteOp, group11), G(0, group11),
4620 /* 0xC8 - 0xCF */
4621 I(Stack | SrcImmU16 | Src2ImmByte, em_enter), I(Stack, em_leave),
4622 I(ImplicitOps | SrcImmU16, em_ret_far_imm),
4623 I(ImplicitOps, em_ret_far),
4624 D(ImplicitOps), DI(SrcImmByte, intn),
4625 D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret),
4626 /* 0xD0 - 0xD7 */
4627 G(Src2One | ByteOp, group2), G(Src2One, group2),
4628 G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4629 I(DstAcc | SrcImmUByte | No64, em_aam),
4630 I(DstAcc | SrcImmUByte | No64, em_aad),
4631 F(DstAcc | ByteOp | No64, em_salc),
4632 I(DstAcc | SrcXLat | ByteOp, em_mov),
4633 /* 0xD8 - 0xDF */
4634 N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4635 /* 0xE0 - 0xE7 */
4636 X3(I(SrcImmByte | NearBranch, em_loop)),
4637 I(SrcImmByte | NearBranch, em_jcxz),
4638 I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
4639 I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4640 /* 0xE8 - 0xEF */
4641 I(SrcImm | NearBranch, em_call), D(SrcImm | ImplicitOps | NearBranch),
4642 I(SrcImmFAddr | No64, em_jmp_far),
4643 D(SrcImmByte | ImplicitOps | NearBranch),
4644 I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
4645 I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4646 /* 0xF0 - 0xF7 */
4647 N, DI(ImplicitOps, icebp), N, N,
4648 DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4649 G(ByteOp, group3), G(0, group3),
4650 /* 0xF8 - 0xFF */
4651 D(ImplicitOps), D(ImplicitOps),
4652 I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4653 D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4654 };
4655
4656 static const struct opcode twobyte_table[256] = {
4657 /* 0x00 - 0x0F */
4658 G(0, group6), GD(0, &group7), N, N,
4659 N, I(ImplicitOps | EmulateOnUD, em_syscall),
4660 II(ImplicitOps | Priv, em_clts, clts), N,
4661 DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4662 N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4663 /* 0x10 - 0x1F */
4664 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11),
4665 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11),
4666 N, N, N, N, N, N,
4667 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */
4668 D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4669 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4670 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4671 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4672 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */
4673 /* 0x20 - 0x2F */
4674 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access),
4675 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4676 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4677 check_cr_access),
4678 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4679 check_dr_write),
4680 N, N, N, N,
4681 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
4682 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
4683 N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
4684 N, N, N, N,
4685 /* 0x30 - 0x3F */
4686 II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4687 IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4688 II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4689 IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4690 I(ImplicitOps | EmulateOnUD, em_sysenter),
4691 I(ImplicitOps | Priv | EmulateOnUD, em_sysexit),
4692 N, N,
4693 N, N, N, N, N, N, N, N,
4694 /* 0x40 - 0x4F */
4695 X16(D(DstReg | SrcMem | ModRM)),
4696 /* 0x50 - 0x5F */
4697 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4698 /* 0x60 - 0x6F */
4699 N, N, N, N,
4700 N, N, N, N,
4701 N, N, N, N,
4702 N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4703 /* 0x70 - 0x7F */
4704 N, N, N, N,
4705 N, N, N, N,
4706 N, N, N, N,
4707 N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4708 /* 0x80 - 0x8F */
4709 X16(D(SrcImm | NearBranch)),
4710 /* 0x90 - 0x9F */
4711 X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4712 /* 0xA0 - 0xA7 */
4713 I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4714 II(ImplicitOps, em_cpuid, cpuid),
4715 F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4716 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4717 F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4718 /* 0xA8 - 0xAF */
4719 I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4720 II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
4721 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4722 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4723 F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4724 GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
4725 /* 0xB0 - 0xB7 */
4726 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4727 I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4728 F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4729 I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4730 I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4731 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4732 /* 0xB8 - 0xBF */
4733 N, N,
4734 G(BitOp, group8),
4735 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4736 I(DstReg | SrcMem | ModRM, em_bsf_c),
4737 I(DstReg | SrcMem | ModRM, em_bsr_c),
4738 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4739 /* 0xC0 - 0xC7 */
4740 F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4741 N, ID(0, &instr_dual_0f_c3),
4742 N, N, N, GD(0, &group9),
4743 /* 0xC8 - 0xCF */
4744 X8(I(DstReg, em_bswap)),
4745 /* 0xD0 - 0xDF */
4746 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4747 /* 0xE0 - 0xEF */
4748 N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
4749 N, N, N, N, N, N, N, N,
4750 /* 0xF0 - 0xFF */
4751 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4752 };
4753
4754 static const struct instr_dual instr_dual_0f_38_f0 = {
4755 I(DstReg | SrcMem | Mov, em_movbe), N
4756 };
4757
4758 static const struct instr_dual instr_dual_0f_38_f1 = {
4759 I(DstMem | SrcReg | Mov, em_movbe), N
4760 };
4761
4762 static const struct gprefix three_byte_0f_38_f0 = {
4763 ID(0, &instr_dual_0f_38_f0), N, N, N
4764 };
4765
4766 static const struct gprefix three_byte_0f_38_f1 = {
4767 ID(0, &instr_dual_0f_38_f1), N, N, N
4768 };
4769
4770 /*
4771 * Insns below are selected by the prefix which indexed by the third opcode
4772 * byte.
4773 */
4774 static const struct opcode opcode_map_0f_38[256] = {
4775 /* 0x00 - 0x7f */
4776 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4777 /* 0x80 - 0xef */
4778 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4779 /* 0xf0 - 0xf1 */
4780 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4781 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4782 /* 0xf2 - 0xff */
4783 N, N, X4(N), X8(N)
4784 };
4785
4786 #undef D
4787 #undef N
4788 #undef G
4789 #undef GD
4790 #undef I
4791 #undef GP
4792 #undef EXT
4793 #undef MD
4794 #undef ID
4795
4796 #undef D2bv
4797 #undef D2bvIP
4798 #undef I2bv
4799 #undef I2bvIP
4800 #undef I6ALU
4801
4802 static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4803 {
4804 unsigned size;
4805
4806 size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4807 if (size == 8)
4808 size = 4;
4809 return size;
4810 }
4811
4812 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4813 unsigned size, bool sign_extension)
4814 {
4815 int rc = X86EMUL_CONTINUE;
4816
4817 op->type = OP_IMM;
4818 op->bytes = size;
4819 op->addr.mem.ea = ctxt->_eip;
4820 /* NB. Immediates are sign-extended as necessary. */
4821 switch (op->bytes) {
4822 case 1:
4823 op->val = insn_fetch(s8, ctxt);
4824 break;
4825 case 2:
4826 op->val = insn_fetch(s16, ctxt);
4827 break;
4828 case 4:
4829 op->val = insn_fetch(s32, ctxt);
4830 break;
4831 case 8:
4832 op->val = insn_fetch(s64, ctxt);
4833 break;
4834 }
4835 if (!sign_extension) {
4836 switch (op->bytes) {
4837 case 1:
4838 op->val &= 0xff;
4839 break;
4840 case 2:
4841 op->val &= 0xffff;
4842 break;
4843 case 4:
4844 op->val &= 0xffffffff;
4845 break;
4846 }
4847 }
4848 done:
4849 return rc;
4850 }
4851
4852 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4853 unsigned d)
4854 {
4855 int rc = X86EMUL_CONTINUE;
4856
4857 switch (d) {
4858 case OpReg:
4859 decode_register_operand(ctxt, op);
4860 break;
4861 case OpImmUByte:
4862 rc = decode_imm(ctxt, op, 1, false);
4863 break;
4864 case OpMem:
4865 ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4866 mem_common:
4867 *op = ctxt->memop;
4868 ctxt->memopp = op;
4869 if (ctxt->d & BitOp)
4870 fetch_bit_operand(ctxt);
4871 op->orig_val = op->val;
4872 break;
4873 case OpMem64:
4874 ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4875 goto mem_common;
4876 case OpAcc:
4877 op->type = OP_REG;
4878 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4879 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4880 fetch_register_operand(op);
4881 op->orig_val = op->val;
4882 break;
4883 case OpAccLo:
4884 op->type = OP_REG;
4885 op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4886 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4887 fetch_register_operand(op);
4888 op->orig_val = op->val;
4889 break;
4890 case OpAccHi:
4891 if (ctxt->d & ByteOp) {
4892 op->type = OP_NONE;
4893 break;
4894 }
4895 op->type = OP_REG;
4896 op->bytes = ctxt->op_bytes;
4897 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4898 fetch_register_operand(op);
4899 op->orig_val = op->val;
4900 break;
4901 case OpDI:
4902 op->type = OP_MEM;
4903 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4904 op->addr.mem.ea =
4905 register_address(ctxt, VCPU_REGS_RDI);
4906 op->addr.mem.seg = VCPU_SREG_ES;
4907 op->val = 0;
4908 op->count = 1;
4909 break;
4910 case OpDX:
4911 op->type = OP_REG;
4912 op->bytes = 2;
4913 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4914 fetch_register_operand(op);
4915 break;
4916 case OpCL:
4917 op->type = OP_IMM;
4918 op->bytes = 1;
4919 op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4920 break;
4921 case OpImmByte:
4922 rc = decode_imm(ctxt, op, 1, true);
4923 break;
4924 case OpOne:
4925 op->type = OP_IMM;
4926 op->bytes = 1;
4927 op->val = 1;
4928 break;
4929 case OpImm:
4930 rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4931 break;
4932 case OpImm64:
4933 rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4934 break;
4935 case OpMem8:
4936 ctxt->memop.bytes = 1;
4937 if (ctxt->memop.type == OP_REG) {
4938 ctxt->memop.addr.reg = decode_register(ctxt,
4939 ctxt->modrm_rm, true);
4940 fetch_register_operand(&ctxt->memop);
4941 }
4942 goto mem_common;
4943 case OpMem16:
4944 ctxt->memop.bytes = 2;
4945 goto mem_common;
4946 case OpMem32:
4947 ctxt->memop.bytes = 4;
4948 goto mem_common;
4949 case OpImmU16:
4950 rc = decode_imm(ctxt, op, 2, false);
4951 break;
4952 case OpImmU:
4953 rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4954 break;
4955 case OpSI:
4956 op->type = OP_MEM;
4957 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4958 op->addr.mem.ea =
4959 register_address(ctxt, VCPU_REGS_RSI);
4960 op->addr.mem.seg = ctxt->seg_override;
4961 op->val = 0;
4962 op->count = 1;
4963 break;
4964 case OpXLat:
4965 op->type = OP_MEM;
4966 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4967 op->addr.mem.ea =
4968 address_mask(ctxt,
4969 reg_read(ctxt, VCPU_REGS_RBX) +
4970 (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4971 op->addr.mem.seg = ctxt->seg_override;
4972 op->val = 0;
4973 break;
4974 case OpImmFAddr:
4975 op->type = OP_IMM;
4976 op->addr.mem.ea = ctxt->_eip;
4977 op->bytes = ctxt->op_bytes + 2;
4978 insn_fetch_arr(op->valptr, op->bytes, ctxt);
4979 break;
4980 case OpMemFAddr:
4981 ctxt->memop.bytes = ctxt->op_bytes + 2;
4982 goto mem_common;
4983 case OpES:
4984 op->type = OP_IMM;
4985 op->val = VCPU_SREG_ES;
4986 break;
4987 case OpCS:
4988 op->type = OP_IMM;
4989 op->val = VCPU_SREG_CS;
4990 break;
4991 case OpSS:
4992 op->type = OP_IMM;
4993 op->val = VCPU_SREG_SS;
4994 break;
4995 case OpDS:
4996 op->type = OP_IMM;
4997 op->val = VCPU_SREG_DS;
4998 break;
4999 case OpFS:
5000 op->type = OP_IMM;
5001 op->val = VCPU_SREG_FS;
5002 break;
5003 case OpGS:
5004 op->type = OP_IMM;
5005 op->val = VCPU_SREG_GS;
5006 break;
5007 case OpImplicit:
5008 /* Special instructions do their own operand decoding. */
5009 default:
5010 op->type = OP_NONE; /* Disable writeback. */
5011 break;
5012 }
5013
5014 done:
5015 return rc;
5016 }
5017
5018 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type)
5019 {
5020 int rc = X86EMUL_CONTINUE;
5021 int mode = ctxt->mode;
5022 int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
5023 bool op_prefix = false;
5024 bool has_seg_override = false;
5025 struct opcode opcode;
5026 u16 dummy;
5027 struct desc_struct desc;
5028
5029 ctxt->memop.type = OP_NONE;
5030 ctxt->memopp = NULL;
5031 ctxt->_eip = ctxt->eip;
5032 ctxt->fetch.ptr = ctxt->fetch.data;
5033 ctxt->fetch.end = ctxt->fetch.data + insn_len;
5034 ctxt->opcode_len = 1;
5035 ctxt->intercept = x86_intercept_none;
5036 if (insn_len > 0)
5037 memcpy(ctxt->fetch.data, insn, insn_len);
5038 else {
5039 rc = __do_insn_fetch_bytes(ctxt, 1);
5040 if (rc != X86EMUL_CONTINUE)
5041 goto done;
5042 }
5043
5044 switch (mode) {
5045 case X86EMUL_MODE_REAL:
5046 case X86EMUL_MODE_VM86:
5047 def_op_bytes = def_ad_bytes = 2;
5048 ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
5049 if (desc.d)
5050 def_op_bytes = def_ad_bytes = 4;
5051 break;
5052 case X86EMUL_MODE_PROT16:
5053 def_op_bytes = def_ad_bytes = 2;
5054 break;
5055 case X86EMUL_MODE_PROT32:
5056 def_op_bytes = def_ad_bytes = 4;
5057 break;
5058 #ifdef CONFIG_X86_64
5059 case X86EMUL_MODE_PROT64:
5060 def_op_bytes = 4;
5061 def_ad_bytes = 8;
5062 break;
5063 #endif
5064 default:
5065 return EMULATION_FAILED;
5066 }
5067
5068 ctxt->op_bytes = def_op_bytes;
5069 ctxt->ad_bytes = def_ad_bytes;
5070
5071 /* Legacy prefixes. */
5072 for (;;) {
5073 switch (ctxt->b = insn_fetch(u8, ctxt)) {
5074 case 0x66: /* operand-size override */
5075 op_prefix = true;
5076 /* switch between 2/4 bytes */
5077 ctxt->op_bytes = def_op_bytes ^ 6;
5078 break;
5079 case 0x67: /* address-size override */
5080 if (mode == X86EMUL_MODE_PROT64)
5081 /* switch between 4/8 bytes */
5082 ctxt->ad_bytes = def_ad_bytes ^ 12;
5083 else
5084 /* switch between 2/4 bytes */
5085 ctxt->ad_bytes = def_ad_bytes ^ 6;
5086 break;
5087 case 0x26: /* ES override */
5088 has_seg_override = true;
5089 ctxt->seg_override = VCPU_SREG_ES;
5090 break;
5091 case 0x2e: /* CS override */
5092 has_seg_override = true;
5093 ctxt->seg_override = VCPU_SREG_CS;
5094 break;
5095 case 0x36: /* SS override */
5096 has_seg_override = true;
5097 ctxt->seg_override = VCPU_SREG_SS;
5098 break;
5099 case 0x3e: /* DS override */
5100 has_seg_override = true;
5101 ctxt->seg_override = VCPU_SREG_DS;
5102 break;
5103 case 0x64: /* FS override */
5104 has_seg_override = true;
5105 ctxt->seg_override = VCPU_SREG_FS;
5106 break;
5107 case 0x65: /* GS override */
5108 has_seg_override = true;
5109 ctxt->seg_override = VCPU_SREG_GS;
5110 break;
5111 case 0x40 ... 0x4f: /* REX */
5112 if (mode != X86EMUL_MODE_PROT64)
5113 goto done_prefixes;
5114 ctxt->rex_prefix = ctxt->b;
5115 continue;
5116 case 0xf0: /* LOCK */
5117 ctxt->lock_prefix = 1;
5118 break;
5119 case 0xf2: /* REPNE/REPNZ */
5120 case 0xf3: /* REP/REPE/REPZ */
5121 ctxt->rep_prefix = ctxt->b;
5122 break;
5123 default:
5124 goto done_prefixes;
5125 }
5126
5127 /* Any legacy prefix after a REX prefix nullifies its effect. */
5128
5129 ctxt->rex_prefix = 0;
5130 }
5131
5132 done_prefixes:
5133
5134 /* REX prefix. */
5135 if (ctxt->rex_prefix & 8)
5136 ctxt->op_bytes = 8; /* REX.W */
5137
5138 /* Opcode byte(s). */
5139 opcode = opcode_table[ctxt->b];
5140 /* Two-byte opcode? */
5141 if (ctxt->b == 0x0f) {
5142 ctxt->opcode_len = 2;
5143 ctxt->b = insn_fetch(u8, ctxt);
5144 opcode = twobyte_table[ctxt->b];
5145
5146 /* 0F_38 opcode map */
5147 if (ctxt->b == 0x38) {
5148 ctxt->opcode_len = 3;
5149 ctxt->b = insn_fetch(u8, ctxt);
5150 opcode = opcode_map_0f_38[ctxt->b];
5151 }
5152 }
5153 ctxt->d = opcode.flags;
5154
5155 if (ctxt->d & ModRM)
5156 ctxt->modrm = insn_fetch(u8, ctxt);
5157
5158 /* vex-prefix instructions are not implemented */
5159 if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
5160 (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
5161 ctxt->d = NotImpl;
5162 }
5163
5164 while (ctxt->d & GroupMask) {
5165 switch (ctxt->d & GroupMask) {
5166 case Group:
5167 goffset = (ctxt->modrm >> 3) & 7;
5168 opcode = opcode.u.group[goffset];
5169 break;
5170 case GroupDual:
5171 goffset = (ctxt->modrm >> 3) & 7;
5172 if ((ctxt->modrm >> 6) == 3)
5173 opcode = opcode.u.gdual->mod3[goffset];
5174 else
5175 opcode = opcode.u.gdual->mod012[goffset];
5176 break;
5177 case RMExt:
5178 goffset = ctxt->modrm & 7;
5179 opcode = opcode.u.group[goffset];
5180 break;
5181 case Prefix:
5182 if (ctxt->rep_prefix && op_prefix)
5183 return EMULATION_FAILED;
5184 simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
5185 switch (simd_prefix) {
5186 case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
5187 case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
5188 case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
5189 case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
5190 }
5191 break;
5192 case Escape:
5193 if (ctxt->modrm > 0xbf) {
5194 size_t size = ARRAY_SIZE(opcode.u.esc->high);
5195 u32 index = array_index_nospec(
5196 ctxt->modrm - 0xc0, size);
5197
5198 opcode = opcode.u.esc->high[index];
5199 } else {
5200 opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
5201 }
5202 break;
5203 case InstrDual:
5204 if ((ctxt->modrm >> 6) == 3)
5205 opcode = opcode.u.idual->mod3;
5206 else
5207 opcode = opcode.u.idual->mod012;
5208 break;
5209 case ModeDual:
5210 if (ctxt->mode == X86EMUL_MODE_PROT64)
5211 opcode = opcode.u.mdual->mode64;
5212 else
5213 opcode = opcode.u.mdual->mode32;
5214 break;
5215 default:
5216 return EMULATION_FAILED;
5217 }
5218
5219 ctxt->d &= ~(u64)GroupMask;
5220 ctxt->d |= opcode.flags;
5221 }
5222
5223 /* Unrecognised? */
5224 if (ctxt->d == 0)
5225 return EMULATION_FAILED;
5226
5227 ctxt->execute = opcode.u.execute;
5228
5229 if (unlikely(emulation_type & EMULTYPE_TRAP_UD) &&
5230 likely(!(ctxt->d & EmulateOnUD)))
5231 return EMULATION_FAILED;
5232
5233 if (unlikely(ctxt->d &
5234 (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
5235 No16))) {
5236 /*
5237 * These are copied unconditionally here, and checked unconditionally
5238 * in x86_emulate_insn.
5239 */
5240 ctxt->check_perm = opcode.check_perm;
5241 ctxt->intercept = opcode.intercept;
5242
5243 if (ctxt->d & NotImpl)
5244 return EMULATION_FAILED;
5245
5246 if (mode == X86EMUL_MODE_PROT64) {
5247 if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
5248 ctxt->op_bytes = 8;
5249 else if (ctxt->d & NearBranch)
5250 ctxt->op_bytes = 8;
5251 }
5252
5253 if (ctxt->d & Op3264) {
5254 if (mode == X86EMUL_MODE_PROT64)
5255 ctxt->op_bytes = 8;
5256 else
5257 ctxt->op_bytes = 4;
5258 }
5259
5260 if ((ctxt->d & No16) && ctxt->op_bytes == 2)
5261 ctxt->op_bytes = 4;
5262
5263 if (ctxt->d & Sse)
5264 ctxt->op_bytes = 16;
5265 else if (ctxt->d & Mmx)
5266 ctxt->op_bytes = 8;
5267 }
5268
5269 /* ModRM and SIB bytes. */
5270 if (ctxt->d & ModRM) {
5271 rc = decode_modrm(ctxt, &ctxt->memop);
5272 if (!has_seg_override) {
5273 has_seg_override = true;
5274 ctxt->seg_override = ctxt->modrm_seg;
5275 }
5276 } else if (ctxt->d & MemAbs)
5277 rc = decode_abs(ctxt, &ctxt->memop);
5278 if (rc != X86EMUL_CONTINUE)
5279 goto done;
5280
5281 if (!has_seg_override)
5282 ctxt->seg_override = VCPU_SREG_DS;
5283
5284 ctxt->memop.addr.mem.seg = ctxt->seg_override;
5285
5286 /*
5287 * Decode and fetch the source operand: register, memory
5288 * or immediate.
5289 */
5290 rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
5291 if (rc != X86EMUL_CONTINUE)
5292 goto done;
5293
5294 /*
5295 * Decode and fetch the second source operand: register, memory
5296 * or immediate.
5297 */
5298 rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
5299 if (rc != X86EMUL_CONTINUE)
5300 goto done;
5301
5302 /* Decode and fetch the destination operand: register or memory. */
5303 rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
5304
5305 if (ctxt->rip_relative && likely(ctxt->memopp))
5306 ctxt->memopp->addr.mem.ea = address_mask(ctxt,
5307 ctxt->memopp->addr.mem.ea + ctxt->_eip);
5308
5309 done:
5310 if (rc == X86EMUL_PROPAGATE_FAULT)
5311 ctxt->have_exception = true;
5312 return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
5313 }
5314
5315 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
5316 {
5317 return ctxt->d & PageTable;
5318 }
5319
5320 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
5321 {
5322 /* The second termination condition only applies for REPE
5323 * and REPNE. Test if the repeat string operation prefix is
5324 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
5325 * corresponding termination condition according to:
5326 * - if REPE/REPZ and ZF = 0 then done
5327 * - if REPNE/REPNZ and ZF = 1 then done
5328 */
5329 if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
5330 (ctxt->b == 0xae) || (ctxt->b == 0xaf))
5331 && (((ctxt->rep_prefix == REPE_PREFIX) &&
5332 ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
5333 || ((ctxt->rep_prefix == REPNE_PREFIX) &&
5334 ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
5335 return true;
5336
5337 return false;
5338 }
5339
5340 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
5341 {
5342 int rc;
5343
5344 kvm_fpu_get();
5345 rc = asm_safe("fwait");
5346 kvm_fpu_put();
5347
5348 if (unlikely(rc != X86EMUL_CONTINUE))
5349 return emulate_exception(ctxt, MF_VECTOR, 0, false);
5350
5351 return X86EMUL_CONTINUE;
5352 }
5353
5354 static void fetch_possible_mmx_operand(struct operand *op)
5355 {
5356 if (op->type == OP_MM)
5357 kvm_read_mmx_reg(op->addr.mm, &op->mm_val);
5358 }
5359
5360 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop)
5361 {
5362 ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
5363
5364 if (!(ctxt->d & ByteOp))
5365 fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
5366
5367 asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n"
5368 : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
5369 [thunk_target]"+S"(fop), ASM_CALL_CONSTRAINT
5370 : "c"(ctxt->src2.val));
5371
5372 ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
5373 if (!fop) /* exception is returned in fop variable */
5374 return emulate_de(ctxt);
5375 return X86EMUL_CONTINUE;
5376 }
5377
5378 void init_decode_cache(struct x86_emulate_ctxt *ctxt)
5379 {
5380 memset(&ctxt->rip_relative, 0,
5381 (void *)&ctxt->modrm - (void *)&ctxt->rip_relative);
5382
5383 ctxt->io_read.pos = 0;
5384 ctxt->io_read.end = 0;
5385 ctxt->mem_read.end = 0;
5386 }
5387
5388 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
5389 {
5390 const struct x86_emulate_ops *ops = ctxt->ops;
5391 int rc = X86EMUL_CONTINUE;
5392 int saved_dst_type = ctxt->dst.type;
5393 unsigned emul_flags;
5394
5395 ctxt->mem_read.pos = 0;
5396
5397 /* LOCK prefix is allowed only with some instructions */
5398 if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
5399 rc = emulate_ud(ctxt);
5400 goto done;
5401 }
5402
5403 if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
5404 rc = emulate_ud(ctxt);
5405 goto done;
5406 }
5407
5408 emul_flags = ctxt->ops->get_hflags(ctxt);
5409 if (unlikely(ctxt->d &
5410 (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
5411 if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
5412 (ctxt->d & Undefined)) {
5413 rc = emulate_ud(ctxt);
5414 goto done;
5415 }
5416
5417 if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
5418 || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
5419 rc = emulate_ud(ctxt);
5420 goto done;
5421 }
5422
5423 if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
5424 rc = emulate_nm(ctxt);
5425 goto done;
5426 }
5427
5428 if (ctxt->d & Mmx) {
5429 rc = flush_pending_x87_faults(ctxt);
5430 if (rc != X86EMUL_CONTINUE)
5431 goto done;
5432 /*
5433 * Now that we know the fpu is exception safe, we can fetch
5434 * operands from it.
5435 */
5436 fetch_possible_mmx_operand(&ctxt->src);
5437 fetch_possible_mmx_operand(&ctxt->src2);
5438 if (!(ctxt->d & Mov))
5439 fetch_possible_mmx_operand(&ctxt->dst);
5440 }
5441
5442 if (unlikely(emul_flags & X86EMUL_GUEST_MASK) && ctxt->intercept) {
5443 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5444 X86_ICPT_PRE_EXCEPT);
5445 if (rc != X86EMUL_CONTINUE)
5446 goto done;
5447 }
5448
5449 /* Instruction can only be executed in protected mode */
5450 if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
5451 rc = emulate_ud(ctxt);
5452 goto done;
5453 }
5454
5455 /* Privileged instruction can be executed only in CPL=0 */
5456 if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
5457 if (ctxt->d & PrivUD)
5458 rc = emulate_ud(ctxt);
5459 else
5460 rc = emulate_gp(ctxt, 0);
5461 goto done;
5462 }
5463
5464 /* Do instruction specific permission checks */
5465 if (ctxt->d & CheckPerm) {
5466 rc = ctxt->check_perm(ctxt);
5467 if (rc != X86EMUL_CONTINUE)
5468 goto done;
5469 }
5470
5471 if (unlikely(emul_flags & X86EMUL_GUEST_MASK) && (ctxt->d & Intercept)) {
5472 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5473 X86_ICPT_POST_EXCEPT);
5474 if (rc != X86EMUL_CONTINUE)
5475 goto done;
5476 }
5477
5478 if (ctxt->rep_prefix && (ctxt->d & String)) {
5479 /* All REP prefixes have the same first termination condition */
5480 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
5481 string_registers_quirk(ctxt);
5482 ctxt->eip = ctxt->_eip;
5483 ctxt->eflags &= ~X86_EFLAGS_RF;
5484 goto done;
5485 }
5486 }
5487 }
5488
5489 if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
5490 rc = segmented_read(ctxt, ctxt->src.addr.mem,
5491 ctxt->src.valptr, ctxt->src.bytes);
5492 if (rc != X86EMUL_CONTINUE)
5493 goto done;
5494 ctxt->src.orig_val64 = ctxt->src.val64;
5495 }
5496
5497 if (ctxt->src2.type == OP_MEM) {
5498 rc = segmented_read(ctxt, ctxt->src2.addr.mem,
5499 &ctxt->src2.val, ctxt->src2.bytes);
5500 if (rc != X86EMUL_CONTINUE)
5501 goto done;
5502 }
5503
5504 if ((ctxt->d & DstMask) == ImplicitOps)
5505 goto special_insn;
5506
5507
5508 if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
5509 /* optimisation - avoid slow emulated read if Mov */
5510 rc = segmented_read(ctxt, ctxt->dst.addr.mem,
5511 &ctxt->dst.val, ctxt->dst.bytes);
5512 if (rc != X86EMUL_CONTINUE) {
5513 if (!(ctxt->d & NoWrite) &&
5514 rc == X86EMUL_PROPAGATE_FAULT &&
5515 ctxt->exception.vector == PF_VECTOR)
5516 ctxt->exception.error_code |= PFERR_WRITE_MASK;
5517 goto done;
5518 }
5519 }
5520 /* Copy full 64-bit value for CMPXCHG8B. */
5521 ctxt->dst.orig_val64 = ctxt->dst.val64;
5522
5523 special_insn:
5524
5525 if (unlikely(emul_flags & X86EMUL_GUEST_MASK) && (ctxt->d & Intercept)) {
5526 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5527 X86_ICPT_POST_MEMACCESS);
5528 if (rc != X86EMUL_CONTINUE)
5529 goto done;
5530 }
5531
5532 if (ctxt->rep_prefix && (ctxt->d & String))
5533 ctxt->eflags |= X86_EFLAGS_RF;
5534 else
5535 ctxt->eflags &= ~X86_EFLAGS_RF;
5536
5537 if (ctxt->execute) {
5538 if (ctxt->d & Fastop)
5539 rc = fastop(ctxt, ctxt->fop);
5540 else
5541 rc = ctxt->execute(ctxt);
5542 if (rc != X86EMUL_CONTINUE)
5543 goto done;
5544 goto writeback;
5545 }
5546
5547 if (ctxt->opcode_len == 2)
5548 goto twobyte_insn;
5549 else if (ctxt->opcode_len == 3)
5550 goto threebyte_insn;
5551
5552 switch (ctxt->b) {
5553 case 0x70 ... 0x7f: /* jcc (short) */
5554 if (test_cc(ctxt->b, ctxt->eflags))
5555 rc = jmp_rel(ctxt, ctxt->src.val);
5556 break;
5557 case 0x8d: /* lea r16/r32, m */
5558 ctxt->dst.val = ctxt->src.addr.mem.ea;
5559 break;
5560 case 0x90 ... 0x97: /* nop / xchg reg, rax */
5561 if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5562 ctxt->dst.type = OP_NONE;
5563 else
5564 rc = em_xchg(ctxt);
5565 break;
5566 case 0x98: /* cbw/cwde/cdqe */
5567 switch (ctxt->op_bytes) {
5568 case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5569 case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5570 case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5571 }
5572 break;
5573 case 0xcc: /* int3 */
5574 rc = emulate_int(ctxt, 3);
5575 break;
5576 case 0xcd: /* int n */
5577 rc = emulate_int(ctxt, ctxt->src.val);
5578 break;
5579 case 0xce: /* into */
5580 if (ctxt->eflags & X86_EFLAGS_OF)
5581 rc = emulate_int(ctxt, 4);
5582 break;
5583 case 0xe9: /* jmp rel */
5584 case 0xeb: /* jmp rel short */
5585 rc = jmp_rel(ctxt, ctxt->src.val);
5586 ctxt->dst.type = OP_NONE; /* Disable writeback. */
5587 break;
5588 case 0xf4: /* hlt */
5589 ctxt->ops->halt(ctxt);
5590 break;
5591 case 0xf5: /* cmc */
5592 /* complement carry flag from eflags reg */
5593 ctxt->eflags ^= X86_EFLAGS_CF;
5594 break;
5595 case 0xf8: /* clc */
5596 ctxt->eflags &= ~X86_EFLAGS_CF;
5597 break;
5598 case 0xf9: /* stc */
5599 ctxt->eflags |= X86_EFLAGS_CF;
5600 break;
5601 case 0xfc: /* cld */
5602 ctxt->eflags &= ~X86_EFLAGS_DF;
5603 break;
5604 case 0xfd: /* std */
5605 ctxt->eflags |= X86_EFLAGS_DF;
5606 break;
5607 default:
5608 goto cannot_emulate;
5609 }
5610
5611 if (rc != X86EMUL_CONTINUE)
5612 goto done;
5613
5614 writeback:
5615 if (ctxt->d & SrcWrite) {
5616 BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5617 rc = writeback(ctxt, &ctxt->src);
5618 if (rc != X86EMUL_CONTINUE)
5619 goto done;
5620 }
5621 if (!(ctxt->d & NoWrite)) {
5622 rc = writeback(ctxt, &ctxt->dst);
5623 if (rc != X86EMUL_CONTINUE)
5624 goto done;
5625 }
5626
5627 /*
5628 * restore dst type in case the decoding will be reused
5629 * (happens for string instruction )
5630 */
5631 ctxt->dst.type = saved_dst_type;
5632
5633 if ((ctxt->d & SrcMask) == SrcSI)
5634 string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5635
5636 if ((ctxt->d & DstMask) == DstDI)
5637 string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5638
5639 if (ctxt->rep_prefix && (ctxt->d & String)) {
5640 unsigned int count;
5641 struct read_cache *r = &ctxt->io_read;
5642 if ((ctxt->d & SrcMask) == SrcSI)
5643 count = ctxt->src.count;
5644 else
5645 count = ctxt->dst.count;
5646 register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5647
5648 if (!string_insn_completed(ctxt)) {
5649 /*
5650 * Re-enter guest when pio read ahead buffer is empty
5651 * or, if it is not used, after each 1024 iteration.
5652 */
5653 if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5654 (r->end == 0 || r->end != r->pos)) {
5655 /*
5656 * Reset read cache. Usually happens before
5657 * decode, but since instruction is restarted
5658 * we have to do it here.
5659 */
5660 ctxt->mem_read.end = 0;
5661 writeback_registers(ctxt);
5662 return EMULATION_RESTART;
5663 }
5664 goto done; /* skip rip writeback */
5665 }
5666 ctxt->eflags &= ~X86_EFLAGS_RF;
5667 }
5668
5669 ctxt->eip = ctxt->_eip;
5670 if (ctxt->mode != X86EMUL_MODE_PROT64)
5671 ctxt->eip = (u32)ctxt->_eip;
5672
5673 done:
5674 if (rc == X86EMUL_PROPAGATE_FAULT) {
5675 WARN_ON(ctxt->exception.vector > 0x1f);
5676 ctxt->have_exception = true;
5677 }
5678 if (rc == X86EMUL_INTERCEPTED)
5679 return EMULATION_INTERCEPTED;
5680
5681 if (rc == X86EMUL_CONTINUE)
5682 writeback_registers(ctxt);
5683
5684 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5685
5686 twobyte_insn:
5687 switch (ctxt->b) {
5688 case 0x09: /* wbinvd */
5689 (ctxt->ops->wbinvd)(ctxt);
5690 break;
5691 case 0x08: /* invd */
5692 case 0x0d: /* GrpP (prefetch) */
5693 case 0x18: /* Grp16 (prefetch/nop) */
5694 case 0x1f: /* nop */
5695 break;
5696 case 0x20: /* mov cr, reg */
5697 ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5698 break;
5699 case 0x21: /* mov from dr to reg */
5700 ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
5701 break;
5702 case 0x40 ... 0x4f: /* cmov */
5703 if (test_cc(ctxt->b, ctxt->eflags))
5704 ctxt->dst.val = ctxt->src.val;
5705 else if (ctxt->op_bytes != 4)
5706 ctxt->dst.type = OP_NONE; /* no writeback */
5707 break;
5708 case 0x80 ... 0x8f: /* jnz rel, etc*/
5709 if (test_cc(ctxt->b, ctxt->eflags))
5710 rc = jmp_rel(ctxt, ctxt->src.val);
5711 break;
5712 case 0x90 ... 0x9f: /* setcc r/m8 */
5713 ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5714 break;
5715 case 0xb6 ... 0xb7: /* movzx */
5716 ctxt->dst.bytes = ctxt->op_bytes;
5717 ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5718 : (u16) ctxt->src.val;
5719 break;
5720 case 0xbe ... 0xbf: /* movsx */
5721 ctxt->dst.bytes = ctxt->op_bytes;
5722 ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5723 (s16) ctxt->src.val;
5724 break;
5725 default:
5726 goto cannot_emulate;
5727 }
5728
5729 threebyte_insn:
5730
5731 if (rc != X86EMUL_CONTINUE)
5732 goto done;
5733
5734 goto writeback;
5735
5736 cannot_emulate:
5737 return EMULATION_FAILED;
5738 }
5739
5740 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5741 {
5742 invalidate_registers(ctxt);
5743 }
5744
5745 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5746 {
5747 writeback_registers(ctxt);
5748 }
5749
5750 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
5751 {
5752 if (ctxt->rep_prefix && (ctxt->d & String))
5753 return false;
5754
5755 if (ctxt->d & TwoMemOp)
5756 return false;
5757
5758 return true;
5759 }