]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/vmx/nested.c
KVM: VMX: Intercept FS/GS_BASE MSR accesses for 32-bit KVM
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "sgx.h"
15 #include "trace.h"
16 #include "vmx.h"
17 #include "x86.h"
18
19 static bool __read_mostly enable_shadow_vmcs = 1;
20 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
21
22 static bool __read_mostly nested_early_check = 0;
23 module_param(nested_early_check, bool, S_IRUGO);
24
25 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
26
27 /*
28 * Hyper-V requires all of these, so mark them as supported even though
29 * they are just treated the same as all-context.
30 */
31 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
32 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
33 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
34 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
35 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
36
37 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
38
39 enum {
40 VMX_VMREAD_BITMAP,
41 VMX_VMWRITE_BITMAP,
42 VMX_BITMAP_NR
43 };
44 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
45
46 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
47 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
48
49 struct shadow_vmcs_field {
50 u16 encoding;
51 u16 offset;
52 };
53 static struct shadow_vmcs_field shadow_read_only_fields[] = {
54 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 #include "vmcs_shadow_fields.h"
56 };
57 static int max_shadow_read_only_fields =
58 ARRAY_SIZE(shadow_read_only_fields);
59
60 static struct shadow_vmcs_field shadow_read_write_fields[] = {
61 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 #include "vmcs_shadow_fields.h"
63 };
64 static int max_shadow_read_write_fields =
65 ARRAY_SIZE(shadow_read_write_fields);
66
67 static void init_vmcs_shadow_fields(void)
68 {
69 int i, j;
70
71 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
72 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
73
74 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
76 u16 field = entry.encoding;
77
78 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
79 (i + 1 == max_shadow_read_only_fields ||
80 shadow_read_only_fields[i + 1].encoding != field + 1))
81 pr_err("Missing field from shadow_read_only_field %x\n",
82 field + 1);
83
84 clear_bit(field, vmx_vmread_bitmap);
85 if (field & 1)
86 #ifdef CONFIG_X86_64
87 continue;
88 #else
89 entry.offset += sizeof(u32);
90 #endif
91 shadow_read_only_fields[j++] = entry;
92 }
93 max_shadow_read_only_fields = j;
94
95 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
97 u16 field = entry.encoding;
98
99 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
100 (i + 1 == max_shadow_read_write_fields ||
101 shadow_read_write_fields[i + 1].encoding != field + 1))
102 pr_err("Missing field from shadow_read_write_field %x\n",
103 field + 1);
104
105 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
106 field <= GUEST_TR_AR_BYTES,
107 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
108
109 /*
110 * PML and the preemption timer can be emulated, but the
111 * processor cannot vmwrite to fields that don't exist
112 * on bare metal.
113 */
114 switch (field) {
115 case GUEST_PML_INDEX:
116 if (!cpu_has_vmx_pml())
117 continue;
118 break;
119 case VMX_PREEMPTION_TIMER_VALUE:
120 if (!cpu_has_vmx_preemption_timer())
121 continue;
122 break;
123 case GUEST_INTR_STATUS:
124 if (!cpu_has_vmx_apicv())
125 continue;
126 break;
127 default:
128 break;
129 }
130
131 clear_bit(field, vmx_vmwrite_bitmap);
132 clear_bit(field, vmx_vmread_bitmap);
133 if (field & 1)
134 #ifdef CONFIG_X86_64
135 continue;
136 #else
137 entry.offset += sizeof(u32);
138 #endif
139 shadow_read_write_fields[j++] = entry;
140 }
141 max_shadow_read_write_fields = j;
142 }
143
144 /*
145 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
146 * set the success or error code of an emulated VMX instruction (as specified
147 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
148 * instruction.
149 */
150 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
151 {
152 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
153 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
154 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
155 return kvm_skip_emulated_instruction(vcpu);
156 }
157
158 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
159 {
160 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
161 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
162 X86_EFLAGS_SF | X86_EFLAGS_OF))
163 | X86_EFLAGS_CF);
164 return kvm_skip_emulated_instruction(vcpu);
165 }
166
167 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
168 u32 vm_instruction_error)
169 {
170 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
171 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
172 X86_EFLAGS_SF | X86_EFLAGS_OF))
173 | X86_EFLAGS_ZF);
174 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
175 /*
176 * We don't need to force a shadow sync because
177 * VM_INSTRUCTION_ERROR is not shadowed
178 */
179 return kvm_skip_emulated_instruction(vcpu);
180 }
181
182 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
183 {
184 struct vcpu_vmx *vmx = to_vmx(vcpu);
185
186 /*
187 * failValid writes the error number to the current VMCS, which
188 * can't be done if there isn't a current VMCS.
189 */
190 if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
191 return nested_vmx_failInvalid(vcpu);
192
193 return nested_vmx_failValid(vcpu, vm_instruction_error);
194 }
195
196 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
197 {
198 /* TODO: not to reset guest simply here. */
199 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
200 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
201 }
202
203 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
204 {
205 return fixed_bits_valid(control, low, high);
206 }
207
208 static inline u64 vmx_control_msr(u32 low, u32 high)
209 {
210 return low | ((u64)high << 32);
211 }
212
213 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
214 {
215 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
216 vmcs_write64(VMCS_LINK_POINTER, -1ull);
217 vmx->nested.need_vmcs12_to_shadow_sync = false;
218 }
219
220 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
221 {
222 struct vcpu_vmx *vmx = to_vmx(vcpu);
223
224 if (!vmx->nested.hv_evmcs)
225 return;
226
227 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
228 vmx->nested.hv_evmcs_vmptr = 0;
229 vmx->nested.hv_evmcs = NULL;
230 }
231
232 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
233 struct loaded_vmcs *prev)
234 {
235 struct vmcs_host_state *dest, *src;
236
237 if (unlikely(!vmx->guest_state_loaded))
238 return;
239
240 src = &prev->host_state;
241 dest = &vmx->loaded_vmcs->host_state;
242
243 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
244 dest->ldt_sel = src->ldt_sel;
245 #ifdef CONFIG_X86_64
246 dest->ds_sel = src->ds_sel;
247 dest->es_sel = src->es_sel;
248 #endif
249 }
250
251 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
252 {
253 struct vcpu_vmx *vmx = to_vmx(vcpu);
254 struct loaded_vmcs *prev;
255 int cpu;
256
257 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
258 return;
259
260 cpu = get_cpu();
261 prev = vmx->loaded_vmcs;
262 vmx->loaded_vmcs = vmcs;
263 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
264 vmx_sync_vmcs_host_state(vmx, prev);
265 put_cpu();
266
267 vmx_register_cache_reset(vcpu);
268 }
269
270 /*
271 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
272 * just stops using VMX.
273 */
274 static void free_nested(struct kvm_vcpu *vcpu)
275 {
276 struct vcpu_vmx *vmx = to_vmx(vcpu);
277
278 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
279 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
280
281 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
282 return;
283
284 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
285
286 vmx->nested.vmxon = false;
287 vmx->nested.smm.vmxon = false;
288 free_vpid(vmx->nested.vpid02);
289 vmx->nested.posted_intr_nv = -1;
290 vmx->nested.current_vmptr = -1ull;
291 if (enable_shadow_vmcs) {
292 vmx_disable_shadow_vmcs(vmx);
293 vmcs_clear(vmx->vmcs01.shadow_vmcs);
294 free_vmcs(vmx->vmcs01.shadow_vmcs);
295 vmx->vmcs01.shadow_vmcs = NULL;
296 }
297 kfree(vmx->nested.cached_vmcs12);
298 vmx->nested.cached_vmcs12 = NULL;
299 kfree(vmx->nested.cached_shadow_vmcs12);
300 vmx->nested.cached_shadow_vmcs12 = NULL;
301 /* Unpin physical memory we referred to in the vmcs02 */
302 if (vmx->nested.apic_access_page) {
303 kvm_release_page_clean(vmx->nested.apic_access_page);
304 vmx->nested.apic_access_page = NULL;
305 }
306 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
307 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
308 vmx->nested.pi_desc = NULL;
309
310 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
311
312 nested_release_evmcs(vcpu);
313
314 free_loaded_vmcs(&vmx->nested.vmcs02);
315 }
316
317 /*
318 * Ensure that the current vmcs of the logical processor is the
319 * vmcs01 of the vcpu before calling free_nested().
320 */
321 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
322 {
323 vcpu_load(vcpu);
324 vmx_leave_nested(vcpu);
325 vcpu_put(vcpu);
326 }
327
328 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
329 struct x86_exception *fault)
330 {
331 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
332 struct vcpu_vmx *vmx = to_vmx(vcpu);
333 u32 vm_exit_reason;
334 unsigned long exit_qualification = vcpu->arch.exit_qualification;
335
336 if (vmx->nested.pml_full) {
337 vm_exit_reason = EXIT_REASON_PML_FULL;
338 vmx->nested.pml_full = false;
339 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
340 } else if (fault->error_code & PFERR_RSVD_MASK)
341 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
342 else
343 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
344
345 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
346 vmcs12->guest_physical_address = fault->address;
347 }
348
349 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
350 {
351 WARN_ON(mmu_is_nested(vcpu));
352
353 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
354 kvm_init_shadow_ept_mmu(vcpu,
355 to_vmx(vcpu)->nested.msrs.ept_caps &
356 VMX_EPT_EXECUTE_ONLY_BIT,
357 nested_ept_ad_enabled(vcpu),
358 nested_ept_get_eptp(vcpu));
359 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
360 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
361 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
362
363 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
364 }
365
366 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
367 {
368 vcpu->arch.mmu = &vcpu->arch.root_mmu;
369 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
370 }
371
372 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
373 u16 error_code)
374 {
375 bool inequality, bit;
376
377 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
378 inequality =
379 (error_code & vmcs12->page_fault_error_code_mask) !=
380 vmcs12->page_fault_error_code_match;
381 return inequality ^ bit;
382 }
383
384
385 /*
386 * KVM wants to inject page-faults which it got to the guest. This function
387 * checks whether in a nested guest, we need to inject them to L1 or L2.
388 */
389 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
390 {
391 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
392 unsigned int nr = vcpu->arch.exception.nr;
393 bool has_payload = vcpu->arch.exception.has_payload;
394 unsigned long payload = vcpu->arch.exception.payload;
395
396 if (nr == PF_VECTOR) {
397 if (vcpu->arch.exception.nested_apf) {
398 *exit_qual = vcpu->arch.apf.nested_apf_token;
399 return 1;
400 }
401 if (nested_vmx_is_page_fault_vmexit(vmcs12,
402 vcpu->arch.exception.error_code)) {
403 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
404 return 1;
405 }
406 } else if (vmcs12->exception_bitmap & (1u << nr)) {
407 if (nr == DB_VECTOR) {
408 if (!has_payload) {
409 payload = vcpu->arch.dr6;
410 payload &= ~DR6_BT;
411 payload ^= DR6_ACTIVE_LOW;
412 }
413 *exit_qual = payload;
414 } else
415 *exit_qual = 0;
416 return 1;
417 }
418
419 return 0;
420 }
421
422
423 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
424 struct x86_exception *fault)
425 {
426 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
427
428 WARN_ON(!is_guest_mode(vcpu));
429
430 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
431 !to_vmx(vcpu)->nested.nested_run_pending) {
432 vmcs12->vm_exit_intr_error_code = fault->error_code;
433 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
434 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
435 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
436 fault->address);
437 } else {
438 kvm_inject_page_fault(vcpu, fault);
439 }
440 }
441
442 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
443 struct vmcs12 *vmcs12)
444 {
445 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
446 return 0;
447
448 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
449 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
450 return -EINVAL;
451
452 return 0;
453 }
454
455 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
456 struct vmcs12 *vmcs12)
457 {
458 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
459 return 0;
460
461 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
462 return -EINVAL;
463
464 return 0;
465 }
466
467 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
468 struct vmcs12 *vmcs12)
469 {
470 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
471 return 0;
472
473 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
474 return -EINVAL;
475
476 return 0;
477 }
478
479 /*
480 * Check if MSR is intercepted for L01 MSR bitmap.
481 */
482 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
483 {
484 unsigned long *msr_bitmap;
485 int f = sizeof(unsigned long);
486
487 if (!cpu_has_vmx_msr_bitmap())
488 return true;
489
490 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
491
492 if (msr <= 0x1fff) {
493 return !!test_bit(msr, msr_bitmap + 0x800 / f);
494 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
495 msr &= 0x1fff;
496 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
497 }
498
499 return true;
500 }
501
502 /*
503 * If a msr is allowed by L0, we should check whether it is allowed by L1.
504 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
505 */
506 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
507 unsigned long *msr_bitmap_nested,
508 u32 msr, int type)
509 {
510 int f = sizeof(unsigned long);
511
512 /*
513 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
514 * have the write-low and read-high bitmap offsets the wrong way round.
515 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
516 */
517 if (msr <= 0x1fff) {
518 if (type & MSR_TYPE_R &&
519 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
520 /* read-low */
521 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
522
523 if (type & MSR_TYPE_W &&
524 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
525 /* write-low */
526 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
527
528 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
529 msr &= 0x1fff;
530 if (type & MSR_TYPE_R &&
531 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
532 /* read-high */
533 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
534
535 if (type & MSR_TYPE_W &&
536 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
537 /* write-high */
538 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
539
540 }
541 }
542
543 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
544 {
545 int msr;
546
547 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
548 unsigned word = msr / BITS_PER_LONG;
549
550 msr_bitmap[word] = ~0;
551 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
552 }
553 }
554
555 /*
556 * Merge L0's and L1's MSR bitmap, return false to indicate that
557 * we do not use the hardware.
558 */
559 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
560 struct vmcs12 *vmcs12)
561 {
562 int msr;
563 unsigned long *msr_bitmap_l1;
564 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
565 struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
566
567 /* Nothing to do if the MSR bitmap is not in use. */
568 if (!cpu_has_vmx_msr_bitmap() ||
569 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
570 return false;
571
572 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
573 return false;
574
575 msr_bitmap_l1 = (unsigned long *)map->hva;
576
577 /*
578 * To keep the control flow simple, pay eight 8-byte writes (sixteen
579 * 4-byte writes on 32-bit systems) up front to enable intercepts for
580 * the x2APIC MSR range and selectively disable them below.
581 */
582 enable_x2apic_msr_intercepts(msr_bitmap_l0);
583
584 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
585 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
586 /*
587 * L0 need not intercept reads for MSRs between 0x800
588 * and 0x8ff, it just lets the processor take the value
589 * from the virtual-APIC page; take those 256 bits
590 * directly from the L1 bitmap.
591 */
592 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
593 unsigned word = msr / BITS_PER_LONG;
594
595 msr_bitmap_l0[word] = msr_bitmap_l1[word];
596 }
597 }
598
599 nested_vmx_disable_intercept_for_msr(
600 msr_bitmap_l1, msr_bitmap_l0,
601 X2APIC_MSR(APIC_TASKPRI),
602 MSR_TYPE_R | MSR_TYPE_W);
603
604 if (nested_cpu_has_vid(vmcs12)) {
605 nested_vmx_disable_intercept_for_msr(
606 msr_bitmap_l1, msr_bitmap_l0,
607 X2APIC_MSR(APIC_EOI),
608 MSR_TYPE_W);
609 nested_vmx_disable_intercept_for_msr(
610 msr_bitmap_l1, msr_bitmap_l0,
611 X2APIC_MSR(APIC_SELF_IPI),
612 MSR_TYPE_W);
613 }
614 }
615
616 /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
617 #ifdef CONFIG_X86_64
618 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
619 MSR_FS_BASE, MSR_TYPE_RW);
620
621 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
622 MSR_GS_BASE, MSR_TYPE_RW);
623
624 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
625 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
626 #endif
627
628 /*
629 * Checking the L0->L1 bitmap is trying to verify two things:
630 *
631 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
632 * ensures that we do not accidentally generate an L02 MSR bitmap
633 * from the L12 MSR bitmap that is too permissive.
634 * 2. That L1 or L2s have actually used the MSR. This avoids
635 * unnecessarily merging of the bitmap if the MSR is unused. This
636 * works properly because we only update the L01 MSR bitmap lazily.
637 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
638 * updated to reflect this when L1 (or its L2s) actually write to
639 * the MSR.
640 */
641 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
642 nested_vmx_disable_intercept_for_msr(
643 msr_bitmap_l1, msr_bitmap_l0,
644 MSR_IA32_SPEC_CTRL,
645 MSR_TYPE_R | MSR_TYPE_W);
646
647 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
648 nested_vmx_disable_intercept_for_msr(
649 msr_bitmap_l1, msr_bitmap_l0,
650 MSR_IA32_PRED_CMD,
651 MSR_TYPE_W);
652
653 kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
654
655 return true;
656 }
657
658 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
659 struct vmcs12 *vmcs12)
660 {
661 struct kvm_host_map map;
662 struct vmcs12 *shadow;
663
664 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
665 vmcs12->vmcs_link_pointer == -1ull)
666 return;
667
668 shadow = get_shadow_vmcs12(vcpu);
669
670 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
671 return;
672
673 memcpy(shadow, map.hva, VMCS12_SIZE);
674 kvm_vcpu_unmap(vcpu, &map, false);
675 }
676
677 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
678 struct vmcs12 *vmcs12)
679 {
680 struct vcpu_vmx *vmx = to_vmx(vcpu);
681
682 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
683 vmcs12->vmcs_link_pointer == -1ull)
684 return;
685
686 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
687 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
688 }
689
690 /*
691 * In nested virtualization, check if L1 has set
692 * VM_EXIT_ACK_INTR_ON_EXIT
693 */
694 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
695 {
696 return get_vmcs12(vcpu)->vm_exit_controls &
697 VM_EXIT_ACK_INTR_ON_EXIT;
698 }
699
700 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
701 struct vmcs12 *vmcs12)
702 {
703 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
704 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
705 return -EINVAL;
706 else
707 return 0;
708 }
709
710 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
711 struct vmcs12 *vmcs12)
712 {
713 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
714 !nested_cpu_has_apic_reg_virt(vmcs12) &&
715 !nested_cpu_has_vid(vmcs12) &&
716 !nested_cpu_has_posted_intr(vmcs12))
717 return 0;
718
719 /*
720 * If virtualize x2apic mode is enabled,
721 * virtualize apic access must be disabled.
722 */
723 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
724 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
725 return -EINVAL;
726
727 /*
728 * If virtual interrupt delivery is enabled,
729 * we must exit on external interrupts.
730 */
731 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
732 return -EINVAL;
733
734 /*
735 * bits 15:8 should be zero in posted_intr_nv,
736 * the descriptor address has been already checked
737 * in nested_get_vmcs12_pages.
738 *
739 * bits 5:0 of posted_intr_desc_addr should be zero.
740 */
741 if (nested_cpu_has_posted_intr(vmcs12) &&
742 (CC(!nested_cpu_has_vid(vmcs12)) ||
743 CC(!nested_exit_intr_ack_set(vcpu)) ||
744 CC((vmcs12->posted_intr_nv & 0xff00)) ||
745 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
746 return -EINVAL;
747
748 /* tpr shadow is needed by all apicv features. */
749 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
750 return -EINVAL;
751
752 return 0;
753 }
754
755 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
756 u32 count, u64 addr)
757 {
758 if (count == 0)
759 return 0;
760
761 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
762 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
763 return -EINVAL;
764
765 return 0;
766 }
767
768 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
769 struct vmcs12 *vmcs12)
770 {
771 if (CC(nested_vmx_check_msr_switch(vcpu,
772 vmcs12->vm_exit_msr_load_count,
773 vmcs12->vm_exit_msr_load_addr)) ||
774 CC(nested_vmx_check_msr_switch(vcpu,
775 vmcs12->vm_exit_msr_store_count,
776 vmcs12->vm_exit_msr_store_addr)))
777 return -EINVAL;
778
779 return 0;
780 }
781
782 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
783 struct vmcs12 *vmcs12)
784 {
785 if (CC(nested_vmx_check_msr_switch(vcpu,
786 vmcs12->vm_entry_msr_load_count,
787 vmcs12->vm_entry_msr_load_addr)))
788 return -EINVAL;
789
790 return 0;
791 }
792
793 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
794 struct vmcs12 *vmcs12)
795 {
796 if (!nested_cpu_has_pml(vmcs12))
797 return 0;
798
799 if (CC(!nested_cpu_has_ept(vmcs12)) ||
800 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
801 return -EINVAL;
802
803 return 0;
804 }
805
806 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
807 struct vmcs12 *vmcs12)
808 {
809 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
810 !nested_cpu_has_ept(vmcs12)))
811 return -EINVAL;
812 return 0;
813 }
814
815 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
816 struct vmcs12 *vmcs12)
817 {
818 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
819 !nested_cpu_has_ept(vmcs12)))
820 return -EINVAL;
821 return 0;
822 }
823
824 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
825 struct vmcs12 *vmcs12)
826 {
827 if (!nested_cpu_has_shadow_vmcs(vmcs12))
828 return 0;
829
830 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
831 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
832 return -EINVAL;
833
834 return 0;
835 }
836
837 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
838 struct vmx_msr_entry *e)
839 {
840 /* x2APIC MSR accesses are not allowed */
841 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
842 return -EINVAL;
843 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
844 CC(e->index == MSR_IA32_UCODE_REV))
845 return -EINVAL;
846 if (CC(e->reserved != 0))
847 return -EINVAL;
848 return 0;
849 }
850
851 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
852 struct vmx_msr_entry *e)
853 {
854 if (CC(e->index == MSR_FS_BASE) ||
855 CC(e->index == MSR_GS_BASE) ||
856 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
857 nested_vmx_msr_check_common(vcpu, e))
858 return -EINVAL;
859 return 0;
860 }
861
862 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
863 struct vmx_msr_entry *e)
864 {
865 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
866 nested_vmx_msr_check_common(vcpu, e))
867 return -EINVAL;
868 return 0;
869 }
870
871 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
872 {
873 struct vcpu_vmx *vmx = to_vmx(vcpu);
874 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
875 vmx->nested.msrs.misc_high);
876
877 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
878 }
879
880 /*
881 * Load guest's/host's msr at nested entry/exit.
882 * return 0 for success, entry index for failure.
883 *
884 * One of the failure modes for MSR load/store is when a list exceeds the
885 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
886 * as possible, process all valid entries before failing rather than precheck
887 * for a capacity violation.
888 */
889 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
890 {
891 u32 i;
892 struct vmx_msr_entry e;
893 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
894
895 for (i = 0; i < count; i++) {
896 if (unlikely(i >= max_msr_list_size))
897 goto fail;
898
899 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
900 &e, sizeof(e))) {
901 pr_debug_ratelimited(
902 "%s cannot read MSR entry (%u, 0x%08llx)\n",
903 __func__, i, gpa + i * sizeof(e));
904 goto fail;
905 }
906 if (nested_vmx_load_msr_check(vcpu, &e)) {
907 pr_debug_ratelimited(
908 "%s check failed (%u, 0x%x, 0x%x)\n",
909 __func__, i, e.index, e.reserved);
910 goto fail;
911 }
912 if (kvm_set_msr(vcpu, e.index, e.value)) {
913 pr_debug_ratelimited(
914 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
915 __func__, i, e.index, e.value);
916 goto fail;
917 }
918 }
919 return 0;
920 fail:
921 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
922 return i + 1;
923 }
924
925 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
926 u32 msr_index,
927 u64 *data)
928 {
929 struct vcpu_vmx *vmx = to_vmx(vcpu);
930
931 /*
932 * If the L0 hypervisor stored a more accurate value for the TSC that
933 * does not include the time taken for emulation of the L2->L1
934 * VM-exit in L0, use the more accurate value.
935 */
936 if (msr_index == MSR_IA32_TSC) {
937 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
938 MSR_IA32_TSC);
939
940 if (i >= 0) {
941 u64 val = vmx->msr_autostore.guest.val[i].value;
942
943 *data = kvm_read_l1_tsc(vcpu, val);
944 return true;
945 }
946 }
947
948 if (kvm_get_msr(vcpu, msr_index, data)) {
949 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
950 msr_index);
951 return false;
952 }
953 return true;
954 }
955
956 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
957 struct vmx_msr_entry *e)
958 {
959 if (kvm_vcpu_read_guest(vcpu,
960 gpa + i * sizeof(*e),
961 e, 2 * sizeof(u32))) {
962 pr_debug_ratelimited(
963 "%s cannot read MSR entry (%u, 0x%08llx)\n",
964 __func__, i, gpa + i * sizeof(*e));
965 return false;
966 }
967 if (nested_vmx_store_msr_check(vcpu, e)) {
968 pr_debug_ratelimited(
969 "%s check failed (%u, 0x%x, 0x%x)\n",
970 __func__, i, e->index, e->reserved);
971 return false;
972 }
973 return true;
974 }
975
976 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
977 {
978 u64 data;
979 u32 i;
980 struct vmx_msr_entry e;
981 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
982
983 for (i = 0; i < count; i++) {
984 if (unlikely(i >= max_msr_list_size))
985 return -EINVAL;
986
987 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
988 return -EINVAL;
989
990 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
991 return -EINVAL;
992
993 if (kvm_vcpu_write_guest(vcpu,
994 gpa + i * sizeof(e) +
995 offsetof(struct vmx_msr_entry, value),
996 &data, sizeof(data))) {
997 pr_debug_ratelimited(
998 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
999 __func__, i, e.index, data);
1000 return -EINVAL;
1001 }
1002 }
1003 return 0;
1004 }
1005
1006 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1007 {
1008 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1009 u32 count = vmcs12->vm_exit_msr_store_count;
1010 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1011 struct vmx_msr_entry e;
1012 u32 i;
1013
1014 for (i = 0; i < count; i++) {
1015 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1016 return false;
1017
1018 if (e.index == msr_index)
1019 return true;
1020 }
1021 return false;
1022 }
1023
1024 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1025 u32 msr_index)
1026 {
1027 struct vcpu_vmx *vmx = to_vmx(vcpu);
1028 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1029 bool in_vmcs12_store_list;
1030 int msr_autostore_slot;
1031 bool in_autostore_list;
1032 int last;
1033
1034 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1035 in_autostore_list = msr_autostore_slot >= 0;
1036 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1037
1038 if (in_vmcs12_store_list && !in_autostore_list) {
1039 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1040 /*
1041 * Emulated VMEntry does not fail here. Instead a less
1042 * accurate value will be returned by
1043 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1044 * instead of reading the value from the vmcs02 VMExit
1045 * MSR-store area.
1046 */
1047 pr_warn_ratelimited(
1048 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1049 msr_index);
1050 return;
1051 }
1052 last = autostore->nr++;
1053 autostore->val[last].index = msr_index;
1054 } else if (!in_vmcs12_store_list && in_autostore_list) {
1055 last = --autostore->nr;
1056 autostore->val[msr_autostore_slot] = autostore->val[last];
1057 }
1058 }
1059
1060 /*
1061 * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1062 * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1063 * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1064 * Here's why.
1065 *
1066 * If EPT is enabled by L0 a sync is never needed:
1067 * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1068 * cannot be unsync'd SPTEs for either L1 or L2.
1069 *
1070 * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1071 * VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1072 * (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1073 * stale guest-physical mappings for L2 from the TLB. And as above, L0 isn't
1074 * shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1075 *
1076 * If EPT is disabled by L0:
1077 * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1078 * enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1079 * required to invalidate linear mappings (EPT is disabled so there are
1080 * no combined or guest-physical mappings), i.e. L1 can't rely on the
1081 * (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1082 *
1083 * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1084 * linear mappings (EPT is disabled so there are no combined or guest-physical
1085 * mappings) to be invalidated on both VM-Enter and VM-Exit.
1086 *
1087 * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1088 * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1089 * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1090 * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1091 * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1092 * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1093 * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1094 * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1095 * stale TLB entries, at which point L0 will sync L2's MMU.
1096 */
1097 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1098 {
1099 return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1100 }
1101
1102 /*
1103 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1104 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1105 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1106 * @entry_failure_code.
1107 */
1108 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1109 enum vm_entry_failure_code *entry_failure_code)
1110 {
1111 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1112 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1113 return -EINVAL;
1114 }
1115
1116 /*
1117 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1118 * must not be dereferenced.
1119 */
1120 if (!nested_ept && is_pae_paging(vcpu) &&
1121 (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1122 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1123 *entry_failure_code = ENTRY_FAIL_PDPTE;
1124 return -EINVAL;
1125 }
1126 }
1127
1128 /*
1129 * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1130 * flushes are handled by nested_vmx_transition_tlb_flush(). See
1131 * nested_vmx_transition_mmu_sync for details on skipping the MMU sync.
1132 */
1133 if (!nested_ept)
1134 kvm_mmu_new_pgd(vcpu, cr3, true,
1135 !nested_vmx_transition_mmu_sync(vcpu));
1136
1137 vcpu->arch.cr3 = cr3;
1138 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1139
1140 kvm_init_mmu(vcpu, false);
1141
1142 return 0;
1143 }
1144
1145 /*
1146 * Returns if KVM is able to config CPU to tag TLB entries
1147 * populated by L2 differently than TLB entries populated
1148 * by L1.
1149 *
1150 * If L0 uses EPT, L1 and L2 run with different EPTP because
1151 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1152 * are tagged with different EPTP.
1153 *
1154 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1155 * with different VPID (L1 entries are tagged with vmx->vpid
1156 * while L2 entries are tagged with vmx->nested.vpid02).
1157 */
1158 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1159 {
1160 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1161
1162 return enable_ept ||
1163 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1164 }
1165
1166 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1167 struct vmcs12 *vmcs12,
1168 bool is_vmenter)
1169 {
1170 struct vcpu_vmx *vmx = to_vmx(vcpu);
1171
1172 /*
1173 * If VPID is disabled, linear and combined mappings are flushed on
1174 * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1175 * their associated EPTP.
1176 */
1177 if (!enable_vpid)
1178 return;
1179
1180 /*
1181 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1182 * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1183 *
1184 * If VPID is enabled and used by vmc12, but L2 does not have a unique
1185 * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1186 * a VPID for L2, flush the current context as the effective ASID is
1187 * common to both L1 and L2.
1188 *
1189 * Defer the flush so that it runs after vmcs02.EPTP has been set by
1190 * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1191 * redundant flushes further down the nested pipeline.
1192 *
1193 * If a TLB flush isn't required due to any of the above, and vpid12 is
1194 * changing then the new "virtual" VPID (vpid12) will reuse the same
1195 * "real" VPID (vpid02), and so needs to be sync'd. There is no direct
1196 * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1197 * all nested vCPUs.
1198 */
1199 if (!nested_cpu_has_vpid(vmcs12)) {
1200 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1201 } else if (!nested_has_guest_tlb_tag(vcpu)) {
1202 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1203 } else if (is_vmenter &&
1204 vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1205 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1206 vpid_sync_context(nested_get_vpid02(vcpu));
1207 }
1208 }
1209
1210 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1211 {
1212 superset &= mask;
1213 subset &= mask;
1214
1215 return (superset | subset) == superset;
1216 }
1217
1218 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1219 {
1220 const u64 feature_and_reserved =
1221 /* feature (except bit 48; see below) */
1222 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1223 /* reserved */
1224 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1225 u64 vmx_basic = vmx->nested.msrs.basic;
1226
1227 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1228 return -EINVAL;
1229
1230 /*
1231 * KVM does not emulate a version of VMX that constrains physical
1232 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1233 */
1234 if (data & BIT_ULL(48))
1235 return -EINVAL;
1236
1237 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1238 vmx_basic_vmcs_revision_id(data))
1239 return -EINVAL;
1240
1241 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1242 return -EINVAL;
1243
1244 vmx->nested.msrs.basic = data;
1245 return 0;
1246 }
1247
1248 static int
1249 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1250 {
1251 u64 supported;
1252 u32 *lowp, *highp;
1253
1254 switch (msr_index) {
1255 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1256 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1257 highp = &vmx->nested.msrs.pinbased_ctls_high;
1258 break;
1259 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1260 lowp = &vmx->nested.msrs.procbased_ctls_low;
1261 highp = &vmx->nested.msrs.procbased_ctls_high;
1262 break;
1263 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1264 lowp = &vmx->nested.msrs.exit_ctls_low;
1265 highp = &vmx->nested.msrs.exit_ctls_high;
1266 break;
1267 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1268 lowp = &vmx->nested.msrs.entry_ctls_low;
1269 highp = &vmx->nested.msrs.entry_ctls_high;
1270 break;
1271 case MSR_IA32_VMX_PROCBASED_CTLS2:
1272 lowp = &vmx->nested.msrs.secondary_ctls_low;
1273 highp = &vmx->nested.msrs.secondary_ctls_high;
1274 break;
1275 default:
1276 BUG();
1277 }
1278
1279 supported = vmx_control_msr(*lowp, *highp);
1280
1281 /* Check must-be-1 bits are still 1. */
1282 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1283 return -EINVAL;
1284
1285 /* Check must-be-0 bits are still 0. */
1286 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1287 return -EINVAL;
1288
1289 *lowp = data;
1290 *highp = data >> 32;
1291 return 0;
1292 }
1293
1294 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1295 {
1296 const u64 feature_and_reserved_bits =
1297 /* feature */
1298 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1299 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1300 /* reserved */
1301 GENMASK_ULL(13, 9) | BIT_ULL(31);
1302 u64 vmx_misc;
1303
1304 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1305 vmx->nested.msrs.misc_high);
1306
1307 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1308 return -EINVAL;
1309
1310 if ((vmx->nested.msrs.pinbased_ctls_high &
1311 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1312 vmx_misc_preemption_timer_rate(data) !=
1313 vmx_misc_preemption_timer_rate(vmx_misc))
1314 return -EINVAL;
1315
1316 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1317 return -EINVAL;
1318
1319 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1320 return -EINVAL;
1321
1322 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1323 return -EINVAL;
1324
1325 vmx->nested.msrs.misc_low = data;
1326 vmx->nested.msrs.misc_high = data >> 32;
1327
1328 return 0;
1329 }
1330
1331 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1332 {
1333 u64 vmx_ept_vpid_cap;
1334
1335 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1336 vmx->nested.msrs.vpid_caps);
1337
1338 /* Every bit is either reserved or a feature bit. */
1339 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1340 return -EINVAL;
1341
1342 vmx->nested.msrs.ept_caps = data;
1343 vmx->nested.msrs.vpid_caps = data >> 32;
1344 return 0;
1345 }
1346
1347 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1348 {
1349 u64 *msr;
1350
1351 switch (msr_index) {
1352 case MSR_IA32_VMX_CR0_FIXED0:
1353 msr = &vmx->nested.msrs.cr0_fixed0;
1354 break;
1355 case MSR_IA32_VMX_CR4_FIXED0:
1356 msr = &vmx->nested.msrs.cr4_fixed0;
1357 break;
1358 default:
1359 BUG();
1360 }
1361
1362 /*
1363 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1364 * must be 1 in the restored value.
1365 */
1366 if (!is_bitwise_subset(data, *msr, -1ULL))
1367 return -EINVAL;
1368
1369 *msr = data;
1370 return 0;
1371 }
1372
1373 /*
1374 * Called when userspace is restoring VMX MSRs.
1375 *
1376 * Returns 0 on success, non-0 otherwise.
1377 */
1378 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1379 {
1380 struct vcpu_vmx *vmx = to_vmx(vcpu);
1381
1382 /*
1383 * Don't allow changes to the VMX capability MSRs while the vCPU
1384 * is in VMX operation.
1385 */
1386 if (vmx->nested.vmxon)
1387 return -EBUSY;
1388
1389 switch (msr_index) {
1390 case MSR_IA32_VMX_BASIC:
1391 return vmx_restore_vmx_basic(vmx, data);
1392 case MSR_IA32_VMX_PINBASED_CTLS:
1393 case MSR_IA32_VMX_PROCBASED_CTLS:
1394 case MSR_IA32_VMX_EXIT_CTLS:
1395 case MSR_IA32_VMX_ENTRY_CTLS:
1396 /*
1397 * The "non-true" VMX capability MSRs are generated from the
1398 * "true" MSRs, so we do not support restoring them directly.
1399 *
1400 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1401 * should restore the "true" MSRs with the must-be-1 bits
1402 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1403 * DEFAULT SETTINGS".
1404 */
1405 return -EINVAL;
1406 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1407 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1408 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1409 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1410 case MSR_IA32_VMX_PROCBASED_CTLS2:
1411 return vmx_restore_control_msr(vmx, msr_index, data);
1412 case MSR_IA32_VMX_MISC:
1413 return vmx_restore_vmx_misc(vmx, data);
1414 case MSR_IA32_VMX_CR0_FIXED0:
1415 case MSR_IA32_VMX_CR4_FIXED0:
1416 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1417 case MSR_IA32_VMX_CR0_FIXED1:
1418 case MSR_IA32_VMX_CR4_FIXED1:
1419 /*
1420 * These MSRs are generated based on the vCPU's CPUID, so we
1421 * do not support restoring them directly.
1422 */
1423 return -EINVAL;
1424 case MSR_IA32_VMX_EPT_VPID_CAP:
1425 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1426 case MSR_IA32_VMX_VMCS_ENUM:
1427 vmx->nested.msrs.vmcs_enum = data;
1428 return 0;
1429 case MSR_IA32_VMX_VMFUNC:
1430 if (data & ~vmx->nested.msrs.vmfunc_controls)
1431 return -EINVAL;
1432 vmx->nested.msrs.vmfunc_controls = data;
1433 return 0;
1434 default:
1435 /*
1436 * The rest of the VMX capability MSRs do not support restore.
1437 */
1438 return -EINVAL;
1439 }
1440 }
1441
1442 /* Returns 0 on success, non-0 otherwise. */
1443 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1444 {
1445 switch (msr_index) {
1446 case MSR_IA32_VMX_BASIC:
1447 *pdata = msrs->basic;
1448 break;
1449 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1450 case MSR_IA32_VMX_PINBASED_CTLS:
1451 *pdata = vmx_control_msr(
1452 msrs->pinbased_ctls_low,
1453 msrs->pinbased_ctls_high);
1454 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1455 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1456 break;
1457 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1458 case MSR_IA32_VMX_PROCBASED_CTLS:
1459 *pdata = vmx_control_msr(
1460 msrs->procbased_ctls_low,
1461 msrs->procbased_ctls_high);
1462 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1463 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1464 break;
1465 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1466 case MSR_IA32_VMX_EXIT_CTLS:
1467 *pdata = vmx_control_msr(
1468 msrs->exit_ctls_low,
1469 msrs->exit_ctls_high);
1470 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1471 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1472 break;
1473 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1474 case MSR_IA32_VMX_ENTRY_CTLS:
1475 *pdata = vmx_control_msr(
1476 msrs->entry_ctls_low,
1477 msrs->entry_ctls_high);
1478 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1479 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1480 break;
1481 case MSR_IA32_VMX_MISC:
1482 *pdata = vmx_control_msr(
1483 msrs->misc_low,
1484 msrs->misc_high);
1485 break;
1486 case MSR_IA32_VMX_CR0_FIXED0:
1487 *pdata = msrs->cr0_fixed0;
1488 break;
1489 case MSR_IA32_VMX_CR0_FIXED1:
1490 *pdata = msrs->cr0_fixed1;
1491 break;
1492 case MSR_IA32_VMX_CR4_FIXED0:
1493 *pdata = msrs->cr4_fixed0;
1494 break;
1495 case MSR_IA32_VMX_CR4_FIXED1:
1496 *pdata = msrs->cr4_fixed1;
1497 break;
1498 case MSR_IA32_VMX_VMCS_ENUM:
1499 *pdata = msrs->vmcs_enum;
1500 break;
1501 case MSR_IA32_VMX_PROCBASED_CTLS2:
1502 *pdata = vmx_control_msr(
1503 msrs->secondary_ctls_low,
1504 msrs->secondary_ctls_high);
1505 break;
1506 case MSR_IA32_VMX_EPT_VPID_CAP:
1507 *pdata = msrs->ept_caps |
1508 ((u64)msrs->vpid_caps << 32);
1509 break;
1510 case MSR_IA32_VMX_VMFUNC:
1511 *pdata = msrs->vmfunc_controls;
1512 break;
1513 default:
1514 return 1;
1515 }
1516
1517 return 0;
1518 }
1519
1520 /*
1521 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1522 * been modified by the L1 guest. Note, "writable" in this context means
1523 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1524 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1525 * VM-exit information fields (which are actually writable if the vCPU is
1526 * configured to support "VMWRITE to any supported field in the VMCS").
1527 */
1528 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1529 {
1530 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1531 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1532 struct shadow_vmcs_field field;
1533 unsigned long val;
1534 int i;
1535
1536 if (WARN_ON(!shadow_vmcs))
1537 return;
1538
1539 preempt_disable();
1540
1541 vmcs_load(shadow_vmcs);
1542
1543 for (i = 0; i < max_shadow_read_write_fields; i++) {
1544 field = shadow_read_write_fields[i];
1545 val = __vmcs_readl(field.encoding);
1546 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1547 }
1548
1549 vmcs_clear(shadow_vmcs);
1550 vmcs_load(vmx->loaded_vmcs->vmcs);
1551
1552 preempt_enable();
1553 }
1554
1555 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1556 {
1557 const struct shadow_vmcs_field *fields[] = {
1558 shadow_read_write_fields,
1559 shadow_read_only_fields
1560 };
1561 const int max_fields[] = {
1562 max_shadow_read_write_fields,
1563 max_shadow_read_only_fields
1564 };
1565 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1566 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1567 struct shadow_vmcs_field field;
1568 unsigned long val;
1569 int i, q;
1570
1571 if (WARN_ON(!shadow_vmcs))
1572 return;
1573
1574 vmcs_load(shadow_vmcs);
1575
1576 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1577 for (i = 0; i < max_fields[q]; i++) {
1578 field = fields[q][i];
1579 val = vmcs12_read_any(vmcs12, field.encoding,
1580 field.offset);
1581 __vmcs_writel(field.encoding, val);
1582 }
1583 }
1584
1585 vmcs_clear(shadow_vmcs);
1586 vmcs_load(vmx->loaded_vmcs->vmcs);
1587 }
1588
1589 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1590 {
1591 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1592 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1593
1594 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1595 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1596 vmcs12->guest_rip = evmcs->guest_rip;
1597
1598 if (unlikely(!(evmcs->hv_clean_fields &
1599 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1600 vmcs12->guest_rsp = evmcs->guest_rsp;
1601 vmcs12->guest_rflags = evmcs->guest_rflags;
1602 vmcs12->guest_interruptibility_info =
1603 evmcs->guest_interruptibility_info;
1604 }
1605
1606 if (unlikely(!(evmcs->hv_clean_fields &
1607 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1608 vmcs12->cpu_based_vm_exec_control =
1609 evmcs->cpu_based_vm_exec_control;
1610 }
1611
1612 if (unlikely(!(evmcs->hv_clean_fields &
1613 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1614 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1615 }
1616
1617 if (unlikely(!(evmcs->hv_clean_fields &
1618 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1619 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1620 }
1621
1622 if (unlikely(!(evmcs->hv_clean_fields &
1623 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1624 vmcs12->vm_entry_intr_info_field =
1625 evmcs->vm_entry_intr_info_field;
1626 vmcs12->vm_entry_exception_error_code =
1627 evmcs->vm_entry_exception_error_code;
1628 vmcs12->vm_entry_instruction_len =
1629 evmcs->vm_entry_instruction_len;
1630 }
1631
1632 if (unlikely(!(evmcs->hv_clean_fields &
1633 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1634 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1635 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1636 vmcs12->host_cr0 = evmcs->host_cr0;
1637 vmcs12->host_cr3 = evmcs->host_cr3;
1638 vmcs12->host_cr4 = evmcs->host_cr4;
1639 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1640 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1641 vmcs12->host_rip = evmcs->host_rip;
1642 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1643 vmcs12->host_es_selector = evmcs->host_es_selector;
1644 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1645 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1646 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1647 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1648 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1649 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1650 }
1651
1652 if (unlikely(!(evmcs->hv_clean_fields &
1653 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1654 vmcs12->pin_based_vm_exec_control =
1655 evmcs->pin_based_vm_exec_control;
1656 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1657 vmcs12->secondary_vm_exec_control =
1658 evmcs->secondary_vm_exec_control;
1659 }
1660
1661 if (unlikely(!(evmcs->hv_clean_fields &
1662 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1663 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1664 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1665 }
1666
1667 if (unlikely(!(evmcs->hv_clean_fields &
1668 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1669 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1670 }
1671
1672 if (unlikely(!(evmcs->hv_clean_fields &
1673 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1674 vmcs12->guest_es_base = evmcs->guest_es_base;
1675 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1676 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1677 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1678 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1679 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1680 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1681 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1682 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1683 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1684 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1685 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1686 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1687 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1688 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1689 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1690 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1691 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1692 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1693 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1694 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1695 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1696 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1697 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1698 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1699 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1700 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1701 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1702 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1703 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1704 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1705 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1706 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1707 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1708 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1709 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1710 }
1711
1712 if (unlikely(!(evmcs->hv_clean_fields &
1713 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1714 vmcs12->tsc_offset = evmcs->tsc_offset;
1715 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1716 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1717 }
1718
1719 if (unlikely(!(evmcs->hv_clean_fields &
1720 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1721 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1722 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1723 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1724 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1725 vmcs12->guest_cr0 = evmcs->guest_cr0;
1726 vmcs12->guest_cr3 = evmcs->guest_cr3;
1727 vmcs12->guest_cr4 = evmcs->guest_cr4;
1728 vmcs12->guest_dr7 = evmcs->guest_dr7;
1729 }
1730
1731 if (unlikely(!(evmcs->hv_clean_fields &
1732 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1733 vmcs12->host_fs_base = evmcs->host_fs_base;
1734 vmcs12->host_gs_base = evmcs->host_gs_base;
1735 vmcs12->host_tr_base = evmcs->host_tr_base;
1736 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1737 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1738 vmcs12->host_rsp = evmcs->host_rsp;
1739 }
1740
1741 if (unlikely(!(evmcs->hv_clean_fields &
1742 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1743 vmcs12->ept_pointer = evmcs->ept_pointer;
1744 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1745 }
1746
1747 if (unlikely(!(evmcs->hv_clean_fields &
1748 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1749 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1750 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1751 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1752 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1753 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1754 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1755 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1756 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1757 vmcs12->guest_pending_dbg_exceptions =
1758 evmcs->guest_pending_dbg_exceptions;
1759 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1760 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1761 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1762 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1763 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1764 }
1765
1766 /*
1767 * Not used?
1768 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1769 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1770 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1771 * vmcs12->page_fault_error_code_mask =
1772 * evmcs->page_fault_error_code_mask;
1773 * vmcs12->page_fault_error_code_match =
1774 * evmcs->page_fault_error_code_match;
1775 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1776 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1777 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1778 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1779 */
1780
1781 /*
1782 * Read only fields:
1783 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1784 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1785 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1786 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1787 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1788 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1789 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1790 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1791 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1792 * vmcs12->exit_qualification = evmcs->exit_qualification;
1793 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1794 *
1795 * Not present in struct vmcs12:
1796 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1797 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1798 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1799 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1800 */
1801
1802 return 0;
1803 }
1804
1805 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1806 {
1807 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1808 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1809
1810 /*
1811 * Should not be changed by KVM:
1812 *
1813 * evmcs->host_es_selector = vmcs12->host_es_selector;
1814 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1815 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1816 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1817 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1818 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1819 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1820 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1821 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1822 * evmcs->host_cr0 = vmcs12->host_cr0;
1823 * evmcs->host_cr3 = vmcs12->host_cr3;
1824 * evmcs->host_cr4 = vmcs12->host_cr4;
1825 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1826 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1827 * evmcs->host_rip = vmcs12->host_rip;
1828 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1829 * evmcs->host_fs_base = vmcs12->host_fs_base;
1830 * evmcs->host_gs_base = vmcs12->host_gs_base;
1831 * evmcs->host_tr_base = vmcs12->host_tr_base;
1832 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1833 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1834 * evmcs->host_rsp = vmcs12->host_rsp;
1835 * sync_vmcs02_to_vmcs12() doesn't read these:
1836 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1837 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1838 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1839 * evmcs->ept_pointer = vmcs12->ept_pointer;
1840 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1841 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1842 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1843 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1844 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1845 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1846 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1847 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1848 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1849 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1850 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1851 * evmcs->page_fault_error_code_mask =
1852 * vmcs12->page_fault_error_code_mask;
1853 * evmcs->page_fault_error_code_match =
1854 * vmcs12->page_fault_error_code_match;
1855 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1856 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1857 * evmcs->tsc_offset = vmcs12->tsc_offset;
1858 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1859 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1860 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1861 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1862 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1863 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1864 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1865 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1866 *
1867 * Not present in struct vmcs12:
1868 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1869 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1870 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1871 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1872 */
1873
1874 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1875 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1876 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1877 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1878 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1879 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1880 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1881 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1882
1883 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1884 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1885 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1886 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1887 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1888 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1889 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1890 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1891 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1892 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1893
1894 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1895 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1896 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1897 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1898 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1899 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1900 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1901 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1902
1903 evmcs->guest_es_base = vmcs12->guest_es_base;
1904 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1905 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1906 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1907 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1908 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1909 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1910 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1911 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1912 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1913
1914 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1915 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1916
1917 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1918 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1919 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1920 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1921
1922 evmcs->guest_pending_dbg_exceptions =
1923 vmcs12->guest_pending_dbg_exceptions;
1924 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1925 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1926
1927 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1928 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1929
1930 evmcs->guest_cr0 = vmcs12->guest_cr0;
1931 evmcs->guest_cr3 = vmcs12->guest_cr3;
1932 evmcs->guest_cr4 = vmcs12->guest_cr4;
1933 evmcs->guest_dr7 = vmcs12->guest_dr7;
1934
1935 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1936
1937 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1938 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1939 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1940 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1941 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1942 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1943 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1944 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1945
1946 evmcs->exit_qualification = vmcs12->exit_qualification;
1947
1948 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1949 evmcs->guest_rsp = vmcs12->guest_rsp;
1950 evmcs->guest_rflags = vmcs12->guest_rflags;
1951
1952 evmcs->guest_interruptibility_info =
1953 vmcs12->guest_interruptibility_info;
1954 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1955 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1956 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1957 evmcs->vm_entry_exception_error_code =
1958 vmcs12->vm_entry_exception_error_code;
1959 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1960
1961 evmcs->guest_rip = vmcs12->guest_rip;
1962
1963 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1964
1965 return 0;
1966 }
1967
1968 /*
1969 * This is an equivalent of the nested hypervisor executing the vmptrld
1970 * instruction.
1971 */
1972 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1973 struct kvm_vcpu *vcpu, bool from_launch)
1974 {
1975 struct vcpu_vmx *vmx = to_vmx(vcpu);
1976 bool evmcs_gpa_changed = false;
1977 u64 evmcs_gpa;
1978
1979 if (likely(!vmx->nested.enlightened_vmcs_enabled))
1980 return EVMPTRLD_DISABLED;
1981
1982 if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1983 return EVMPTRLD_DISABLED;
1984
1985 if (unlikely(!vmx->nested.hv_evmcs ||
1986 evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1987 if (!vmx->nested.hv_evmcs)
1988 vmx->nested.current_vmptr = -1ull;
1989
1990 nested_release_evmcs(vcpu);
1991
1992 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1993 &vmx->nested.hv_evmcs_map))
1994 return EVMPTRLD_ERROR;
1995
1996 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1997
1998 /*
1999 * Currently, KVM only supports eVMCS version 1
2000 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2001 * value to first u32 field of eVMCS which should specify eVMCS
2002 * VersionNumber.
2003 *
2004 * Guest should be aware of supported eVMCS versions by host by
2005 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2006 * expected to set this CPUID leaf according to the value
2007 * returned in vmcs_version from nested_enable_evmcs().
2008 *
2009 * However, it turns out that Microsoft Hyper-V fails to comply
2010 * to their own invented interface: When Hyper-V use eVMCS, it
2011 * just sets first u32 field of eVMCS to revision_id specified
2012 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2013 * which is one of the supported versions specified in
2014 * CPUID.0x4000000A.EAX[0:15].
2015 *
2016 * To overcome Hyper-V bug, we accept here either a supported
2017 * eVMCS version or VMCS12 revision_id as valid values for first
2018 * u32 field of eVMCS.
2019 */
2020 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2021 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2022 nested_release_evmcs(vcpu);
2023 return EVMPTRLD_VMFAIL;
2024 }
2025
2026 vmx->nested.dirty_vmcs12 = true;
2027 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2028
2029 evmcs_gpa_changed = true;
2030 /*
2031 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2032 * reloaded from guest's memory (read only fields, fields not
2033 * present in struct hv_enlightened_vmcs, ...). Make sure there
2034 * are no leftovers.
2035 */
2036 if (from_launch) {
2037 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2038 memset(vmcs12, 0, sizeof(*vmcs12));
2039 vmcs12->hdr.revision_id = VMCS12_REVISION;
2040 }
2041
2042 }
2043
2044 /*
2045 * Clean fields data can't be used on VMLAUNCH and when we switch
2046 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2047 */
2048 if (from_launch || evmcs_gpa_changed)
2049 vmx->nested.hv_evmcs->hv_clean_fields &=
2050 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2051
2052 return EVMPTRLD_SUCCEEDED;
2053 }
2054
2055 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2056 {
2057 struct vcpu_vmx *vmx = to_vmx(vcpu);
2058
2059 if (vmx->nested.hv_evmcs) {
2060 copy_vmcs12_to_enlightened(vmx);
2061 /* All fields are clean */
2062 vmx->nested.hv_evmcs->hv_clean_fields |=
2063 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2064 } else {
2065 copy_vmcs12_to_shadow(vmx);
2066 }
2067
2068 vmx->nested.need_vmcs12_to_shadow_sync = false;
2069 }
2070
2071 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2072 {
2073 struct vcpu_vmx *vmx =
2074 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2075
2076 vmx->nested.preemption_timer_expired = true;
2077 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2078 kvm_vcpu_kick(&vmx->vcpu);
2079
2080 return HRTIMER_NORESTART;
2081 }
2082
2083 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2084 {
2085 struct vcpu_vmx *vmx = to_vmx(vcpu);
2086 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2087
2088 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2089 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2090
2091 if (!vmx->nested.has_preemption_timer_deadline) {
2092 vmx->nested.preemption_timer_deadline =
2093 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2094 vmx->nested.has_preemption_timer_deadline = true;
2095 }
2096 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2097 }
2098
2099 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2100 u64 preemption_timeout)
2101 {
2102 struct vcpu_vmx *vmx = to_vmx(vcpu);
2103
2104 /*
2105 * A timer value of zero is architecturally guaranteed to cause
2106 * a VMExit prior to executing any instructions in the guest.
2107 */
2108 if (preemption_timeout == 0) {
2109 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2110 return;
2111 }
2112
2113 if (vcpu->arch.virtual_tsc_khz == 0)
2114 return;
2115
2116 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2117 preemption_timeout *= 1000000;
2118 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2119 hrtimer_start(&vmx->nested.preemption_timer,
2120 ktime_add_ns(ktime_get(), preemption_timeout),
2121 HRTIMER_MODE_ABS_PINNED);
2122 }
2123
2124 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2125 {
2126 if (vmx->nested.nested_run_pending &&
2127 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2128 return vmcs12->guest_ia32_efer;
2129 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2130 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2131 else
2132 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2133 }
2134
2135 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2136 {
2137 /*
2138 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2139 * according to L0's settings (vmcs12 is irrelevant here). Host
2140 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2141 * will be set as needed prior to VMLAUNCH/VMRESUME.
2142 */
2143 if (vmx->nested.vmcs02_initialized)
2144 return;
2145 vmx->nested.vmcs02_initialized = true;
2146
2147 /*
2148 * We don't care what the EPTP value is we just need to guarantee
2149 * it's valid so we don't get a false positive when doing early
2150 * consistency checks.
2151 */
2152 if (enable_ept && nested_early_check)
2153 vmcs_write64(EPT_POINTER,
2154 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2155
2156 /* All VMFUNCs are currently emulated through L0 vmexits. */
2157 if (cpu_has_vmx_vmfunc())
2158 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2159
2160 if (cpu_has_vmx_posted_intr())
2161 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2162
2163 if (cpu_has_vmx_msr_bitmap())
2164 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2165
2166 /*
2167 * PML is emulated for L2, but never enabled in hardware as the MMU
2168 * handles A/D emulation. Disabling PML for L2 also avoids having to
2169 * deal with filtering out L2 GPAs from the buffer.
2170 */
2171 if (enable_pml) {
2172 vmcs_write64(PML_ADDRESS, 0);
2173 vmcs_write16(GUEST_PML_INDEX, -1);
2174 }
2175
2176 if (cpu_has_vmx_encls_vmexit())
2177 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2178
2179 /*
2180 * Set the MSR load/store lists to match L0's settings. Only the
2181 * addresses are constant (for vmcs02), the counts can change based
2182 * on L2's behavior, e.g. switching to/from long mode.
2183 */
2184 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2185 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2186 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2187
2188 vmx_set_constant_host_state(vmx);
2189 }
2190
2191 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2192 struct vmcs12 *vmcs12)
2193 {
2194 prepare_vmcs02_constant_state(vmx);
2195
2196 vmcs_write64(VMCS_LINK_POINTER, -1ull);
2197
2198 if (enable_vpid) {
2199 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2200 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2201 else
2202 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2203 }
2204 }
2205
2206 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2207 {
2208 u32 exec_control;
2209 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2210
2211 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2212 prepare_vmcs02_early_rare(vmx, vmcs12);
2213
2214 /*
2215 * PIN CONTROLS
2216 */
2217 exec_control = vmx_pin_based_exec_ctrl(vmx);
2218 exec_control |= (vmcs12->pin_based_vm_exec_control &
2219 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2220
2221 /* Posted interrupts setting is only taken from vmcs12. */
2222 if (nested_cpu_has_posted_intr(vmcs12)) {
2223 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2224 vmx->nested.pi_pending = false;
2225 } else {
2226 exec_control &= ~PIN_BASED_POSTED_INTR;
2227 }
2228 pin_controls_set(vmx, exec_control);
2229
2230 /*
2231 * EXEC CONTROLS
2232 */
2233 exec_control = vmx_exec_control(vmx); /* L0's desires */
2234 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2235 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2236 exec_control &= ~CPU_BASED_TPR_SHADOW;
2237 exec_control |= vmcs12->cpu_based_vm_exec_control;
2238
2239 vmx->nested.l1_tpr_threshold = -1;
2240 if (exec_control & CPU_BASED_TPR_SHADOW)
2241 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2242 #ifdef CONFIG_X86_64
2243 else
2244 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2245 CPU_BASED_CR8_STORE_EXITING;
2246 #endif
2247
2248 /*
2249 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2250 * for I/O port accesses.
2251 */
2252 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2253 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2254
2255 /*
2256 * This bit will be computed in nested_get_vmcs12_pages, because
2257 * we do not have access to L1's MSR bitmap yet. For now, keep
2258 * the same bit as before, hoping to avoid multiple VMWRITEs that
2259 * only set/clear this bit.
2260 */
2261 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2262 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2263
2264 exec_controls_set(vmx, exec_control);
2265
2266 /*
2267 * SECONDARY EXEC CONTROLS
2268 */
2269 if (cpu_has_secondary_exec_ctrls()) {
2270 exec_control = vmx->secondary_exec_control;
2271
2272 /* Take the following fields only from vmcs12 */
2273 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2274 SECONDARY_EXEC_ENABLE_INVPCID |
2275 SECONDARY_EXEC_ENABLE_RDTSCP |
2276 SECONDARY_EXEC_XSAVES |
2277 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2278 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2279 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2280 SECONDARY_EXEC_ENABLE_VMFUNC);
2281 if (nested_cpu_has(vmcs12,
2282 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2283 exec_control |= vmcs12->secondary_vm_exec_control;
2284
2285 /* PML is emulated and never enabled in hardware for L2. */
2286 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2287
2288 /* VMCS shadowing for L2 is emulated for now */
2289 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2290
2291 /*
2292 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2293 * will not have to rewrite the controls just for this bit.
2294 */
2295 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2296 (vmcs12->guest_cr4 & X86_CR4_UMIP))
2297 exec_control |= SECONDARY_EXEC_DESC;
2298
2299 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2300 vmcs_write16(GUEST_INTR_STATUS,
2301 vmcs12->guest_intr_status);
2302
2303 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2304 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2305
2306 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2307 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2308
2309 secondary_exec_controls_set(vmx, exec_control);
2310 }
2311
2312 /*
2313 * ENTRY CONTROLS
2314 *
2315 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2316 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2317 * on the related bits (if supported by the CPU) in the hope that
2318 * we can avoid VMWrites during vmx_set_efer().
2319 */
2320 exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2321 ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2322 if (cpu_has_load_ia32_efer()) {
2323 if (guest_efer & EFER_LMA)
2324 exec_control |= VM_ENTRY_IA32E_MODE;
2325 if (guest_efer != host_efer)
2326 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2327 }
2328 vm_entry_controls_set(vmx, exec_control);
2329
2330 /*
2331 * EXIT CONTROLS
2332 *
2333 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2334 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2335 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2336 */
2337 exec_control = vmx_vmexit_ctrl();
2338 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2339 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2340 vm_exit_controls_set(vmx, exec_control);
2341
2342 /*
2343 * Interrupt/Exception Fields
2344 */
2345 if (vmx->nested.nested_run_pending) {
2346 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2347 vmcs12->vm_entry_intr_info_field);
2348 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2349 vmcs12->vm_entry_exception_error_code);
2350 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2351 vmcs12->vm_entry_instruction_len);
2352 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2353 vmcs12->guest_interruptibility_info);
2354 vmx->loaded_vmcs->nmi_known_unmasked =
2355 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2356 } else {
2357 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2358 }
2359 }
2360
2361 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2362 {
2363 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2364
2365 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2366 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2367 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2368 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2369 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2370 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2371 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2372 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2373 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2374 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2375 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2376 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2377 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2378 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2379 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2380 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2381 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2382 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2383 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2384 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2385 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2386 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2387 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2388 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2389 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2390 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2391 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2392 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2393 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2394 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2395 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2396 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2397 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2398 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2399 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2400 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2401 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2402 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2403
2404 vmx->segment_cache.bitmask = 0;
2405 }
2406
2407 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2408 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2409 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2410 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2411 vmcs12->guest_pending_dbg_exceptions);
2412 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2413 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2414
2415 /*
2416 * L1 may access the L2's PDPTR, so save them to construct
2417 * vmcs12
2418 */
2419 if (enable_ept) {
2420 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2421 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2422 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2423 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2424 }
2425
2426 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2427 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2428 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2429 }
2430
2431 if (nested_cpu_has_xsaves(vmcs12))
2432 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2433
2434 /*
2435 * Whether page-faults are trapped is determined by a combination of
2436 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2437 * doesn't care about page faults then we should set all of these to
2438 * L1's desires. However, if L0 does care about (some) page faults, it
2439 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2440 * simply ask to exit on each and every L2 page fault. This is done by
2441 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2442 * Note that below we don't need special code to set EB.PF beyond the
2443 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2444 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2445 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2446 */
2447 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2448 /*
2449 * TODO: if both L0 and L1 need the same MASK and MATCH,
2450 * go ahead and use it?
2451 */
2452 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2453 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2454 } else {
2455 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2456 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2457 }
2458
2459 if (cpu_has_vmx_apicv()) {
2460 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2461 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2462 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2463 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2464 }
2465
2466 /*
2467 * Make sure the msr_autostore list is up to date before we set the
2468 * count in the vmcs02.
2469 */
2470 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2471
2472 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2473 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2474 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2475
2476 set_cr4_guest_host_mask(vmx);
2477 }
2478
2479 /*
2480 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2481 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2482 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2483 * guest in a way that will both be appropriate to L1's requests, and our
2484 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2485 * function also has additional necessary side-effects, like setting various
2486 * vcpu->arch fields.
2487 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2488 * is assigned to entry_failure_code on failure.
2489 */
2490 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2491 enum vm_entry_failure_code *entry_failure_code)
2492 {
2493 struct vcpu_vmx *vmx = to_vmx(vcpu);
2494 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2495 bool load_guest_pdptrs_vmcs12 = false;
2496
2497 if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2498 prepare_vmcs02_rare(vmx, vmcs12);
2499 vmx->nested.dirty_vmcs12 = false;
2500
2501 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2502 !(hv_evmcs->hv_clean_fields &
2503 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2504 }
2505
2506 if (vmx->nested.nested_run_pending &&
2507 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2508 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2509 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2510 } else {
2511 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2512 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2513 }
2514 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2515 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2516 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2517 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2518
2519 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2520 * bitwise-or of what L1 wants to trap for L2, and what we want to
2521 * trap. Note that CR0.TS also needs updating - we do this later.
2522 */
2523 vmx_update_exception_bitmap(vcpu);
2524 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2525 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2526
2527 if (vmx->nested.nested_run_pending &&
2528 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2529 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2530 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2531 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2532 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2533 }
2534
2535 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2536
2537 if (kvm_has_tsc_control)
2538 decache_tsc_multiplier(vmx);
2539
2540 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2541
2542 if (nested_cpu_has_ept(vmcs12))
2543 nested_ept_init_mmu_context(vcpu);
2544
2545 /*
2546 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2547 * bits which we consider mandatory enabled.
2548 * The CR0_READ_SHADOW is what L2 should have expected to read given
2549 * the specifications by L1; It's not enough to take
2550 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2551 * have more bits than L1 expected.
2552 */
2553 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2554 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2555
2556 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2557 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2558
2559 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2560 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2561 vmx_set_efer(vcpu, vcpu->arch.efer);
2562
2563 /*
2564 * Guest state is invalid and unrestricted guest is disabled,
2565 * which means L1 attempted VMEntry to L2 with invalid state.
2566 * Fail the VMEntry.
2567 */
2568 if (CC(!vmx_guest_state_valid(vcpu))) {
2569 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2570 return -EINVAL;
2571 }
2572
2573 /* Shadow page tables on either EPT or shadow page tables. */
2574 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2575 entry_failure_code))
2576 return -EINVAL;
2577
2578 /*
2579 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2580 * on nested VM-Exit, which can occur without actually running L2 and
2581 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2582 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2583 * transition to HLT instead of running L2.
2584 */
2585 if (enable_ept)
2586 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2587
2588 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2589 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2590 is_pae_paging(vcpu)) {
2591 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2592 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2593 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2594 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2595 }
2596
2597 if (!enable_ept)
2598 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2599
2600 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2601 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2602 vmcs12->guest_ia32_perf_global_ctrl)))
2603 return -EINVAL;
2604
2605 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2606 kvm_rip_write(vcpu, vmcs12->guest_rip);
2607 return 0;
2608 }
2609
2610 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2611 {
2612 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2613 nested_cpu_has_virtual_nmis(vmcs12)))
2614 return -EINVAL;
2615
2616 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2617 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2618 return -EINVAL;
2619
2620 return 0;
2621 }
2622
2623 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2624 {
2625 struct vcpu_vmx *vmx = to_vmx(vcpu);
2626
2627 /* Check for memory type validity */
2628 switch (new_eptp & VMX_EPTP_MT_MASK) {
2629 case VMX_EPTP_MT_UC:
2630 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2631 return false;
2632 break;
2633 case VMX_EPTP_MT_WB:
2634 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2635 return false;
2636 break;
2637 default:
2638 return false;
2639 }
2640
2641 /* Page-walk levels validity. */
2642 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2643 case VMX_EPTP_PWL_5:
2644 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2645 return false;
2646 break;
2647 case VMX_EPTP_PWL_4:
2648 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2649 return false;
2650 break;
2651 default:
2652 return false;
2653 }
2654
2655 /* Reserved bits should not be set */
2656 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2657 return false;
2658
2659 /* AD, if set, should be supported */
2660 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2661 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2662 return false;
2663 }
2664
2665 return true;
2666 }
2667
2668 /*
2669 * Checks related to VM-Execution Control Fields
2670 */
2671 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2672 struct vmcs12 *vmcs12)
2673 {
2674 struct vcpu_vmx *vmx = to_vmx(vcpu);
2675
2676 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2677 vmx->nested.msrs.pinbased_ctls_low,
2678 vmx->nested.msrs.pinbased_ctls_high)) ||
2679 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2680 vmx->nested.msrs.procbased_ctls_low,
2681 vmx->nested.msrs.procbased_ctls_high)))
2682 return -EINVAL;
2683
2684 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2685 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2686 vmx->nested.msrs.secondary_ctls_low,
2687 vmx->nested.msrs.secondary_ctls_high)))
2688 return -EINVAL;
2689
2690 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2691 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2692 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2693 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2694 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2695 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2696 nested_vmx_check_nmi_controls(vmcs12) ||
2697 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2698 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2699 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2700 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2701 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2702 return -EINVAL;
2703
2704 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2705 nested_cpu_has_save_preemption_timer(vmcs12))
2706 return -EINVAL;
2707
2708 if (nested_cpu_has_ept(vmcs12) &&
2709 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2710 return -EINVAL;
2711
2712 if (nested_cpu_has_vmfunc(vmcs12)) {
2713 if (CC(vmcs12->vm_function_control &
2714 ~vmx->nested.msrs.vmfunc_controls))
2715 return -EINVAL;
2716
2717 if (nested_cpu_has_eptp_switching(vmcs12)) {
2718 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2719 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2720 return -EINVAL;
2721 }
2722 }
2723
2724 return 0;
2725 }
2726
2727 /*
2728 * Checks related to VM-Exit Control Fields
2729 */
2730 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2731 struct vmcs12 *vmcs12)
2732 {
2733 struct vcpu_vmx *vmx = to_vmx(vcpu);
2734
2735 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2736 vmx->nested.msrs.exit_ctls_low,
2737 vmx->nested.msrs.exit_ctls_high)) ||
2738 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2739 return -EINVAL;
2740
2741 return 0;
2742 }
2743
2744 /*
2745 * Checks related to VM-Entry Control Fields
2746 */
2747 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2748 struct vmcs12 *vmcs12)
2749 {
2750 struct vcpu_vmx *vmx = to_vmx(vcpu);
2751
2752 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2753 vmx->nested.msrs.entry_ctls_low,
2754 vmx->nested.msrs.entry_ctls_high)))
2755 return -EINVAL;
2756
2757 /*
2758 * From the Intel SDM, volume 3:
2759 * Fields relevant to VM-entry event injection must be set properly.
2760 * These fields are the VM-entry interruption-information field, the
2761 * VM-entry exception error code, and the VM-entry instruction length.
2762 */
2763 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2764 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2765 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2766 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2767 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2768 bool should_have_error_code;
2769 bool urg = nested_cpu_has2(vmcs12,
2770 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2771 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2772
2773 /* VM-entry interruption-info field: interruption type */
2774 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2775 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2776 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2777 return -EINVAL;
2778
2779 /* VM-entry interruption-info field: vector */
2780 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2781 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2782 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2783 return -EINVAL;
2784
2785 /* VM-entry interruption-info field: deliver error code */
2786 should_have_error_code =
2787 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2788 x86_exception_has_error_code(vector);
2789 if (CC(has_error_code != should_have_error_code))
2790 return -EINVAL;
2791
2792 /* VM-entry exception error code */
2793 if (CC(has_error_code &&
2794 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2795 return -EINVAL;
2796
2797 /* VM-entry interruption-info field: reserved bits */
2798 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2799 return -EINVAL;
2800
2801 /* VM-entry instruction length */
2802 switch (intr_type) {
2803 case INTR_TYPE_SOFT_EXCEPTION:
2804 case INTR_TYPE_SOFT_INTR:
2805 case INTR_TYPE_PRIV_SW_EXCEPTION:
2806 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2807 CC(vmcs12->vm_entry_instruction_len == 0 &&
2808 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2809 return -EINVAL;
2810 }
2811 }
2812
2813 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2814 return -EINVAL;
2815
2816 return 0;
2817 }
2818
2819 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2820 struct vmcs12 *vmcs12)
2821 {
2822 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2823 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2824 nested_check_vm_entry_controls(vcpu, vmcs12))
2825 return -EINVAL;
2826
2827 if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2828 return nested_evmcs_check_controls(vmcs12);
2829
2830 return 0;
2831 }
2832
2833 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2834 struct vmcs12 *vmcs12)
2835 {
2836 bool ia32e;
2837
2838 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2839 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2840 CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2841 return -EINVAL;
2842
2843 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2844 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2845 return -EINVAL;
2846
2847 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2848 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2849 return -EINVAL;
2850
2851 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2852 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2853 vmcs12->host_ia32_perf_global_ctrl)))
2854 return -EINVAL;
2855
2856 #ifdef CONFIG_X86_64
2857 ia32e = !!(vcpu->arch.efer & EFER_LMA);
2858 #else
2859 ia32e = false;
2860 #endif
2861
2862 if (ia32e) {
2863 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2864 CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2865 return -EINVAL;
2866 } else {
2867 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2868 CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2869 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2870 CC((vmcs12->host_rip) >> 32))
2871 return -EINVAL;
2872 }
2873
2874 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2875 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2876 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2877 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2878 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2879 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2880 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2881 CC(vmcs12->host_cs_selector == 0) ||
2882 CC(vmcs12->host_tr_selector == 0) ||
2883 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2884 return -EINVAL;
2885
2886 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2887 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2888 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2889 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2890 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2891 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2892 return -EINVAL;
2893
2894 /*
2895 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2896 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2897 * the values of the LMA and LME bits in the field must each be that of
2898 * the host address-space size VM-exit control.
2899 */
2900 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2901 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2902 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2903 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2904 return -EINVAL;
2905 }
2906
2907 return 0;
2908 }
2909
2910 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2911 struct vmcs12 *vmcs12)
2912 {
2913 int r = 0;
2914 struct vmcs12 *shadow;
2915 struct kvm_host_map map;
2916
2917 if (vmcs12->vmcs_link_pointer == -1ull)
2918 return 0;
2919
2920 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2921 return -EINVAL;
2922
2923 if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2924 return -EINVAL;
2925
2926 shadow = map.hva;
2927
2928 if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2929 CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2930 r = -EINVAL;
2931
2932 kvm_vcpu_unmap(vcpu, &map, false);
2933 return r;
2934 }
2935
2936 /*
2937 * Checks related to Guest Non-register State
2938 */
2939 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2940 {
2941 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2942 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2943 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2944 return -EINVAL;
2945
2946 return 0;
2947 }
2948
2949 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2950 struct vmcs12 *vmcs12,
2951 enum vm_entry_failure_code *entry_failure_code)
2952 {
2953 bool ia32e;
2954
2955 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2956
2957 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2958 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2959 return -EINVAL;
2960
2961 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2962 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2963 return -EINVAL;
2964
2965 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2966 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2967 return -EINVAL;
2968
2969 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2970 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2971 return -EINVAL;
2972 }
2973
2974 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2975 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2976 vmcs12->guest_ia32_perf_global_ctrl)))
2977 return -EINVAL;
2978
2979 /*
2980 * If the load IA32_EFER VM-entry control is 1, the following checks
2981 * are performed on the field for the IA32_EFER MSR:
2982 * - Bits reserved in the IA32_EFER MSR must be 0.
2983 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2984 * the IA-32e mode guest VM-exit control. It must also be identical
2985 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2986 * CR0.PG) is 1.
2987 */
2988 if (to_vmx(vcpu)->nested.nested_run_pending &&
2989 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2990 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2991 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2992 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2993 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2994 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2995 return -EINVAL;
2996 }
2997
2998 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2999 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3000 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3001 return -EINVAL;
3002
3003 if (nested_check_guest_non_reg_state(vmcs12))
3004 return -EINVAL;
3005
3006 return 0;
3007 }
3008
3009 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3010 {
3011 struct vcpu_vmx *vmx = to_vmx(vcpu);
3012 unsigned long cr3, cr4;
3013 bool vm_fail;
3014
3015 if (!nested_early_check)
3016 return 0;
3017
3018 if (vmx->msr_autoload.host.nr)
3019 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3020 if (vmx->msr_autoload.guest.nr)
3021 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3022
3023 preempt_disable();
3024
3025 vmx_prepare_switch_to_guest(vcpu);
3026
3027 /*
3028 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3029 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3030 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3031 * there is no need to preserve other bits or save/restore the field.
3032 */
3033 vmcs_writel(GUEST_RFLAGS, 0);
3034
3035 cr3 = __get_current_cr3_fast();
3036 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3037 vmcs_writel(HOST_CR3, cr3);
3038 vmx->loaded_vmcs->host_state.cr3 = cr3;
3039 }
3040
3041 cr4 = cr4_read_shadow();
3042 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3043 vmcs_writel(HOST_CR4, cr4);
3044 vmx->loaded_vmcs->host_state.cr4 = cr4;
3045 }
3046
3047 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3048 vmx->loaded_vmcs->launched);
3049
3050 if (vmx->msr_autoload.host.nr)
3051 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3052 if (vmx->msr_autoload.guest.nr)
3053 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3054
3055 if (vm_fail) {
3056 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3057
3058 preempt_enable();
3059
3060 trace_kvm_nested_vmenter_failed(
3061 "early hardware check VM-instruction error: ", error);
3062 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3063 return 1;
3064 }
3065
3066 /*
3067 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3068 */
3069 if (hw_breakpoint_active())
3070 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3071 local_irq_enable();
3072 preempt_enable();
3073
3074 /*
3075 * A non-failing VMEntry means we somehow entered guest mode with
3076 * an illegal RIP, and that's just the tip of the iceberg. There
3077 * is no telling what memory has been modified or what state has
3078 * been exposed to unknown code. Hitting this all but guarantees
3079 * a (very critical) hardware issue.
3080 */
3081 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3082 VMX_EXIT_REASONS_FAILED_VMENTRY));
3083
3084 return 0;
3085 }
3086
3087 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3088 {
3089 struct vcpu_vmx *vmx = to_vmx(vcpu);
3090
3091 /*
3092 * hv_evmcs may end up being not mapped after migration (when
3093 * L2 was running), map it here to make sure vmcs12 changes are
3094 * properly reflected.
3095 */
3096 if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3097 enum nested_evmptrld_status evmptrld_status =
3098 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3099
3100 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3101 evmptrld_status == EVMPTRLD_ERROR) {
3102 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3103 __func__);
3104 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3105 vcpu->run->internal.suberror =
3106 KVM_INTERNAL_ERROR_EMULATION;
3107 vcpu->run->internal.ndata = 0;
3108 return false;
3109 }
3110 }
3111
3112 return true;
3113 }
3114
3115 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3116 {
3117 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3118 struct vcpu_vmx *vmx = to_vmx(vcpu);
3119 struct kvm_host_map *map;
3120 struct page *page;
3121 u64 hpa;
3122
3123 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3124 /*
3125 * Translate L1 physical address to host physical
3126 * address for vmcs02. Keep the page pinned, so this
3127 * physical address remains valid. We keep a reference
3128 * to it so we can release it later.
3129 */
3130 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3131 kvm_release_page_clean(vmx->nested.apic_access_page);
3132 vmx->nested.apic_access_page = NULL;
3133 }
3134 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3135 if (!is_error_page(page)) {
3136 vmx->nested.apic_access_page = page;
3137 hpa = page_to_phys(vmx->nested.apic_access_page);
3138 vmcs_write64(APIC_ACCESS_ADDR, hpa);
3139 } else {
3140 pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3141 __func__);
3142 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3143 vcpu->run->internal.suberror =
3144 KVM_INTERNAL_ERROR_EMULATION;
3145 vcpu->run->internal.ndata = 0;
3146 return false;
3147 }
3148 }
3149
3150 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3151 map = &vmx->nested.virtual_apic_map;
3152
3153 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3154 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3155 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3156 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3157 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3158 /*
3159 * The processor will never use the TPR shadow, simply
3160 * clear the bit from the execution control. Such a
3161 * configuration is useless, but it happens in tests.
3162 * For any other configuration, failing the vm entry is
3163 * _not_ what the processor does but it's basically the
3164 * only possibility we have.
3165 */
3166 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3167 } else {
3168 /*
3169 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3170 * force VM-Entry to fail.
3171 */
3172 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3173 }
3174 }
3175
3176 if (nested_cpu_has_posted_intr(vmcs12)) {
3177 map = &vmx->nested.pi_desc_map;
3178
3179 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3180 vmx->nested.pi_desc =
3181 (struct pi_desc *)(((void *)map->hva) +
3182 offset_in_page(vmcs12->posted_intr_desc_addr));
3183 vmcs_write64(POSTED_INTR_DESC_ADDR,
3184 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3185 }
3186 }
3187 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3188 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3189 else
3190 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3191
3192 return true;
3193 }
3194
3195 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3196 {
3197 if (!nested_get_evmcs_page(vcpu))
3198 return false;
3199
3200 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3201 return false;
3202
3203 return true;
3204 }
3205
3206 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3207 {
3208 struct vmcs12 *vmcs12;
3209 struct vcpu_vmx *vmx = to_vmx(vcpu);
3210 gpa_t dst;
3211
3212 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3213 return 0;
3214
3215 if (WARN_ON_ONCE(vmx->nested.pml_full))
3216 return 1;
3217
3218 /*
3219 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3220 * set is already checked as part of A/D emulation.
3221 */
3222 vmcs12 = get_vmcs12(vcpu);
3223 if (!nested_cpu_has_pml(vmcs12))
3224 return 0;
3225
3226 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3227 vmx->nested.pml_full = true;
3228 return 1;
3229 }
3230
3231 gpa &= ~0xFFFull;
3232 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3233
3234 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3235 offset_in_page(dst), sizeof(gpa)))
3236 return 0;
3237
3238 vmcs12->guest_pml_index--;
3239
3240 return 0;
3241 }
3242
3243 /*
3244 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3245 * for running VMX instructions (except VMXON, whose prerequisites are
3246 * slightly different). It also specifies what exception to inject otherwise.
3247 * Note that many of these exceptions have priority over VM exits, so they
3248 * don't have to be checked again here.
3249 */
3250 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3251 {
3252 if (!to_vmx(vcpu)->nested.vmxon) {
3253 kvm_queue_exception(vcpu, UD_VECTOR);
3254 return 0;
3255 }
3256
3257 if (vmx_get_cpl(vcpu)) {
3258 kvm_inject_gp(vcpu, 0);
3259 return 0;
3260 }
3261
3262 return 1;
3263 }
3264
3265 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3266 {
3267 u8 rvi = vmx_get_rvi();
3268 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3269
3270 return ((rvi & 0xf0) > (vppr & 0xf0));
3271 }
3272
3273 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3274 struct vmcs12 *vmcs12);
3275
3276 /*
3277 * If from_vmentry is false, this is being called from state restore (either RSM
3278 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3279 *
3280 * Returns:
3281 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3282 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3283 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3284 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3285 */
3286 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3287 bool from_vmentry)
3288 {
3289 struct vcpu_vmx *vmx = to_vmx(vcpu);
3290 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3291 enum vm_entry_failure_code entry_failure_code;
3292 bool evaluate_pending_interrupts;
3293 union vmx_exit_reason exit_reason = {
3294 .basic = EXIT_REASON_INVALID_STATE,
3295 .failed_vmentry = 1,
3296 };
3297 u32 failed_index;
3298
3299 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3300 kvm_vcpu_flush_tlb_current(vcpu);
3301
3302 evaluate_pending_interrupts = exec_controls_get(vmx) &
3303 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3304 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3305 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3306
3307 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3308 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3309 if (kvm_mpx_supported() &&
3310 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3311 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3312
3313 /*
3314 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3315 * nested early checks are disabled. In the event of a "late" VM-Fail,
3316 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3317 * software model to the pre-VMEntry host state. When EPT is disabled,
3318 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3319 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3320 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3321 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3322 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3323 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3324 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3325 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3326 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3327 * path would need to manually save/restore vmcs01.GUEST_CR3.
3328 */
3329 if (!enable_ept && !nested_early_check)
3330 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3331
3332 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3333
3334 prepare_vmcs02_early(vmx, vmcs12);
3335
3336 if (from_vmentry) {
3337 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3338 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3339 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3340 }
3341
3342 if (nested_vmx_check_vmentry_hw(vcpu)) {
3343 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3344 return NVMX_VMENTRY_VMFAIL;
3345 }
3346
3347 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3348 &entry_failure_code)) {
3349 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3350 vmcs12->exit_qualification = entry_failure_code;
3351 goto vmentry_fail_vmexit;
3352 }
3353 }
3354
3355 enter_guest_mode(vcpu);
3356 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3357 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3358
3359 if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3360 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3361 vmcs12->exit_qualification = entry_failure_code;
3362 goto vmentry_fail_vmexit_guest_mode;
3363 }
3364
3365 if (from_vmentry) {
3366 failed_index = nested_vmx_load_msr(vcpu,
3367 vmcs12->vm_entry_msr_load_addr,
3368 vmcs12->vm_entry_msr_load_count);
3369 if (failed_index) {
3370 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3371 vmcs12->exit_qualification = failed_index;
3372 goto vmentry_fail_vmexit_guest_mode;
3373 }
3374 } else {
3375 /*
3376 * The MMU is not initialized to point at the right entities yet and
3377 * "get pages" would need to read data from the guest (i.e. we will
3378 * need to perform gpa to hpa translation). Request a call
3379 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3380 * have already been set at vmentry time and should not be reset.
3381 */
3382 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3383 }
3384
3385 /*
3386 * If L1 had a pending IRQ/NMI until it executed
3387 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3388 * disallowed (e.g. interrupts disabled), L0 needs to
3389 * evaluate if this pending event should cause an exit from L2
3390 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3391 * intercept EXTERNAL_INTERRUPT).
3392 *
3393 * Usually this would be handled by the processor noticing an
3394 * IRQ/NMI window request, or checking RVI during evaluation of
3395 * pending virtual interrupts. However, this setting was done
3396 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3397 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3398 */
3399 if (unlikely(evaluate_pending_interrupts))
3400 kvm_make_request(KVM_REQ_EVENT, vcpu);
3401
3402 /*
3403 * Do not start the preemption timer hrtimer until after we know
3404 * we are successful, so that only nested_vmx_vmexit needs to cancel
3405 * the timer.
3406 */
3407 vmx->nested.preemption_timer_expired = false;
3408 if (nested_cpu_has_preemption_timer(vmcs12)) {
3409 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3410 vmx_start_preemption_timer(vcpu, timer_value);
3411 }
3412
3413 /*
3414 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3415 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3416 * returned as far as L1 is concerned. It will only return (and set
3417 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3418 */
3419 return NVMX_VMENTRY_SUCCESS;
3420
3421 /*
3422 * A failed consistency check that leads to a VMExit during L1's
3423 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3424 * 26.7 "VM-entry failures during or after loading guest state".
3425 */
3426 vmentry_fail_vmexit_guest_mode:
3427 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3428 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3429 leave_guest_mode(vcpu);
3430
3431 vmentry_fail_vmexit:
3432 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3433
3434 if (!from_vmentry)
3435 return NVMX_VMENTRY_VMEXIT;
3436
3437 load_vmcs12_host_state(vcpu, vmcs12);
3438 vmcs12->vm_exit_reason = exit_reason.full;
3439 if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3440 vmx->nested.need_vmcs12_to_shadow_sync = true;
3441 return NVMX_VMENTRY_VMEXIT;
3442 }
3443
3444 /*
3445 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3446 * for running an L2 nested guest.
3447 */
3448 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3449 {
3450 struct vmcs12 *vmcs12;
3451 enum nvmx_vmentry_status status;
3452 struct vcpu_vmx *vmx = to_vmx(vcpu);
3453 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3454 enum nested_evmptrld_status evmptrld_status;
3455
3456 ++vcpu->stat.nested_run;
3457
3458 if (!nested_vmx_check_permission(vcpu))
3459 return 1;
3460
3461 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3462 if (evmptrld_status == EVMPTRLD_ERROR) {
3463 kvm_queue_exception(vcpu, UD_VECTOR);
3464 return 1;
3465 } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3466 return nested_vmx_failInvalid(vcpu);
3467 }
3468
3469 if (CC(!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull))
3470 return nested_vmx_failInvalid(vcpu);
3471
3472 vmcs12 = get_vmcs12(vcpu);
3473
3474 /*
3475 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3476 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3477 * rather than RFLAGS.ZF, and no error number is stored to the
3478 * VM-instruction error field.
3479 */
3480 if (CC(vmcs12->hdr.shadow_vmcs))
3481 return nested_vmx_failInvalid(vcpu);
3482
3483 if (vmx->nested.hv_evmcs) {
3484 copy_enlightened_to_vmcs12(vmx);
3485 /* Enlightened VMCS doesn't have launch state */
3486 vmcs12->launch_state = !launch;
3487 } else if (enable_shadow_vmcs) {
3488 copy_shadow_to_vmcs12(vmx);
3489 }
3490
3491 /*
3492 * The nested entry process starts with enforcing various prerequisites
3493 * on vmcs12 as required by the Intel SDM, and act appropriately when
3494 * they fail: As the SDM explains, some conditions should cause the
3495 * instruction to fail, while others will cause the instruction to seem
3496 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3497 * To speed up the normal (success) code path, we should avoid checking
3498 * for misconfigurations which will anyway be caught by the processor
3499 * when using the merged vmcs02.
3500 */
3501 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3502 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3503
3504 if (CC(vmcs12->launch_state == launch))
3505 return nested_vmx_fail(vcpu,
3506 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3507 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3508
3509 if (nested_vmx_check_controls(vcpu, vmcs12))
3510 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3511
3512 if (nested_vmx_check_host_state(vcpu, vmcs12))
3513 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3514
3515 /*
3516 * We're finally done with prerequisite checking, and can start with
3517 * the nested entry.
3518 */
3519 vmx->nested.nested_run_pending = 1;
3520 vmx->nested.has_preemption_timer_deadline = false;
3521 status = nested_vmx_enter_non_root_mode(vcpu, true);
3522 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3523 goto vmentry_failed;
3524
3525 /* Emulate processing of posted interrupts on VM-Enter. */
3526 if (nested_cpu_has_posted_intr(vmcs12) &&
3527 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3528 vmx->nested.pi_pending = true;
3529 kvm_make_request(KVM_REQ_EVENT, vcpu);
3530 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3531 }
3532
3533 /* Hide L1D cache contents from the nested guest. */
3534 vmx->vcpu.arch.l1tf_flush_l1d = true;
3535
3536 /*
3537 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3538 * also be used as part of restoring nVMX state for
3539 * snapshot restore (migration).
3540 *
3541 * In this flow, it is assumed that vmcs12 cache was
3542 * trasferred as part of captured nVMX state and should
3543 * therefore not be read from guest memory (which may not
3544 * exist on destination host yet).
3545 */
3546 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3547
3548 switch (vmcs12->guest_activity_state) {
3549 case GUEST_ACTIVITY_HLT:
3550 /*
3551 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3552 * awakened by event injection or by an NMI-window VM-exit or
3553 * by an interrupt-window VM-exit, halt the vcpu.
3554 */
3555 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3556 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3557 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3558 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3559 vmx->nested.nested_run_pending = 0;
3560 return kvm_vcpu_halt(vcpu);
3561 }
3562 break;
3563 case GUEST_ACTIVITY_WAIT_SIPI:
3564 vmx->nested.nested_run_pending = 0;
3565 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3566 break;
3567 default:
3568 break;
3569 }
3570
3571 return 1;
3572
3573 vmentry_failed:
3574 vmx->nested.nested_run_pending = 0;
3575 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3576 return 0;
3577 if (status == NVMX_VMENTRY_VMEXIT)
3578 return 1;
3579 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3580 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3581 }
3582
3583 /*
3584 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3585 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3586 * This function returns the new value we should put in vmcs12.guest_cr0.
3587 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3588 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3589 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3590 * didn't trap the bit, because if L1 did, so would L0).
3591 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3592 * been modified by L2, and L1 knows it. So just leave the old value of
3593 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3594 * isn't relevant, because if L0 traps this bit it can set it to anything.
3595 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3596 * changed these bits, and therefore they need to be updated, but L0
3597 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3598 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3599 */
3600 static inline unsigned long
3601 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3602 {
3603 return
3604 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3605 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3606 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3607 vcpu->arch.cr0_guest_owned_bits));
3608 }
3609
3610 static inline unsigned long
3611 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3612 {
3613 return
3614 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3615 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3616 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3617 vcpu->arch.cr4_guest_owned_bits));
3618 }
3619
3620 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3621 struct vmcs12 *vmcs12)
3622 {
3623 u32 idt_vectoring;
3624 unsigned int nr;
3625
3626 if (vcpu->arch.exception.injected) {
3627 nr = vcpu->arch.exception.nr;
3628 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3629
3630 if (kvm_exception_is_soft(nr)) {
3631 vmcs12->vm_exit_instruction_len =
3632 vcpu->arch.event_exit_inst_len;
3633 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3634 } else
3635 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3636
3637 if (vcpu->arch.exception.has_error_code) {
3638 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3639 vmcs12->idt_vectoring_error_code =
3640 vcpu->arch.exception.error_code;
3641 }
3642
3643 vmcs12->idt_vectoring_info_field = idt_vectoring;
3644 } else if (vcpu->arch.nmi_injected) {
3645 vmcs12->idt_vectoring_info_field =
3646 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3647 } else if (vcpu->arch.interrupt.injected) {
3648 nr = vcpu->arch.interrupt.nr;
3649 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3650
3651 if (vcpu->arch.interrupt.soft) {
3652 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3653 vmcs12->vm_entry_instruction_len =
3654 vcpu->arch.event_exit_inst_len;
3655 } else
3656 idt_vectoring |= INTR_TYPE_EXT_INTR;
3657
3658 vmcs12->idt_vectoring_info_field = idt_vectoring;
3659 }
3660 }
3661
3662
3663 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3664 {
3665 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3666 gfn_t gfn;
3667
3668 /*
3669 * Don't need to mark the APIC access page dirty; it is never
3670 * written to by the CPU during APIC virtualization.
3671 */
3672
3673 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3674 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3675 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3676 }
3677
3678 if (nested_cpu_has_posted_intr(vmcs12)) {
3679 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3680 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3681 }
3682 }
3683
3684 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3685 {
3686 struct vcpu_vmx *vmx = to_vmx(vcpu);
3687 int max_irr;
3688 void *vapic_page;
3689 u16 status;
3690
3691 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3692 return;
3693
3694 vmx->nested.pi_pending = false;
3695 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3696 return;
3697
3698 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3699 if (max_irr != 256) {
3700 vapic_page = vmx->nested.virtual_apic_map.hva;
3701 if (!vapic_page)
3702 return;
3703
3704 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3705 vapic_page, &max_irr);
3706 status = vmcs_read16(GUEST_INTR_STATUS);
3707 if ((u8)max_irr > ((u8)status & 0xff)) {
3708 status &= ~0xff;
3709 status |= (u8)max_irr;
3710 vmcs_write16(GUEST_INTR_STATUS, status);
3711 }
3712 }
3713
3714 nested_mark_vmcs12_pages_dirty(vcpu);
3715 }
3716
3717 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3718 unsigned long exit_qual)
3719 {
3720 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3721 unsigned int nr = vcpu->arch.exception.nr;
3722 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3723
3724 if (vcpu->arch.exception.has_error_code) {
3725 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3726 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3727 }
3728
3729 if (kvm_exception_is_soft(nr))
3730 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3731 else
3732 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3733
3734 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3735 vmx_get_nmi_mask(vcpu))
3736 intr_info |= INTR_INFO_UNBLOCK_NMI;
3737
3738 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3739 }
3740
3741 /*
3742 * Returns true if a debug trap is pending delivery.
3743 *
3744 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3745 * exception may be inferred from the presence of an exception payload.
3746 */
3747 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3748 {
3749 return vcpu->arch.exception.pending &&
3750 vcpu->arch.exception.nr == DB_VECTOR &&
3751 vcpu->arch.exception.payload;
3752 }
3753
3754 /*
3755 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3756 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3757 * represents these debug traps with a payload that is said to be compatible
3758 * with the 'pending debug exceptions' field, write the payload to the VMCS
3759 * field if a VM-exit is delivered before the debug trap.
3760 */
3761 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3762 {
3763 if (vmx_pending_dbg_trap(vcpu))
3764 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3765 vcpu->arch.exception.payload);
3766 }
3767
3768 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3769 {
3770 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3771 to_vmx(vcpu)->nested.preemption_timer_expired;
3772 }
3773
3774 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3775 {
3776 struct vcpu_vmx *vmx = to_vmx(vcpu);
3777 unsigned long exit_qual;
3778 bool block_nested_events =
3779 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3780 bool mtf_pending = vmx->nested.mtf_pending;
3781 struct kvm_lapic *apic = vcpu->arch.apic;
3782
3783 /*
3784 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3785 * this state is discarded.
3786 */
3787 if (!block_nested_events)
3788 vmx->nested.mtf_pending = false;
3789
3790 if (lapic_in_kernel(vcpu) &&
3791 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3792 if (block_nested_events)
3793 return -EBUSY;
3794 nested_vmx_update_pending_dbg(vcpu);
3795 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3796 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3797 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3798 return 0;
3799 }
3800
3801 if (lapic_in_kernel(vcpu) &&
3802 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3803 if (block_nested_events)
3804 return -EBUSY;
3805
3806 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3807 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3808 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3809 apic->sipi_vector & 0xFFUL);
3810 return 0;
3811 }
3812
3813 /*
3814 * Process any exceptions that are not debug traps before MTF.
3815 *
3816 * Note that only a pending nested run can block a pending exception.
3817 * Otherwise an injected NMI/interrupt should either be
3818 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3819 * while delivering the pending exception.
3820 */
3821
3822 if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3823 if (vmx->nested.nested_run_pending)
3824 return -EBUSY;
3825 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3826 goto no_vmexit;
3827 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3828 return 0;
3829 }
3830
3831 if (mtf_pending) {
3832 if (block_nested_events)
3833 return -EBUSY;
3834 nested_vmx_update_pending_dbg(vcpu);
3835 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3836 return 0;
3837 }
3838
3839 if (vcpu->arch.exception.pending) {
3840 if (vmx->nested.nested_run_pending)
3841 return -EBUSY;
3842 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3843 goto no_vmexit;
3844 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3845 return 0;
3846 }
3847
3848 if (nested_vmx_preemption_timer_pending(vcpu)) {
3849 if (block_nested_events)
3850 return -EBUSY;
3851 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3852 return 0;
3853 }
3854
3855 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3856 if (block_nested_events)
3857 return -EBUSY;
3858 goto no_vmexit;
3859 }
3860
3861 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3862 if (block_nested_events)
3863 return -EBUSY;
3864 if (!nested_exit_on_nmi(vcpu))
3865 goto no_vmexit;
3866
3867 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3868 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3869 INTR_INFO_VALID_MASK, 0);
3870 /*
3871 * The NMI-triggered VM exit counts as injection:
3872 * clear this one and block further NMIs.
3873 */
3874 vcpu->arch.nmi_pending = 0;
3875 vmx_set_nmi_mask(vcpu, true);
3876 return 0;
3877 }
3878
3879 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3880 if (block_nested_events)
3881 return -EBUSY;
3882 if (!nested_exit_on_intr(vcpu))
3883 goto no_vmexit;
3884 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3885 return 0;
3886 }
3887
3888 no_vmexit:
3889 vmx_complete_nested_posted_interrupt(vcpu);
3890 return 0;
3891 }
3892
3893 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3894 {
3895 ktime_t remaining =
3896 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3897 u64 value;
3898
3899 if (ktime_to_ns(remaining) <= 0)
3900 return 0;
3901
3902 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3903 do_div(value, 1000000);
3904 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3905 }
3906
3907 static bool is_vmcs12_ext_field(unsigned long field)
3908 {
3909 switch (field) {
3910 case GUEST_ES_SELECTOR:
3911 case GUEST_CS_SELECTOR:
3912 case GUEST_SS_SELECTOR:
3913 case GUEST_DS_SELECTOR:
3914 case GUEST_FS_SELECTOR:
3915 case GUEST_GS_SELECTOR:
3916 case GUEST_LDTR_SELECTOR:
3917 case GUEST_TR_SELECTOR:
3918 case GUEST_ES_LIMIT:
3919 case GUEST_CS_LIMIT:
3920 case GUEST_SS_LIMIT:
3921 case GUEST_DS_LIMIT:
3922 case GUEST_FS_LIMIT:
3923 case GUEST_GS_LIMIT:
3924 case GUEST_LDTR_LIMIT:
3925 case GUEST_TR_LIMIT:
3926 case GUEST_GDTR_LIMIT:
3927 case GUEST_IDTR_LIMIT:
3928 case GUEST_ES_AR_BYTES:
3929 case GUEST_DS_AR_BYTES:
3930 case GUEST_FS_AR_BYTES:
3931 case GUEST_GS_AR_BYTES:
3932 case GUEST_LDTR_AR_BYTES:
3933 case GUEST_TR_AR_BYTES:
3934 case GUEST_ES_BASE:
3935 case GUEST_CS_BASE:
3936 case GUEST_SS_BASE:
3937 case GUEST_DS_BASE:
3938 case GUEST_FS_BASE:
3939 case GUEST_GS_BASE:
3940 case GUEST_LDTR_BASE:
3941 case GUEST_TR_BASE:
3942 case GUEST_GDTR_BASE:
3943 case GUEST_IDTR_BASE:
3944 case GUEST_PENDING_DBG_EXCEPTIONS:
3945 case GUEST_BNDCFGS:
3946 return true;
3947 default:
3948 break;
3949 }
3950
3951 return false;
3952 }
3953
3954 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3955 struct vmcs12 *vmcs12)
3956 {
3957 struct vcpu_vmx *vmx = to_vmx(vcpu);
3958
3959 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3960 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3961 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3962 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3963 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3964 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3965 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3966 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3967 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3968 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3969 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3970 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3971 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3972 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3973 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3974 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3975 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3976 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3977 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3978 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3979 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3980 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3981 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3982 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3983 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3984 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3985 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3986 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3987 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3988 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3989 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3990 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3991 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3992 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3993 vmcs12->guest_pending_dbg_exceptions =
3994 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3995 if (kvm_mpx_supported())
3996 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3997
3998 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3999 }
4000
4001 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4002 struct vmcs12 *vmcs12)
4003 {
4004 struct vcpu_vmx *vmx = to_vmx(vcpu);
4005 int cpu;
4006
4007 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4008 return;
4009
4010
4011 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4012
4013 cpu = get_cpu();
4014 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4015 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4016
4017 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4018
4019 vmx->loaded_vmcs = &vmx->vmcs01;
4020 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4021 put_cpu();
4022 }
4023
4024 /*
4025 * Update the guest state fields of vmcs12 to reflect changes that
4026 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4027 * VM-entry controls is also updated, since this is really a guest
4028 * state bit.)
4029 */
4030 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4031 {
4032 struct vcpu_vmx *vmx = to_vmx(vcpu);
4033
4034 if (vmx->nested.hv_evmcs)
4035 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4036
4037 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4038
4039 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4040 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4041
4042 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4043 vmcs12->guest_rip = kvm_rip_read(vcpu);
4044 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4045
4046 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4047 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4048
4049 vmcs12->guest_interruptibility_info =
4050 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4051
4052 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4053 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4054 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4055 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4056 else
4057 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4058
4059 if (nested_cpu_has_preemption_timer(vmcs12) &&
4060 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4061 !vmx->nested.nested_run_pending)
4062 vmcs12->vmx_preemption_timer_value =
4063 vmx_get_preemption_timer_value(vcpu);
4064
4065 /*
4066 * In some cases (usually, nested EPT), L2 is allowed to change its
4067 * own CR3 without exiting. If it has changed it, we must keep it.
4068 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4069 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4070 *
4071 * Additionally, restore L2's PDPTR to vmcs12.
4072 */
4073 if (enable_ept) {
4074 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4075 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4076 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4077 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4078 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4079 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4080 }
4081 }
4082
4083 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4084
4085 if (nested_cpu_has_vid(vmcs12))
4086 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4087
4088 vmcs12->vm_entry_controls =
4089 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4090 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4091
4092 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4093 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4094
4095 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4096 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4097 }
4098
4099 /*
4100 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4101 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4102 * and this function updates it to reflect the changes to the guest state while
4103 * L2 was running (and perhaps made some exits which were handled directly by L0
4104 * without going back to L1), and to reflect the exit reason.
4105 * Note that we do not have to copy here all VMCS fields, just those that
4106 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4107 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4108 * which already writes to vmcs12 directly.
4109 */
4110 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4111 u32 vm_exit_reason, u32 exit_intr_info,
4112 unsigned long exit_qualification)
4113 {
4114 /* update exit information fields: */
4115 vmcs12->vm_exit_reason = vm_exit_reason;
4116 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4117 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4118 vmcs12->exit_qualification = exit_qualification;
4119 vmcs12->vm_exit_intr_info = exit_intr_info;
4120
4121 vmcs12->idt_vectoring_info_field = 0;
4122 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4123 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4124
4125 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4126 vmcs12->launch_state = 1;
4127
4128 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4129 * instead of reading the real value. */
4130 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4131
4132 /*
4133 * Transfer the event that L0 or L1 may wanted to inject into
4134 * L2 to IDT_VECTORING_INFO_FIELD.
4135 */
4136 vmcs12_save_pending_event(vcpu, vmcs12);
4137
4138 /*
4139 * According to spec, there's no need to store the guest's
4140 * MSRs if the exit is due to a VM-entry failure that occurs
4141 * during or after loading the guest state. Since this exit
4142 * does not fall in that category, we need to save the MSRs.
4143 */
4144 if (nested_vmx_store_msr(vcpu,
4145 vmcs12->vm_exit_msr_store_addr,
4146 vmcs12->vm_exit_msr_store_count))
4147 nested_vmx_abort(vcpu,
4148 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4149 }
4150
4151 /*
4152 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4153 * preserved above and would only end up incorrectly in L1.
4154 */
4155 vcpu->arch.nmi_injected = false;
4156 kvm_clear_exception_queue(vcpu);
4157 kvm_clear_interrupt_queue(vcpu);
4158 }
4159
4160 /*
4161 * A part of what we need to when the nested L2 guest exits and we want to
4162 * run its L1 parent, is to reset L1's guest state to the host state specified
4163 * in vmcs12.
4164 * This function is to be called not only on normal nested exit, but also on
4165 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4166 * Failures During or After Loading Guest State").
4167 * This function should be called when the active VMCS is L1's (vmcs01).
4168 */
4169 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4170 struct vmcs12 *vmcs12)
4171 {
4172 enum vm_entry_failure_code ignored;
4173 struct kvm_segment seg;
4174
4175 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4176 vcpu->arch.efer = vmcs12->host_ia32_efer;
4177 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4178 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4179 else
4180 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4181 vmx_set_efer(vcpu, vcpu->arch.efer);
4182
4183 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4184 kvm_rip_write(vcpu, vmcs12->host_rip);
4185 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4186 vmx_set_interrupt_shadow(vcpu, 0);
4187
4188 /*
4189 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4190 * actually changed, because vmx_set_cr0 refers to efer set above.
4191 *
4192 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4193 * (KVM doesn't change it);
4194 */
4195 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4196 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4197
4198 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4199 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4200 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4201
4202 nested_ept_uninit_mmu_context(vcpu);
4203
4204 /*
4205 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4206 * couldn't have changed.
4207 */
4208 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4209 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4210
4211 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4212
4213 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4214 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4215 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4216 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4217 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4218 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4219 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4220
4221 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4222 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4223 vmcs_write64(GUEST_BNDCFGS, 0);
4224
4225 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4226 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4227 vcpu->arch.pat = vmcs12->host_ia32_pat;
4228 }
4229 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4230 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4231 vmcs12->host_ia32_perf_global_ctrl));
4232
4233 /* Set L1 segment info according to Intel SDM
4234 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4235 seg = (struct kvm_segment) {
4236 .base = 0,
4237 .limit = 0xFFFFFFFF,
4238 .selector = vmcs12->host_cs_selector,
4239 .type = 11,
4240 .present = 1,
4241 .s = 1,
4242 .g = 1
4243 };
4244 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4245 seg.l = 1;
4246 else
4247 seg.db = 1;
4248 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4249 seg = (struct kvm_segment) {
4250 .base = 0,
4251 .limit = 0xFFFFFFFF,
4252 .type = 3,
4253 .present = 1,
4254 .s = 1,
4255 .db = 1,
4256 .g = 1
4257 };
4258 seg.selector = vmcs12->host_ds_selector;
4259 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4260 seg.selector = vmcs12->host_es_selector;
4261 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4262 seg.selector = vmcs12->host_ss_selector;
4263 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4264 seg.selector = vmcs12->host_fs_selector;
4265 seg.base = vmcs12->host_fs_base;
4266 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4267 seg.selector = vmcs12->host_gs_selector;
4268 seg.base = vmcs12->host_gs_base;
4269 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4270 seg = (struct kvm_segment) {
4271 .base = vmcs12->host_tr_base,
4272 .limit = 0x67,
4273 .selector = vmcs12->host_tr_selector,
4274 .type = 11,
4275 .present = 1
4276 };
4277 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4278
4279 kvm_set_dr(vcpu, 7, 0x400);
4280 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4281
4282 if (cpu_has_vmx_msr_bitmap())
4283 vmx_update_msr_bitmap(vcpu);
4284
4285 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4286 vmcs12->vm_exit_msr_load_count))
4287 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4288 }
4289
4290 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4291 {
4292 struct vmx_uret_msr *efer_msr;
4293 unsigned int i;
4294
4295 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4296 return vmcs_read64(GUEST_IA32_EFER);
4297
4298 if (cpu_has_load_ia32_efer())
4299 return host_efer;
4300
4301 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4302 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4303 return vmx->msr_autoload.guest.val[i].value;
4304 }
4305
4306 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4307 if (efer_msr)
4308 return efer_msr->data;
4309
4310 return host_efer;
4311 }
4312
4313 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4314 {
4315 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4316 struct vcpu_vmx *vmx = to_vmx(vcpu);
4317 struct vmx_msr_entry g, h;
4318 gpa_t gpa;
4319 u32 i, j;
4320
4321 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4322
4323 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4324 /*
4325 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4326 * as vmcs01.GUEST_DR7 contains a userspace defined value
4327 * and vcpu->arch.dr7 is not squirreled away before the
4328 * nested VMENTER (not worth adding a variable in nested_vmx).
4329 */
4330 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4331 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4332 else
4333 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4334 }
4335
4336 /*
4337 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4338 * handle a variety of side effects to KVM's software model.
4339 */
4340 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4341
4342 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4343 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4344
4345 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4346 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4347
4348 nested_ept_uninit_mmu_context(vcpu);
4349 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4350 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4351
4352 /*
4353 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4354 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4355 * VMFail, like everything else we just need to ensure our
4356 * software model is up-to-date.
4357 */
4358 if (enable_ept && is_pae_paging(vcpu))
4359 ept_save_pdptrs(vcpu);
4360
4361 kvm_mmu_reset_context(vcpu);
4362
4363 if (cpu_has_vmx_msr_bitmap())
4364 vmx_update_msr_bitmap(vcpu);
4365
4366 /*
4367 * This nasty bit of open coding is a compromise between blindly
4368 * loading L1's MSRs using the exit load lists (incorrect emulation
4369 * of VMFail), leaving the nested VM's MSRs in the software model
4370 * (incorrect behavior) and snapshotting the modified MSRs (too
4371 * expensive since the lists are unbound by hardware). For each
4372 * MSR that was (prematurely) loaded from the nested VMEntry load
4373 * list, reload it from the exit load list if it exists and differs
4374 * from the guest value. The intent is to stuff host state as
4375 * silently as possible, not to fully process the exit load list.
4376 */
4377 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4378 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4379 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4380 pr_debug_ratelimited(
4381 "%s read MSR index failed (%u, 0x%08llx)\n",
4382 __func__, i, gpa);
4383 goto vmabort;
4384 }
4385
4386 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4387 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4388 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4389 pr_debug_ratelimited(
4390 "%s read MSR failed (%u, 0x%08llx)\n",
4391 __func__, j, gpa);
4392 goto vmabort;
4393 }
4394 if (h.index != g.index)
4395 continue;
4396 if (h.value == g.value)
4397 break;
4398
4399 if (nested_vmx_load_msr_check(vcpu, &h)) {
4400 pr_debug_ratelimited(
4401 "%s check failed (%u, 0x%x, 0x%x)\n",
4402 __func__, j, h.index, h.reserved);
4403 goto vmabort;
4404 }
4405
4406 if (kvm_set_msr(vcpu, h.index, h.value)) {
4407 pr_debug_ratelimited(
4408 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4409 __func__, j, h.index, h.value);
4410 goto vmabort;
4411 }
4412 }
4413 }
4414
4415 return;
4416
4417 vmabort:
4418 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4419 }
4420
4421 /*
4422 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4423 * and modify vmcs12 to make it see what it would expect to see there if
4424 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4425 */
4426 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4427 u32 exit_intr_info, unsigned long exit_qualification)
4428 {
4429 struct vcpu_vmx *vmx = to_vmx(vcpu);
4430 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4431
4432 /* trying to cancel vmlaunch/vmresume is a bug */
4433 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4434
4435 /* Similarly, triple faults in L2 should never escape. */
4436 WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4437
4438 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
4439
4440 /* Service the TLB flush request for L2 before switching to L1. */
4441 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4442 kvm_vcpu_flush_tlb_current(vcpu);
4443
4444 /*
4445 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4446 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4447 * up-to-date before switching to L1.
4448 */
4449 if (enable_ept && is_pae_paging(vcpu))
4450 vmx_ept_load_pdptrs(vcpu);
4451
4452 leave_guest_mode(vcpu);
4453
4454 if (nested_cpu_has_preemption_timer(vmcs12))
4455 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4456
4457 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4458 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4459
4460 if (likely(!vmx->fail)) {
4461 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4462
4463 if (vm_exit_reason != -1)
4464 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4465 exit_intr_info, exit_qualification);
4466
4467 /*
4468 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4469 * also be used to capture vmcs12 cache as part of
4470 * capturing nVMX state for snapshot (migration).
4471 *
4472 * Otherwise, this flush will dirty guest memory at a
4473 * point it is already assumed by user-space to be
4474 * immutable.
4475 */
4476 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4477 } else {
4478 /*
4479 * The only expected VM-instruction error is "VM entry with
4480 * invalid control field(s)." Anything else indicates a
4481 * problem with L0. And we should never get here with a
4482 * VMFail of any type if early consistency checks are enabled.
4483 */
4484 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4485 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4486 WARN_ON_ONCE(nested_early_check);
4487 }
4488
4489 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4490
4491 /* Update any VMCS fields that might have changed while L2 ran */
4492 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4493 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4494 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4495 if (vmx->nested.l1_tpr_threshold != -1)
4496 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4497
4498 if (kvm_has_tsc_control)
4499 decache_tsc_multiplier(vmx);
4500
4501 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4502 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4503 vmx_set_virtual_apic_mode(vcpu);
4504 }
4505
4506 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4507 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4508 vmx_update_cpu_dirty_logging(vcpu);
4509 }
4510
4511 /* Unpin physical memory we referred to in vmcs02 */
4512 if (vmx->nested.apic_access_page) {
4513 kvm_release_page_clean(vmx->nested.apic_access_page);
4514 vmx->nested.apic_access_page = NULL;
4515 }
4516 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4517 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4518 vmx->nested.pi_desc = NULL;
4519
4520 if (vmx->nested.reload_vmcs01_apic_access_page) {
4521 vmx->nested.reload_vmcs01_apic_access_page = false;
4522 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4523 }
4524
4525 if ((vm_exit_reason != -1) &&
4526 (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4527 vmx->nested.need_vmcs12_to_shadow_sync = true;
4528
4529 /* in case we halted in L2 */
4530 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4531
4532 if (likely(!vmx->fail)) {
4533 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4534 nested_exit_intr_ack_set(vcpu)) {
4535 int irq = kvm_cpu_get_interrupt(vcpu);
4536 WARN_ON(irq < 0);
4537 vmcs12->vm_exit_intr_info = irq |
4538 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4539 }
4540
4541 if (vm_exit_reason != -1)
4542 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4543 vmcs12->exit_qualification,
4544 vmcs12->idt_vectoring_info_field,
4545 vmcs12->vm_exit_intr_info,
4546 vmcs12->vm_exit_intr_error_code,
4547 KVM_ISA_VMX);
4548
4549 load_vmcs12_host_state(vcpu, vmcs12);
4550
4551 return;
4552 }
4553
4554 /*
4555 * After an early L2 VM-entry failure, we're now back
4556 * in L1 which thinks it just finished a VMLAUNCH or
4557 * VMRESUME instruction, so we need to set the failure
4558 * flag and the VM-instruction error field of the VMCS
4559 * accordingly, and skip the emulated instruction.
4560 */
4561 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4562
4563 /*
4564 * Restore L1's host state to KVM's software model. We're here
4565 * because a consistency check was caught by hardware, which
4566 * means some amount of guest state has been propagated to KVM's
4567 * model and needs to be unwound to the host's state.
4568 */
4569 nested_vmx_restore_host_state(vcpu);
4570
4571 vmx->fail = 0;
4572 }
4573
4574 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4575 {
4576 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4577 }
4578
4579 /*
4580 * Decode the memory-address operand of a vmx instruction, as recorded on an
4581 * exit caused by such an instruction (run by a guest hypervisor).
4582 * On success, returns 0. When the operand is invalid, returns 1 and throws
4583 * #UD, #GP, or #SS.
4584 */
4585 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4586 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4587 {
4588 gva_t off;
4589 bool exn;
4590 struct kvm_segment s;
4591
4592 /*
4593 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4594 * Execution", on an exit, vmx_instruction_info holds most of the
4595 * addressing components of the operand. Only the displacement part
4596 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4597 * For how an actual address is calculated from all these components,
4598 * refer to Vol. 1, "Operand Addressing".
4599 */
4600 int scaling = vmx_instruction_info & 3;
4601 int addr_size = (vmx_instruction_info >> 7) & 7;
4602 bool is_reg = vmx_instruction_info & (1u << 10);
4603 int seg_reg = (vmx_instruction_info >> 15) & 7;
4604 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4605 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4606 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4607 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4608
4609 if (is_reg) {
4610 kvm_queue_exception(vcpu, UD_VECTOR);
4611 return 1;
4612 }
4613
4614 /* Addr = segment_base + offset */
4615 /* offset = base + [index * scale] + displacement */
4616 off = exit_qualification; /* holds the displacement */
4617 if (addr_size == 1)
4618 off = (gva_t)sign_extend64(off, 31);
4619 else if (addr_size == 0)
4620 off = (gva_t)sign_extend64(off, 15);
4621 if (base_is_valid)
4622 off += kvm_register_read(vcpu, base_reg);
4623 if (index_is_valid)
4624 off += kvm_register_read(vcpu, index_reg) << scaling;
4625 vmx_get_segment(vcpu, &s, seg_reg);
4626
4627 /*
4628 * The effective address, i.e. @off, of a memory operand is truncated
4629 * based on the address size of the instruction. Note that this is
4630 * the *effective address*, i.e. the address prior to accounting for
4631 * the segment's base.
4632 */
4633 if (addr_size == 1) /* 32 bit */
4634 off &= 0xffffffff;
4635 else if (addr_size == 0) /* 16 bit */
4636 off &= 0xffff;
4637
4638 /* Checks for #GP/#SS exceptions. */
4639 exn = false;
4640 if (is_long_mode(vcpu)) {
4641 /*
4642 * The virtual/linear address is never truncated in 64-bit
4643 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4644 * address when using FS/GS with a non-zero base.
4645 */
4646 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4647 *ret = s.base + off;
4648 else
4649 *ret = off;
4650
4651 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4652 * non-canonical form. This is the only check on the memory
4653 * destination for long mode!
4654 */
4655 exn = is_noncanonical_address(*ret, vcpu);
4656 } else {
4657 /*
4658 * When not in long mode, the virtual/linear address is
4659 * unconditionally truncated to 32 bits regardless of the
4660 * address size.
4661 */
4662 *ret = (s.base + off) & 0xffffffff;
4663
4664 /* Protected mode: apply checks for segment validity in the
4665 * following order:
4666 * - segment type check (#GP(0) may be thrown)
4667 * - usability check (#GP(0)/#SS(0))
4668 * - limit check (#GP(0)/#SS(0))
4669 */
4670 if (wr)
4671 /* #GP(0) if the destination operand is located in a
4672 * read-only data segment or any code segment.
4673 */
4674 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4675 else
4676 /* #GP(0) if the source operand is located in an
4677 * execute-only code segment
4678 */
4679 exn = ((s.type & 0xa) == 8);
4680 if (exn) {
4681 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4682 return 1;
4683 }
4684 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4685 */
4686 exn = (s.unusable != 0);
4687
4688 /*
4689 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4690 * outside the segment limit. All CPUs that support VMX ignore
4691 * limit checks for flat segments, i.e. segments with base==0,
4692 * limit==0xffffffff and of type expand-up data or code.
4693 */
4694 if (!(s.base == 0 && s.limit == 0xffffffff &&
4695 ((s.type & 8) || !(s.type & 4))))
4696 exn = exn || ((u64)off + len - 1 > s.limit);
4697 }
4698 if (exn) {
4699 kvm_queue_exception_e(vcpu,
4700 seg_reg == VCPU_SREG_SS ?
4701 SS_VECTOR : GP_VECTOR,
4702 0);
4703 return 1;
4704 }
4705
4706 return 0;
4707 }
4708
4709 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4710 {
4711 struct vcpu_vmx *vmx;
4712
4713 if (!nested_vmx_allowed(vcpu))
4714 return;
4715
4716 vmx = to_vmx(vcpu);
4717 if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4718 vmx->nested.msrs.entry_ctls_high |=
4719 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4720 vmx->nested.msrs.exit_ctls_high |=
4721 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4722 } else {
4723 vmx->nested.msrs.entry_ctls_high &=
4724 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4725 vmx->nested.msrs.exit_ctls_high &=
4726 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4727 }
4728 }
4729
4730 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4731 int *ret)
4732 {
4733 gva_t gva;
4734 struct x86_exception e;
4735 int r;
4736
4737 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4738 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4739 sizeof(*vmpointer), &gva)) {
4740 *ret = 1;
4741 return -EINVAL;
4742 }
4743
4744 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4745 if (r != X86EMUL_CONTINUE) {
4746 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4747 return -EINVAL;
4748 }
4749
4750 return 0;
4751 }
4752
4753 /*
4754 * Allocate a shadow VMCS and associate it with the currently loaded
4755 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4756 * VMCS is also VMCLEARed, so that it is ready for use.
4757 */
4758 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4759 {
4760 struct vcpu_vmx *vmx = to_vmx(vcpu);
4761 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4762
4763 /*
4764 * We should allocate a shadow vmcs for vmcs01 only when L1
4765 * executes VMXON and free it when L1 executes VMXOFF.
4766 * As it is invalid to execute VMXON twice, we shouldn't reach
4767 * here when vmcs01 already have an allocated shadow vmcs.
4768 */
4769 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4770
4771 if (!loaded_vmcs->shadow_vmcs) {
4772 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4773 if (loaded_vmcs->shadow_vmcs)
4774 vmcs_clear(loaded_vmcs->shadow_vmcs);
4775 }
4776 return loaded_vmcs->shadow_vmcs;
4777 }
4778
4779 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4780 {
4781 struct vcpu_vmx *vmx = to_vmx(vcpu);
4782 int r;
4783
4784 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4785 if (r < 0)
4786 goto out_vmcs02;
4787
4788 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4789 if (!vmx->nested.cached_vmcs12)
4790 goto out_cached_vmcs12;
4791
4792 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4793 if (!vmx->nested.cached_shadow_vmcs12)
4794 goto out_cached_shadow_vmcs12;
4795
4796 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4797 goto out_shadow_vmcs;
4798
4799 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4800 HRTIMER_MODE_ABS_PINNED);
4801 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4802
4803 vmx->nested.vpid02 = allocate_vpid();
4804
4805 vmx->nested.vmcs02_initialized = false;
4806 vmx->nested.vmxon = true;
4807
4808 if (vmx_pt_mode_is_host_guest()) {
4809 vmx->pt_desc.guest.ctl = 0;
4810 pt_update_intercept_for_msr(vcpu);
4811 }
4812
4813 return 0;
4814
4815 out_shadow_vmcs:
4816 kfree(vmx->nested.cached_shadow_vmcs12);
4817
4818 out_cached_shadow_vmcs12:
4819 kfree(vmx->nested.cached_vmcs12);
4820
4821 out_cached_vmcs12:
4822 free_loaded_vmcs(&vmx->nested.vmcs02);
4823
4824 out_vmcs02:
4825 return -ENOMEM;
4826 }
4827
4828 /*
4829 * Emulate the VMXON instruction.
4830 * Currently, we just remember that VMX is active, and do not save or even
4831 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4832 * do not currently need to store anything in that guest-allocated memory
4833 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4834 * argument is different from the VMXON pointer (which the spec says they do).
4835 */
4836 static int handle_vmon(struct kvm_vcpu *vcpu)
4837 {
4838 int ret;
4839 gpa_t vmptr;
4840 uint32_t revision;
4841 struct vcpu_vmx *vmx = to_vmx(vcpu);
4842 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4843 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4844
4845 /*
4846 * The Intel VMX Instruction Reference lists a bunch of bits that are
4847 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4848 * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4849 * Otherwise, we should fail with #UD. But most faulting conditions
4850 * have already been checked by hardware, prior to the VM-exit for
4851 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
4852 * that bit set to 1 in non-root mode.
4853 */
4854 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4855 kvm_queue_exception(vcpu, UD_VECTOR);
4856 return 1;
4857 }
4858
4859 /* CPL=0 must be checked manually. */
4860 if (vmx_get_cpl(vcpu)) {
4861 kvm_inject_gp(vcpu, 0);
4862 return 1;
4863 }
4864
4865 if (vmx->nested.vmxon)
4866 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4867
4868 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4869 != VMXON_NEEDED_FEATURES) {
4870 kvm_inject_gp(vcpu, 0);
4871 return 1;
4872 }
4873
4874 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4875 return ret;
4876
4877 /*
4878 * SDM 3: 24.11.5
4879 * The first 4 bytes of VMXON region contain the supported
4880 * VMCS revision identifier
4881 *
4882 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4883 * which replaces physical address width with 32
4884 */
4885 if (!page_address_valid(vcpu, vmptr))
4886 return nested_vmx_failInvalid(vcpu);
4887
4888 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4889 revision != VMCS12_REVISION)
4890 return nested_vmx_failInvalid(vcpu);
4891
4892 vmx->nested.vmxon_ptr = vmptr;
4893 ret = enter_vmx_operation(vcpu);
4894 if (ret)
4895 return ret;
4896
4897 return nested_vmx_succeed(vcpu);
4898 }
4899
4900 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4901 {
4902 struct vcpu_vmx *vmx = to_vmx(vcpu);
4903
4904 if (vmx->nested.current_vmptr == -1ull)
4905 return;
4906
4907 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4908
4909 if (enable_shadow_vmcs) {
4910 /* copy to memory all shadowed fields in case
4911 they were modified */
4912 copy_shadow_to_vmcs12(vmx);
4913 vmx_disable_shadow_vmcs(vmx);
4914 }
4915 vmx->nested.posted_intr_nv = -1;
4916
4917 /* Flush VMCS12 to guest memory */
4918 kvm_vcpu_write_guest_page(vcpu,
4919 vmx->nested.current_vmptr >> PAGE_SHIFT,
4920 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4921
4922 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4923
4924 vmx->nested.current_vmptr = -1ull;
4925 }
4926
4927 /* Emulate the VMXOFF instruction */
4928 static int handle_vmoff(struct kvm_vcpu *vcpu)
4929 {
4930 if (!nested_vmx_check_permission(vcpu))
4931 return 1;
4932
4933 free_nested(vcpu);
4934
4935 /* Process a latched INIT during time CPU was in VMX operation */
4936 kvm_make_request(KVM_REQ_EVENT, vcpu);
4937
4938 return nested_vmx_succeed(vcpu);
4939 }
4940
4941 /* Emulate the VMCLEAR instruction */
4942 static int handle_vmclear(struct kvm_vcpu *vcpu)
4943 {
4944 struct vcpu_vmx *vmx = to_vmx(vcpu);
4945 u32 zero = 0;
4946 gpa_t vmptr;
4947 u64 evmcs_gpa;
4948 int r;
4949
4950 if (!nested_vmx_check_permission(vcpu))
4951 return 1;
4952
4953 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
4954 return r;
4955
4956 if (!page_address_valid(vcpu, vmptr))
4957 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4958
4959 if (vmptr == vmx->nested.vmxon_ptr)
4960 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
4961
4962 /*
4963 * When Enlightened VMEntry is enabled on the calling CPU we treat
4964 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4965 * way to distinguish it from VMCS12) and we must not corrupt it by
4966 * writing to the non-existent 'launch_state' field. The area doesn't
4967 * have to be the currently active EVMCS on the calling CPU and there's
4968 * nothing KVM has to do to transition it from 'active' to 'non-active'
4969 * state. It is possible that the area will stay mapped as
4970 * vmx->nested.hv_evmcs but this shouldn't be a problem.
4971 */
4972 if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4973 !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4974 if (vmptr == vmx->nested.current_vmptr)
4975 nested_release_vmcs12(vcpu);
4976
4977 kvm_vcpu_write_guest(vcpu,
4978 vmptr + offsetof(struct vmcs12,
4979 launch_state),
4980 &zero, sizeof(zero));
4981 }
4982
4983 return nested_vmx_succeed(vcpu);
4984 }
4985
4986 /* Emulate the VMLAUNCH instruction */
4987 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4988 {
4989 return nested_vmx_run(vcpu, true);
4990 }
4991
4992 /* Emulate the VMRESUME instruction */
4993 static int handle_vmresume(struct kvm_vcpu *vcpu)
4994 {
4995
4996 return nested_vmx_run(vcpu, false);
4997 }
4998
4999 static int handle_vmread(struct kvm_vcpu *vcpu)
5000 {
5001 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5002 : get_vmcs12(vcpu);
5003 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5004 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5005 struct vcpu_vmx *vmx = to_vmx(vcpu);
5006 struct x86_exception e;
5007 unsigned long field;
5008 u64 value;
5009 gva_t gva = 0;
5010 short offset;
5011 int len, r;
5012
5013 if (!nested_vmx_check_permission(vcpu))
5014 return 1;
5015
5016 /*
5017 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5018 * any VMREAD sets the ALU flags for VMfailInvalid.
5019 */
5020 if (vmx->nested.current_vmptr == -1ull ||
5021 (is_guest_mode(vcpu) &&
5022 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5023 return nested_vmx_failInvalid(vcpu);
5024
5025 /* Decode instruction info and find the field to read */
5026 field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5027
5028 offset = vmcs_field_to_offset(field);
5029 if (offset < 0)
5030 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5031
5032 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5033 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5034
5035 /* Read the field, zero-extended to a u64 value */
5036 value = vmcs12_read_any(vmcs12, field, offset);
5037
5038 /*
5039 * Now copy part of this value to register or memory, as requested.
5040 * Note that the number of bits actually copied is 32 or 64 depending
5041 * on the guest's mode (32 or 64 bit), not on the given field's length.
5042 */
5043 if (instr_info & BIT(10)) {
5044 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
5045 } else {
5046 len = is_64_bit_mode(vcpu) ? 8 : 4;
5047 if (get_vmx_mem_address(vcpu, exit_qualification,
5048 instr_info, true, len, &gva))
5049 return 1;
5050 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5051 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5052 if (r != X86EMUL_CONTINUE)
5053 return kvm_handle_memory_failure(vcpu, r, &e);
5054 }
5055
5056 return nested_vmx_succeed(vcpu);
5057 }
5058
5059 static bool is_shadow_field_rw(unsigned long field)
5060 {
5061 switch (field) {
5062 #define SHADOW_FIELD_RW(x, y) case x:
5063 #include "vmcs_shadow_fields.h"
5064 return true;
5065 default:
5066 break;
5067 }
5068 return false;
5069 }
5070
5071 static bool is_shadow_field_ro(unsigned long field)
5072 {
5073 switch (field) {
5074 #define SHADOW_FIELD_RO(x, y) case x:
5075 #include "vmcs_shadow_fields.h"
5076 return true;
5077 default:
5078 break;
5079 }
5080 return false;
5081 }
5082
5083 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5084 {
5085 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5086 : get_vmcs12(vcpu);
5087 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5088 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5089 struct vcpu_vmx *vmx = to_vmx(vcpu);
5090 struct x86_exception e;
5091 unsigned long field;
5092 short offset;
5093 gva_t gva;
5094 int len, r;
5095
5096 /*
5097 * The value to write might be 32 or 64 bits, depending on L1's long
5098 * mode, and eventually we need to write that into a field of several
5099 * possible lengths. The code below first zero-extends the value to 64
5100 * bit (value), and then copies only the appropriate number of
5101 * bits into the vmcs12 field.
5102 */
5103 u64 value = 0;
5104
5105 if (!nested_vmx_check_permission(vcpu))
5106 return 1;
5107
5108 /*
5109 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5110 * any VMWRITE sets the ALU flags for VMfailInvalid.
5111 */
5112 if (vmx->nested.current_vmptr == -1ull ||
5113 (is_guest_mode(vcpu) &&
5114 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5115 return nested_vmx_failInvalid(vcpu);
5116
5117 if (instr_info & BIT(10))
5118 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
5119 else {
5120 len = is_64_bit_mode(vcpu) ? 8 : 4;
5121 if (get_vmx_mem_address(vcpu, exit_qualification,
5122 instr_info, false, len, &gva))
5123 return 1;
5124 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5125 if (r != X86EMUL_CONTINUE)
5126 return kvm_handle_memory_failure(vcpu, r, &e);
5127 }
5128
5129 field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5130
5131 offset = vmcs_field_to_offset(field);
5132 if (offset < 0)
5133 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5134
5135 /*
5136 * If the vCPU supports "VMWRITE to any supported field in the
5137 * VMCS," then the "read-only" fields are actually read/write.
5138 */
5139 if (vmcs_field_readonly(field) &&
5140 !nested_cpu_has_vmwrite_any_field(vcpu))
5141 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5142
5143 /*
5144 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5145 * vmcs12, else we may crush a field or consume a stale value.
5146 */
5147 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5148 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5149
5150 /*
5151 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5152 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5153 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5154 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5155 * from L1 will return a different value than VMREAD from L2 (L1 sees
5156 * the stripped down value, L2 sees the full value as stored by KVM).
5157 */
5158 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5159 value &= 0x1f0ff;
5160
5161 vmcs12_write_any(vmcs12, field, offset, value);
5162
5163 /*
5164 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5165 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5166 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5167 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5168 */
5169 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5170 /*
5171 * L1 can read these fields without exiting, ensure the
5172 * shadow VMCS is up-to-date.
5173 */
5174 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5175 preempt_disable();
5176 vmcs_load(vmx->vmcs01.shadow_vmcs);
5177
5178 __vmcs_writel(field, value);
5179
5180 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5181 vmcs_load(vmx->loaded_vmcs->vmcs);
5182 preempt_enable();
5183 }
5184 vmx->nested.dirty_vmcs12 = true;
5185 }
5186
5187 return nested_vmx_succeed(vcpu);
5188 }
5189
5190 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5191 {
5192 vmx->nested.current_vmptr = vmptr;
5193 if (enable_shadow_vmcs) {
5194 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5195 vmcs_write64(VMCS_LINK_POINTER,
5196 __pa(vmx->vmcs01.shadow_vmcs));
5197 vmx->nested.need_vmcs12_to_shadow_sync = true;
5198 }
5199 vmx->nested.dirty_vmcs12 = true;
5200 }
5201
5202 /* Emulate the VMPTRLD instruction */
5203 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5204 {
5205 struct vcpu_vmx *vmx = to_vmx(vcpu);
5206 gpa_t vmptr;
5207 int r;
5208
5209 if (!nested_vmx_check_permission(vcpu))
5210 return 1;
5211
5212 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5213 return r;
5214
5215 if (!page_address_valid(vcpu, vmptr))
5216 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5217
5218 if (vmptr == vmx->nested.vmxon_ptr)
5219 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5220
5221 /* Forbid normal VMPTRLD if Enlightened version was used */
5222 if (vmx->nested.hv_evmcs)
5223 return 1;
5224
5225 if (vmx->nested.current_vmptr != vmptr) {
5226 struct kvm_host_map map;
5227 struct vmcs12 *new_vmcs12;
5228
5229 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5230 /*
5231 * Reads from an unbacked page return all 1s,
5232 * which means that the 32 bits located at the
5233 * given physical address won't match the required
5234 * VMCS12_REVISION identifier.
5235 */
5236 return nested_vmx_fail(vcpu,
5237 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5238 }
5239
5240 new_vmcs12 = map.hva;
5241
5242 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5243 (new_vmcs12->hdr.shadow_vmcs &&
5244 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5245 kvm_vcpu_unmap(vcpu, &map, false);
5246 return nested_vmx_fail(vcpu,
5247 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5248 }
5249
5250 nested_release_vmcs12(vcpu);
5251
5252 /*
5253 * Load VMCS12 from guest memory since it is not already
5254 * cached.
5255 */
5256 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5257 kvm_vcpu_unmap(vcpu, &map, false);
5258
5259 set_current_vmptr(vmx, vmptr);
5260 }
5261
5262 return nested_vmx_succeed(vcpu);
5263 }
5264
5265 /* Emulate the VMPTRST instruction */
5266 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5267 {
5268 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5269 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5270 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5271 struct x86_exception e;
5272 gva_t gva;
5273 int r;
5274
5275 if (!nested_vmx_check_permission(vcpu))
5276 return 1;
5277
5278 if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5279 return 1;
5280
5281 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5282 true, sizeof(gpa_t), &gva))
5283 return 1;
5284 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5285 r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5286 sizeof(gpa_t), &e);
5287 if (r != X86EMUL_CONTINUE)
5288 return kvm_handle_memory_failure(vcpu, r, &e);
5289
5290 return nested_vmx_succeed(vcpu);
5291 }
5292
5293 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
5294
5295 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5296 {
5297 return VALID_PAGE(root_hpa) &&
5298 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5299 }
5300
5301 /* Emulate the INVEPT instruction */
5302 static int handle_invept(struct kvm_vcpu *vcpu)
5303 {
5304 struct vcpu_vmx *vmx = to_vmx(vcpu);
5305 u32 vmx_instruction_info, types;
5306 unsigned long type, roots_to_free;
5307 struct kvm_mmu *mmu;
5308 gva_t gva;
5309 struct x86_exception e;
5310 struct {
5311 u64 eptp, gpa;
5312 } operand;
5313 int i, r;
5314
5315 if (!(vmx->nested.msrs.secondary_ctls_high &
5316 SECONDARY_EXEC_ENABLE_EPT) ||
5317 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5318 kvm_queue_exception(vcpu, UD_VECTOR);
5319 return 1;
5320 }
5321
5322 if (!nested_vmx_check_permission(vcpu))
5323 return 1;
5324
5325 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5326 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5327
5328 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5329
5330 if (type >= 32 || !(types & (1 << type)))
5331 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5332
5333 /* According to the Intel VMX instruction reference, the memory
5334 * operand is read even if it isn't needed (e.g., for type==global)
5335 */
5336 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5337 vmx_instruction_info, false, sizeof(operand), &gva))
5338 return 1;
5339 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5340 if (r != X86EMUL_CONTINUE)
5341 return kvm_handle_memory_failure(vcpu, r, &e);
5342
5343 /*
5344 * Nested EPT roots are always held through guest_mmu,
5345 * not root_mmu.
5346 */
5347 mmu = &vcpu->arch.guest_mmu;
5348
5349 switch (type) {
5350 case VMX_EPT_EXTENT_CONTEXT:
5351 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5352 return nested_vmx_fail(vcpu,
5353 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5354
5355 roots_to_free = 0;
5356 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5357 operand.eptp))
5358 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5359
5360 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5361 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5362 mmu->prev_roots[i].pgd,
5363 operand.eptp))
5364 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5365 }
5366 break;
5367 case VMX_EPT_EXTENT_GLOBAL:
5368 roots_to_free = KVM_MMU_ROOTS_ALL;
5369 break;
5370 default:
5371 BUG();
5372 break;
5373 }
5374
5375 if (roots_to_free)
5376 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5377
5378 return nested_vmx_succeed(vcpu);
5379 }
5380
5381 static int handle_invvpid(struct kvm_vcpu *vcpu)
5382 {
5383 struct vcpu_vmx *vmx = to_vmx(vcpu);
5384 u32 vmx_instruction_info;
5385 unsigned long type, types;
5386 gva_t gva;
5387 struct x86_exception e;
5388 struct {
5389 u64 vpid;
5390 u64 gla;
5391 } operand;
5392 u16 vpid02;
5393 int r;
5394
5395 if (!(vmx->nested.msrs.secondary_ctls_high &
5396 SECONDARY_EXEC_ENABLE_VPID) ||
5397 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5398 kvm_queue_exception(vcpu, UD_VECTOR);
5399 return 1;
5400 }
5401
5402 if (!nested_vmx_check_permission(vcpu))
5403 return 1;
5404
5405 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5406 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5407
5408 types = (vmx->nested.msrs.vpid_caps &
5409 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5410
5411 if (type >= 32 || !(types & (1 << type)))
5412 return nested_vmx_fail(vcpu,
5413 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5414
5415 /* according to the intel vmx instruction reference, the memory
5416 * operand is read even if it isn't needed (e.g., for type==global)
5417 */
5418 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5419 vmx_instruction_info, false, sizeof(operand), &gva))
5420 return 1;
5421 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5422 if (r != X86EMUL_CONTINUE)
5423 return kvm_handle_memory_failure(vcpu, r, &e);
5424
5425 if (operand.vpid >> 16)
5426 return nested_vmx_fail(vcpu,
5427 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5428
5429 vpid02 = nested_get_vpid02(vcpu);
5430 switch (type) {
5431 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5432 if (!operand.vpid ||
5433 is_noncanonical_address(operand.gla, vcpu))
5434 return nested_vmx_fail(vcpu,
5435 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5436 vpid_sync_vcpu_addr(vpid02, operand.gla);
5437 break;
5438 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5439 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5440 if (!operand.vpid)
5441 return nested_vmx_fail(vcpu,
5442 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5443 vpid_sync_context(vpid02);
5444 break;
5445 case VMX_VPID_EXTENT_ALL_CONTEXT:
5446 vpid_sync_context(vpid02);
5447 break;
5448 default:
5449 WARN_ON_ONCE(1);
5450 return kvm_skip_emulated_instruction(vcpu);
5451 }
5452
5453 /*
5454 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5455 * linear mappings for L2 (tagged with L2's VPID). Free all roots as
5456 * VPIDs are not tracked in the MMU role.
5457 *
5458 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5459 * an MMU when EPT is disabled.
5460 *
5461 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5462 */
5463 if (!enable_ept)
5464 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5465 KVM_MMU_ROOTS_ALL);
5466
5467 return nested_vmx_succeed(vcpu);
5468 }
5469
5470 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5471 struct vmcs12 *vmcs12)
5472 {
5473 u32 index = kvm_rcx_read(vcpu);
5474 u64 new_eptp;
5475 bool accessed_dirty;
5476 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5477
5478 if (!nested_cpu_has_eptp_switching(vmcs12) ||
5479 !nested_cpu_has_ept(vmcs12))
5480 return 1;
5481
5482 if (index >= VMFUNC_EPTP_ENTRIES)
5483 return 1;
5484
5485
5486 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5487 &new_eptp, index * 8, 8))
5488 return 1;
5489
5490 accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
5491
5492 /*
5493 * If the (L2) guest does a vmfunc to the currently
5494 * active ept pointer, we don't have to do anything else
5495 */
5496 if (vmcs12->ept_pointer != new_eptp) {
5497 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5498 return 1;
5499
5500 mmu->ept_ad = accessed_dirty;
5501 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5502 vmcs12->ept_pointer = new_eptp;
5503
5504 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
5505 }
5506
5507 return 0;
5508 }
5509
5510 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5511 {
5512 struct vcpu_vmx *vmx = to_vmx(vcpu);
5513 struct vmcs12 *vmcs12;
5514 u32 function = kvm_rax_read(vcpu);
5515
5516 /*
5517 * VMFUNC is only supported for nested guests, but we always enable the
5518 * secondary control for simplicity; for non-nested mode, fake that we
5519 * didn't by injecting #UD.
5520 */
5521 if (!is_guest_mode(vcpu)) {
5522 kvm_queue_exception(vcpu, UD_VECTOR);
5523 return 1;
5524 }
5525
5526 vmcs12 = get_vmcs12(vcpu);
5527 if ((vmcs12->vm_function_control & (1 << function)) == 0)
5528 goto fail;
5529
5530 switch (function) {
5531 case 0:
5532 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5533 goto fail;
5534 break;
5535 default:
5536 goto fail;
5537 }
5538 return kvm_skip_emulated_instruction(vcpu);
5539
5540 fail:
5541 /*
5542 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5543 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5544 * EXIT_REASON_VMFUNC as the exit reason.
5545 */
5546 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5547 vmx_get_intr_info(vcpu),
5548 vmx_get_exit_qual(vcpu));
5549 return 1;
5550 }
5551
5552 /*
5553 * Return true if an IO instruction with the specified port and size should cause
5554 * a VM-exit into L1.
5555 */
5556 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5557 int size)
5558 {
5559 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5560 gpa_t bitmap, last_bitmap;
5561 u8 b;
5562
5563 last_bitmap = (gpa_t)-1;
5564 b = -1;
5565
5566 while (size > 0) {
5567 if (port < 0x8000)
5568 bitmap = vmcs12->io_bitmap_a;
5569 else if (port < 0x10000)
5570 bitmap = vmcs12->io_bitmap_b;
5571 else
5572 return true;
5573 bitmap += (port & 0x7fff) / 8;
5574
5575 if (last_bitmap != bitmap)
5576 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5577 return true;
5578 if (b & (1 << (port & 7)))
5579 return true;
5580
5581 port++;
5582 size--;
5583 last_bitmap = bitmap;
5584 }
5585
5586 return false;
5587 }
5588
5589 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5590 struct vmcs12 *vmcs12)
5591 {
5592 unsigned long exit_qualification;
5593 unsigned short port;
5594 int size;
5595
5596 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5597 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5598
5599 exit_qualification = vmx_get_exit_qual(vcpu);
5600
5601 port = exit_qualification >> 16;
5602 size = (exit_qualification & 7) + 1;
5603
5604 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5605 }
5606
5607 /*
5608 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5609 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5610 * disinterest in the current event (read or write a specific MSR) by using an
5611 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5612 */
5613 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5614 struct vmcs12 *vmcs12,
5615 union vmx_exit_reason exit_reason)
5616 {
5617 u32 msr_index = kvm_rcx_read(vcpu);
5618 gpa_t bitmap;
5619
5620 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5621 return true;
5622
5623 /*
5624 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5625 * for the four combinations of read/write and low/high MSR numbers.
5626 * First we need to figure out which of the four to use:
5627 */
5628 bitmap = vmcs12->msr_bitmap;
5629 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5630 bitmap += 2048;
5631 if (msr_index >= 0xc0000000) {
5632 msr_index -= 0xc0000000;
5633 bitmap += 1024;
5634 }
5635
5636 /* Then read the msr_index'th bit from this bitmap: */
5637 if (msr_index < 1024*8) {
5638 unsigned char b;
5639 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5640 return true;
5641 return 1 & (b >> (msr_index & 7));
5642 } else
5643 return true; /* let L1 handle the wrong parameter */
5644 }
5645
5646 /*
5647 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5648 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5649 * intercept (via guest_host_mask etc.) the current event.
5650 */
5651 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5652 struct vmcs12 *vmcs12)
5653 {
5654 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5655 int cr = exit_qualification & 15;
5656 int reg;
5657 unsigned long val;
5658
5659 switch ((exit_qualification >> 4) & 3) {
5660 case 0: /* mov to cr */
5661 reg = (exit_qualification >> 8) & 15;
5662 val = kvm_register_readl(vcpu, reg);
5663 switch (cr) {
5664 case 0:
5665 if (vmcs12->cr0_guest_host_mask &
5666 (val ^ vmcs12->cr0_read_shadow))
5667 return true;
5668 break;
5669 case 3:
5670 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5671 return true;
5672 break;
5673 case 4:
5674 if (vmcs12->cr4_guest_host_mask &
5675 (vmcs12->cr4_read_shadow ^ val))
5676 return true;
5677 break;
5678 case 8:
5679 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5680 return true;
5681 break;
5682 }
5683 break;
5684 case 2: /* clts */
5685 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5686 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5687 return true;
5688 break;
5689 case 1: /* mov from cr */
5690 switch (cr) {
5691 case 3:
5692 if (vmcs12->cpu_based_vm_exec_control &
5693 CPU_BASED_CR3_STORE_EXITING)
5694 return true;
5695 break;
5696 case 8:
5697 if (vmcs12->cpu_based_vm_exec_control &
5698 CPU_BASED_CR8_STORE_EXITING)
5699 return true;
5700 break;
5701 }
5702 break;
5703 case 3: /* lmsw */
5704 /*
5705 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5706 * cr0. Other attempted changes are ignored, with no exit.
5707 */
5708 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5709 if (vmcs12->cr0_guest_host_mask & 0xe &
5710 (val ^ vmcs12->cr0_read_shadow))
5711 return true;
5712 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5713 !(vmcs12->cr0_read_shadow & 0x1) &&
5714 (val & 0x1))
5715 return true;
5716 break;
5717 }
5718 return false;
5719 }
5720
5721 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5722 struct vmcs12 *vmcs12)
5723 {
5724 u32 encls_leaf;
5725
5726 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5727 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5728 return false;
5729
5730 encls_leaf = kvm_rax_read(vcpu);
5731 if (encls_leaf > 62)
5732 encls_leaf = 63;
5733 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5734 }
5735
5736 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5737 struct vmcs12 *vmcs12, gpa_t bitmap)
5738 {
5739 u32 vmx_instruction_info;
5740 unsigned long field;
5741 u8 b;
5742
5743 if (!nested_cpu_has_shadow_vmcs(vmcs12))
5744 return true;
5745
5746 /* Decode instruction info and find the field to access */
5747 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5748 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5749
5750 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5751 if (field >> 15)
5752 return true;
5753
5754 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5755 return true;
5756
5757 return 1 & (b >> (field & 7));
5758 }
5759
5760 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5761 {
5762 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5763
5764 if (nested_cpu_has_mtf(vmcs12))
5765 return true;
5766
5767 /*
5768 * An MTF VM-exit may be injected into the guest by setting the
5769 * interruption-type to 7 (other event) and the vector field to 0. Such
5770 * is the case regardless of the 'monitor trap flag' VM-execution
5771 * control.
5772 */
5773 return entry_intr_info == (INTR_INFO_VALID_MASK
5774 | INTR_TYPE_OTHER_EVENT);
5775 }
5776
5777 /*
5778 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5779 * L1 wants the exit. Only call this when in is_guest_mode (L2).
5780 */
5781 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5782 union vmx_exit_reason exit_reason)
5783 {
5784 u32 intr_info;
5785
5786 switch ((u16)exit_reason.basic) {
5787 case EXIT_REASON_EXCEPTION_NMI:
5788 intr_info = vmx_get_intr_info(vcpu);
5789 if (is_nmi(intr_info))
5790 return true;
5791 else if (is_page_fault(intr_info))
5792 return vcpu->arch.apf.host_apf_flags || !enable_ept;
5793 else if (is_debug(intr_info) &&
5794 vcpu->guest_debug &
5795 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5796 return true;
5797 else if (is_breakpoint(intr_info) &&
5798 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5799 return true;
5800 return false;
5801 case EXIT_REASON_EXTERNAL_INTERRUPT:
5802 return true;
5803 case EXIT_REASON_MCE_DURING_VMENTRY:
5804 return true;
5805 case EXIT_REASON_EPT_VIOLATION:
5806 /*
5807 * L0 always deals with the EPT violation. If nested EPT is
5808 * used, and the nested mmu code discovers that the address is
5809 * missing in the guest EPT table (EPT12), the EPT violation
5810 * will be injected with nested_ept_inject_page_fault()
5811 */
5812 return true;
5813 case EXIT_REASON_EPT_MISCONFIG:
5814 /*
5815 * L2 never uses directly L1's EPT, but rather L0's own EPT
5816 * table (shadow on EPT) or a merged EPT table that L0 built
5817 * (EPT on EPT). So any problems with the structure of the
5818 * table is L0's fault.
5819 */
5820 return true;
5821 case EXIT_REASON_PREEMPTION_TIMER:
5822 return true;
5823 case EXIT_REASON_PML_FULL:
5824 /*
5825 * PML is emulated for an L1 VMM and should never be enabled in
5826 * vmcs02, always "handle" PML_FULL by exiting to userspace.
5827 */
5828 return true;
5829 case EXIT_REASON_VMFUNC:
5830 /* VM functions are emulated through L2->L0 vmexits. */
5831 return true;
5832 default:
5833 break;
5834 }
5835 return false;
5836 }
5837
5838 /*
5839 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
5840 * is_guest_mode (L2).
5841 */
5842 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5843 union vmx_exit_reason exit_reason)
5844 {
5845 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5846 u32 intr_info;
5847
5848 switch ((u16)exit_reason.basic) {
5849 case EXIT_REASON_EXCEPTION_NMI:
5850 intr_info = vmx_get_intr_info(vcpu);
5851 if (is_nmi(intr_info))
5852 return true;
5853 else if (is_page_fault(intr_info))
5854 return true;
5855 return vmcs12->exception_bitmap &
5856 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5857 case EXIT_REASON_EXTERNAL_INTERRUPT:
5858 return nested_exit_on_intr(vcpu);
5859 case EXIT_REASON_TRIPLE_FAULT:
5860 return true;
5861 case EXIT_REASON_INTERRUPT_WINDOW:
5862 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5863 case EXIT_REASON_NMI_WINDOW:
5864 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5865 case EXIT_REASON_TASK_SWITCH:
5866 return true;
5867 case EXIT_REASON_CPUID:
5868 return true;
5869 case EXIT_REASON_HLT:
5870 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5871 case EXIT_REASON_INVD:
5872 return true;
5873 case EXIT_REASON_INVLPG:
5874 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5875 case EXIT_REASON_RDPMC:
5876 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5877 case EXIT_REASON_RDRAND:
5878 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5879 case EXIT_REASON_RDSEED:
5880 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5881 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5882 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5883 case EXIT_REASON_VMREAD:
5884 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5885 vmcs12->vmread_bitmap);
5886 case EXIT_REASON_VMWRITE:
5887 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5888 vmcs12->vmwrite_bitmap);
5889 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5890 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5891 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5892 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5893 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5894 /*
5895 * VMX instructions trap unconditionally. This allows L1 to
5896 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5897 */
5898 return true;
5899 case EXIT_REASON_CR_ACCESS:
5900 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5901 case EXIT_REASON_DR_ACCESS:
5902 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5903 case EXIT_REASON_IO_INSTRUCTION:
5904 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5905 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5906 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5907 case EXIT_REASON_MSR_READ:
5908 case EXIT_REASON_MSR_WRITE:
5909 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5910 case EXIT_REASON_INVALID_STATE:
5911 return true;
5912 case EXIT_REASON_MWAIT_INSTRUCTION:
5913 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5914 case EXIT_REASON_MONITOR_TRAP_FLAG:
5915 return nested_vmx_exit_handled_mtf(vmcs12);
5916 case EXIT_REASON_MONITOR_INSTRUCTION:
5917 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5918 case EXIT_REASON_PAUSE_INSTRUCTION:
5919 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5920 nested_cpu_has2(vmcs12,
5921 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5922 case EXIT_REASON_MCE_DURING_VMENTRY:
5923 return true;
5924 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5925 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5926 case EXIT_REASON_APIC_ACCESS:
5927 case EXIT_REASON_APIC_WRITE:
5928 case EXIT_REASON_EOI_INDUCED:
5929 /*
5930 * The controls for "virtualize APIC accesses," "APIC-
5931 * register virtualization," and "virtual-interrupt
5932 * delivery" only come from vmcs12.
5933 */
5934 return true;
5935 case EXIT_REASON_INVPCID:
5936 return
5937 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5938 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5939 case EXIT_REASON_WBINVD:
5940 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5941 case EXIT_REASON_XSETBV:
5942 return true;
5943 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5944 /*
5945 * This should never happen, since it is not possible to
5946 * set XSS to a non-zero value---neither in L1 nor in L2.
5947 * If if it were, XSS would have to be checked against
5948 * the XSS exit bitmap in vmcs12.
5949 */
5950 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5951 case EXIT_REASON_UMWAIT:
5952 case EXIT_REASON_TPAUSE:
5953 return nested_cpu_has2(vmcs12,
5954 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5955 case EXIT_REASON_ENCLS:
5956 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
5957 default:
5958 return true;
5959 }
5960 }
5961
5962 /*
5963 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
5964 * reflected into L1.
5965 */
5966 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
5967 {
5968 struct vcpu_vmx *vmx = to_vmx(vcpu);
5969 union vmx_exit_reason exit_reason = vmx->exit_reason;
5970 unsigned long exit_qual;
5971 u32 exit_intr_info;
5972
5973 WARN_ON_ONCE(vmx->nested.nested_run_pending);
5974
5975 /*
5976 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
5977 * has already loaded L2's state.
5978 */
5979 if (unlikely(vmx->fail)) {
5980 trace_kvm_nested_vmenter_failed(
5981 "hardware VM-instruction error: ",
5982 vmcs_read32(VM_INSTRUCTION_ERROR));
5983 exit_intr_info = 0;
5984 exit_qual = 0;
5985 goto reflect_vmexit;
5986 }
5987
5988 trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
5989
5990 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
5991 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
5992 return false;
5993
5994 /* If L1 doesn't want the exit, handle it in L0. */
5995 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
5996 return false;
5997
5998 /*
5999 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6000 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6001 * need to be synthesized by querying the in-kernel LAPIC, but external
6002 * interrupts are never reflected to L1 so it's a non-issue.
6003 */
6004 exit_intr_info = vmx_get_intr_info(vcpu);
6005 if (is_exception_with_error_code(exit_intr_info)) {
6006 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6007
6008 vmcs12->vm_exit_intr_error_code =
6009 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6010 }
6011 exit_qual = vmx_get_exit_qual(vcpu);
6012
6013 reflect_vmexit:
6014 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6015 return true;
6016 }
6017
6018 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6019 struct kvm_nested_state __user *user_kvm_nested_state,
6020 u32 user_data_size)
6021 {
6022 struct vcpu_vmx *vmx;
6023 struct vmcs12 *vmcs12;
6024 struct kvm_nested_state kvm_state = {
6025 .flags = 0,
6026 .format = KVM_STATE_NESTED_FORMAT_VMX,
6027 .size = sizeof(kvm_state),
6028 .hdr.vmx.flags = 0,
6029 .hdr.vmx.vmxon_pa = -1ull,
6030 .hdr.vmx.vmcs12_pa = -1ull,
6031 .hdr.vmx.preemption_timer_deadline = 0,
6032 };
6033 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6034 &user_kvm_nested_state->data.vmx[0];
6035
6036 if (!vcpu)
6037 return kvm_state.size + sizeof(*user_vmx_nested_state);
6038
6039 vmx = to_vmx(vcpu);
6040 vmcs12 = get_vmcs12(vcpu);
6041
6042 if (nested_vmx_allowed(vcpu) &&
6043 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6044 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6045 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6046
6047 if (vmx_has_valid_vmcs12(vcpu)) {
6048 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6049
6050 if (vmx->nested.hv_evmcs)
6051 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6052
6053 if (is_guest_mode(vcpu) &&
6054 nested_cpu_has_shadow_vmcs(vmcs12) &&
6055 vmcs12->vmcs_link_pointer != -1ull)
6056 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6057 }
6058
6059 if (vmx->nested.smm.vmxon)
6060 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6061
6062 if (vmx->nested.smm.guest_mode)
6063 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6064
6065 if (is_guest_mode(vcpu)) {
6066 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6067
6068 if (vmx->nested.nested_run_pending)
6069 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6070
6071 if (vmx->nested.mtf_pending)
6072 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6073
6074 if (nested_cpu_has_preemption_timer(vmcs12) &&
6075 vmx->nested.has_preemption_timer_deadline) {
6076 kvm_state.hdr.vmx.flags |=
6077 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6078 kvm_state.hdr.vmx.preemption_timer_deadline =
6079 vmx->nested.preemption_timer_deadline;
6080 }
6081 }
6082 }
6083
6084 if (user_data_size < kvm_state.size)
6085 goto out;
6086
6087 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6088 return -EFAULT;
6089
6090 if (!vmx_has_valid_vmcs12(vcpu))
6091 goto out;
6092
6093 /*
6094 * When running L2, the authoritative vmcs12 state is in the
6095 * vmcs02. When running L1, the authoritative vmcs12 state is
6096 * in the shadow or enlightened vmcs linked to vmcs01, unless
6097 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6098 * vmcs12 state is in the vmcs12 already.
6099 */
6100 if (is_guest_mode(vcpu)) {
6101 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6102 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6103 } else {
6104 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6105 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6106 if (vmx->nested.hv_evmcs)
6107 copy_enlightened_to_vmcs12(vmx);
6108 else if (enable_shadow_vmcs)
6109 copy_shadow_to_vmcs12(vmx);
6110 }
6111 }
6112
6113 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6114 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6115
6116 /*
6117 * Copy over the full allocated size of vmcs12 rather than just the size
6118 * of the struct.
6119 */
6120 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6121 return -EFAULT;
6122
6123 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6124 vmcs12->vmcs_link_pointer != -1ull) {
6125 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6126 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6127 return -EFAULT;
6128 }
6129 out:
6130 return kvm_state.size;
6131 }
6132
6133 /*
6134 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6135 */
6136 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6137 {
6138 if (is_guest_mode(vcpu)) {
6139 to_vmx(vcpu)->nested.nested_run_pending = 0;
6140 nested_vmx_vmexit(vcpu, -1, 0, 0);
6141 }
6142 free_nested(vcpu);
6143 }
6144
6145 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6146 struct kvm_nested_state __user *user_kvm_nested_state,
6147 struct kvm_nested_state *kvm_state)
6148 {
6149 struct vcpu_vmx *vmx = to_vmx(vcpu);
6150 struct vmcs12 *vmcs12;
6151 enum vm_entry_failure_code ignored;
6152 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6153 &user_kvm_nested_state->data.vmx[0];
6154 int ret;
6155
6156 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6157 return -EINVAL;
6158
6159 if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6160 if (kvm_state->hdr.vmx.smm.flags)
6161 return -EINVAL;
6162
6163 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6164 return -EINVAL;
6165
6166 /*
6167 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6168 * enable eVMCS capability on vCPU. However, since then
6169 * code was changed such that flag signals vmcs12 should
6170 * be copied into eVMCS in guest memory.
6171 *
6172 * To preserve backwards compatability, allow user
6173 * to set this flag even when there is no VMXON region.
6174 */
6175 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6176 return -EINVAL;
6177 } else {
6178 if (!nested_vmx_allowed(vcpu))
6179 return -EINVAL;
6180
6181 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6182 return -EINVAL;
6183 }
6184
6185 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6186 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6187 return -EINVAL;
6188
6189 if (kvm_state->hdr.vmx.smm.flags &
6190 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6191 return -EINVAL;
6192
6193 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6194 return -EINVAL;
6195
6196 /*
6197 * SMM temporarily disables VMX, so we cannot be in guest mode,
6198 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6199 * must be zero.
6200 */
6201 if (is_smm(vcpu) ?
6202 (kvm_state->flags &
6203 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6204 : kvm_state->hdr.vmx.smm.flags)
6205 return -EINVAL;
6206
6207 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6208 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6209 return -EINVAL;
6210
6211 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6212 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6213 return -EINVAL;
6214
6215 vmx_leave_nested(vcpu);
6216
6217 if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6218 return 0;
6219
6220 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6221 ret = enter_vmx_operation(vcpu);
6222 if (ret)
6223 return ret;
6224
6225 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6226 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6227 /* See vmx_has_valid_vmcs12. */
6228 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6229 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6230 (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6231 return -EINVAL;
6232 else
6233 return 0;
6234 }
6235
6236 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6237 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6238 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6239 return -EINVAL;
6240
6241 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6242 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6243 /*
6244 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6245 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6246 * restored yet. EVMCS will be mapped from
6247 * nested_get_vmcs12_pages().
6248 */
6249 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6250 } else {
6251 return -EINVAL;
6252 }
6253
6254 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6255 vmx->nested.smm.vmxon = true;
6256 vmx->nested.vmxon = false;
6257
6258 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6259 vmx->nested.smm.guest_mode = true;
6260 }
6261
6262 vmcs12 = get_vmcs12(vcpu);
6263 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6264 return -EFAULT;
6265
6266 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6267 return -EINVAL;
6268
6269 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6270 return 0;
6271
6272 vmx->nested.nested_run_pending =
6273 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6274
6275 vmx->nested.mtf_pending =
6276 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6277
6278 ret = -EINVAL;
6279 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6280 vmcs12->vmcs_link_pointer != -1ull) {
6281 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6282
6283 if (kvm_state->size <
6284 sizeof(*kvm_state) +
6285 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6286 goto error_guest_mode;
6287
6288 if (copy_from_user(shadow_vmcs12,
6289 user_vmx_nested_state->shadow_vmcs12,
6290 sizeof(*shadow_vmcs12))) {
6291 ret = -EFAULT;
6292 goto error_guest_mode;
6293 }
6294
6295 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6296 !shadow_vmcs12->hdr.shadow_vmcs)
6297 goto error_guest_mode;
6298 }
6299
6300 vmx->nested.has_preemption_timer_deadline = false;
6301 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6302 vmx->nested.has_preemption_timer_deadline = true;
6303 vmx->nested.preemption_timer_deadline =
6304 kvm_state->hdr.vmx.preemption_timer_deadline;
6305 }
6306
6307 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6308 nested_vmx_check_host_state(vcpu, vmcs12) ||
6309 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6310 goto error_guest_mode;
6311
6312 vmx->nested.dirty_vmcs12 = true;
6313 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6314 if (ret)
6315 goto error_guest_mode;
6316
6317 return 0;
6318
6319 error_guest_mode:
6320 vmx->nested.nested_run_pending = 0;
6321 return ret;
6322 }
6323
6324 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6325 {
6326 if (enable_shadow_vmcs) {
6327 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6328 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6329 }
6330 }
6331
6332 /*
6333 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6334 * returned for the various VMX controls MSRs when nested VMX is enabled.
6335 * The same values should also be used to verify that vmcs12 control fields are
6336 * valid during nested entry from L1 to L2.
6337 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6338 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6339 * bit in the high half is on if the corresponding bit in the control field
6340 * may be on. See also vmx_control_verify().
6341 */
6342 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6343 {
6344 /*
6345 * Note that as a general rule, the high half of the MSRs (bits in
6346 * the control fields which may be 1) should be initialized by the
6347 * intersection of the underlying hardware's MSR (i.e., features which
6348 * can be supported) and the list of features we want to expose -
6349 * because they are known to be properly supported in our code.
6350 * Also, usually, the low half of the MSRs (bits which must be 1) can
6351 * be set to 0, meaning that L1 may turn off any of these bits. The
6352 * reason is that if one of these bits is necessary, it will appear
6353 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6354 * fields of vmcs01 and vmcs02, will turn these bits off - and
6355 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6356 * These rules have exceptions below.
6357 */
6358
6359 /* pin-based controls */
6360 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6361 msrs->pinbased_ctls_low,
6362 msrs->pinbased_ctls_high);
6363 msrs->pinbased_ctls_low |=
6364 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6365 msrs->pinbased_ctls_high &=
6366 PIN_BASED_EXT_INTR_MASK |
6367 PIN_BASED_NMI_EXITING |
6368 PIN_BASED_VIRTUAL_NMIS |
6369 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6370 msrs->pinbased_ctls_high |=
6371 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6372 PIN_BASED_VMX_PREEMPTION_TIMER;
6373
6374 /* exit controls */
6375 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6376 msrs->exit_ctls_low,
6377 msrs->exit_ctls_high);
6378 msrs->exit_ctls_low =
6379 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6380
6381 msrs->exit_ctls_high &=
6382 #ifdef CONFIG_X86_64
6383 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6384 #endif
6385 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6386 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6387 msrs->exit_ctls_high |=
6388 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6389 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6390 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6391
6392 /* We support free control of debug control saving. */
6393 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6394
6395 /* entry controls */
6396 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6397 msrs->entry_ctls_low,
6398 msrs->entry_ctls_high);
6399 msrs->entry_ctls_low =
6400 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6401 msrs->entry_ctls_high &=
6402 #ifdef CONFIG_X86_64
6403 VM_ENTRY_IA32E_MODE |
6404 #endif
6405 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6406 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6407 msrs->entry_ctls_high |=
6408 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6409
6410 /* We support free control of debug control loading. */
6411 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6412
6413 /* cpu-based controls */
6414 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6415 msrs->procbased_ctls_low,
6416 msrs->procbased_ctls_high);
6417 msrs->procbased_ctls_low =
6418 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6419 msrs->procbased_ctls_high &=
6420 CPU_BASED_INTR_WINDOW_EXITING |
6421 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6422 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6423 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6424 CPU_BASED_CR3_STORE_EXITING |
6425 #ifdef CONFIG_X86_64
6426 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6427 #endif
6428 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6429 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6430 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6431 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6432 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6433 /*
6434 * We can allow some features even when not supported by the
6435 * hardware. For example, L1 can specify an MSR bitmap - and we
6436 * can use it to avoid exits to L1 - even when L0 runs L2
6437 * without MSR bitmaps.
6438 */
6439 msrs->procbased_ctls_high |=
6440 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6441 CPU_BASED_USE_MSR_BITMAPS;
6442
6443 /* We support free control of CR3 access interception. */
6444 msrs->procbased_ctls_low &=
6445 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6446
6447 /*
6448 * secondary cpu-based controls. Do not include those that
6449 * depend on CPUID bits, they are added later by
6450 * vmx_vcpu_after_set_cpuid.
6451 */
6452 if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6453 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6454 msrs->secondary_ctls_low,
6455 msrs->secondary_ctls_high);
6456
6457 msrs->secondary_ctls_low = 0;
6458 msrs->secondary_ctls_high &=
6459 SECONDARY_EXEC_DESC |
6460 SECONDARY_EXEC_ENABLE_RDTSCP |
6461 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6462 SECONDARY_EXEC_WBINVD_EXITING |
6463 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6464 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6465 SECONDARY_EXEC_RDRAND_EXITING |
6466 SECONDARY_EXEC_ENABLE_INVPCID |
6467 SECONDARY_EXEC_RDSEED_EXITING |
6468 SECONDARY_EXEC_XSAVES;
6469
6470 /*
6471 * We can emulate "VMCS shadowing," even if the hardware
6472 * doesn't support it.
6473 */
6474 msrs->secondary_ctls_high |=
6475 SECONDARY_EXEC_SHADOW_VMCS;
6476
6477 if (enable_ept) {
6478 /* nested EPT: emulate EPT also to L1 */
6479 msrs->secondary_ctls_high |=
6480 SECONDARY_EXEC_ENABLE_EPT;
6481 msrs->ept_caps =
6482 VMX_EPT_PAGE_WALK_4_BIT |
6483 VMX_EPT_PAGE_WALK_5_BIT |
6484 VMX_EPTP_WB_BIT |
6485 VMX_EPT_INVEPT_BIT |
6486 VMX_EPT_EXECUTE_ONLY_BIT;
6487
6488 msrs->ept_caps &= ept_caps;
6489 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6490 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6491 VMX_EPT_1GB_PAGE_BIT;
6492 if (enable_ept_ad_bits) {
6493 msrs->secondary_ctls_high |=
6494 SECONDARY_EXEC_ENABLE_PML;
6495 msrs->ept_caps |= VMX_EPT_AD_BIT;
6496 }
6497 }
6498
6499 if (cpu_has_vmx_vmfunc()) {
6500 msrs->secondary_ctls_high |=
6501 SECONDARY_EXEC_ENABLE_VMFUNC;
6502 /*
6503 * Advertise EPTP switching unconditionally
6504 * since we emulate it
6505 */
6506 if (enable_ept)
6507 msrs->vmfunc_controls =
6508 VMX_VMFUNC_EPTP_SWITCHING;
6509 }
6510
6511 /*
6512 * Old versions of KVM use the single-context version without
6513 * checking for support, so declare that it is supported even
6514 * though it is treated as global context. The alternative is
6515 * not failing the single-context invvpid, and it is worse.
6516 */
6517 if (enable_vpid) {
6518 msrs->secondary_ctls_high |=
6519 SECONDARY_EXEC_ENABLE_VPID;
6520 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6521 VMX_VPID_EXTENT_SUPPORTED_MASK;
6522 }
6523
6524 if (enable_unrestricted_guest)
6525 msrs->secondary_ctls_high |=
6526 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6527
6528 if (flexpriority_enabled)
6529 msrs->secondary_ctls_high |=
6530 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6531
6532 if (enable_sgx)
6533 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6534
6535 /* miscellaneous data */
6536 rdmsr(MSR_IA32_VMX_MISC,
6537 msrs->misc_low,
6538 msrs->misc_high);
6539 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6540 msrs->misc_low |=
6541 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6542 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6543 VMX_MISC_ACTIVITY_HLT |
6544 VMX_MISC_ACTIVITY_WAIT_SIPI;
6545 msrs->misc_high = 0;
6546
6547 /*
6548 * This MSR reports some information about VMX support. We
6549 * should return information about the VMX we emulate for the
6550 * guest, and the VMCS structure we give it - not about the
6551 * VMX support of the underlying hardware.
6552 */
6553 msrs->basic =
6554 VMCS12_REVISION |
6555 VMX_BASIC_TRUE_CTLS |
6556 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6557 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6558
6559 if (cpu_has_vmx_basic_inout())
6560 msrs->basic |= VMX_BASIC_INOUT;
6561
6562 /*
6563 * These MSRs specify bits which the guest must keep fixed on
6564 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6565 * We picked the standard core2 setting.
6566 */
6567 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6568 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6569 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6570 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6571
6572 /* These MSRs specify bits which the guest must keep fixed off. */
6573 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6574 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6575
6576 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6577 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6578 }
6579
6580 void nested_vmx_hardware_unsetup(void)
6581 {
6582 int i;
6583
6584 if (enable_shadow_vmcs) {
6585 for (i = 0; i < VMX_BITMAP_NR; i++)
6586 free_page((unsigned long)vmx_bitmap[i]);
6587 }
6588 }
6589
6590 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6591 {
6592 int i;
6593
6594 if (!cpu_has_vmx_shadow_vmcs())
6595 enable_shadow_vmcs = 0;
6596 if (enable_shadow_vmcs) {
6597 for (i = 0; i < VMX_BITMAP_NR; i++) {
6598 /*
6599 * The vmx_bitmap is not tied to a VM and so should
6600 * not be charged to a memcg.
6601 */
6602 vmx_bitmap[i] = (unsigned long *)
6603 __get_free_page(GFP_KERNEL);
6604 if (!vmx_bitmap[i]) {
6605 nested_vmx_hardware_unsetup();
6606 return -ENOMEM;
6607 }
6608 }
6609
6610 init_vmcs_shadow_fields();
6611 }
6612
6613 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
6614 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
6615 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
6616 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
6617 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
6618 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
6619 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
6620 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff;
6621 exit_handlers[EXIT_REASON_VMON] = handle_vmon;
6622 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
6623 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
6624 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
6625
6626 return 0;
6627 }
6628
6629 struct kvm_x86_nested_ops vmx_nested_ops = {
6630 .check_events = vmx_check_nested_events,
6631 .hv_timer_pending = nested_vmx_preemption_timer_pending,
6632 .triple_fault = nested_vmx_triple_fault,
6633 .get_state = vmx_get_nested_state,
6634 .set_state = vmx_set_nested_state,
6635 .get_nested_state_pages = vmx_get_nested_state_pages,
6636 .write_log_dirty = nested_vmx_write_pml_buffer,
6637 .enable_evmcs = nested_enable_evmcs,
6638 .get_evmcs_version = nested_get_evmcs_version,
6639 };