]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kvm/x86.c
KVM: x86: Add a common TSC scaling ratio field in kvm_vcpu_arch
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79 * - enable syscall per default because its emulated by KVM
80 * - enable LME and LMA per default on 64 bit KVM
81 */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32 __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64 __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly backwards_tsc_observed = false;
127
128 #define KVM_NR_SHARED_MSRS 16
129
130 struct kvm_shared_msrs_global {
131 int nr;
132 u32 msrs[KVM_NR_SHARED_MSRS];
133 };
134
135 struct kvm_shared_msrs {
136 struct user_return_notifier urn;
137 bool registered;
138 struct kvm_shared_msr_values {
139 u64 host;
140 u64 curr;
141 } values[KVM_NR_SHARED_MSRS];
142 };
143
144 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
145 static struct kvm_shared_msrs __percpu *shared_msrs;
146
147 struct kvm_stats_debugfs_item debugfs_entries[] = {
148 { "pf_fixed", VCPU_STAT(pf_fixed) },
149 { "pf_guest", VCPU_STAT(pf_guest) },
150 { "tlb_flush", VCPU_STAT(tlb_flush) },
151 { "invlpg", VCPU_STAT(invlpg) },
152 { "exits", VCPU_STAT(exits) },
153 { "io_exits", VCPU_STAT(io_exits) },
154 { "mmio_exits", VCPU_STAT(mmio_exits) },
155 { "signal_exits", VCPU_STAT(signal_exits) },
156 { "irq_window", VCPU_STAT(irq_window_exits) },
157 { "nmi_window", VCPU_STAT(nmi_window_exits) },
158 { "halt_exits", VCPU_STAT(halt_exits) },
159 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
160 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
161 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
162 { "hypercalls", VCPU_STAT(hypercalls) },
163 { "request_irq", VCPU_STAT(request_irq_exits) },
164 { "irq_exits", VCPU_STAT(irq_exits) },
165 { "host_state_reload", VCPU_STAT(host_state_reload) },
166 { "efer_reload", VCPU_STAT(efer_reload) },
167 { "fpu_reload", VCPU_STAT(fpu_reload) },
168 { "insn_emulation", VCPU_STAT(insn_emulation) },
169 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
170 { "irq_injections", VCPU_STAT(irq_injections) },
171 { "nmi_injections", VCPU_STAT(nmi_injections) },
172 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
173 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
174 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
175 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
176 { "mmu_flooded", VM_STAT(mmu_flooded) },
177 { "mmu_recycled", VM_STAT(mmu_recycled) },
178 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
179 { "mmu_unsync", VM_STAT(mmu_unsync) },
180 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
181 { "largepages", VM_STAT(lpages) },
182 { NULL }
183 };
184
185 u64 __read_mostly host_xcr0;
186
187 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
188
189 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
190 {
191 int i;
192 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
193 vcpu->arch.apf.gfns[i] = ~0;
194 }
195
196 static void kvm_on_user_return(struct user_return_notifier *urn)
197 {
198 unsigned slot;
199 struct kvm_shared_msrs *locals
200 = container_of(urn, struct kvm_shared_msrs, urn);
201 struct kvm_shared_msr_values *values;
202
203 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
204 values = &locals->values[slot];
205 if (values->host != values->curr) {
206 wrmsrl(shared_msrs_global.msrs[slot], values->host);
207 values->curr = values->host;
208 }
209 }
210 locals->registered = false;
211 user_return_notifier_unregister(urn);
212 }
213
214 static void shared_msr_update(unsigned slot, u32 msr)
215 {
216 u64 value;
217 unsigned int cpu = smp_processor_id();
218 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
219
220 /* only read, and nobody should modify it at this time,
221 * so don't need lock */
222 if (slot >= shared_msrs_global.nr) {
223 printk(KERN_ERR "kvm: invalid MSR slot!");
224 return;
225 }
226 rdmsrl_safe(msr, &value);
227 smsr->values[slot].host = value;
228 smsr->values[slot].curr = value;
229 }
230
231 void kvm_define_shared_msr(unsigned slot, u32 msr)
232 {
233 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
234 shared_msrs_global.msrs[slot] = msr;
235 if (slot >= shared_msrs_global.nr)
236 shared_msrs_global.nr = slot + 1;
237 }
238 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
239
240 static void kvm_shared_msr_cpu_online(void)
241 {
242 unsigned i;
243
244 for (i = 0; i < shared_msrs_global.nr; ++i)
245 shared_msr_update(i, shared_msrs_global.msrs[i]);
246 }
247
248 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
249 {
250 unsigned int cpu = smp_processor_id();
251 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
252 int err;
253
254 if (((value ^ smsr->values[slot].curr) & mask) == 0)
255 return 0;
256 smsr->values[slot].curr = value;
257 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
258 if (err)
259 return 1;
260
261 if (!smsr->registered) {
262 smsr->urn.on_user_return = kvm_on_user_return;
263 user_return_notifier_register(&smsr->urn);
264 smsr->registered = true;
265 }
266 return 0;
267 }
268 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
269
270 static void drop_user_return_notifiers(void)
271 {
272 unsigned int cpu = smp_processor_id();
273 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274
275 if (smsr->registered)
276 kvm_on_user_return(&smsr->urn);
277 }
278
279 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
280 {
281 return vcpu->arch.apic_base;
282 }
283 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
284
285 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
286 {
287 u64 old_state = vcpu->arch.apic_base &
288 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
289 u64 new_state = msr_info->data &
290 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
291 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
292 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
293
294 if (!msr_info->host_initiated &&
295 ((msr_info->data & reserved_bits) != 0 ||
296 new_state == X2APIC_ENABLE ||
297 (new_state == MSR_IA32_APICBASE_ENABLE &&
298 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
299 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
300 old_state == 0)))
301 return 1;
302
303 kvm_lapic_set_base(vcpu, msr_info->data);
304 return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
307
308 asmlinkage __visible void kvm_spurious_fault(void)
309 {
310 /* Fault while not rebooting. We want the trace. */
311 BUG();
312 }
313 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
314
315 #define EXCPT_BENIGN 0
316 #define EXCPT_CONTRIBUTORY 1
317 #define EXCPT_PF 2
318
319 static int exception_class(int vector)
320 {
321 switch (vector) {
322 case PF_VECTOR:
323 return EXCPT_PF;
324 case DE_VECTOR:
325 case TS_VECTOR:
326 case NP_VECTOR:
327 case SS_VECTOR:
328 case GP_VECTOR:
329 return EXCPT_CONTRIBUTORY;
330 default:
331 break;
332 }
333 return EXCPT_BENIGN;
334 }
335
336 #define EXCPT_FAULT 0
337 #define EXCPT_TRAP 1
338 #define EXCPT_ABORT 2
339 #define EXCPT_INTERRUPT 3
340
341 static int exception_type(int vector)
342 {
343 unsigned int mask;
344
345 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
346 return EXCPT_INTERRUPT;
347
348 mask = 1 << vector;
349
350 /* #DB is trap, as instruction watchpoints are handled elsewhere */
351 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
352 return EXCPT_TRAP;
353
354 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
355 return EXCPT_ABORT;
356
357 /* Reserved exceptions will result in fault */
358 return EXCPT_FAULT;
359 }
360
361 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
362 unsigned nr, bool has_error, u32 error_code,
363 bool reinject)
364 {
365 u32 prev_nr;
366 int class1, class2;
367
368 kvm_make_request(KVM_REQ_EVENT, vcpu);
369
370 if (!vcpu->arch.exception.pending) {
371 queue:
372 if (has_error && !is_protmode(vcpu))
373 has_error = false;
374 vcpu->arch.exception.pending = true;
375 vcpu->arch.exception.has_error_code = has_error;
376 vcpu->arch.exception.nr = nr;
377 vcpu->arch.exception.error_code = error_code;
378 vcpu->arch.exception.reinject = reinject;
379 return;
380 }
381
382 /* to check exception */
383 prev_nr = vcpu->arch.exception.nr;
384 if (prev_nr == DF_VECTOR) {
385 /* triple fault -> shutdown */
386 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
387 return;
388 }
389 class1 = exception_class(prev_nr);
390 class2 = exception_class(nr);
391 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
392 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
393 /* generate double fault per SDM Table 5-5 */
394 vcpu->arch.exception.pending = true;
395 vcpu->arch.exception.has_error_code = true;
396 vcpu->arch.exception.nr = DF_VECTOR;
397 vcpu->arch.exception.error_code = 0;
398 } else
399 /* replace previous exception with a new one in a hope
400 that instruction re-execution will regenerate lost
401 exception */
402 goto queue;
403 }
404
405 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
406 {
407 kvm_multiple_exception(vcpu, nr, false, 0, false);
408 }
409 EXPORT_SYMBOL_GPL(kvm_queue_exception);
410
411 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
412 {
413 kvm_multiple_exception(vcpu, nr, false, 0, true);
414 }
415 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
416
417 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
418 {
419 if (err)
420 kvm_inject_gp(vcpu, 0);
421 else
422 kvm_x86_ops->skip_emulated_instruction(vcpu);
423 }
424 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
425
426 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428 ++vcpu->stat.pf_guest;
429 vcpu->arch.cr2 = fault->address;
430 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
431 }
432 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
433
434 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
435 {
436 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
437 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
438 else
439 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
440
441 return fault->nested_page_fault;
442 }
443
444 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
445 {
446 atomic_inc(&vcpu->arch.nmi_queued);
447 kvm_make_request(KVM_REQ_NMI, vcpu);
448 }
449 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
450
451 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
452 {
453 kvm_multiple_exception(vcpu, nr, true, error_code, false);
454 }
455 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
456
457 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
458 {
459 kvm_multiple_exception(vcpu, nr, true, error_code, true);
460 }
461 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
462
463 /*
464 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
465 * a #GP and return false.
466 */
467 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
468 {
469 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
470 return true;
471 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
472 return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_cpl);
475
476 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
477 {
478 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
479 return true;
480
481 kvm_queue_exception(vcpu, UD_VECTOR);
482 return false;
483 }
484 EXPORT_SYMBOL_GPL(kvm_require_dr);
485
486 /*
487 * This function will be used to read from the physical memory of the currently
488 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
489 * can read from guest physical or from the guest's guest physical memory.
490 */
491 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
492 gfn_t ngfn, void *data, int offset, int len,
493 u32 access)
494 {
495 struct x86_exception exception;
496 gfn_t real_gfn;
497 gpa_t ngpa;
498
499 ngpa = gfn_to_gpa(ngfn);
500 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
501 if (real_gfn == UNMAPPED_GVA)
502 return -EFAULT;
503
504 real_gfn = gpa_to_gfn(real_gfn);
505
506 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
507 }
508 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
509
510 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
511 void *data, int offset, int len, u32 access)
512 {
513 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
514 data, offset, len, access);
515 }
516
517 /*
518 * Load the pae pdptrs. Return true is they are all valid.
519 */
520 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
521 {
522 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
523 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
524 int i;
525 int ret;
526 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
527
528 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
529 offset * sizeof(u64), sizeof(pdpte),
530 PFERR_USER_MASK|PFERR_WRITE_MASK);
531 if (ret < 0) {
532 ret = 0;
533 goto out;
534 }
535 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
536 if (is_present_gpte(pdpte[i]) &&
537 (pdpte[i] &
538 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
539 ret = 0;
540 goto out;
541 }
542 }
543 ret = 1;
544
545 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
546 __set_bit(VCPU_EXREG_PDPTR,
547 (unsigned long *)&vcpu->arch.regs_avail);
548 __set_bit(VCPU_EXREG_PDPTR,
549 (unsigned long *)&vcpu->arch.regs_dirty);
550 out:
551
552 return ret;
553 }
554 EXPORT_SYMBOL_GPL(load_pdptrs);
555
556 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
557 {
558 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
559 bool changed = true;
560 int offset;
561 gfn_t gfn;
562 int r;
563
564 if (is_long_mode(vcpu) || !is_pae(vcpu))
565 return false;
566
567 if (!test_bit(VCPU_EXREG_PDPTR,
568 (unsigned long *)&vcpu->arch.regs_avail))
569 return true;
570
571 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
572 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
573 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
574 PFERR_USER_MASK | PFERR_WRITE_MASK);
575 if (r < 0)
576 goto out;
577 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
578 out:
579
580 return changed;
581 }
582
583 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
584 {
585 unsigned long old_cr0 = kvm_read_cr0(vcpu);
586 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
587
588 cr0 |= X86_CR0_ET;
589
590 #ifdef CONFIG_X86_64
591 if (cr0 & 0xffffffff00000000UL)
592 return 1;
593 #endif
594
595 cr0 &= ~CR0_RESERVED_BITS;
596
597 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
598 return 1;
599
600 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
601 return 1;
602
603 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
604 #ifdef CONFIG_X86_64
605 if ((vcpu->arch.efer & EFER_LME)) {
606 int cs_db, cs_l;
607
608 if (!is_pae(vcpu))
609 return 1;
610 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
611 if (cs_l)
612 return 1;
613 } else
614 #endif
615 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
616 kvm_read_cr3(vcpu)))
617 return 1;
618 }
619
620 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
621 return 1;
622
623 kvm_x86_ops->set_cr0(vcpu, cr0);
624
625 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
626 kvm_clear_async_pf_completion_queue(vcpu);
627 kvm_async_pf_hash_reset(vcpu);
628 }
629
630 if ((cr0 ^ old_cr0) & update_bits)
631 kvm_mmu_reset_context(vcpu);
632
633 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
634 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
635 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
636 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
637
638 return 0;
639 }
640 EXPORT_SYMBOL_GPL(kvm_set_cr0);
641
642 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
643 {
644 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
645 }
646 EXPORT_SYMBOL_GPL(kvm_lmsw);
647
648 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
651 !vcpu->guest_xcr0_loaded) {
652 /* kvm_set_xcr() also depends on this */
653 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
654 vcpu->guest_xcr0_loaded = 1;
655 }
656 }
657
658 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
659 {
660 if (vcpu->guest_xcr0_loaded) {
661 if (vcpu->arch.xcr0 != host_xcr0)
662 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
663 vcpu->guest_xcr0_loaded = 0;
664 }
665 }
666
667 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669 u64 xcr0 = xcr;
670 u64 old_xcr0 = vcpu->arch.xcr0;
671 u64 valid_bits;
672
673 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
674 if (index != XCR_XFEATURE_ENABLED_MASK)
675 return 1;
676 if (!(xcr0 & XSTATE_FP))
677 return 1;
678 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
679 return 1;
680
681 /*
682 * Do not allow the guest to set bits that we do not support
683 * saving. However, xcr0 bit 0 is always set, even if the
684 * emulated CPU does not support XSAVE (see fx_init).
685 */
686 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
687 if (xcr0 & ~valid_bits)
688 return 1;
689
690 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
691 return 1;
692
693 if (xcr0 & XSTATE_AVX512) {
694 if (!(xcr0 & XSTATE_YMM))
695 return 1;
696 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
697 return 1;
698 }
699 kvm_put_guest_xcr0(vcpu);
700 vcpu->arch.xcr0 = xcr0;
701
702 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
703 kvm_update_cpuid(vcpu);
704 return 0;
705 }
706
707 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
708 {
709 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
710 __kvm_set_xcr(vcpu, index, xcr)) {
711 kvm_inject_gp(vcpu, 0);
712 return 1;
713 }
714 return 0;
715 }
716 EXPORT_SYMBOL_GPL(kvm_set_xcr);
717
718 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
719 {
720 unsigned long old_cr4 = kvm_read_cr4(vcpu);
721 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
722 X86_CR4_SMEP | X86_CR4_SMAP;
723
724 if (cr4 & CR4_RESERVED_BITS)
725 return 1;
726
727 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
728 return 1;
729
730 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
731 return 1;
732
733 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
734 return 1;
735
736 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
737 return 1;
738
739 if (is_long_mode(vcpu)) {
740 if (!(cr4 & X86_CR4_PAE))
741 return 1;
742 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
743 && ((cr4 ^ old_cr4) & pdptr_bits)
744 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
745 kvm_read_cr3(vcpu)))
746 return 1;
747
748 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
749 if (!guest_cpuid_has_pcid(vcpu))
750 return 1;
751
752 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
753 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
754 return 1;
755 }
756
757 if (kvm_x86_ops->set_cr4(vcpu, cr4))
758 return 1;
759
760 if (((cr4 ^ old_cr4) & pdptr_bits) ||
761 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
762 kvm_mmu_reset_context(vcpu);
763
764 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
765 kvm_update_cpuid(vcpu);
766
767 return 0;
768 }
769 EXPORT_SYMBOL_GPL(kvm_set_cr4);
770
771 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
772 {
773 #ifdef CONFIG_X86_64
774 cr3 &= ~CR3_PCID_INVD;
775 #endif
776
777 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
778 kvm_mmu_sync_roots(vcpu);
779 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
780 return 0;
781 }
782
783 if (is_long_mode(vcpu)) {
784 if (cr3 & CR3_L_MODE_RESERVED_BITS)
785 return 1;
786 } else if (is_pae(vcpu) && is_paging(vcpu) &&
787 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
788 return 1;
789
790 vcpu->arch.cr3 = cr3;
791 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
792 kvm_mmu_new_cr3(vcpu);
793 return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr3);
796
797 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
798 {
799 if (cr8 & CR8_RESERVED_BITS)
800 return 1;
801 if (lapic_in_kernel(vcpu))
802 kvm_lapic_set_tpr(vcpu, cr8);
803 else
804 vcpu->arch.cr8 = cr8;
805 return 0;
806 }
807 EXPORT_SYMBOL_GPL(kvm_set_cr8);
808
809 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
810 {
811 if (lapic_in_kernel(vcpu))
812 return kvm_lapic_get_cr8(vcpu);
813 else
814 return vcpu->arch.cr8;
815 }
816 EXPORT_SYMBOL_GPL(kvm_get_cr8);
817
818 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
819 {
820 int i;
821
822 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
823 for (i = 0; i < KVM_NR_DB_REGS; i++)
824 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
825 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
826 }
827 }
828
829 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
830 {
831 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
832 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
833 }
834
835 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
836 {
837 unsigned long dr7;
838
839 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
840 dr7 = vcpu->arch.guest_debug_dr7;
841 else
842 dr7 = vcpu->arch.dr7;
843 kvm_x86_ops->set_dr7(vcpu, dr7);
844 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
845 if (dr7 & DR7_BP_EN_MASK)
846 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
847 }
848
849 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
850 {
851 u64 fixed = DR6_FIXED_1;
852
853 if (!guest_cpuid_has_rtm(vcpu))
854 fixed |= DR6_RTM;
855 return fixed;
856 }
857
858 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
859 {
860 switch (dr) {
861 case 0 ... 3:
862 vcpu->arch.db[dr] = val;
863 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
864 vcpu->arch.eff_db[dr] = val;
865 break;
866 case 4:
867 /* fall through */
868 case 6:
869 if (val & 0xffffffff00000000ULL)
870 return -1; /* #GP */
871 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
872 kvm_update_dr6(vcpu);
873 break;
874 case 5:
875 /* fall through */
876 default: /* 7 */
877 if (val & 0xffffffff00000000ULL)
878 return -1; /* #GP */
879 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
880 kvm_update_dr7(vcpu);
881 break;
882 }
883
884 return 0;
885 }
886
887 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
888 {
889 if (__kvm_set_dr(vcpu, dr, val)) {
890 kvm_inject_gp(vcpu, 0);
891 return 1;
892 }
893 return 0;
894 }
895 EXPORT_SYMBOL_GPL(kvm_set_dr);
896
897 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
898 {
899 switch (dr) {
900 case 0 ... 3:
901 *val = vcpu->arch.db[dr];
902 break;
903 case 4:
904 /* fall through */
905 case 6:
906 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
907 *val = vcpu->arch.dr6;
908 else
909 *val = kvm_x86_ops->get_dr6(vcpu);
910 break;
911 case 5:
912 /* fall through */
913 default: /* 7 */
914 *val = vcpu->arch.dr7;
915 break;
916 }
917 return 0;
918 }
919 EXPORT_SYMBOL_GPL(kvm_get_dr);
920
921 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
922 {
923 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
924 u64 data;
925 int err;
926
927 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
928 if (err)
929 return err;
930 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
931 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
932 return err;
933 }
934 EXPORT_SYMBOL_GPL(kvm_rdpmc);
935
936 /*
937 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
938 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
939 *
940 * This list is modified at module load time to reflect the
941 * capabilities of the host cpu. This capabilities test skips MSRs that are
942 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
943 * may depend on host virtualization features rather than host cpu features.
944 */
945
946 static u32 msrs_to_save[] = {
947 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
948 MSR_STAR,
949 #ifdef CONFIG_X86_64
950 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
951 #endif
952 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
953 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
954 };
955
956 static unsigned num_msrs_to_save;
957
958 static u32 emulated_msrs[] = {
959 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
960 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
961 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
962 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
963 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
964 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
965 HV_X64_MSR_RESET,
966 HV_X64_MSR_VP_INDEX,
967 HV_X64_MSR_VP_RUNTIME,
968 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
969 MSR_KVM_PV_EOI_EN,
970
971 MSR_IA32_TSC_ADJUST,
972 MSR_IA32_TSCDEADLINE,
973 MSR_IA32_MISC_ENABLE,
974 MSR_IA32_MCG_STATUS,
975 MSR_IA32_MCG_CTL,
976 MSR_IA32_SMBASE,
977 };
978
979 static unsigned num_emulated_msrs;
980
981 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
982 {
983 if (efer & efer_reserved_bits)
984 return false;
985
986 if (efer & EFER_FFXSR) {
987 struct kvm_cpuid_entry2 *feat;
988
989 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
990 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
991 return false;
992 }
993
994 if (efer & EFER_SVME) {
995 struct kvm_cpuid_entry2 *feat;
996
997 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
998 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
999 return false;
1000 }
1001
1002 return true;
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1005
1006 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1007 {
1008 u64 old_efer = vcpu->arch.efer;
1009
1010 if (!kvm_valid_efer(vcpu, efer))
1011 return 1;
1012
1013 if (is_paging(vcpu)
1014 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1015 return 1;
1016
1017 efer &= ~EFER_LMA;
1018 efer |= vcpu->arch.efer & EFER_LMA;
1019
1020 kvm_x86_ops->set_efer(vcpu, efer);
1021
1022 /* Update reserved bits */
1023 if ((efer ^ old_efer) & EFER_NX)
1024 kvm_mmu_reset_context(vcpu);
1025
1026 return 0;
1027 }
1028
1029 void kvm_enable_efer_bits(u64 mask)
1030 {
1031 efer_reserved_bits &= ~mask;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1034
1035 /*
1036 * Writes msr value into into the appropriate "register".
1037 * Returns 0 on success, non-0 otherwise.
1038 * Assumes vcpu_load() was already called.
1039 */
1040 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1041 {
1042 switch (msr->index) {
1043 case MSR_FS_BASE:
1044 case MSR_GS_BASE:
1045 case MSR_KERNEL_GS_BASE:
1046 case MSR_CSTAR:
1047 case MSR_LSTAR:
1048 if (is_noncanonical_address(msr->data))
1049 return 1;
1050 break;
1051 case MSR_IA32_SYSENTER_EIP:
1052 case MSR_IA32_SYSENTER_ESP:
1053 /*
1054 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1055 * non-canonical address is written on Intel but not on
1056 * AMD (which ignores the top 32-bits, because it does
1057 * not implement 64-bit SYSENTER).
1058 *
1059 * 64-bit code should hence be able to write a non-canonical
1060 * value on AMD. Making the address canonical ensures that
1061 * vmentry does not fail on Intel after writing a non-canonical
1062 * value, and that something deterministic happens if the guest
1063 * invokes 64-bit SYSENTER.
1064 */
1065 msr->data = get_canonical(msr->data);
1066 }
1067 return kvm_x86_ops->set_msr(vcpu, msr);
1068 }
1069 EXPORT_SYMBOL_GPL(kvm_set_msr);
1070
1071 /*
1072 * Adapt set_msr() to msr_io()'s calling convention
1073 */
1074 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1075 {
1076 struct msr_data msr;
1077 int r;
1078
1079 msr.index = index;
1080 msr.host_initiated = true;
1081 r = kvm_get_msr(vcpu, &msr);
1082 if (r)
1083 return r;
1084
1085 *data = msr.data;
1086 return 0;
1087 }
1088
1089 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1090 {
1091 struct msr_data msr;
1092
1093 msr.data = *data;
1094 msr.index = index;
1095 msr.host_initiated = true;
1096 return kvm_set_msr(vcpu, &msr);
1097 }
1098
1099 #ifdef CONFIG_X86_64
1100 struct pvclock_gtod_data {
1101 seqcount_t seq;
1102
1103 struct { /* extract of a clocksource struct */
1104 int vclock_mode;
1105 cycle_t cycle_last;
1106 cycle_t mask;
1107 u32 mult;
1108 u32 shift;
1109 } clock;
1110
1111 u64 boot_ns;
1112 u64 nsec_base;
1113 };
1114
1115 static struct pvclock_gtod_data pvclock_gtod_data;
1116
1117 static void update_pvclock_gtod(struct timekeeper *tk)
1118 {
1119 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1120 u64 boot_ns;
1121
1122 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1123
1124 write_seqcount_begin(&vdata->seq);
1125
1126 /* copy pvclock gtod data */
1127 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1128 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1129 vdata->clock.mask = tk->tkr_mono.mask;
1130 vdata->clock.mult = tk->tkr_mono.mult;
1131 vdata->clock.shift = tk->tkr_mono.shift;
1132
1133 vdata->boot_ns = boot_ns;
1134 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1135
1136 write_seqcount_end(&vdata->seq);
1137 }
1138 #endif
1139
1140 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1141 {
1142 /*
1143 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1144 * vcpu_enter_guest. This function is only called from
1145 * the physical CPU that is running vcpu.
1146 */
1147 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1148 }
1149
1150 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1151 {
1152 int version;
1153 int r;
1154 struct pvclock_wall_clock wc;
1155 struct timespec boot;
1156
1157 if (!wall_clock)
1158 return;
1159
1160 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1161 if (r)
1162 return;
1163
1164 if (version & 1)
1165 ++version; /* first time write, random junk */
1166
1167 ++version;
1168
1169 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1170
1171 /*
1172 * The guest calculates current wall clock time by adding
1173 * system time (updated by kvm_guest_time_update below) to the
1174 * wall clock specified here. guest system time equals host
1175 * system time for us, thus we must fill in host boot time here.
1176 */
1177 getboottime(&boot);
1178
1179 if (kvm->arch.kvmclock_offset) {
1180 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1181 boot = timespec_sub(boot, ts);
1182 }
1183 wc.sec = boot.tv_sec;
1184 wc.nsec = boot.tv_nsec;
1185 wc.version = version;
1186
1187 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1188
1189 version++;
1190 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1191 }
1192
1193 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1194 {
1195 uint32_t quotient, remainder;
1196
1197 /* Don't try to replace with do_div(), this one calculates
1198 * "(dividend << 32) / divisor" */
1199 __asm__ ( "divl %4"
1200 : "=a" (quotient), "=d" (remainder)
1201 : "0" (0), "1" (dividend), "r" (divisor) );
1202 return quotient;
1203 }
1204
1205 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1206 s8 *pshift, u32 *pmultiplier)
1207 {
1208 uint64_t scaled64;
1209 int32_t shift = 0;
1210 uint64_t tps64;
1211 uint32_t tps32;
1212
1213 tps64 = base_khz * 1000LL;
1214 scaled64 = scaled_khz * 1000LL;
1215 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1216 tps64 >>= 1;
1217 shift--;
1218 }
1219
1220 tps32 = (uint32_t)tps64;
1221 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1222 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1223 scaled64 >>= 1;
1224 else
1225 tps32 <<= 1;
1226 shift++;
1227 }
1228
1229 *pshift = shift;
1230 *pmultiplier = div_frac(scaled64, tps32);
1231
1232 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1233 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1234 }
1235
1236 #ifdef CONFIG_X86_64
1237 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1238 #endif
1239
1240 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1241 static unsigned long max_tsc_khz;
1242
1243 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1244 {
1245 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1246 vcpu->arch.virtual_tsc_shift);
1247 }
1248
1249 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1250 {
1251 u64 v = (u64)khz * (1000000 + ppm);
1252 do_div(v, 1000000);
1253 return v;
1254 }
1255
1256 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1257 {
1258 u32 thresh_lo, thresh_hi;
1259 int use_scaling = 0;
1260
1261 /* tsc_khz can be zero if TSC calibration fails */
1262 if (this_tsc_khz == 0) {
1263 /* set tsc_scaling_ratio to a safe value */
1264 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1265 return;
1266 }
1267
1268 /* Compute a scale to convert nanoseconds in TSC cycles */
1269 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1270 &vcpu->arch.virtual_tsc_shift,
1271 &vcpu->arch.virtual_tsc_mult);
1272 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1273
1274 /*
1275 * Compute the variation in TSC rate which is acceptable
1276 * within the range of tolerance and decide if the
1277 * rate being applied is within that bounds of the hardware
1278 * rate. If so, no scaling or compensation need be done.
1279 */
1280 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1281 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1282 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1283 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1284 use_scaling = 1;
1285 }
1286 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1287 }
1288
1289 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1290 {
1291 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1292 vcpu->arch.virtual_tsc_mult,
1293 vcpu->arch.virtual_tsc_shift);
1294 tsc += vcpu->arch.this_tsc_write;
1295 return tsc;
1296 }
1297
1298 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1299 {
1300 #ifdef CONFIG_X86_64
1301 bool vcpus_matched;
1302 struct kvm_arch *ka = &vcpu->kvm->arch;
1303 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1304
1305 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1306 atomic_read(&vcpu->kvm->online_vcpus));
1307
1308 /*
1309 * Once the masterclock is enabled, always perform request in
1310 * order to update it.
1311 *
1312 * In order to enable masterclock, the host clocksource must be TSC
1313 * and the vcpus need to have matched TSCs. When that happens,
1314 * perform request to enable masterclock.
1315 */
1316 if (ka->use_master_clock ||
1317 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1318 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1319
1320 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1321 atomic_read(&vcpu->kvm->online_vcpus),
1322 ka->use_master_clock, gtod->clock.vclock_mode);
1323 #endif
1324 }
1325
1326 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1327 {
1328 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1329 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1330 }
1331
1332 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1333 {
1334 struct kvm *kvm = vcpu->kvm;
1335 u64 offset, ns, elapsed;
1336 unsigned long flags;
1337 s64 usdiff;
1338 bool matched;
1339 bool already_matched;
1340 u64 data = msr->data;
1341
1342 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1343 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1344 ns = get_kernel_ns();
1345 elapsed = ns - kvm->arch.last_tsc_nsec;
1346
1347 if (vcpu->arch.virtual_tsc_khz) {
1348 int faulted = 0;
1349
1350 /* n.b - signed multiplication and division required */
1351 usdiff = data - kvm->arch.last_tsc_write;
1352 #ifdef CONFIG_X86_64
1353 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1354 #else
1355 /* do_div() only does unsigned */
1356 asm("1: idivl %[divisor]\n"
1357 "2: xor %%edx, %%edx\n"
1358 " movl $0, %[faulted]\n"
1359 "3:\n"
1360 ".section .fixup,\"ax\"\n"
1361 "4: movl $1, %[faulted]\n"
1362 " jmp 3b\n"
1363 ".previous\n"
1364
1365 _ASM_EXTABLE(1b, 4b)
1366
1367 : "=A"(usdiff), [faulted] "=r" (faulted)
1368 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1369
1370 #endif
1371 do_div(elapsed, 1000);
1372 usdiff -= elapsed;
1373 if (usdiff < 0)
1374 usdiff = -usdiff;
1375
1376 /* idivl overflow => difference is larger than USEC_PER_SEC */
1377 if (faulted)
1378 usdiff = USEC_PER_SEC;
1379 } else
1380 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1381
1382 /*
1383 * Special case: TSC write with a small delta (1 second) of virtual
1384 * cycle time against real time is interpreted as an attempt to
1385 * synchronize the CPU.
1386 *
1387 * For a reliable TSC, we can match TSC offsets, and for an unstable
1388 * TSC, we add elapsed time in this computation. We could let the
1389 * compensation code attempt to catch up if we fall behind, but
1390 * it's better to try to match offsets from the beginning.
1391 */
1392 if (usdiff < USEC_PER_SEC &&
1393 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1394 if (!check_tsc_unstable()) {
1395 offset = kvm->arch.cur_tsc_offset;
1396 pr_debug("kvm: matched tsc offset for %llu\n", data);
1397 } else {
1398 u64 delta = nsec_to_cycles(vcpu, elapsed);
1399 data += delta;
1400 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1401 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1402 }
1403 matched = true;
1404 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1405 } else {
1406 /*
1407 * We split periods of matched TSC writes into generations.
1408 * For each generation, we track the original measured
1409 * nanosecond time, offset, and write, so if TSCs are in
1410 * sync, we can match exact offset, and if not, we can match
1411 * exact software computation in compute_guest_tsc()
1412 *
1413 * These values are tracked in kvm->arch.cur_xxx variables.
1414 */
1415 kvm->arch.cur_tsc_generation++;
1416 kvm->arch.cur_tsc_nsec = ns;
1417 kvm->arch.cur_tsc_write = data;
1418 kvm->arch.cur_tsc_offset = offset;
1419 matched = false;
1420 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1421 kvm->arch.cur_tsc_generation, data);
1422 }
1423
1424 /*
1425 * We also track th most recent recorded KHZ, write and time to
1426 * allow the matching interval to be extended at each write.
1427 */
1428 kvm->arch.last_tsc_nsec = ns;
1429 kvm->arch.last_tsc_write = data;
1430 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1431
1432 vcpu->arch.last_guest_tsc = data;
1433
1434 /* Keep track of which generation this VCPU has synchronized to */
1435 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1436 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1437 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1438
1439 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1440 update_ia32_tsc_adjust_msr(vcpu, offset);
1441 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1442 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1443
1444 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1445 if (!matched) {
1446 kvm->arch.nr_vcpus_matched_tsc = 0;
1447 } else if (!already_matched) {
1448 kvm->arch.nr_vcpus_matched_tsc++;
1449 }
1450
1451 kvm_track_tsc_matching(vcpu);
1452 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1453 }
1454
1455 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1456
1457 #ifdef CONFIG_X86_64
1458
1459 static cycle_t read_tsc(void)
1460 {
1461 cycle_t ret = (cycle_t)rdtsc_ordered();
1462 u64 last = pvclock_gtod_data.clock.cycle_last;
1463
1464 if (likely(ret >= last))
1465 return ret;
1466
1467 /*
1468 * GCC likes to generate cmov here, but this branch is extremely
1469 * predictable (it's just a funciton of time and the likely is
1470 * very likely) and there's a data dependence, so force GCC
1471 * to generate a branch instead. I don't barrier() because
1472 * we don't actually need a barrier, and if this function
1473 * ever gets inlined it will generate worse code.
1474 */
1475 asm volatile ("");
1476 return last;
1477 }
1478
1479 static inline u64 vgettsc(cycle_t *cycle_now)
1480 {
1481 long v;
1482 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1483
1484 *cycle_now = read_tsc();
1485
1486 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1487 return v * gtod->clock.mult;
1488 }
1489
1490 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1491 {
1492 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1493 unsigned long seq;
1494 int mode;
1495 u64 ns;
1496
1497 do {
1498 seq = read_seqcount_begin(&gtod->seq);
1499 mode = gtod->clock.vclock_mode;
1500 ns = gtod->nsec_base;
1501 ns += vgettsc(cycle_now);
1502 ns >>= gtod->clock.shift;
1503 ns += gtod->boot_ns;
1504 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1505 *t = ns;
1506
1507 return mode;
1508 }
1509
1510 /* returns true if host is using tsc clocksource */
1511 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1512 {
1513 /* checked again under seqlock below */
1514 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1515 return false;
1516
1517 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1518 }
1519 #endif
1520
1521 /*
1522 *
1523 * Assuming a stable TSC across physical CPUS, and a stable TSC
1524 * across virtual CPUs, the following condition is possible.
1525 * Each numbered line represents an event visible to both
1526 * CPUs at the next numbered event.
1527 *
1528 * "timespecX" represents host monotonic time. "tscX" represents
1529 * RDTSC value.
1530 *
1531 * VCPU0 on CPU0 | VCPU1 on CPU1
1532 *
1533 * 1. read timespec0,tsc0
1534 * 2. | timespec1 = timespec0 + N
1535 * | tsc1 = tsc0 + M
1536 * 3. transition to guest | transition to guest
1537 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1538 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1539 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1540 *
1541 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1542 *
1543 * - ret0 < ret1
1544 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1545 * ...
1546 * - 0 < N - M => M < N
1547 *
1548 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1549 * always the case (the difference between two distinct xtime instances
1550 * might be smaller then the difference between corresponding TSC reads,
1551 * when updating guest vcpus pvclock areas).
1552 *
1553 * To avoid that problem, do not allow visibility of distinct
1554 * system_timestamp/tsc_timestamp values simultaneously: use a master
1555 * copy of host monotonic time values. Update that master copy
1556 * in lockstep.
1557 *
1558 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1559 *
1560 */
1561
1562 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1563 {
1564 #ifdef CONFIG_X86_64
1565 struct kvm_arch *ka = &kvm->arch;
1566 int vclock_mode;
1567 bool host_tsc_clocksource, vcpus_matched;
1568
1569 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1570 atomic_read(&kvm->online_vcpus));
1571
1572 /*
1573 * If the host uses TSC clock, then passthrough TSC as stable
1574 * to the guest.
1575 */
1576 host_tsc_clocksource = kvm_get_time_and_clockread(
1577 &ka->master_kernel_ns,
1578 &ka->master_cycle_now);
1579
1580 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1581 && !backwards_tsc_observed
1582 && !ka->boot_vcpu_runs_old_kvmclock;
1583
1584 if (ka->use_master_clock)
1585 atomic_set(&kvm_guest_has_master_clock, 1);
1586
1587 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1588 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1589 vcpus_matched);
1590 #endif
1591 }
1592
1593 static void kvm_gen_update_masterclock(struct kvm *kvm)
1594 {
1595 #ifdef CONFIG_X86_64
1596 int i;
1597 struct kvm_vcpu *vcpu;
1598 struct kvm_arch *ka = &kvm->arch;
1599
1600 spin_lock(&ka->pvclock_gtod_sync_lock);
1601 kvm_make_mclock_inprogress_request(kvm);
1602 /* no guest entries from this point */
1603 pvclock_update_vm_gtod_copy(kvm);
1604
1605 kvm_for_each_vcpu(i, vcpu, kvm)
1606 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1607
1608 /* guest entries allowed */
1609 kvm_for_each_vcpu(i, vcpu, kvm)
1610 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1611
1612 spin_unlock(&ka->pvclock_gtod_sync_lock);
1613 #endif
1614 }
1615
1616 static int kvm_guest_time_update(struct kvm_vcpu *v)
1617 {
1618 unsigned long flags, this_tsc_khz;
1619 struct kvm_vcpu_arch *vcpu = &v->arch;
1620 struct kvm_arch *ka = &v->kvm->arch;
1621 s64 kernel_ns;
1622 u64 tsc_timestamp, host_tsc;
1623 struct pvclock_vcpu_time_info guest_hv_clock;
1624 u8 pvclock_flags;
1625 bool use_master_clock;
1626
1627 kernel_ns = 0;
1628 host_tsc = 0;
1629
1630 /*
1631 * If the host uses TSC clock, then passthrough TSC as stable
1632 * to the guest.
1633 */
1634 spin_lock(&ka->pvclock_gtod_sync_lock);
1635 use_master_clock = ka->use_master_clock;
1636 if (use_master_clock) {
1637 host_tsc = ka->master_cycle_now;
1638 kernel_ns = ka->master_kernel_ns;
1639 }
1640 spin_unlock(&ka->pvclock_gtod_sync_lock);
1641
1642 /* Keep irq disabled to prevent changes to the clock */
1643 local_irq_save(flags);
1644 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1645 if (unlikely(this_tsc_khz == 0)) {
1646 local_irq_restore(flags);
1647 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1648 return 1;
1649 }
1650 if (!use_master_clock) {
1651 host_tsc = rdtsc();
1652 kernel_ns = get_kernel_ns();
1653 }
1654
1655 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1656
1657 /*
1658 * We may have to catch up the TSC to match elapsed wall clock
1659 * time for two reasons, even if kvmclock is used.
1660 * 1) CPU could have been running below the maximum TSC rate
1661 * 2) Broken TSC compensation resets the base at each VCPU
1662 * entry to avoid unknown leaps of TSC even when running
1663 * again on the same CPU. This may cause apparent elapsed
1664 * time to disappear, and the guest to stand still or run
1665 * very slowly.
1666 */
1667 if (vcpu->tsc_catchup) {
1668 u64 tsc = compute_guest_tsc(v, kernel_ns);
1669 if (tsc > tsc_timestamp) {
1670 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1671 tsc_timestamp = tsc;
1672 }
1673 }
1674
1675 local_irq_restore(flags);
1676
1677 if (!vcpu->pv_time_enabled)
1678 return 0;
1679
1680 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1681 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1682 &vcpu->hv_clock.tsc_shift,
1683 &vcpu->hv_clock.tsc_to_system_mul);
1684 vcpu->hw_tsc_khz = this_tsc_khz;
1685 }
1686
1687 /* With all the info we got, fill in the values */
1688 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1689 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1690 vcpu->last_guest_tsc = tsc_timestamp;
1691
1692 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1693 &guest_hv_clock, sizeof(guest_hv_clock))))
1694 return 0;
1695
1696 /* This VCPU is paused, but it's legal for a guest to read another
1697 * VCPU's kvmclock, so we really have to follow the specification where
1698 * it says that version is odd if data is being modified, and even after
1699 * it is consistent.
1700 *
1701 * Version field updates must be kept separate. This is because
1702 * kvm_write_guest_cached might use a "rep movs" instruction, and
1703 * writes within a string instruction are weakly ordered. So there
1704 * are three writes overall.
1705 *
1706 * As a small optimization, only write the version field in the first
1707 * and third write. The vcpu->pv_time cache is still valid, because the
1708 * version field is the first in the struct.
1709 */
1710 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1711
1712 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1713 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1714 &vcpu->hv_clock,
1715 sizeof(vcpu->hv_clock.version));
1716
1717 smp_wmb();
1718
1719 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1720 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1721
1722 if (vcpu->pvclock_set_guest_stopped_request) {
1723 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1724 vcpu->pvclock_set_guest_stopped_request = false;
1725 }
1726
1727 /* If the host uses TSC clocksource, then it is stable */
1728 if (use_master_clock)
1729 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1730
1731 vcpu->hv_clock.flags = pvclock_flags;
1732
1733 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1734
1735 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1736 &vcpu->hv_clock,
1737 sizeof(vcpu->hv_clock));
1738
1739 smp_wmb();
1740
1741 vcpu->hv_clock.version++;
1742 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1743 &vcpu->hv_clock,
1744 sizeof(vcpu->hv_clock.version));
1745 return 0;
1746 }
1747
1748 /*
1749 * kvmclock updates which are isolated to a given vcpu, such as
1750 * vcpu->cpu migration, should not allow system_timestamp from
1751 * the rest of the vcpus to remain static. Otherwise ntp frequency
1752 * correction applies to one vcpu's system_timestamp but not
1753 * the others.
1754 *
1755 * So in those cases, request a kvmclock update for all vcpus.
1756 * We need to rate-limit these requests though, as they can
1757 * considerably slow guests that have a large number of vcpus.
1758 * The time for a remote vcpu to update its kvmclock is bound
1759 * by the delay we use to rate-limit the updates.
1760 */
1761
1762 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1763
1764 static void kvmclock_update_fn(struct work_struct *work)
1765 {
1766 int i;
1767 struct delayed_work *dwork = to_delayed_work(work);
1768 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1769 kvmclock_update_work);
1770 struct kvm *kvm = container_of(ka, struct kvm, arch);
1771 struct kvm_vcpu *vcpu;
1772
1773 kvm_for_each_vcpu(i, vcpu, kvm) {
1774 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1775 kvm_vcpu_kick(vcpu);
1776 }
1777 }
1778
1779 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1780 {
1781 struct kvm *kvm = v->kvm;
1782
1783 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1784 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1785 KVMCLOCK_UPDATE_DELAY);
1786 }
1787
1788 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1789
1790 static void kvmclock_sync_fn(struct work_struct *work)
1791 {
1792 struct delayed_work *dwork = to_delayed_work(work);
1793 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1794 kvmclock_sync_work);
1795 struct kvm *kvm = container_of(ka, struct kvm, arch);
1796
1797 if (!kvmclock_periodic_sync)
1798 return;
1799
1800 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1801 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1802 KVMCLOCK_SYNC_PERIOD);
1803 }
1804
1805 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1806 {
1807 u64 mcg_cap = vcpu->arch.mcg_cap;
1808 unsigned bank_num = mcg_cap & 0xff;
1809
1810 switch (msr) {
1811 case MSR_IA32_MCG_STATUS:
1812 vcpu->arch.mcg_status = data;
1813 break;
1814 case MSR_IA32_MCG_CTL:
1815 if (!(mcg_cap & MCG_CTL_P))
1816 return 1;
1817 if (data != 0 && data != ~(u64)0)
1818 return -1;
1819 vcpu->arch.mcg_ctl = data;
1820 break;
1821 default:
1822 if (msr >= MSR_IA32_MC0_CTL &&
1823 msr < MSR_IA32_MCx_CTL(bank_num)) {
1824 u32 offset = msr - MSR_IA32_MC0_CTL;
1825 /* only 0 or all 1s can be written to IA32_MCi_CTL
1826 * some Linux kernels though clear bit 10 in bank 4 to
1827 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1828 * this to avoid an uncatched #GP in the guest
1829 */
1830 if ((offset & 0x3) == 0 &&
1831 data != 0 && (data | (1 << 10)) != ~(u64)0)
1832 return -1;
1833 vcpu->arch.mce_banks[offset] = data;
1834 break;
1835 }
1836 return 1;
1837 }
1838 return 0;
1839 }
1840
1841 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1842 {
1843 struct kvm *kvm = vcpu->kvm;
1844 int lm = is_long_mode(vcpu);
1845 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1846 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1847 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1848 : kvm->arch.xen_hvm_config.blob_size_32;
1849 u32 page_num = data & ~PAGE_MASK;
1850 u64 page_addr = data & PAGE_MASK;
1851 u8 *page;
1852 int r;
1853
1854 r = -E2BIG;
1855 if (page_num >= blob_size)
1856 goto out;
1857 r = -ENOMEM;
1858 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1859 if (IS_ERR(page)) {
1860 r = PTR_ERR(page);
1861 goto out;
1862 }
1863 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1864 goto out_free;
1865 r = 0;
1866 out_free:
1867 kfree(page);
1868 out:
1869 return r;
1870 }
1871
1872 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1873 {
1874 gpa_t gpa = data & ~0x3f;
1875
1876 /* Bits 2:5 are reserved, Should be zero */
1877 if (data & 0x3c)
1878 return 1;
1879
1880 vcpu->arch.apf.msr_val = data;
1881
1882 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1883 kvm_clear_async_pf_completion_queue(vcpu);
1884 kvm_async_pf_hash_reset(vcpu);
1885 return 0;
1886 }
1887
1888 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1889 sizeof(u32)))
1890 return 1;
1891
1892 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1893 kvm_async_pf_wakeup_all(vcpu);
1894 return 0;
1895 }
1896
1897 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1898 {
1899 vcpu->arch.pv_time_enabled = false;
1900 }
1901
1902 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1903 {
1904 u64 delta;
1905
1906 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1907 return;
1908
1909 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1910 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1911 vcpu->arch.st.accum_steal = delta;
1912 }
1913
1914 static void record_steal_time(struct kvm_vcpu *vcpu)
1915 {
1916 accumulate_steal_time(vcpu);
1917
1918 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1919 return;
1920
1921 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1922 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1923 return;
1924
1925 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1926 vcpu->arch.st.steal.version += 2;
1927 vcpu->arch.st.accum_steal = 0;
1928
1929 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1930 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1931 }
1932
1933 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1934 {
1935 bool pr = false;
1936 u32 msr = msr_info->index;
1937 u64 data = msr_info->data;
1938
1939 switch (msr) {
1940 case MSR_AMD64_NB_CFG:
1941 case MSR_IA32_UCODE_REV:
1942 case MSR_IA32_UCODE_WRITE:
1943 case MSR_VM_HSAVE_PA:
1944 case MSR_AMD64_PATCH_LOADER:
1945 case MSR_AMD64_BU_CFG2:
1946 break;
1947
1948 case MSR_EFER:
1949 return set_efer(vcpu, data);
1950 case MSR_K7_HWCR:
1951 data &= ~(u64)0x40; /* ignore flush filter disable */
1952 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1953 data &= ~(u64)0x8; /* ignore TLB cache disable */
1954 data &= ~(u64)0x40000; /* ignore Mc status write enable */
1955 if (data != 0) {
1956 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1957 data);
1958 return 1;
1959 }
1960 break;
1961 case MSR_FAM10H_MMIO_CONF_BASE:
1962 if (data != 0) {
1963 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1964 "0x%llx\n", data);
1965 return 1;
1966 }
1967 break;
1968 case MSR_IA32_DEBUGCTLMSR:
1969 if (!data) {
1970 /* We support the non-activated case already */
1971 break;
1972 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1973 /* Values other than LBR and BTF are vendor-specific,
1974 thus reserved and should throw a #GP */
1975 return 1;
1976 }
1977 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1978 __func__, data);
1979 break;
1980 case 0x200 ... 0x2ff:
1981 return kvm_mtrr_set_msr(vcpu, msr, data);
1982 case MSR_IA32_APICBASE:
1983 return kvm_set_apic_base(vcpu, msr_info);
1984 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1985 return kvm_x2apic_msr_write(vcpu, msr, data);
1986 case MSR_IA32_TSCDEADLINE:
1987 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1988 break;
1989 case MSR_IA32_TSC_ADJUST:
1990 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1991 if (!msr_info->host_initiated) {
1992 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1993 adjust_tsc_offset_guest(vcpu, adj);
1994 }
1995 vcpu->arch.ia32_tsc_adjust_msr = data;
1996 }
1997 break;
1998 case MSR_IA32_MISC_ENABLE:
1999 vcpu->arch.ia32_misc_enable_msr = data;
2000 break;
2001 case MSR_IA32_SMBASE:
2002 if (!msr_info->host_initiated)
2003 return 1;
2004 vcpu->arch.smbase = data;
2005 break;
2006 case MSR_KVM_WALL_CLOCK_NEW:
2007 case MSR_KVM_WALL_CLOCK:
2008 vcpu->kvm->arch.wall_clock = data;
2009 kvm_write_wall_clock(vcpu->kvm, data);
2010 break;
2011 case MSR_KVM_SYSTEM_TIME_NEW:
2012 case MSR_KVM_SYSTEM_TIME: {
2013 u64 gpa_offset;
2014 struct kvm_arch *ka = &vcpu->kvm->arch;
2015
2016 kvmclock_reset(vcpu);
2017
2018 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2019 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2020
2021 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2022 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2023 &vcpu->requests);
2024
2025 ka->boot_vcpu_runs_old_kvmclock = tmp;
2026 }
2027
2028 vcpu->arch.time = data;
2029 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2030
2031 /* we verify if the enable bit is set... */
2032 if (!(data & 1))
2033 break;
2034
2035 gpa_offset = data & ~(PAGE_MASK | 1);
2036
2037 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2038 &vcpu->arch.pv_time, data & ~1ULL,
2039 sizeof(struct pvclock_vcpu_time_info)))
2040 vcpu->arch.pv_time_enabled = false;
2041 else
2042 vcpu->arch.pv_time_enabled = true;
2043
2044 break;
2045 }
2046 case MSR_KVM_ASYNC_PF_EN:
2047 if (kvm_pv_enable_async_pf(vcpu, data))
2048 return 1;
2049 break;
2050 case MSR_KVM_STEAL_TIME:
2051
2052 if (unlikely(!sched_info_on()))
2053 return 1;
2054
2055 if (data & KVM_STEAL_RESERVED_MASK)
2056 return 1;
2057
2058 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2059 data & KVM_STEAL_VALID_BITS,
2060 sizeof(struct kvm_steal_time)))
2061 return 1;
2062
2063 vcpu->arch.st.msr_val = data;
2064
2065 if (!(data & KVM_MSR_ENABLED))
2066 break;
2067
2068 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2069
2070 break;
2071 case MSR_KVM_PV_EOI_EN:
2072 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2073 return 1;
2074 break;
2075
2076 case MSR_IA32_MCG_CTL:
2077 case MSR_IA32_MCG_STATUS:
2078 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2079 return set_msr_mce(vcpu, msr, data);
2080
2081 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2082 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2083 pr = true; /* fall through */
2084 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2085 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2086 if (kvm_pmu_is_valid_msr(vcpu, msr))
2087 return kvm_pmu_set_msr(vcpu, msr_info);
2088
2089 if (pr || data != 0)
2090 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2091 "0x%x data 0x%llx\n", msr, data);
2092 break;
2093 case MSR_K7_CLK_CTL:
2094 /*
2095 * Ignore all writes to this no longer documented MSR.
2096 * Writes are only relevant for old K7 processors,
2097 * all pre-dating SVM, but a recommended workaround from
2098 * AMD for these chips. It is possible to specify the
2099 * affected processor models on the command line, hence
2100 * the need to ignore the workaround.
2101 */
2102 break;
2103 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2104 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2105 case HV_X64_MSR_CRASH_CTL:
2106 return kvm_hv_set_msr_common(vcpu, msr, data,
2107 msr_info->host_initiated);
2108 case MSR_IA32_BBL_CR_CTL3:
2109 /* Drop writes to this legacy MSR -- see rdmsr
2110 * counterpart for further detail.
2111 */
2112 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2113 break;
2114 case MSR_AMD64_OSVW_ID_LENGTH:
2115 if (!guest_cpuid_has_osvw(vcpu))
2116 return 1;
2117 vcpu->arch.osvw.length = data;
2118 break;
2119 case MSR_AMD64_OSVW_STATUS:
2120 if (!guest_cpuid_has_osvw(vcpu))
2121 return 1;
2122 vcpu->arch.osvw.status = data;
2123 break;
2124 default:
2125 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2126 return xen_hvm_config(vcpu, data);
2127 if (kvm_pmu_is_valid_msr(vcpu, msr))
2128 return kvm_pmu_set_msr(vcpu, msr_info);
2129 if (!ignore_msrs) {
2130 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2131 msr, data);
2132 return 1;
2133 } else {
2134 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2135 msr, data);
2136 break;
2137 }
2138 }
2139 return 0;
2140 }
2141 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2142
2143
2144 /*
2145 * Reads an msr value (of 'msr_index') into 'pdata'.
2146 * Returns 0 on success, non-0 otherwise.
2147 * Assumes vcpu_load() was already called.
2148 */
2149 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2150 {
2151 return kvm_x86_ops->get_msr(vcpu, msr);
2152 }
2153 EXPORT_SYMBOL_GPL(kvm_get_msr);
2154
2155 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2156 {
2157 u64 data;
2158 u64 mcg_cap = vcpu->arch.mcg_cap;
2159 unsigned bank_num = mcg_cap & 0xff;
2160
2161 switch (msr) {
2162 case MSR_IA32_P5_MC_ADDR:
2163 case MSR_IA32_P5_MC_TYPE:
2164 data = 0;
2165 break;
2166 case MSR_IA32_MCG_CAP:
2167 data = vcpu->arch.mcg_cap;
2168 break;
2169 case MSR_IA32_MCG_CTL:
2170 if (!(mcg_cap & MCG_CTL_P))
2171 return 1;
2172 data = vcpu->arch.mcg_ctl;
2173 break;
2174 case MSR_IA32_MCG_STATUS:
2175 data = vcpu->arch.mcg_status;
2176 break;
2177 default:
2178 if (msr >= MSR_IA32_MC0_CTL &&
2179 msr < MSR_IA32_MCx_CTL(bank_num)) {
2180 u32 offset = msr - MSR_IA32_MC0_CTL;
2181 data = vcpu->arch.mce_banks[offset];
2182 break;
2183 }
2184 return 1;
2185 }
2186 *pdata = data;
2187 return 0;
2188 }
2189
2190 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2191 {
2192 switch (msr_info->index) {
2193 case MSR_IA32_PLATFORM_ID:
2194 case MSR_IA32_EBL_CR_POWERON:
2195 case MSR_IA32_DEBUGCTLMSR:
2196 case MSR_IA32_LASTBRANCHFROMIP:
2197 case MSR_IA32_LASTBRANCHTOIP:
2198 case MSR_IA32_LASTINTFROMIP:
2199 case MSR_IA32_LASTINTTOIP:
2200 case MSR_K8_SYSCFG:
2201 case MSR_K8_TSEG_ADDR:
2202 case MSR_K8_TSEG_MASK:
2203 case MSR_K7_HWCR:
2204 case MSR_VM_HSAVE_PA:
2205 case MSR_K8_INT_PENDING_MSG:
2206 case MSR_AMD64_NB_CFG:
2207 case MSR_FAM10H_MMIO_CONF_BASE:
2208 case MSR_AMD64_BU_CFG2:
2209 msr_info->data = 0;
2210 break;
2211 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2212 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2213 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2214 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2215 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2216 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2217 msr_info->data = 0;
2218 break;
2219 case MSR_IA32_UCODE_REV:
2220 msr_info->data = 0x100000000ULL;
2221 break;
2222 case MSR_MTRRcap:
2223 case 0x200 ... 0x2ff:
2224 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2225 case 0xcd: /* fsb frequency */
2226 msr_info->data = 3;
2227 break;
2228 /*
2229 * MSR_EBC_FREQUENCY_ID
2230 * Conservative value valid for even the basic CPU models.
2231 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2232 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2233 * and 266MHz for model 3, or 4. Set Core Clock
2234 * Frequency to System Bus Frequency Ratio to 1 (bits
2235 * 31:24) even though these are only valid for CPU
2236 * models > 2, however guests may end up dividing or
2237 * multiplying by zero otherwise.
2238 */
2239 case MSR_EBC_FREQUENCY_ID:
2240 msr_info->data = 1 << 24;
2241 break;
2242 case MSR_IA32_APICBASE:
2243 msr_info->data = kvm_get_apic_base(vcpu);
2244 break;
2245 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2246 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2247 break;
2248 case MSR_IA32_TSCDEADLINE:
2249 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2250 break;
2251 case MSR_IA32_TSC_ADJUST:
2252 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2253 break;
2254 case MSR_IA32_MISC_ENABLE:
2255 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2256 break;
2257 case MSR_IA32_SMBASE:
2258 if (!msr_info->host_initiated)
2259 return 1;
2260 msr_info->data = vcpu->arch.smbase;
2261 break;
2262 case MSR_IA32_PERF_STATUS:
2263 /* TSC increment by tick */
2264 msr_info->data = 1000ULL;
2265 /* CPU multiplier */
2266 msr_info->data |= (((uint64_t)4ULL) << 40);
2267 break;
2268 case MSR_EFER:
2269 msr_info->data = vcpu->arch.efer;
2270 break;
2271 case MSR_KVM_WALL_CLOCK:
2272 case MSR_KVM_WALL_CLOCK_NEW:
2273 msr_info->data = vcpu->kvm->arch.wall_clock;
2274 break;
2275 case MSR_KVM_SYSTEM_TIME:
2276 case MSR_KVM_SYSTEM_TIME_NEW:
2277 msr_info->data = vcpu->arch.time;
2278 break;
2279 case MSR_KVM_ASYNC_PF_EN:
2280 msr_info->data = vcpu->arch.apf.msr_val;
2281 break;
2282 case MSR_KVM_STEAL_TIME:
2283 msr_info->data = vcpu->arch.st.msr_val;
2284 break;
2285 case MSR_KVM_PV_EOI_EN:
2286 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2287 break;
2288 case MSR_IA32_P5_MC_ADDR:
2289 case MSR_IA32_P5_MC_TYPE:
2290 case MSR_IA32_MCG_CAP:
2291 case MSR_IA32_MCG_CTL:
2292 case MSR_IA32_MCG_STATUS:
2293 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2294 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2295 case MSR_K7_CLK_CTL:
2296 /*
2297 * Provide expected ramp-up count for K7. All other
2298 * are set to zero, indicating minimum divisors for
2299 * every field.
2300 *
2301 * This prevents guest kernels on AMD host with CPU
2302 * type 6, model 8 and higher from exploding due to
2303 * the rdmsr failing.
2304 */
2305 msr_info->data = 0x20000000;
2306 break;
2307 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2308 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2309 case HV_X64_MSR_CRASH_CTL:
2310 return kvm_hv_get_msr_common(vcpu,
2311 msr_info->index, &msr_info->data);
2312 break;
2313 case MSR_IA32_BBL_CR_CTL3:
2314 /* This legacy MSR exists but isn't fully documented in current
2315 * silicon. It is however accessed by winxp in very narrow
2316 * scenarios where it sets bit #19, itself documented as
2317 * a "reserved" bit. Best effort attempt to source coherent
2318 * read data here should the balance of the register be
2319 * interpreted by the guest:
2320 *
2321 * L2 cache control register 3: 64GB range, 256KB size,
2322 * enabled, latency 0x1, configured
2323 */
2324 msr_info->data = 0xbe702111;
2325 break;
2326 case MSR_AMD64_OSVW_ID_LENGTH:
2327 if (!guest_cpuid_has_osvw(vcpu))
2328 return 1;
2329 msr_info->data = vcpu->arch.osvw.length;
2330 break;
2331 case MSR_AMD64_OSVW_STATUS:
2332 if (!guest_cpuid_has_osvw(vcpu))
2333 return 1;
2334 msr_info->data = vcpu->arch.osvw.status;
2335 break;
2336 default:
2337 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2338 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2339 if (!ignore_msrs) {
2340 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2341 return 1;
2342 } else {
2343 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2344 msr_info->data = 0;
2345 }
2346 break;
2347 }
2348 return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2351
2352 /*
2353 * Read or write a bunch of msrs. All parameters are kernel addresses.
2354 *
2355 * @return number of msrs set successfully.
2356 */
2357 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2358 struct kvm_msr_entry *entries,
2359 int (*do_msr)(struct kvm_vcpu *vcpu,
2360 unsigned index, u64 *data))
2361 {
2362 int i, idx;
2363
2364 idx = srcu_read_lock(&vcpu->kvm->srcu);
2365 for (i = 0; i < msrs->nmsrs; ++i)
2366 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2367 break;
2368 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2369
2370 return i;
2371 }
2372
2373 /*
2374 * Read or write a bunch of msrs. Parameters are user addresses.
2375 *
2376 * @return number of msrs set successfully.
2377 */
2378 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2379 int (*do_msr)(struct kvm_vcpu *vcpu,
2380 unsigned index, u64 *data),
2381 int writeback)
2382 {
2383 struct kvm_msrs msrs;
2384 struct kvm_msr_entry *entries;
2385 int r, n;
2386 unsigned size;
2387
2388 r = -EFAULT;
2389 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2390 goto out;
2391
2392 r = -E2BIG;
2393 if (msrs.nmsrs >= MAX_IO_MSRS)
2394 goto out;
2395
2396 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2397 entries = memdup_user(user_msrs->entries, size);
2398 if (IS_ERR(entries)) {
2399 r = PTR_ERR(entries);
2400 goto out;
2401 }
2402
2403 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2404 if (r < 0)
2405 goto out_free;
2406
2407 r = -EFAULT;
2408 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2409 goto out_free;
2410
2411 r = n;
2412
2413 out_free:
2414 kfree(entries);
2415 out:
2416 return r;
2417 }
2418
2419 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2420 {
2421 int r;
2422
2423 switch (ext) {
2424 case KVM_CAP_IRQCHIP:
2425 case KVM_CAP_HLT:
2426 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2427 case KVM_CAP_SET_TSS_ADDR:
2428 case KVM_CAP_EXT_CPUID:
2429 case KVM_CAP_EXT_EMUL_CPUID:
2430 case KVM_CAP_CLOCKSOURCE:
2431 case KVM_CAP_PIT:
2432 case KVM_CAP_NOP_IO_DELAY:
2433 case KVM_CAP_MP_STATE:
2434 case KVM_CAP_SYNC_MMU:
2435 case KVM_CAP_USER_NMI:
2436 case KVM_CAP_REINJECT_CONTROL:
2437 case KVM_CAP_IRQ_INJECT_STATUS:
2438 case KVM_CAP_IOEVENTFD:
2439 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2440 case KVM_CAP_PIT2:
2441 case KVM_CAP_PIT_STATE2:
2442 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2443 case KVM_CAP_XEN_HVM:
2444 case KVM_CAP_ADJUST_CLOCK:
2445 case KVM_CAP_VCPU_EVENTS:
2446 case KVM_CAP_HYPERV:
2447 case KVM_CAP_HYPERV_VAPIC:
2448 case KVM_CAP_HYPERV_SPIN:
2449 case KVM_CAP_PCI_SEGMENT:
2450 case KVM_CAP_DEBUGREGS:
2451 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2452 case KVM_CAP_XSAVE:
2453 case KVM_CAP_ASYNC_PF:
2454 case KVM_CAP_GET_TSC_KHZ:
2455 case KVM_CAP_KVMCLOCK_CTRL:
2456 case KVM_CAP_READONLY_MEM:
2457 case KVM_CAP_HYPERV_TIME:
2458 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2459 case KVM_CAP_TSC_DEADLINE_TIMER:
2460 case KVM_CAP_ENABLE_CAP_VM:
2461 case KVM_CAP_DISABLE_QUIRKS:
2462 case KVM_CAP_SET_BOOT_CPU_ID:
2463 case KVM_CAP_SPLIT_IRQCHIP:
2464 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2465 case KVM_CAP_ASSIGN_DEV_IRQ:
2466 case KVM_CAP_PCI_2_3:
2467 #endif
2468 r = 1;
2469 break;
2470 case KVM_CAP_X86_SMM:
2471 /* SMBASE is usually relocated above 1M on modern chipsets,
2472 * and SMM handlers might indeed rely on 4G segment limits,
2473 * so do not report SMM to be available if real mode is
2474 * emulated via vm86 mode. Still, do not go to great lengths
2475 * to avoid userspace's usage of the feature, because it is a
2476 * fringe case that is not enabled except via specific settings
2477 * of the module parameters.
2478 */
2479 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2480 break;
2481 case KVM_CAP_COALESCED_MMIO:
2482 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2483 break;
2484 case KVM_CAP_VAPIC:
2485 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2486 break;
2487 case KVM_CAP_NR_VCPUS:
2488 r = KVM_SOFT_MAX_VCPUS;
2489 break;
2490 case KVM_CAP_MAX_VCPUS:
2491 r = KVM_MAX_VCPUS;
2492 break;
2493 case KVM_CAP_NR_MEMSLOTS:
2494 r = KVM_USER_MEM_SLOTS;
2495 break;
2496 case KVM_CAP_PV_MMU: /* obsolete */
2497 r = 0;
2498 break;
2499 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2500 case KVM_CAP_IOMMU:
2501 r = iommu_present(&pci_bus_type);
2502 break;
2503 #endif
2504 case KVM_CAP_MCE:
2505 r = KVM_MAX_MCE_BANKS;
2506 break;
2507 case KVM_CAP_XCRS:
2508 r = cpu_has_xsave;
2509 break;
2510 case KVM_CAP_TSC_CONTROL:
2511 r = kvm_has_tsc_control;
2512 break;
2513 default:
2514 r = 0;
2515 break;
2516 }
2517 return r;
2518
2519 }
2520
2521 long kvm_arch_dev_ioctl(struct file *filp,
2522 unsigned int ioctl, unsigned long arg)
2523 {
2524 void __user *argp = (void __user *)arg;
2525 long r;
2526
2527 switch (ioctl) {
2528 case KVM_GET_MSR_INDEX_LIST: {
2529 struct kvm_msr_list __user *user_msr_list = argp;
2530 struct kvm_msr_list msr_list;
2531 unsigned n;
2532
2533 r = -EFAULT;
2534 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2535 goto out;
2536 n = msr_list.nmsrs;
2537 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2538 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2539 goto out;
2540 r = -E2BIG;
2541 if (n < msr_list.nmsrs)
2542 goto out;
2543 r = -EFAULT;
2544 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2545 num_msrs_to_save * sizeof(u32)))
2546 goto out;
2547 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2548 &emulated_msrs,
2549 num_emulated_msrs * sizeof(u32)))
2550 goto out;
2551 r = 0;
2552 break;
2553 }
2554 case KVM_GET_SUPPORTED_CPUID:
2555 case KVM_GET_EMULATED_CPUID: {
2556 struct kvm_cpuid2 __user *cpuid_arg = argp;
2557 struct kvm_cpuid2 cpuid;
2558
2559 r = -EFAULT;
2560 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2561 goto out;
2562
2563 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2564 ioctl);
2565 if (r)
2566 goto out;
2567
2568 r = -EFAULT;
2569 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2570 goto out;
2571 r = 0;
2572 break;
2573 }
2574 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2575 u64 mce_cap;
2576
2577 mce_cap = KVM_MCE_CAP_SUPPORTED;
2578 r = -EFAULT;
2579 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2580 goto out;
2581 r = 0;
2582 break;
2583 }
2584 default:
2585 r = -EINVAL;
2586 }
2587 out:
2588 return r;
2589 }
2590
2591 static void wbinvd_ipi(void *garbage)
2592 {
2593 wbinvd();
2594 }
2595
2596 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2597 {
2598 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2599 }
2600
2601 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2602 {
2603 /* Address WBINVD may be executed by guest */
2604 if (need_emulate_wbinvd(vcpu)) {
2605 if (kvm_x86_ops->has_wbinvd_exit())
2606 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2607 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2608 smp_call_function_single(vcpu->cpu,
2609 wbinvd_ipi, NULL, 1);
2610 }
2611
2612 kvm_x86_ops->vcpu_load(vcpu, cpu);
2613
2614 /* Apply any externally detected TSC adjustments (due to suspend) */
2615 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2616 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2617 vcpu->arch.tsc_offset_adjustment = 0;
2618 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2619 }
2620
2621 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2622 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2623 rdtsc() - vcpu->arch.last_host_tsc;
2624 if (tsc_delta < 0)
2625 mark_tsc_unstable("KVM discovered backwards TSC");
2626 if (check_tsc_unstable()) {
2627 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2628 vcpu->arch.last_guest_tsc);
2629 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2630 vcpu->arch.tsc_catchup = 1;
2631 }
2632 /*
2633 * On a host with synchronized TSC, there is no need to update
2634 * kvmclock on vcpu->cpu migration
2635 */
2636 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2637 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2638 if (vcpu->cpu != cpu)
2639 kvm_migrate_timers(vcpu);
2640 vcpu->cpu = cpu;
2641 }
2642
2643 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2644 }
2645
2646 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2647 {
2648 kvm_x86_ops->vcpu_put(vcpu);
2649 kvm_put_guest_fpu(vcpu);
2650 vcpu->arch.last_host_tsc = rdtsc();
2651 }
2652
2653 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2654 struct kvm_lapic_state *s)
2655 {
2656 kvm_x86_ops->sync_pir_to_irr(vcpu);
2657 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2658
2659 return 0;
2660 }
2661
2662 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2663 struct kvm_lapic_state *s)
2664 {
2665 kvm_apic_post_state_restore(vcpu, s);
2666 update_cr8_intercept(vcpu);
2667
2668 return 0;
2669 }
2670
2671 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2672 struct kvm_interrupt *irq)
2673 {
2674 if (irq->irq >= KVM_NR_INTERRUPTS)
2675 return -EINVAL;
2676
2677 if (!irqchip_in_kernel(vcpu->kvm)) {
2678 kvm_queue_interrupt(vcpu, irq->irq, false);
2679 kvm_make_request(KVM_REQ_EVENT, vcpu);
2680 return 0;
2681 }
2682
2683 /*
2684 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2685 * fail for in-kernel 8259.
2686 */
2687 if (pic_in_kernel(vcpu->kvm))
2688 return -ENXIO;
2689
2690 if (vcpu->arch.pending_external_vector != -1)
2691 return -EEXIST;
2692
2693 vcpu->arch.pending_external_vector = irq->irq;
2694 return 0;
2695 }
2696
2697 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2698 {
2699 kvm_inject_nmi(vcpu);
2700
2701 return 0;
2702 }
2703
2704 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2705 {
2706 kvm_make_request(KVM_REQ_SMI, vcpu);
2707
2708 return 0;
2709 }
2710
2711 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2712 struct kvm_tpr_access_ctl *tac)
2713 {
2714 if (tac->flags)
2715 return -EINVAL;
2716 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2717 return 0;
2718 }
2719
2720 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2721 u64 mcg_cap)
2722 {
2723 int r;
2724 unsigned bank_num = mcg_cap & 0xff, bank;
2725
2726 r = -EINVAL;
2727 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2728 goto out;
2729 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2730 goto out;
2731 r = 0;
2732 vcpu->arch.mcg_cap = mcg_cap;
2733 /* Init IA32_MCG_CTL to all 1s */
2734 if (mcg_cap & MCG_CTL_P)
2735 vcpu->arch.mcg_ctl = ~(u64)0;
2736 /* Init IA32_MCi_CTL to all 1s */
2737 for (bank = 0; bank < bank_num; bank++)
2738 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2739 out:
2740 return r;
2741 }
2742
2743 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2744 struct kvm_x86_mce *mce)
2745 {
2746 u64 mcg_cap = vcpu->arch.mcg_cap;
2747 unsigned bank_num = mcg_cap & 0xff;
2748 u64 *banks = vcpu->arch.mce_banks;
2749
2750 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2751 return -EINVAL;
2752 /*
2753 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2754 * reporting is disabled
2755 */
2756 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2757 vcpu->arch.mcg_ctl != ~(u64)0)
2758 return 0;
2759 banks += 4 * mce->bank;
2760 /*
2761 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2762 * reporting is disabled for the bank
2763 */
2764 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2765 return 0;
2766 if (mce->status & MCI_STATUS_UC) {
2767 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2768 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2769 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2770 return 0;
2771 }
2772 if (banks[1] & MCI_STATUS_VAL)
2773 mce->status |= MCI_STATUS_OVER;
2774 banks[2] = mce->addr;
2775 banks[3] = mce->misc;
2776 vcpu->arch.mcg_status = mce->mcg_status;
2777 banks[1] = mce->status;
2778 kvm_queue_exception(vcpu, MC_VECTOR);
2779 } else if (!(banks[1] & MCI_STATUS_VAL)
2780 || !(banks[1] & MCI_STATUS_UC)) {
2781 if (banks[1] & MCI_STATUS_VAL)
2782 mce->status |= MCI_STATUS_OVER;
2783 banks[2] = mce->addr;
2784 banks[3] = mce->misc;
2785 banks[1] = mce->status;
2786 } else
2787 banks[1] |= MCI_STATUS_OVER;
2788 return 0;
2789 }
2790
2791 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2792 struct kvm_vcpu_events *events)
2793 {
2794 process_nmi(vcpu);
2795 events->exception.injected =
2796 vcpu->arch.exception.pending &&
2797 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2798 events->exception.nr = vcpu->arch.exception.nr;
2799 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2800 events->exception.pad = 0;
2801 events->exception.error_code = vcpu->arch.exception.error_code;
2802
2803 events->interrupt.injected =
2804 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2805 events->interrupt.nr = vcpu->arch.interrupt.nr;
2806 events->interrupt.soft = 0;
2807 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2808
2809 events->nmi.injected = vcpu->arch.nmi_injected;
2810 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2811 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2812 events->nmi.pad = 0;
2813
2814 events->sipi_vector = 0; /* never valid when reporting to user space */
2815
2816 events->smi.smm = is_smm(vcpu);
2817 events->smi.pending = vcpu->arch.smi_pending;
2818 events->smi.smm_inside_nmi =
2819 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2820 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2821
2822 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2823 | KVM_VCPUEVENT_VALID_SHADOW
2824 | KVM_VCPUEVENT_VALID_SMM);
2825 memset(&events->reserved, 0, sizeof(events->reserved));
2826 }
2827
2828 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2829 struct kvm_vcpu_events *events)
2830 {
2831 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2832 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2833 | KVM_VCPUEVENT_VALID_SHADOW
2834 | KVM_VCPUEVENT_VALID_SMM))
2835 return -EINVAL;
2836
2837 process_nmi(vcpu);
2838 vcpu->arch.exception.pending = events->exception.injected;
2839 vcpu->arch.exception.nr = events->exception.nr;
2840 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2841 vcpu->arch.exception.error_code = events->exception.error_code;
2842
2843 vcpu->arch.interrupt.pending = events->interrupt.injected;
2844 vcpu->arch.interrupt.nr = events->interrupt.nr;
2845 vcpu->arch.interrupt.soft = events->interrupt.soft;
2846 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2847 kvm_x86_ops->set_interrupt_shadow(vcpu,
2848 events->interrupt.shadow);
2849
2850 vcpu->arch.nmi_injected = events->nmi.injected;
2851 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2852 vcpu->arch.nmi_pending = events->nmi.pending;
2853 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2854
2855 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2856 kvm_vcpu_has_lapic(vcpu))
2857 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2858
2859 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2860 if (events->smi.smm)
2861 vcpu->arch.hflags |= HF_SMM_MASK;
2862 else
2863 vcpu->arch.hflags &= ~HF_SMM_MASK;
2864 vcpu->arch.smi_pending = events->smi.pending;
2865 if (events->smi.smm_inside_nmi)
2866 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2867 else
2868 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2869 if (kvm_vcpu_has_lapic(vcpu)) {
2870 if (events->smi.latched_init)
2871 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2872 else
2873 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2874 }
2875 }
2876
2877 kvm_make_request(KVM_REQ_EVENT, vcpu);
2878
2879 return 0;
2880 }
2881
2882 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2883 struct kvm_debugregs *dbgregs)
2884 {
2885 unsigned long val;
2886
2887 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2888 kvm_get_dr(vcpu, 6, &val);
2889 dbgregs->dr6 = val;
2890 dbgregs->dr7 = vcpu->arch.dr7;
2891 dbgregs->flags = 0;
2892 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2893 }
2894
2895 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2896 struct kvm_debugregs *dbgregs)
2897 {
2898 if (dbgregs->flags)
2899 return -EINVAL;
2900
2901 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2902 kvm_update_dr0123(vcpu);
2903 vcpu->arch.dr6 = dbgregs->dr6;
2904 kvm_update_dr6(vcpu);
2905 vcpu->arch.dr7 = dbgregs->dr7;
2906 kvm_update_dr7(vcpu);
2907
2908 return 0;
2909 }
2910
2911 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
2912
2913 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
2914 {
2915 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2916 u64 xstate_bv = xsave->header.xfeatures;
2917 u64 valid;
2918
2919 /*
2920 * Copy legacy XSAVE area, to avoid complications with CPUID
2921 * leaves 0 and 1 in the loop below.
2922 */
2923 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
2924
2925 /* Set XSTATE_BV */
2926 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
2927
2928 /*
2929 * Copy each region from the possibly compacted offset to the
2930 * non-compacted offset.
2931 */
2932 valid = xstate_bv & ~XSTATE_FPSSE;
2933 while (valid) {
2934 u64 feature = valid & -valid;
2935 int index = fls64(feature) - 1;
2936 void *src = get_xsave_addr(xsave, feature);
2937
2938 if (src) {
2939 u32 size, offset, ecx, edx;
2940 cpuid_count(XSTATE_CPUID, index,
2941 &size, &offset, &ecx, &edx);
2942 memcpy(dest + offset, src, size);
2943 }
2944
2945 valid -= feature;
2946 }
2947 }
2948
2949 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
2950 {
2951 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2952 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
2953 u64 valid;
2954
2955 /*
2956 * Copy legacy XSAVE area, to avoid complications with CPUID
2957 * leaves 0 and 1 in the loop below.
2958 */
2959 memcpy(xsave, src, XSAVE_HDR_OFFSET);
2960
2961 /* Set XSTATE_BV and possibly XCOMP_BV. */
2962 xsave->header.xfeatures = xstate_bv;
2963 if (cpu_has_xsaves)
2964 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
2965
2966 /*
2967 * Copy each region from the non-compacted offset to the
2968 * possibly compacted offset.
2969 */
2970 valid = xstate_bv & ~XSTATE_FPSSE;
2971 while (valid) {
2972 u64 feature = valid & -valid;
2973 int index = fls64(feature) - 1;
2974 void *dest = get_xsave_addr(xsave, feature);
2975
2976 if (dest) {
2977 u32 size, offset, ecx, edx;
2978 cpuid_count(XSTATE_CPUID, index,
2979 &size, &offset, &ecx, &edx);
2980 memcpy(dest, src + offset, size);
2981 }
2982
2983 valid -= feature;
2984 }
2985 }
2986
2987 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2988 struct kvm_xsave *guest_xsave)
2989 {
2990 if (cpu_has_xsave) {
2991 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
2992 fill_xsave((u8 *) guest_xsave->region, vcpu);
2993 } else {
2994 memcpy(guest_xsave->region,
2995 &vcpu->arch.guest_fpu.state.fxsave,
2996 sizeof(struct fxregs_state));
2997 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2998 XSTATE_FPSSE;
2999 }
3000 }
3001
3002 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3003 struct kvm_xsave *guest_xsave)
3004 {
3005 u64 xstate_bv =
3006 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3007
3008 if (cpu_has_xsave) {
3009 /*
3010 * Here we allow setting states that are not present in
3011 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3012 * with old userspace.
3013 */
3014 if (xstate_bv & ~kvm_supported_xcr0())
3015 return -EINVAL;
3016 load_xsave(vcpu, (u8 *)guest_xsave->region);
3017 } else {
3018 if (xstate_bv & ~XSTATE_FPSSE)
3019 return -EINVAL;
3020 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3021 guest_xsave->region, sizeof(struct fxregs_state));
3022 }
3023 return 0;
3024 }
3025
3026 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3027 struct kvm_xcrs *guest_xcrs)
3028 {
3029 if (!cpu_has_xsave) {
3030 guest_xcrs->nr_xcrs = 0;
3031 return;
3032 }
3033
3034 guest_xcrs->nr_xcrs = 1;
3035 guest_xcrs->flags = 0;
3036 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3037 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3038 }
3039
3040 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3041 struct kvm_xcrs *guest_xcrs)
3042 {
3043 int i, r = 0;
3044
3045 if (!cpu_has_xsave)
3046 return -EINVAL;
3047
3048 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3049 return -EINVAL;
3050
3051 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3052 /* Only support XCR0 currently */
3053 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3054 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3055 guest_xcrs->xcrs[i].value);
3056 break;
3057 }
3058 if (r)
3059 r = -EINVAL;
3060 return r;
3061 }
3062
3063 /*
3064 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3065 * stopped by the hypervisor. This function will be called from the host only.
3066 * EINVAL is returned when the host attempts to set the flag for a guest that
3067 * does not support pv clocks.
3068 */
3069 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3070 {
3071 if (!vcpu->arch.pv_time_enabled)
3072 return -EINVAL;
3073 vcpu->arch.pvclock_set_guest_stopped_request = true;
3074 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3075 return 0;
3076 }
3077
3078 long kvm_arch_vcpu_ioctl(struct file *filp,
3079 unsigned int ioctl, unsigned long arg)
3080 {
3081 struct kvm_vcpu *vcpu = filp->private_data;
3082 void __user *argp = (void __user *)arg;
3083 int r;
3084 union {
3085 struct kvm_lapic_state *lapic;
3086 struct kvm_xsave *xsave;
3087 struct kvm_xcrs *xcrs;
3088 void *buffer;
3089 } u;
3090
3091 u.buffer = NULL;
3092 switch (ioctl) {
3093 case KVM_GET_LAPIC: {
3094 r = -EINVAL;
3095 if (!vcpu->arch.apic)
3096 goto out;
3097 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3098
3099 r = -ENOMEM;
3100 if (!u.lapic)
3101 goto out;
3102 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3103 if (r)
3104 goto out;
3105 r = -EFAULT;
3106 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3107 goto out;
3108 r = 0;
3109 break;
3110 }
3111 case KVM_SET_LAPIC: {
3112 r = -EINVAL;
3113 if (!vcpu->arch.apic)
3114 goto out;
3115 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3116 if (IS_ERR(u.lapic))
3117 return PTR_ERR(u.lapic);
3118
3119 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3120 break;
3121 }
3122 case KVM_INTERRUPT: {
3123 struct kvm_interrupt irq;
3124
3125 r = -EFAULT;
3126 if (copy_from_user(&irq, argp, sizeof irq))
3127 goto out;
3128 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3129 break;
3130 }
3131 case KVM_NMI: {
3132 r = kvm_vcpu_ioctl_nmi(vcpu);
3133 break;
3134 }
3135 case KVM_SMI: {
3136 r = kvm_vcpu_ioctl_smi(vcpu);
3137 break;
3138 }
3139 case KVM_SET_CPUID: {
3140 struct kvm_cpuid __user *cpuid_arg = argp;
3141 struct kvm_cpuid cpuid;
3142
3143 r = -EFAULT;
3144 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3145 goto out;
3146 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3147 break;
3148 }
3149 case KVM_SET_CPUID2: {
3150 struct kvm_cpuid2 __user *cpuid_arg = argp;
3151 struct kvm_cpuid2 cpuid;
3152
3153 r = -EFAULT;
3154 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3155 goto out;
3156 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3157 cpuid_arg->entries);
3158 break;
3159 }
3160 case KVM_GET_CPUID2: {
3161 struct kvm_cpuid2 __user *cpuid_arg = argp;
3162 struct kvm_cpuid2 cpuid;
3163
3164 r = -EFAULT;
3165 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3166 goto out;
3167 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3168 cpuid_arg->entries);
3169 if (r)
3170 goto out;
3171 r = -EFAULT;
3172 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3173 goto out;
3174 r = 0;
3175 break;
3176 }
3177 case KVM_GET_MSRS:
3178 r = msr_io(vcpu, argp, do_get_msr, 1);
3179 break;
3180 case KVM_SET_MSRS:
3181 r = msr_io(vcpu, argp, do_set_msr, 0);
3182 break;
3183 case KVM_TPR_ACCESS_REPORTING: {
3184 struct kvm_tpr_access_ctl tac;
3185
3186 r = -EFAULT;
3187 if (copy_from_user(&tac, argp, sizeof tac))
3188 goto out;
3189 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3190 if (r)
3191 goto out;
3192 r = -EFAULT;
3193 if (copy_to_user(argp, &tac, sizeof tac))
3194 goto out;
3195 r = 0;
3196 break;
3197 };
3198 case KVM_SET_VAPIC_ADDR: {
3199 struct kvm_vapic_addr va;
3200
3201 r = -EINVAL;
3202 if (!lapic_in_kernel(vcpu))
3203 goto out;
3204 r = -EFAULT;
3205 if (copy_from_user(&va, argp, sizeof va))
3206 goto out;
3207 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3208 break;
3209 }
3210 case KVM_X86_SETUP_MCE: {
3211 u64 mcg_cap;
3212
3213 r = -EFAULT;
3214 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3215 goto out;
3216 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3217 break;
3218 }
3219 case KVM_X86_SET_MCE: {
3220 struct kvm_x86_mce mce;
3221
3222 r = -EFAULT;
3223 if (copy_from_user(&mce, argp, sizeof mce))
3224 goto out;
3225 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3226 break;
3227 }
3228 case KVM_GET_VCPU_EVENTS: {
3229 struct kvm_vcpu_events events;
3230
3231 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3232
3233 r = -EFAULT;
3234 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3235 break;
3236 r = 0;
3237 break;
3238 }
3239 case KVM_SET_VCPU_EVENTS: {
3240 struct kvm_vcpu_events events;
3241
3242 r = -EFAULT;
3243 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3244 break;
3245
3246 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3247 break;
3248 }
3249 case KVM_GET_DEBUGREGS: {
3250 struct kvm_debugregs dbgregs;
3251
3252 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3253
3254 r = -EFAULT;
3255 if (copy_to_user(argp, &dbgregs,
3256 sizeof(struct kvm_debugregs)))
3257 break;
3258 r = 0;
3259 break;
3260 }
3261 case KVM_SET_DEBUGREGS: {
3262 struct kvm_debugregs dbgregs;
3263
3264 r = -EFAULT;
3265 if (copy_from_user(&dbgregs, argp,
3266 sizeof(struct kvm_debugregs)))
3267 break;
3268
3269 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3270 break;
3271 }
3272 case KVM_GET_XSAVE: {
3273 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3274 r = -ENOMEM;
3275 if (!u.xsave)
3276 break;
3277
3278 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3279
3280 r = -EFAULT;
3281 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3282 break;
3283 r = 0;
3284 break;
3285 }
3286 case KVM_SET_XSAVE: {
3287 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3288 if (IS_ERR(u.xsave))
3289 return PTR_ERR(u.xsave);
3290
3291 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3292 break;
3293 }
3294 case KVM_GET_XCRS: {
3295 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3296 r = -ENOMEM;
3297 if (!u.xcrs)
3298 break;
3299
3300 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3301
3302 r = -EFAULT;
3303 if (copy_to_user(argp, u.xcrs,
3304 sizeof(struct kvm_xcrs)))
3305 break;
3306 r = 0;
3307 break;
3308 }
3309 case KVM_SET_XCRS: {
3310 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3311 if (IS_ERR(u.xcrs))
3312 return PTR_ERR(u.xcrs);
3313
3314 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3315 break;
3316 }
3317 case KVM_SET_TSC_KHZ: {
3318 u32 user_tsc_khz;
3319
3320 r = -EINVAL;
3321 user_tsc_khz = (u32)arg;
3322
3323 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3324 goto out;
3325
3326 if (user_tsc_khz == 0)
3327 user_tsc_khz = tsc_khz;
3328
3329 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3330
3331 r = 0;
3332 goto out;
3333 }
3334 case KVM_GET_TSC_KHZ: {
3335 r = vcpu->arch.virtual_tsc_khz;
3336 goto out;
3337 }
3338 case KVM_KVMCLOCK_CTRL: {
3339 r = kvm_set_guest_paused(vcpu);
3340 goto out;
3341 }
3342 default:
3343 r = -EINVAL;
3344 }
3345 out:
3346 kfree(u.buffer);
3347 return r;
3348 }
3349
3350 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3351 {
3352 return VM_FAULT_SIGBUS;
3353 }
3354
3355 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3356 {
3357 int ret;
3358
3359 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3360 return -EINVAL;
3361 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3362 return ret;
3363 }
3364
3365 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3366 u64 ident_addr)
3367 {
3368 kvm->arch.ept_identity_map_addr = ident_addr;
3369 return 0;
3370 }
3371
3372 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3373 u32 kvm_nr_mmu_pages)
3374 {
3375 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3376 return -EINVAL;
3377
3378 mutex_lock(&kvm->slots_lock);
3379
3380 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3381 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3382
3383 mutex_unlock(&kvm->slots_lock);
3384 return 0;
3385 }
3386
3387 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3388 {
3389 return kvm->arch.n_max_mmu_pages;
3390 }
3391
3392 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3393 {
3394 int r;
3395
3396 r = 0;
3397 switch (chip->chip_id) {
3398 case KVM_IRQCHIP_PIC_MASTER:
3399 memcpy(&chip->chip.pic,
3400 &pic_irqchip(kvm)->pics[0],
3401 sizeof(struct kvm_pic_state));
3402 break;
3403 case KVM_IRQCHIP_PIC_SLAVE:
3404 memcpy(&chip->chip.pic,
3405 &pic_irqchip(kvm)->pics[1],
3406 sizeof(struct kvm_pic_state));
3407 break;
3408 case KVM_IRQCHIP_IOAPIC:
3409 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3410 break;
3411 default:
3412 r = -EINVAL;
3413 break;
3414 }
3415 return r;
3416 }
3417
3418 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3419 {
3420 int r;
3421
3422 r = 0;
3423 switch (chip->chip_id) {
3424 case KVM_IRQCHIP_PIC_MASTER:
3425 spin_lock(&pic_irqchip(kvm)->lock);
3426 memcpy(&pic_irqchip(kvm)->pics[0],
3427 &chip->chip.pic,
3428 sizeof(struct kvm_pic_state));
3429 spin_unlock(&pic_irqchip(kvm)->lock);
3430 break;
3431 case KVM_IRQCHIP_PIC_SLAVE:
3432 spin_lock(&pic_irqchip(kvm)->lock);
3433 memcpy(&pic_irqchip(kvm)->pics[1],
3434 &chip->chip.pic,
3435 sizeof(struct kvm_pic_state));
3436 spin_unlock(&pic_irqchip(kvm)->lock);
3437 break;
3438 case KVM_IRQCHIP_IOAPIC:
3439 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3440 break;
3441 default:
3442 r = -EINVAL;
3443 break;
3444 }
3445 kvm_pic_update_irq(pic_irqchip(kvm));
3446 return r;
3447 }
3448
3449 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3450 {
3451 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3452 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3453 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3454 return 0;
3455 }
3456
3457 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3458 {
3459 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3460 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3461 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3462 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3463 return 0;
3464 }
3465
3466 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3467 {
3468 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3469 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3470 sizeof(ps->channels));
3471 ps->flags = kvm->arch.vpit->pit_state.flags;
3472 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3473 memset(&ps->reserved, 0, sizeof(ps->reserved));
3474 return 0;
3475 }
3476
3477 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3478 {
3479 int start = 0;
3480 u32 prev_legacy, cur_legacy;
3481 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3482 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3483 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3484 if (!prev_legacy && cur_legacy)
3485 start = 1;
3486 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3487 sizeof(kvm->arch.vpit->pit_state.channels));
3488 kvm->arch.vpit->pit_state.flags = ps->flags;
3489 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3490 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3491 return 0;
3492 }
3493
3494 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3495 struct kvm_reinject_control *control)
3496 {
3497 if (!kvm->arch.vpit)
3498 return -ENXIO;
3499 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3500 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3501 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3502 return 0;
3503 }
3504
3505 /**
3506 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3507 * @kvm: kvm instance
3508 * @log: slot id and address to which we copy the log
3509 *
3510 * Steps 1-4 below provide general overview of dirty page logging. See
3511 * kvm_get_dirty_log_protect() function description for additional details.
3512 *
3513 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3514 * always flush the TLB (step 4) even if previous step failed and the dirty
3515 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3516 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3517 * writes will be marked dirty for next log read.
3518 *
3519 * 1. Take a snapshot of the bit and clear it if needed.
3520 * 2. Write protect the corresponding page.
3521 * 3. Copy the snapshot to the userspace.
3522 * 4. Flush TLB's if needed.
3523 */
3524 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3525 {
3526 bool is_dirty = false;
3527 int r;
3528
3529 mutex_lock(&kvm->slots_lock);
3530
3531 /*
3532 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3533 */
3534 if (kvm_x86_ops->flush_log_dirty)
3535 kvm_x86_ops->flush_log_dirty(kvm);
3536
3537 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3538
3539 /*
3540 * All the TLBs can be flushed out of mmu lock, see the comments in
3541 * kvm_mmu_slot_remove_write_access().
3542 */
3543 lockdep_assert_held(&kvm->slots_lock);
3544 if (is_dirty)
3545 kvm_flush_remote_tlbs(kvm);
3546
3547 mutex_unlock(&kvm->slots_lock);
3548 return r;
3549 }
3550
3551 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3552 bool line_status)
3553 {
3554 if (!irqchip_in_kernel(kvm))
3555 return -ENXIO;
3556
3557 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3558 irq_event->irq, irq_event->level,
3559 line_status);
3560 return 0;
3561 }
3562
3563 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3564 struct kvm_enable_cap *cap)
3565 {
3566 int r;
3567
3568 if (cap->flags)
3569 return -EINVAL;
3570
3571 switch (cap->cap) {
3572 case KVM_CAP_DISABLE_QUIRKS:
3573 kvm->arch.disabled_quirks = cap->args[0];
3574 r = 0;
3575 break;
3576 case KVM_CAP_SPLIT_IRQCHIP: {
3577 mutex_lock(&kvm->lock);
3578 r = -EINVAL;
3579 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3580 goto split_irqchip_unlock;
3581 r = -EEXIST;
3582 if (irqchip_in_kernel(kvm))
3583 goto split_irqchip_unlock;
3584 if (atomic_read(&kvm->online_vcpus))
3585 goto split_irqchip_unlock;
3586 r = kvm_setup_empty_irq_routing(kvm);
3587 if (r)
3588 goto split_irqchip_unlock;
3589 /* Pairs with irqchip_in_kernel. */
3590 smp_wmb();
3591 kvm->arch.irqchip_split = true;
3592 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3593 r = 0;
3594 split_irqchip_unlock:
3595 mutex_unlock(&kvm->lock);
3596 break;
3597 }
3598 default:
3599 r = -EINVAL;
3600 break;
3601 }
3602 return r;
3603 }
3604
3605 long kvm_arch_vm_ioctl(struct file *filp,
3606 unsigned int ioctl, unsigned long arg)
3607 {
3608 struct kvm *kvm = filp->private_data;
3609 void __user *argp = (void __user *)arg;
3610 int r = -ENOTTY;
3611 /*
3612 * This union makes it completely explicit to gcc-3.x
3613 * that these two variables' stack usage should be
3614 * combined, not added together.
3615 */
3616 union {
3617 struct kvm_pit_state ps;
3618 struct kvm_pit_state2 ps2;
3619 struct kvm_pit_config pit_config;
3620 } u;
3621
3622 switch (ioctl) {
3623 case KVM_SET_TSS_ADDR:
3624 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3625 break;
3626 case KVM_SET_IDENTITY_MAP_ADDR: {
3627 u64 ident_addr;
3628
3629 r = -EFAULT;
3630 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3631 goto out;
3632 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3633 break;
3634 }
3635 case KVM_SET_NR_MMU_PAGES:
3636 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3637 break;
3638 case KVM_GET_NR_MMU_PAGES:
3639 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3640 break;
3641 case KVM_CREATE_IRQCHIP: {
3642 struct kvm_pic *vpic;
3643
3644 mutex_lock(&kvm->lock);
3645 r = -EEXIST;
3646 if (kvm->arch.vpic)
3647 goto create_irqchip_unlock;
3648 r = -EINVAL;
3649 if (atomic_read(&kvm->online_vcpus))
3650 goto create_irqchip_unlock;
3651 r = -ENOMEM;
3652 vpic = kvm_create_pic(kvm);
3653 if (vpic) {
3654 r = kvm_ioapic_init(kvm);
3655 if (r) {
3656 mutex_lock(&kvm->slots_lock);
3657 kvm_destroy_pic(vpic);
3658 mutex_unlock(&kvm->slots_lock);
3659 goto create_irqchip_unlock;
3660 }
3661 } else
3662 goto create_irqchip_unlock;
3663 r = kvm_setup_default_irq_routing(kvm);
3664 if (r) {
3665 mutex_lock(&kvm->slots_lock);
3666 mutex_lock(&kvm->irq_lock);
3667 kvm_ioapic_destroy(kvm);
3668 kvm_destroy_pic(vpic);
3669 mutex_unlock(&kvm->irq_lock);
3670 mutex_unlock(&kvm->slots_lock);
3671 goto create_irqchip_unlock;
3672 }
3673 /* Write kvm->irq_routing before kvm->arch.vpic. */
3674 smp_wmb();
3675 kvm->arch.vpic = vpic;
3676 create_irqchip_unlock:
3677 mutex_unlock(&kvm->lock);
3678 break;
3679 }
3680 case KVM_CREATE_PIT:
3681 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3682 goto create_pit;
3683 case KVM_CREATE_PIT2:
3684 r = -EFAULT;
3685 if (copy_from_user(&u.pit_config, argp,
3686 sizeof(struct kvm_pit_config)))
3687 goto out;
3688 create_pit:
3689 mutex_lock(&kvm->slots_lock);
3690 r = -EEXIST;
3691 if (kvm->arch.vpit)
3692 goto create_pit_unlock;
3693 r = -ENOMEM;
3694 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3695 if (kvm->arch.vpit)
3696 r = 0;
3697 create_pit_unlock:
3698 mutex_unlock(&kvm->slots_lock);
3699 break;
3700 case KVM_GET_IRQCHIP: {
3701 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3702 struct kvm_irqchip *chip;
3703
3704 chip = memdup_user(argp, sizeof(*chip));
3705 if (IS_ERR(chip)) {
3706 r = PTR_ERR(chip);
3707 goto out;
3708 }
3709
3710 r = -ENXIO;
3711 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3712 goto get_irqchip_out;
3713 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3714 if (r)
3715 goto get_irqchip_out;
3716 r = -EFAULT;
3717 if (copy_to_user(argp, chip, sizeof *chip))
3718 goto get_irqchip_out;
3719 r = 0;
3720 get_irqchip_out:
3721 kfree(chip);
3722 break;
3723 }
3724 case KVM_SET_IRQCHIP: {
3725 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3726 struct kvm_irqchip *chip;
3727
3728 chip = memdup_user(argp, sizeof(*chip));
3729 if (IS_ERR(chip)) {
3730 r = PTR_ERR(chip);
3731 goto out;
3732 }
3733
3734 r = -ENXIO;
3735 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3736 goto set_irqchip_out;
3737 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3738 if (r)
3739 goto set_irqchip_out;
3740 r = 0;
3741 set_irqchip_out:
3742 kfree(chip);
3743 break;
3744 }
3745 case KVM_GET_PIT: {
3746 r = -EFAULT;
3747 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3748 goto out;
3749 r = -ENXIO;
3750 if (!kvm->arch.vpit)
3751 goto out;
3752 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3753 if (r)
3754 goto out;
3755 r = -EFAULT;
3756 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3757 goto out;
3758 r = 0;
3759 break;
3760 }
3761 case KVM_SET_PIT: {
3762 r = -EFAULT;
3763 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3764 goto out;
3765 r = -ENXIO;
3766 if (!kvm->arch.vpit)
3767 goto out;
3768 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3769 break;
3770 }
3771 case KVM_GET_PIT2: {
3772 r = -ENXIO;
3773 if (!kvm->arch.vpit)
3774 goto out;
3775 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3776 if (r)
3777 goto out;
3778 r = -EFAULT;
3779 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3780 goto out;
3781 r = 0;
3782 break;
3783 }
3784 case KVM_SET_PIT2: {
3785 r = -EFAULT;
3786 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3787 goto out;
3788 r = -ENXIO;
3789 if (!kvm->arch.vpit)
3790 goto out;
3791 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3792 break;
3793 }
3794 case KVM_REINJECT_CONTROL: {
3795 struct kvm_reinject_control control;
3796 r = -EFAULT;
3797 if (copy_from_user(&control, argp, sizeof(control)))
3798 goto out;
3799 r = kvm_vm_ioctl_reinject(kvm, &control);
3800 break;
3801 }
3802 case KVM_SET_BOOT_CPU_ID:
3803 r = 0;
3804 mutex_lock(&kvm->lock);
3805 if (atomic_read(&kvm->online_vcpus) != 0)
3806 r = -EBUSY;
3807 else
3808 kvm->arch.bsp_vcpu_id = arg;
3809 mutex_unlock(&kvm->lock);
3810 break;
3811 case KVM_XEN_HVM_CONFIG: {
3812 r = -EFAULT;
3813 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3814 sizeof(struct kvm_xen_hvm_config)))
3815 goto out;
3816 r = -EINVAL;
3817 if (kvm->arch.xen_hvm_config.flags)
3818 goto out;
3819 r = 0;
3820 break;
3821 }
3822 case KVM_SET_CLOCK: {
3823 struct kvm_clock_data user_ns;
3824 u64 now_ns;
3825 s64 delta;
3826
3827 r = -EFAULT;
3828 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3829 goto out;
3830
3831 r = -EINVAL;
3832 if (user_ns.flags)
3833 goto out;
3834
3835 r = 0;
3836 local_irq_disable();
3837 now_ns = get_kernel_ns();
3838 delta = user_ns.clock - now_ns;
3839 local_irq_enable();
3840 kvm->arch.kvmclock_offset = delta;
3841 kvm_gen_update_masterclock(kvm);
3842 break;
3843 }
3844 case KVM_GET_CLOCK: {
3845 struct kvm_clock_data user_ns;
3846 u64 now_ns;
3847
3848 local_irq_disable();
3849 now_ns = get_kernel_ns();
3850 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3851 local_irq_enable();
3852 user_ns.flags = 0;
3853 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3854
3855 r = -EFAULT;
3856 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3857 goto out;
3858 r = 0;
3859 break;
3860 }
3861 case KVM_ENABLE_CAP: {
3862 struct kvm_enable_cap cap;
3863
3864 r = -EFAULT;
3865 if (copy_from_user(&cap, argp, sizeof(cap)))
3866 goto out;
3867 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3868 break;
3869 }
3870 default:
3871 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3872 }
3873 out:
3874 return r;
3875 }
3876
3877 static void kvm_init_msr_list(void)
3878 {
3879 u32 dummy[2];
3880 unsigned i, j;
3881
3882 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
3883 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3884 continue;
3885
3886 /*
3887 * Even MSRs that are valid in the host may not be exposed
3888 * to the guests in some cases. We could work around this
3889 * in VMX with the generic MSR save/load machinery, but it
3890 * is not really worthwhile since it will really only
3891 * happen with nested virtualization.
3892 */
3893 switch (msrs_to_save[i]) {
3894 case MSR_IA32_BNDCFGS:
3895 if (!kvm_x86_ops->mpx_supported())
3896 continue;
3897 break;
3898 default:
3899 break;
3900 }
3901
3902 if (j < i)
3903 msrs_to_save[j] = msrs_to_save[i];
3904 j++;
3905 }
3906 num_msrs_to_save = j;
3907
3908 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
3909 switch (emulated_msrs[i]) {
3910 case MSR_IA32_SMBASE:
3911 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
3912 continue;
3913 break;
3914 default:
3915 break;
3916 }
3917
3918 if (j < i)
3919 emulated_msrs[j] = emulated_msrs[i];
3920 j++;
3921 }
3922 num_emulated_msrs = j;
3923 }
3924
3925 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3926 const void *v)
3927 {
3928 int handled = 0;
3929 int n;
3930
3931 do {
3932 n = min(len, 8);
3933 if (!(vcpu->arch.apic &&
3934 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
3935 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
3936 break;
3937 handled += n;
3938 addr += n;
3939 len -= n;
3940 v += n;
3941 } while (len);
3942
3943 return handled;
3944 }
3945
3946 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3947 {
3948 int handled = 0;
3949 int n;
3950
3951 do {
3952 n = min(len, 8);
3953 if (!(vcpu->arch.apic &&
3954 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
3955 addr, n, v))
3956 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
3957 break;
3958 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3959 handled += n;
3960 addr += n;
3961 len -= n;
3962 v += n;
3963 } while (len);
3964
3965 return handled;
3966 }
3967
3968 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3969 struct kvm_segment *var, int seg)
3970 {
3971 kvm_x86_ops->set_segment(vcpu, var, seg);
3972 }
3973
3974 void kvm_get_segment(struct kvm_vcpu *vcpu,
3975 struct kvm_segment *var, int seg)
3976 {
3977 kvm_x86_ops->get_segment(vcpu, var, seg);
3978 }
3979
3980 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
3981 struct x86_exception *exception)
3982 {
3983 gpa_t t_gpa;
3984
3985 BUG_ON(!mmu_is_nested(vcpu));
3986
3987 /* NPT walks are always user-walks */
3988 access |= PFERR_USER_MASK;
3989 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
3990
3991 return t_gpa;
3992 }
3993
3994 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3995 struct x86_exception *exception)
3996 {
3997 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3998 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3999 }
4000
4001 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4002 struct x86_exception *exception)
4003 {
4004 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4005 access |= PFERR_FETCH_MASK;
4006 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4007 }
4008
4009 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4010 struct x86_exception *exception)
4011 {
4012 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4013 access |= PFERR_WRITE_MASK;
4014 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4015 }
4016
4017 /* uses this to access any guest's mapped memory without checking CPL */
4018 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4019 struct x86_exception *exception)
4020 {
4021 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4022 }
4023
4024 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4025 struct kvm_vcpu *vcpu, u32 access,
4026 struct x86_exception *exception)
4027 {
4028 void *data = val;
4029 int r = X86EMUL_CONTINUE;
4030
4031 while (bytes) {
4032 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4033 exception);
4034 unsigned offset = addr & (PAGE_SIZE-1);
4035 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4036 int ret;
4037
4038 if (gpa == UNMAPPED_GVA)
4039 return X86EMUL_PROPAGATE_FAULT;
4040 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4041 offset, toread);
4042 if (ret < 0) {
4043 r = X86EMUL_IO_NEEDED;
4044 goto out;
4045 }
4046
4047 bytes -= toread;
4048 data += toread;
4049 addr += toread;
4050 }
4051 out:
4052 return r;
4053 }
4054
4055 /* used for instruction fetching */
4056 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4057 gva_t addr, void *val, unsigned int bytes,
4058 struct x86_exception *exception)
4059 {
4060 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4061 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4062 unsigned offset;
4063 int ret;
4064
4065 /* Inline kvm_read_guest_virt_helper for speed. */
4066 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4067 exception);
4068 if (unlikely(gpa == UNMAPPED_GVA))
4069 return X86EMUL_PROPAGATE_FAULT;
4070
4071 offset = addr & (PAGE_SIZE-1);
4072 if (WARN_ON(offset + bytes > PAGE_SIZE))
4073 bytes = (unsigned)PAGE_SIZE - offset;
4074 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4075 offset, bytes);
4076 if (unlikely(ret < 0))
4077 return X86EMUL_IO_NEEDED;
4078
4079 return X86EMUL_CONTINUE;
4080 }
4081
4082 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4083 gva_t addr, void *val, unsigned int bytes,
4084 struct x86_exception *exception)
4085 {
4086 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4087 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4088
4089 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4090 exception);
4091 }
4092 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4093
4094 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4095 gva_t addr, void *val, unsigned int bytes,
4096 struct x86_exception *exception)
4097 {
4098 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4099 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4100 }
4101
4102 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4103 unsigned long addr, void *val, unsigned int bytes)
4104 {
4105 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4106 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4107
4108 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4109 }
4110
4111 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4112 gva_t addr, void *val,
4113 unsigned int bytes,
4114 struct x86_exception *exception)
4115 {
4116 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4117 void *data = val;
4118 int r = X86EMUL_CONTINUE;
4119
4120 while (bytes) {
4121 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4122 PFERR_WRITE_MASK,
4123 exception);
4124 unsigned offset = addr & (PAGE_SIZE-1);
4125 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4126 int ret;
4127
4128 if (gpa == UNMAPPED_GVA)
4129 return X86EMUL_PROPAGATE_FAULT;
4130 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4131 if (ret < 0) {
4132 r = X86EMUL_IO_NEEDED;
4133 goto out;
4134 }
4135
4136 bytes -= towrite;
4137 data += towrite;
4138 addr += towrite;
4139 }
4140 out:
4141 return r;
4142 }
4143 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4144
4145 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4146 gpa_t *gpa, struct x86_exception *exception,
4147 bool write)
4148 {
4149 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4150 | (write ? PFERR_WRITE_MASK : 0);
4151
4152 if (vcpu_match_mmio_gva(vcpu, gva)
4153 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4154 vcpu->arch.access, access)) {
4155 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4156 (gva & (PAGE_SIZE - 1));
4157 trace_vcpu_match_mmio(gva, *gpa, write, false);
4158 return 1;
4159 }
4160
4161 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4162
4163 if (*gpa == UNMAPPED_GVA)
4164 return -1;
4165
4166 /* For APIC access vmexit */
4167 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4168 return 1;
4169
4170 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4171 trace_vcpu_match_mmio(gva, *gpa, write, true);
4172 return 1;
4173 }
4174
4175 return 0;
4176 }
4177
4178 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4179 const void *val, int bytes)
4180 {
4181 int ret;
4182
4183 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4184 if (ret < 0)
4185 return 0;
4186 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4187 return 1;
4188 }
4189
4190 struct read_write_emulator_ops {
4191 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4192 int bytes);
4193 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4194 void *val, int bytes);
4195 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4196 int bytes, void *val);
4197 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4198 void *val, int bytes);
4199 bool write;
4200 };
4201
4202 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4203 {
4204 if (vcpu->mmio_read_completed) {
4205 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4206 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4207 vcpu->mmio_read_completed = 0;
4208 return 1;
4209 }
4210
4211 return 0;
4212 }
4213
4214 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4215 void *val, int bytes)
4216 {
4217 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4218 }
4219
4220 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4221 void *val, int bytes)
4222 {
4223 return emulator_write_phys(vcpu, gpa, val, bytes);
4224 }
4225
4226 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4227 {
4228 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4229 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4230 }
4231
4232 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4233 void *val, int bytes)
4234 {
4235 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4236 return X86EMUL_IO_NEEDED;
4237 }
4238
4239 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4240 void *val, int bytes)
4241 {
4242 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4243
4244 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4245 return X86EMUL_CONTINUE;
4246 }
4247
4248 static const struct read_write_emulator_ops read_emultor = {
4249 .read_write_prepare = read_prepare,
4250 .read_write_emulate = read_emulate,
4251 .read_write_mmio = vcpu_mmio_read,
4252 .read_write_exit_mmio = read_exit_mmio,
4253 };
4254
4255 static const struct read_write_emulator_ops write_emultor = {
4256 .read_write_emulate = write_emulate,
4257 .read_write_mmio = write_mmio,
4258 .read_write_exit_mmio = write_exit_mmio,
4259 .write = true,
4260 };
4261
4262 static int emulator_read_write_onepage(unsigned long addr, void *val,
4263 unsigned int bytes,
4264 struct x86_exception *exception,
4265 struct kvm_vcpu *vcpu,
4266 const struct read_write_emulator_ops *ops)
4267 {
4268 gpa_t gpa;
4269 int handled, ret;
4270 bool write = ops->write;
4271 struct kvm_mmio_fragment *frag;
4272
4273 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4274
4275 if (ret < 0)
4276 return X86EMUL_PROPAGATE_FAULT;
4277
4278 /* For APIC access vmexit */
4279 if (ret)
4280 goto mmio;
4281
4282 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4283 return X86EMUL_CONTINUE;
4284
4285 mmio:
4286 /*
4287 * Is this MMIO handled locally?
4288 */
4289 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4290 if (handled == bytes)
4291 return X86EMUL_CONTINUE;
4292
4293 gpa += handled;
4294 bytes -= handled;
4295 val += handled;
4296
4297 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4298 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4299 frag->gpa = gpa;
4300 frag->data = val;
4301 frag->len = bytes;
4302 return X86EMUL_CONTINUE;
4303 }
4304
4305 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4306 unsigned long addr,
4307 void *val, unsigned int bytes,
4308 struct x86_exception *exception,
4309 const struct read_write_emulator_ops *ops)
4310 {
4311 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4312 gpa_t gpa;
4313 int rc;
4314
4315 if (ops->read_write_prepare &&
4316 ops->read_write_prepare(vcpu, val, bytes))
4317 return X86EMUL_CONTINUE;
4318
4319 vcpu->mmio_nr_fragments = 0;
4320
4321 /* Crossing a page boundary? */
4322 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4323 int now;
4324
4325 now = -addr & ~PAGE_MASK;
4326 rc = emulator_read_write_onepage(addr, val, now, exception,
4327 vcpu, ops);
4328
4329 if (rc != X86EMUL_CONTINUE)
4330 return rc;
4331 addr += now;
4332 if (ctxt->mode != X86EMUL_MODE_PROT64)
4333 addr = (u32)addr;
4334 val += now;
4335 bytes -= now;
4336 }
4337
4338 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4339 vcpu, ops);
4340 if (rc != X86EMUL_CONTINUE)
4341 return rc;
4342
4343 if (!vcpu->mmio_nr_fragments)
4344 return rc;
4345
4346 gpa = vcpu->mmio_fragments[0].gpa;
4347
4348 vcpu->mmio_needed = 1;
4349 vcpu->mmio_cur_fragment = 0;
4350
4351 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4352 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4353 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4354 vcpu->run->mmio.phys_addr = gpa;
4355
4356 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4357 }
4358
4359 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4360 unsigned long addr,
4361 void *val,
4362 unsigned int bytes,
4363 struct x86_exception *exception)
4364 {
4365 return emulator_read_write(ctxt, addr, val, bytes,
4366 exception, &read_emultor);
4367 }
4368
4369 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4370 unsigned long addr,
4371 const void *val,
4372 unsigned int bytes,
4373 struct x86_exception *exception)
4374 {
4375 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4376 exception, &write_emultor);
4377 }
4378
4379 #define CMPXCHG_TYPE(t, ptr, old, new) \
4380 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4381
4382 #ifdef CONFIG_X86_64
4383 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4384 #else
4385 # define CMPXCHG64(ptr, old, new) \
4386 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4387 #endif
4388
4389 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4390 unsigned long addr,
4391 const void *old,
4392 const void *new,
4393 unsigned int bytes,
4394 struct x86_exception *exception)
4395 {
4396 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4397 gpa_t gpa;
4398 struct page *page;
4399 char *kaddr;
4400 bool exchanged;
4401
4402 /* guests cmpxchg8b have to be emulated atomically */
4403 if (bytes > 8 || (bytes & (bytes - 1)))
4404 goto emul_write;
4405
4406 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4407
4408 if (gpa == UNMAPPED_GVA ||
4409 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4410 goto emul_write;
4411
4412 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4413 goto emul_write;
4414
4415 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4416 if (is_error_page(page))
4417 goto emul_write;
4418
4419 kaddr = kmap_atomic(page);
4420 kaddr += offset_in_page(gpa);
4421 switch (bytes) {
4422 case 1:
4423 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4424 break;
4425 case 2:
4426 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4427 break;
4428 case 4:
4429 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4430 break;
4431 case 8:
4432 exchanged = CMPXCHG64(kaddr, old, new);
4433 break;
4434 default:
4435 BUG();
4436 }
4437 kunmap_atomic(kaddr);
4438 kvm_release_page_dirty(page);
4439
4440 if (!exchanged)
4441 return X86EMUL_CMPXCHG_FAILED;
4442
4443 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4444 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4445
4446 return X86EMUL_CONTINUE;
4447
4448 emul_write:
4449 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4450
4451 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4452 }
4453
4454 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4455 {
4456 /* TODO: String I/O for in kernel device */
4457 int r;
4458
4459 if (vcpu->arch.pio.in)
4460 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4461 vcpu->arch.pio.size, pd);
4462 else
4463 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4464 vcpu->arch.pio.port, vcpu->arch.pio.size,
4465 pd);
4466 return r;
4467 }
4468
4469 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4470 unsigned short port, void *val,
4471 unsigned int count, bool in)
4472 {
4473 vcpu->arch.pio.port = port;
4474 vcpu->arch.pio.in = in;
4475 vcpu->arch.pio.count = count;
4476 vcpu->arch.pio.size = size;
4477
4478 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4479 vcpu->arch.pio.count = 0;
4480 return 1;
4481 }
4482
4483 vcpu->run->exit_reason = KVM_EXIT_IO;
4484 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4485 vcpu->run->io.size = size;
4486 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4487 vcpu->run->io.count = count;
4488 vcpu->run->io.port = port;
4489
4490 return 0;
4491 }
4492
4493 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4494 int size, unsigned short port, void *val,
4495 unsigned int count)
4496 {
4497 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4498 int ret;
4499
4500 if (vcpu->arch.pio.count)
4501 goto data_avail;
4502
4503 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4504 if (ret) {
4505 data_avail:
4506 memcpy(val, vcpu->arch.pio_data, size * count);
4507 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4508 vcpu->arch.pio.count = 0;
4509 return 1;
4510 }
4511
4512 return 0;
4513 }
4514
4515 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4516 int size, unsigned short port,
4517 const void *val, unsigned int count)
4518 {
4519 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4520
4521 memcpy(vcpu->arch.pio_data, val, size * count);
4522 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4523 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4524 }
4525
4526 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4527 {
4528 return kvm_x86_ops->get_segment_base(vcpu, seg);
4529 }
4530
4531 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4532 {
4533 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4534 }
4535
4536 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4537 {
4538 if (!need_emulate_wbinvd(vcpu))
4539 return X86EMUL_CONTINUE;
4540
4541 if (kvm_x86_ops->has_wbinvd_exit()) {
4542 int cpu = get_cpu();
4543
4544 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4545 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4546 wbinvd_ipi, NULL, 1);
4547 put_cpu();
4548 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4549 } else
4550 wbinvd();
4551 return X86EMUL_CONTINUE;
4552 }
4553
4554 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4555 {
4556 kvm_x86_ops->skip_emulated_instruction(vcpu);
4557 return kvm_emulate_wbinvd_noskip(vcpu);
4558 }
4559 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4560
4561
4562
4563 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4564 {
4565 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4566 }
4567
4568 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4569 unsigned long *dest)
4570 {
4571 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4572 }
4573
4574 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4575 unsigned long value)
4576 {
4577
4578 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4579 }
4580
4581 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4582 {
4583 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4584 }
4585
4586 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4587 {
4588 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4589 unsigned long value;
4590
4591 switch (cr) {
4592 case 0:
4593 value = kvm_read_cr0(vcpu);
4594 break;
4595 case 2:
4596 value = vcpu->arch.cr2;
4597 break;
4598 case 3:
4599 value = kvm_read_cr3(vcpu);
4600 break;
4601 case 4:
4602 value = kvm_read_cr4(vcpu);
4603 break;
4604 case 8:
4605 value = kvm_get_cr8(vcpu);
4606 break;
4607 default:
4608 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4609 return 0;
4610 }
4611
4612 return value;
4613 }
4614
4615 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4616 {
4617 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4618 int res = 0;
4619
4620 switch (cr) {
4621 case 0:
4622 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4623 break;
4624 case 2:
4625 vcpu->arch.cr2 = val;
4626 break;
4627 case 3:
4628 res = kvm_set_cr3(vcpu, val);
4629 break;
4630 case 4:
4631 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4632 break;
4633 case 8:
4634 res = kvm_set_cr8(vcpu, val);
4635 break;
4636 default:
4637 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4638 res = -1;
4639 }
4640
4641 return res;
4642 }
4643
4644 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4645 {
4646 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4647 }
4648
4649 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4650 {
4651 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4652 }
4653
4654 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4655 {
4656 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4657 }
4658
4659 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4660 {
4661 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4662 }
4663
4664 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4665 {
4666 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4667 }
4668
4669 static unsigned long emulator_get_cached_segment_base(
4670 struct x86_emulate_ctxt *ctxt, int seg)
4671 {
4672 return get_segment_base(emul_to_vcpu(ctxt), seg);
4673 }
4674
4675 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4676 struct desc_struct *desc, u32 *base3,
4677 int seg)
4678 {
4679 struct kvm_segment var;
4680
4681 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4682 *selector = var.selector;
4683
4684 if (var.unusable) {
4685 memset(desc, 0, sizeof(*desc));
4686 return false;
4687 }
4688
4689 if (var.g)
4690 var.limit >>= 12;
4691 set_desc_limit(desc, var.limit);
4692 set_desc_base(desc, (unsigned long)var.base);
4693 #ifdef CONFIG_X86_64
4694 if (base3)
4695 *base3 = var.base >> 32;
4696 #endif
4697 desc->type = var.type;
4698 desc->s = var.s;
4699 desc->dpl = var.dpl;
4700 desc->p = var.present;
4701 desc->avl = var.avl;
4702 desc->l = var.l;
4703 desc->d = var.db;
4704 desc->g = var.g;
4705
4706 return true;
4707 }
4708
4709 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4710 struct desc_struct *desc, u32 base3,
4711 int seg)
4712 {
4713 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4714 struct kvm_segment var;
4715
4716 var.selector = selector;
4717 var.base = get_desc_base(desc);
4718 #ifdef CONFIG_X86_64
4719 var.base |= ((u64)base3) << 32;
4720 #endif
4721 var.limit = get_desc_limit(desc);
4722 if (desc->g)
4723 var.limit = (var.limit << 12) | 0xfff;
4724 var.type = desc->type;
4725 var.dpl = desc->dpl;
4726 var.db = desc->d;
4727 var.s = desc->s;
4728 var.l = desc->l;
4729 var.g = desc->g;
4730 var.avl = desc->avl;
4731 var.present = desc->p;
4732 var.unusable = !var.present;
4733 var.padding = 0;
4734
4735 kvm_set_segment(vcpu, &var, seg);
4736 return;
4737 }
4738
4739 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4740 u32 msr_index, u64 *pdata)
4741 {
4742 struct msr_data msr;
4743 int r;
4744
4745 msr.index = msr_index;
4746 msr.host_initiated = false;
4747 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4748 if (r)
4749 return r;
4750
4751 *pdata = msr.data;
4752 return 0;
4753 }
4754
4755 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4756 u32 msr_index, u64 data)
4757 {
4758 struct msr_data msr;
4759
4760 msr.data = data;
4761 msr.index = msr_index;
4762 msr.host_initiated = false;
4763 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4764 }
4765
4766 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4767 {
4768 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4769
4770 return vcpu->arch.smbase;
4771 }
4772
4773 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4774 {
4775 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4776
4777 vcpu->arch.smbase = smbase;
4778 }
4779
4780 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4781 u32 pmc)
4782 {
4783 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4784 }
4785
4786 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4787 u32 pmc, u64 *pdata)
4788 {
4789 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4790 }
4791
4792 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4793 {
4794 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4795 }
4796
4797 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4798 {
4799 preempt_disable();
4800 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4801 /*
4802 * CR0.TS may reference the host fpu state, not the guest fpu state,
4803 * so it may be clear at this point.
4804 */
4805 clts();
4806 }
4807
4808 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4809 {
4810 preempt_enable();
4811 }
4812
4813 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4814 struct x86_instruction_info *info,
4815 enum x86_intercept_stage stage)
4816 {
4817 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4818 }
4819
4820 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4821 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4822 {
4823 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4824 }
4825
4826 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4827 {
4828 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4829 }
4830
4831 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4832 {
4833 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4834 }
4835
4836 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4837 {
4838 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4839 }
4840
4841 static const struct x86_emulate_ops emulate_ops = {
4842 .read_gpr = emulator_read_gpr,
4843 .write_gpr = emulator_write_gpr,
4844 .read_std = kvm_read_guest_virt_system,
4845 .write_std = kvm_write_guest_virt_system,
4846 .read_phys = kvm_read_guest_phys_system,
4847 .fetch = kvm_fetch_guest_virt,
4848 .read_emulated = emulator_read_emulated,
4849 .write_emulated = emulator_write_emulated,
4850 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4851 .invlpg = emulator_invlpg,
4852 .pio_in_emulated = emulator_pio_in_emulated,
4853 .pio_out_emulated = emulator_pio_out_emulated,
4854 .get_segment = emulator_get_segment,
4855 .set_segment = emulator_set_segment,
4856 .get_cached_segment_base = emulator_get_cached_segment_base,
4857 .get_gdt = emulator_get_gdt,
4858 .get_idt = emulator_get_idt,
4859 .set_gdt = emulator_set_gdt,
4860 .set_idt = emulator_set_idt,
4861 .get_cr = emulator_get_cr,
4862 .set_cr = emulator_set_cr,
4863 .cpl = emulator_get_cpl,
4864 .get_dr = emulator_get_dr,
4865 .set_dr = emulator_set_dr,
4866 .get_smbase = emulator_get_smbase,
4867 .set_smbase = emulator_set_smbase,
4868 .set_msr = emulator_set_msr,
4869 .get_msr = emulator_get_msr,
4870 .check_pmc = emulator_check_pmc,
4871 .read_pmc = emulator_read_pmc,
4872 .halt = emulator_halt,
4873 .wbinvd = emulator_wbinvd,
4874 .fix_hypercall = emulator_fix_hypercall,
4875 .get_fpu = emulator_get_fpu,
4876 .put_fpu = emulator_put_fpu,
4877 .intercept = emulator_intercept,
4878 .get_cpuid = emulator_get_cpuid,
4879 .set_nmi_mask = emulator_set_nmi_mask,
4880 };
4881
4882 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4883 {
4884 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4885 /*
4886 * an sti; sti; sequence only disable interrupts for the first
4887 * instruction. So, if the last instruction, be it emulated or
4888 * not, left the system with the INT_STI flag enabled, it
4889 * means that the last instruction is an sti. We should not
4890 * leave the flag on in this case. The same goes for mov ss
4891 */
4892 if (int_shadow & mask)
4893 mask = 0;
4894 if (unlikely(int_shadow || mask)) {
4895 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4896 if (!mask)
4897 kvm_make_request(KVM_REQ_EVENT, vcpu);
4898 }
4899 }
4900
4901 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4902 {
4903 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4904 if (ctxt->exception.vector == PF_VECTOR)
4905 return kvm_propagate_fault(vcpu, &ctxt->exception);
4906
4907 if (ctxt->exception.error_code_valid)
4908 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4909 ctxt->exception.error_code);
4910 else
4911 kvm_queue_exception(vcpu, ctxt->exception.vector);
4912 return false;
4913 }
4914
4915 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4916 {
4917 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4918 int cs_db, cs_l;
4919
4920 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4921
4922 ctxt->eflags = kvm_get_rflags(vcpu);
4923 ctxt->eip = kvm_rip_read(vcpu);
4924 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4925 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4926 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
4927 cs_db ? X86EMUL_MODE_PROT32 :
4928 X86EMUL_MODE_PROT16;
4929 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
4930 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
4931 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
4932 ctxt->emul_flags = vcpu->arch.hflags;
4933
4934 init_decode_cache(ctxt);
4935 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4936 }
4937
4938 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4939 {
4940 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4941 int ret;
4942
4943 init_emulate_ctxt(vcpu);
4944
4945 ctxt->op_bytes = 2;
4946 ctxt->ad_bytes = 2;
4947 ctxt->_eip = ctxt->eip + inc_eip;
4948 ret = emulate_int_real(ctxt, irq);
4949
4950 if (ret != X86EMUL_CONTINUE)
4951 return EMULATE_FAIL;
4952
4953 ctxt->eip = ctxt->_eip;
4954 kvm_rip_write(vcpu, ctxt->eip);
4955 kvm_set_rflags(vcpu, ctxt->eflags);
4956
4957 if (irq == NMI_VECTOR)
4958 vcpu->arch.nmi_pending = 0;
4959 else
4960 vcpu->arch.interrupt.pending = false;
4961
4962 return EMULATE_DONE;
4963 }
4964 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4965
4966 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4967 {
4968 int r = EMULATE_DONE;
4969
4970 ++vcpu->stat.insn_emulation_fail;
4971 trace_kvm_emulate_insn_failed(vcpu);
4972 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
4973 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4974 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4975 vcpu->run->internal.ndata = 0;
4976 r = EMULATE_FAIL;
4977 }
4978 kvm_queue_exception(vcpu, UD_VECTOR);
4979
4980 return r;
4981 }
4982
4983 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4984 bool write_fault_to_shadow_pgtable,
4985 int emulation_type)
4986 {
4987 gpa_t gpa = cr2;
4988 pfn_t pfn;
4989
4990 if (emulation_type & EMULTYPE_NO_REEXECUTE)
4991 return false;
4992
4993 if (!vcpu->arch.mmu.direct_map) {
4994 /*
4995 * Write permission should be allowed since only
4996 * write access need to be emulated.
4997 */
4998 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4999
5000 /*
5001 * If the mapping is invalid in guest, let cpu retry
5002 * it to generate fault.
5003 */
5004 if (gpa == UNMAPPED_GVA)
5005 return true;
5006 }
5007
5008 /*
5009 * Do not retry the unhandleable instruction if it faults on the
5010 * readonly host memory, otherwise it will goto a infinite loop:
5011 * retry instruction -> write #PF -> emulation fail -> retry
5012 * instruction -> ...
5013 */
5014 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5015
5016 /*
5017 * If the instruction failed on the error pfn, it can not be fixed,
5018 * report the error to userspace.
5019 */
5020 if (is_error_noslot_pfn(pfn))
5021 return false;
5022
5023 kvm_release_pfn_clean(pfn);
5024
5025 /* The instructions are well-emulated on direct mmu. */
5026 if (vcpu->arch.mmu.direct_map) {
5027 unsigned int indirect_shadow_pages;
5028
5029 spin_lock(&vcpu->kvm->mmu_lock);
5030 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5031 spin_unlock(&vcpu->kvm->mmu_lock);
5032
5033 if (indirect_shadow_pages)
5034 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5035
5036 return true;
5037 }
5038
5039 /*
5040 * if emulation was due to access to shadowed page table
5041 * and it failed try to unshadow page and re-enter the
5042 * guest to let CPU execute the instruction.
5043 */
5044 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5045
5046 /*
5047 * If the access faults on its page table, it can not
5048 * be fixed by unprotecting shadow page and it should
5049 * be reported to userspace.
5050 */
5051 return !write_fault_to_shadow_pgtable;
5052 }
5053
5054 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5055 unsigned long cr2, int emulation_type)
5056 {
5057 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5058 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5059
5060 last_retry_eip = vcpu->arch.last_retry_eip;
5061 last_retry_addr = vcpu->arch.last_retry_addr;
5062
5063 /*
5064 * If the emulation is caused by #PF and it is non-page_table
5065 * writing instruction, it means the VM-EXIT is caused by shadow
5066 * page protected, we can zap the shadow page and retry this
5067 * instruction directly.
5068 *
5069 * Note: if the guest uses a non-page-table modifying instruction
5070 * on the PDE that points to the instruction, then we will unmap
5071 * the instruction and go to an infinite loop. So, we cache the
5072 * last retried eip and the last fault address, if we meet the eip
5073 * and the address again, we can break out of the potential infinite
5074 * loop.
5075 */
5076 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5077
5078 if (!(emulation_type & EMULTYPE_RETRY))
5079 return false;
5080
5081 if (x86_page_table_writing_insn(ctxt))
5082 return false;
5083
5084 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5085 return false;
5086
5087 vcpu->arch.last_retry_eip = ctxt->eip;
5088 vcpu->arch.last_retry_addr = cr2;
5089
5090 if (!vcpu->arch.mmu.direct_map)
5091 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5092
5093 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5094
5095 return true;
5096 }
5097
5098 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5099 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5100
5101 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5102 {
5103 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5104 /* This is a good place to trace that we are exiting SMM. */
5105 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5106
5107 if (unlikely(vcpu->arch.smi_pending)) {
5108 kvm_make_request(KVM_REQ_SMI, vcpu);
5109 vcpu->arch.smi_pending = 0;
5110 } else {
5111 /* Process a latched INIT, if any. */
5112 kvm_make_request(KVM_REQ_EVENT, vcpu);
5113 }
5114 }
5115
5116 kvm_mmu_reset_context(vcpu);
5117 }
5118
5119 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5120 {
5121 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5122
5123 vcpu->arch.hflags = emul_flags;
5124
5125 if (changed & HF_SMM_MASK)
5126 kvm_smm_changed(vcpu);
5127 }
5128
5129 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5130 unsigned long *db)
5131 {
5132 u32 dr6 = 0;
5133 int i;
5134 u32 enable, rwlen;
5135
5136 enable = dr7;
5137 rwlen = dr7 >> 16;
5138 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5139 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5140 dr6 |= (1 << i);
5141 return dr6;
5142 }
5143
5144 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5145 {
5146 struct kvm_run *kvm_run = vcpu->run;
5147
5148 /*
5149 * rflags is the old, "raw" value of the flags. The new value has
5150 * not been saved yet.
5151 *
5152 * This is correct even for TF set by the guest, because "the
5153 * processor will not generate this exception after the instruction
5154 * that sets the TF flag".
5155 */
5156 if (unlikely(rflags & X86_EFLAGS_TF)) {
5157 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5158 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5159 DR6_RTM;
5160 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5161 kvm_run->debug.arch.exception = DB_VECTOR;
5162 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5163 *r = EMULATE_USER_EXIT;
5164 } else {
5165 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5166 /*
5167 * "Certain debug exceptions may clear bit 0-3. The
5168 * remaining contents of the DR6 register are never
5169 * cleared by the processor".
5170 */
5171 vcpu->arch.dr6 &= ~15;
5172 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5173 kvm_queue_exception(vcpu, DB_VECTOR);
5174 }
5175 }
5176 }
5177
5178 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5179 {
5180 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5181 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5182 struct kvm_run *kvm_run = vcpu->run;
5183 unsigned long eip = kvm_get_linear_rip(vcpu);
5184 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5185 vcpu->arch.guest_debug_dr7,
5186 vcpu->arch.eff_db);
5187
5188 if (dr6 != 0) {
5189 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5190 kvm_run->debug.arch.pc = eip;
5191 kvm_run->debug.arch.exception = DB_VECTOR;
5192 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5193 *r = EMULATE_USER_EXIT;
5194 return true;
5195 }
5196 }
5197
5198 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5199 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5200 unsigned long eip = kvm_get_linear_rip(vcpu);
5201 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5202 vcpu->arch.dr7,
5203 vcpu->arch.db);
5204
5205 if (dr6 != 0) {
5206 vcpu->arch.dr6 &= ~15;
5207 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5208 kvm_queue_exception(vcpu, DB_VECTOR);
5209 *r = EMULATE_DONE;
5210 return true;
5211 }
5212 }
5213
5214 return false;
5215 }
5216
5217 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5218 unsigned long cr2,
5219 int emulation_type,
5220 void *insn,
5221 int insn_len)
5222 {
5223 int r;
5224 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5225 bool writeback = true;
5226 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5227
5228 /*
5229 * Clear write_fault_to_shadow_pgtable here to ensure it is
5230 * never reused.
5231 */
5232 vcpu->arch.write_fault_to_shadow_pgtable = false;
5233 kvm_clear_exception_queue(vcpu);
5234
5235 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5236 init_emulate_ctxt(vcpu);
5237
5238 /*
5239 * We will reenter on the same instruction since
5240 * we do not set complete_userspace_io. This does not
5241 * handle watchpoints yet, those would be handled in
5242 * the emulate_ops.
5243 */
5244 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5245 return r;
5246
5247 ctxt->interruptibility = 0;
5248 ctxt->have_exception = false;
5249 ctxt->exception.vector = -1;
5250 ctxt->perm_ok = false;
5251
5252 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5253
5254 r = x86_decode_insn(ctxt, insn, insn_len);
5255
5256 trace_kvm_emulate_insn_start(vcpu);
5257 ++vcpu->stat.insn_emulation;
5258 if (r != EMULATION_OK) {
5259 if (emulation_type & EMULTYPE_TRAP_UD)
5260 return EMULATE_FAIL;
5261 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5262 emulation_type))
5263 return EMULATE_DONE;
5264 if (emulation_type & EMULTYPE_SKIP)
5265 return EMULATE_FAIL;
5266 return handle_emulation_failure(vcpu);
5267 }
5268 }
5269
5270 if (emulation_type & EMULTYPE_SKIP) {
5271 kvm_rip_write(vcpu, ctxt->_eip);
5272 if (ctxt->eflags & X86_EFLAGS_RF)
5273 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5274 return EMULATE_DONE;
5275 }
5276
5277 if (retry_instruction(ctxt, cr2, emulation_type))
5278 return EMULATE_DONE;
5279
5280 /* this is needed for vmware backdoor interface to work since it
5281 changes registers values during IO operation */
5282 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5283 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5284 emulator_invalidate_register_cache(ctxt);
5285 }
5286
5287 restart:
5288 r = x86_emulate_insn(ctxt);
5289
5290 if (r == EMULATION_INTERCEPTED)
5291 return EMULATE_DONE;
5292
5293 if (r == EMULATION_FAILED) {
5294 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5295 emulation_type))
5296 return EMULATE_DONE;
5297
5298 return handle_emulation_failure(vcpu);
5299 }
5300
5301 if (ctxt->have_exception) {
5302 r = EMULATE_DONE;
5303 if (inject_emulated_exception(vcpu))
5304 return r;
5305 } else if (vcpu->arch.pio.count) {
5306 if (!vcpu->arch.pio.in) {
5307 /* FIXME: return into emulator if single-stepping. */
5308 vcpu->arch.pio.count = 0;
5309 } else {
5310 writeback = false;
5311 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5312 }
5313 r = EMULATE_USER_EXIT;
5314 } else if (vcpu->mmio_needed) {
5315 if (!vcpu->mmio_is_write)
5316 writeback = false;
5317 r = EMULATE_USER_EXIT;
5318 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5319 } else if (r == EMULATION_RESTART)
5320 goto restart;
5321 else
5322 r = EMULATE_DONE;
5323
5324 if (writeback) {
5325 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5326 toggle_interruptibility(vcpu, ctxt->interruptibility);
5327 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5328 if (vcpu->arch.hflags != ctxt->emul_flags)
5329 kvm_set_hflags(vcpu, ctxt->emul_flags);
5330 kvm_rip_write(vcpu, ctxt->eip);
5331 if (r == EMULATE_DONE)
5332 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5333 if (!ctxt->have_exception ||
5334 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5335 __kvm_set_rflags(vcpu, ctxt->eflags);
5336
5337 /*
5338 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5339 * do nothing, and it will be requested again as soon as
5340 * the shadow expires. But we still need to check here,
5341 * because POPF has no interrupt shadow.
5342 */
5343 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5344 kvm_make_request(KVM_REQ_EVENT, vcpu);
5345 } else
5346 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5347
5348 return r;
5349 }
5350 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5351
5352 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5353 {
5354 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5355 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5356 size, port, &val, 1);
5357 /* do not return to emulator after return from userspace */
5358 vcpu->arch.pio.count = 0;
5359 return ret;
5360 }
5361 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5362
5363 static void tsc_bad(void *info)
5364 {
5365 __this_cpu_write(cpu_tsc_khz, 0);
5366 }
5367
5368 static void tsc_khz_changed(void *data)
5369 {
5370 struct cpufreq_freqs *freq = data;
5371 unsigned long khz = 0;
5372
5373 if (data)
5374 khz = freq->new;
5375 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5376 khz = cpufreq_quick_get(raw_smp_processor_id());
5377 if (!khz)
5378 khz = tsc_khz;
5379 __this_cpu_write(cpu_tsc_khz, khz);
5380 }
5381
5382 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5383 void *data)
5384 {
5385 struct cpufreq_freqs *freq = data;
5386 struct kvm *kvm;
5387 struct kvm_vcpu *vcpu;
5388 int i, send_ipi = 0;
5389
5390 /*
5391 * We allow guests to temporarily run on slowing clocks,
5392 * provided we notify them after, or to run on accelerating
5393 * clocks, provided we notify them before. Thus time never
5394 * goes backwards.
5395 *
5396 * However, we have a problem. We can't atomically update
5397 * the frequency of a given CPU from this function; it is
5398 * merely a notifier, which can be called from any CPU.
5399 * Changing the TSC frequency at arbitrary points in time
5400 * requires a recomputation of local variables related to
5401 * the TSC for each VCPU. We must flag these local variables
5402 * to be updated and be sure the update takes place with the
5403 * new frequency before any guests proceed.
5404 *
5405 * Unfortunately, the combination of hotplug CPU and frequency
5406 * change creates an intractable locking scenario; the order
5407 * of when these callouts happen is undefined with respect to
5408 * CPU hotplug, and they can race with each other. As such,
5409 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5410 * undefined; you can actually have a CPU frequency change take
5411 * place in between the computation of X and the setting of the
5412 * variable. To protect against this problem, all updates of
5413 * the per_cpu tsc_khz variable are done in an interrupt
5414 * protected IPI, and all callers wishing to update the value
5415 * must wait for a synchronous IPI to complete (which is trivial
5416 * if the caller is on the CPU already). This establishes the
5417 * necessary total order on variable updates.
5418 *
5419 * Note that because a guest time update may take place
5420 * anytime after the setting of the VCPU's request bit, the
5421 * correct TSC value must be set before the request. However,
5422 * to ensure the update actually makes it to any guest which
5423 * starts running in hardware virtualization between the set
5424 * and the acquisition of the spinlock, we must also ping the
5425 * CPU after setting the request bit.
5426 *
5427 */
5428
5429 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5430 return 0;
5431 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5432 return 0;
5433
5434 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5435
5436 spin_lock(&kvm_lock);
5437 list_for_each_entry(kvm, &vm_list, vm_list) {
5438 kvm_for_each_vcpu(i, vcpu, kvm) {
5439 if (vcpu->cpu != freq->cpu)
5440 continue;
5441 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5442 if (vcpu->cpu != smp_processor_id())
5443 send_ipi = 1;
5444 }
5445 }
5446 spin_unlock(&kvm_lock);
5447
5448 if (freq->old < freq->new && send_ipi) {
5449 /*
5450 * We upscale the frequency. Must make the guest
5451 * doesn't see old kvmclock values while running with
5452 * the new frequency, otherwise we risk the guest sees
5453 * time go backwards.
5454 *
5455 * In case we update the frequency for another cpu
5456 * (which might be in guest context) send an interrupt
5457 * to kick the cpu out of guest context. Next time
5458 * guest context is entered kvmclock will be updated,
5459 * so the guest will not see stale values.
5460 */
5461 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5462 }
5463 return 0;
5464 }
5465
5466 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5467 .notifier_call = kvmclock_cpufreq_notifier
5468 };
5469
5470 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5471 unsigned long action, void *hcpu)
5472 {
5473 unsigned int cpu = (unsigned long)hcpu;
5474
5475 switch (action) {
5476 case CPU_ONLINE:
5477 case CPU_DOWN_FAILED:
5478 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5479 break;
5480 case CPU_DOWN_PREPARE:
5481 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5482 break;
5483 }
5484 return NOTIFY_OK;
5485 }
5486
5487 static struct notifier_block kvmclock_cpu_notifier_block = {
5488 .notifier_call = kvmclock_cpu_notifier,
5489 .priority = -INT_MAX
5490 };
5491
5492 static void kvm_timer_init(void)
5493 {
5494 int cpu;
5495
5496 max_tsc_khz = tsc_khz;
5497
5498 cpu_notifier_register_begin();
5499 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5500 #ifdef CONFIG_CPU_FREQ
5501 struct cpufreq_policy policy;
5502 memset(&policy, 0, sizeof(policy));
5503 cpu = get_cpu();
5504 cpufreq_get_policy(&policy, cpu);
5505 if (policy.cpuinfo.max_freq)
5506 max_tsc_khz = policy.cpuinfo.max_freq;
5507 put_cpu();
5508 #endif
5509 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5510 CPUFREQ_TRANSITION_NOTIFIER);
5511 }
5512 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5513 for_each_online_cpu(cpu)
5514 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5515
5516 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5517 cpu_notifier_register_done();
5518
5519 }
5520
5521 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5522
5523 int kvm_is_in_guest(void)
5524 {
5525 return __this_cpu_read(current_vcpu) != NULL;
5526 }
5527
5528 static int kvm_is_user_mode(void)
5529 {
5530 int user_mode = 3;
5531
5532 if (__this_cpu_read(current_vcpu))
5533 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5534
5535 return user_mode != 0;
5536 }
5537
5538 static unsigned long kvm_get_guest_ip(void)
5539 {
5540 unsigned long ip = 0;
5541
5542 if (__this_cpu_read(current_vcpu))
5543 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5544
5545 return ip;
5546 }
5547
5548 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5549 .is_in_guest = kvm_is_in_guest,
5550 .is_user_mode = kvm_is_user_mode,
5551 .get_guest_ip = kvm_get_guest_ip,
5552 };
5553
5554 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5555 {
5556 __this_cpu_write(current_vcpu, vcpu);
5557 }
5558 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5559
5560 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5561 {
5562 __this_cpu_write(current_vcpu, NULL);
5563 }
5564 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5565
5566 static void kvm_set_mmio_spte_mask(void)
5567 {
5568 u64 mask;
5569 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5570
5571 /*
5572 * Set the reserved bits and the present bit of an paging-structure
5573 * entry to generate page fault with PFER.RSV = 1.
5574 */
5575 /* Mask the reserved physical address bits. */
5576 mask = rsvd_bits(maxphyaddr, 51);
5577
5578 /* Bit 62 is always reserved for 32bit host. */
5579 mask |= 0x3ull << 62;
5580
5581 /* Set the present bit. */
5582 mask |= 1ull;
5583
5584 #ifdef CONFIG_X86_64
5585 /*
5586 * If reserved bit is not supported, clear the present bit to disable
5587 * mmio page fault.
5588 */
5589 if (maxphyaddr == 52)
5590 mask &= ~1ull;
5591 #endif
5592
5593 kvm_mmu_set_mmio_spte_mask(mask);
5594 }
5595
5596 #ifdef CONFIG_X86_64
5597 static void pvclock_gtod_update_fn(struct work_struct *work)
5598 {
5599 struct kvm *kvm;
5600
5601 struct kvm_vcpu *vcpu;
5602 int i;
5603
5604 spin_lock(&kvm_lock);
5605 list_for_each_entry(kvm, &vm_list, vm_list)
5606 kvm_for_each_vcpu(i, vcpu, kvm)
5607 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5608 atomic_set(&kvm_guest_has_master_clock, 0);
5609 spin_unlock(&kvm_lock);
5610 }
5611
5612 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5613
5614 /*
5615 * Notification about pvclock gtod data update.
5616 */
5617 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5618 void *priv)
5619 {
5620 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5621 struct timekeeper *tk = priv;
5622
5623 update_pvclock_gtod(tk);
5624
5625 /* disable master clock if host does not trust, or does not
5626 * use, TSC clocksource
5627 */
5628 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5629 atomic_read(&kvm_guest_has_master_clock) != 0)
5630 queue_work(system_long_wq, &pvclock_gtod_work);
5631
5632 return 0;
5633 }
5634
5635 static struct notifier_block pvclock_gtod_notifier = {
5636 .notifier_call = pvclock_gtod_notify,
5637 };
5638 #endif
5639
5640 int kvm_arch_init(void *opaque)
5641 {
5642 int r;
5643 struct kvm_x86_ops *ops = opaque;
5644
5645 if (kvm_x86_ops) {
5646 printk(KERN_ERR "kvm: already loaded the other module\n");
5647 r = -EEXIST;
5648 goto out;
5649 }
5650
5651 if (!ops->cpu_has_kvm_support()) {
5652 printk(KERN_ERR "kvm: no hardware support\n");
5653 r = -EOPNOTSUPP;
5654 goto out;
5655 }
5656 if (ops->disabled_by_bios()) {
5657 printk(KERN_ERR "kvm: disabled by bios\n");
5658 r = -EOPNOTSUPP;
5659 goto out;
5660 }
5661
5662 r = -ENOMEM;
5663 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5664 if (!shared_msrs) {
5665 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5666 goto out;
5667 }
5668
5669 r = kvm_mmu_module_init();
5670 if (r)
5671 goto out_free_percpu;
5672
5673 kvm_set_mmio_spte_mask();
5674
5675 kvm_x86_ops = ops;
5676
5677 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5678 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5679
5680 kvm_timer_init();
5681
5682 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5683
5684 if (cpu_has_xsave)
5685 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5686
5687 kvm_lapic_init();
5688 #ifdef CONFIG_X86_64
5689 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5690 #endif
5691
5692 return 0;
5693
5694 out_free_percpu:
5695 free_percpu(shared_msrs);
5696 out:
5697 return r;
5698 }
5699
5700 void kvm_arch_exit(void)
5701 {
5702 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5703
5704 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5705 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5706 CPUFREQ_TRANSITION_NOTIFIER);
5707 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5708 #ifdef CONFIG_X86_64
5709 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5710 #endif
5711 kvm_x86_ops = NULL;
5712 kvm_mmu_module_exit();
5713 free_percpu(shared_msrs);
5714 }
5715
5716 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5717 {
5718 ++vcpu->stat.halt_exits;
5719 if (lapic_in_kernel(vcpu)) {
5720 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5721 return 1;
5722 } else {
5723 vcpu->run->exit_reason = KVM_EXIT_HLT;
5724 return 0;
5725 }
5726 }
5727 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5728
5729 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5730 {
5731 kvm_x86_ops->skip_emulated_instruction(vcpu);
5732 return kvm_vcpu_halt(vcpu);
5733 }
5734 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5735
5736 /*
5737 * kvm_pv_kick_cpu_op: Kick a vcpu.
5738 *
5739 * @apicid - apicid of vcpu to be kicked.
5740 */
5741 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5742 {
5743 struct kvm_lapic_irq lapic_irq;
5744
5745 lapic_irq.shorthand = 0;
5746 lapic_irq.dest_mode = 0;
5747 lapic_irq.dest_id = apicid;
5748 lapic_irq.msi_redir_hint = false;
5749
5750 lapic_irq.delivery_mode = APIC_DM_REMRD;
5751 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5752 }
5753
5754 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5755 {
5756 unsigned long nr, a0, a1, a2, a3, ret;
5757 int op_64_bit, r = 1;
5758
5759 kvm_x86_ops->skip_emulated_instruction(vcpu);
5760
5761 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5762 return kvm_hv_hypercall(vcpu);
5763
5764 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5765 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5766 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5767 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5768 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5769
5770 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5771
5772 op_64_bit = is_64_bit_mode(vcpu);
5773 if (!op_64_bit) {
5774 nr &= 0xFFFFFFFF;
5775 a0 &= 0xFFFFFFFF;
5776 a1 &= 0xFFFFFFFF;
5777 a2 &= 0xFFFFFFFF;
5778 a3 &= 0xFFFFFFFF;
5779 }
5780
5781 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5782 ret = -KVM_EPERM;
5783 goto out;
5784 }
5785
5786 switch (nr) {
5787 case KVM_HC_VAPIC_POLL_IRQ:
5788 ret = 0;
5789 break;
5790 case KVM_HC_KICK_CPU:
5791 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5792 ret = 0;
5793 break;
5794 default:
5795 ret = -KVM_ENOSYS;
5796 break;
5797 }
5798 out:
5799 if (!op_64_bit)
5800 ret = (u32)ret;
5801 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5802 ++vcpu->stat.hypercalls;
5803 return r;
5804 }
5805 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5806
5807 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5808 {
5809 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5810 char instruction[3];
5811 unsigned long rip = kvm_rip_read(vcpu);
5812
5813 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5814
5815 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5816 }
5817
5818 /*
5819 * Check if userspace requested an interrupt window, and that the
5820 * interrupt window is open.
5821 *
5822 * No need to exit to userspace if we already have an interrupt queued.
5823 */
5824 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5825 {
5826 if (!vcpu->run->request_interrupt_window || pic_in_kernel(vcpu->kvm))
5827 return false;
5828
5829 if (kvm_cpu_has_interrupt(vcpu))
5830 return false;
5831
5832 return (irqchip_split(vcpu->kvm)
5833 ? kvm_apic_accept_pic_intr(vcpu)
5834 : kvm_arch_interrupt_allowed(vcpu));
5835 }
5836
5837 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5838 {
5839 struct kvm_run *kvm_run = vcpu->run;
5840
5841 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5842 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5843 kvm_run->cr8 = kvm_get_cr8(vcpu);
5844 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5845 if (!irqchip_in_kernel(vcpu->kvm))
5846 kvm_run->ready_for_interrupt_injection =
5847 kvm_arch_interrupt_allowed(vcpu) &&
5848 !kvm_cpu_has_interrupt(vcpu) &&
5849 !kvm_event_needs_reinjection(vcpu);
5850 else if (!pic_in_kernel(vcpu->kvm))
5851 kvm_run->ready_for_interrupt_injection =
5852 kvm_apic_accept_pic_intr(vcpu) &&
5853 !kvm_cpu_has_interrupt(vcpu);
5854 else
5855 kvm_run->ready_for_interrupt_injection = 1;
5856 }
5857
5858 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5859 {
5860 int max_irr, tpr;
5861
5862 if (!kvm_x86_ops->update_cr8_intercept)
5863 return;
5864
5865 if (!vcpu->arch.apic)
5866 return;
5867
5868 if (!vcpu->arch.apic->vapic_addr)
5869 max_irr = kvm_lapic_find_highest_irr(vcpu);
5870 else
5871 max_irr = -1;
5872
5873 if (max_irr != -1)
5874 max_irr >>= 4;
5875
5876 tpr = kvm_lapic_get_cr8(vcpu);
5877
5878 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5879 }
5880
5881 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5882 {
5883 int r;
5884
5885 /* try to reinject previous events if any */
5886 if (vcpu->arch.exception.pending) {
5887 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5888 vcpu->arch.exception.has_error_code,
5889 vcpu->arch.exception.error_code);
5890
5891 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5892 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5893 X86_EFLAGS_RF);
5894
5895 if (vcpu->arch.exception.nr == DB_VECTOR &&
5896 (vcpu->arch.dr7 & DR7_GD)) {
5897 vcpu->arch.dr7 &= ~DR7_GD;
5898 kvm_update_dr7(vcpu);
5899 }
5900
5901 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5902 vcpu->arch.exception.has_error_code,
5903 vcpu->arch.exception.error_code,
5904 vcpu->arch.exception.reinject);
5905 return 0;
5906 }
5907
5908 if (vcpu->arch.nmi_injected) {
5909 kvm_x86_ops->set_nmi(vcpu);
5910 return 0;
5911 }
5912
5913 if (vcpu->arch.interrupt.pending) {
5914 kvm_x86_ops->set_irq(vcpu);
5915 return 0;
5916 }
5917
5918 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5919 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5920 if (r != 0)
5921 return r;
5922 }
5923
5924 /* try to inject new event if pending */
5925 if (vcpu->arch.nmi_pending) {
5926 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5927 --vcpu->arch.nmi_pending;
5928 vcpu->arch.nmi_injected = true;
5929 kvm_x86_ops->set_nmi(vcpu);
5930 }
5931 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5932 /*
5933 * Because interrupts can be injected asynchronously, we are
5934 * calling check_nested_events again here to avoid a race condition.
5935 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
5936 * proposal and current concerns. Perhaps we should be setting
5937 * KVM_REQ_EVENT only on certain events and not unconditionally?
5938 */
5939 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5940 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5941 if (r != 0)
5942 return r;
5943 }
5944 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5945 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5946 false);
5947 kvm_x86_ops->set_irq(vcpu);
5948 }
5949 }
5950 return 0;
5951 }
5952
5953 static void process_nmi(struct kvm_vcpu *vcpu)
5954 {
5955 unsigned limit = 2;
5956
5957 /*
5958 * x86 is limited to one NMI running, and one NMI pending after it.
5959 * If an NMI is already in progress, limit further NMIs to just one.
5960 * Otherwise, allow two (and we'll inject the first one immediately).
5961 */
5962 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5963 limit = 1;
5964
5965 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5966 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5967 kvm_make_request(KVM_REQ_EVENT, vcpu);
5968 }
5969
5970 #define put_smstate(type, buf, offset, val) \
5971 *(type *)((buf) + (offset) - 0x7e00) = val
5972
5973 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
5974 {
5975 u32 flags = 0;
5976 flags |= seg->g << 23;
5977 flags |= seg->db << 22;
5978 flags |= seg->l << 21;
5979 flags |= seg->avl << 20;
5980 flags |= seg->present << 15;
5981 flags |= seg->dpl << 13;
5982 flags |= seg->s << 12;
5983 flags |= seg->type << 8;
5984 return flags;
5985 }
5986
5987 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
5988 {
5989 struct kvm_segment seg;
5990 int offset;
5991
5992 kvm_get_segment(vcpu, &seg, n);
5993 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
5994
5995 if (n < 3)
5996 offset = 0x7f84 + n * 12;
5997 else
5998 offset = 0x7f2c + (n - 3) * 12;
5999
6000 put_smstate(u32, buf, offset + 8, seg.base);
6001 put_smstate(u32, buf, offset + 4, seg.limit);
6002 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6003 }
6004
6005 #ifdef CONFIG_X86_64
6006 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6007 {
6008 struct kvm_segment seg;
6009 int offset;
6010 u16 flags;
6011
6012 kvm_get_segment(vcpu, &seg, n);
6013 offset = 0x7e00 + n * 16;
6014
6015 flags = process_smi_get_segment_flags(&seg) >> 8;
6016 put_smstate(u16, buf, offset, seg.selector);
6017 put_smstate(u16, buf, offset + 2, flags);
6018 put_smstate(u32, buf, offset + 4, seg.limit);
6019 put_smstate(u64, buf, offset + 8, seg.base);
6020 }
6021 #endif
6022
6023 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6024 {
6025 struct desc_ptr dt;
6026 struct kvm_segment seg;
6027 unsigned long val;
6028 int i;
6029
6030 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6031 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6032 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6033 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6034
6035 for (i = 0; i < 8; i++)
6036 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6037
6038 kvm_get_dr(vcpu, 6, &val);
6039 put_smstate(u32, buf, 0x7fcc, (u32)val);
6040 kvm_get_dr(vcpu, 7, &val);
6041 put_smstate(u32, buf, 0x7fc8, (u32)val);
6042
6043 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6044 put_smstate(u32, buf, 0x7fc4, seg.selector);
6045 put_smstate(u32, buf, 0x7f64, seg.base);
6046 put_smstate(u32, buf, 0x7f60, seg.limit);
6047 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6048
6049 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6050 put_smstate(u32, buf, 0x7fc0, seg.selector);
6051 put_smstate(u32, buf, 0x7f80, seg.base);
6052 put_smstate(u32, buf, 0x7f7c, seg.limit);
6053 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6054
6055 kvm_x86_ops->get_gdt(vcpu, &dt);
6056 put_smstate(u32, buf, 0x7f74, dt.address);
6057 put_smstate(u32, buf, 0x7f70, dt.size);
6058
6059 kvm_x86_ops->get_idt(vcpu, &dt);
6060 put_smstate(u32, buf, 0x7f58, dt.address);
6061 put_smstate(u32, buf, 0x7f54, dt.size);
6062
6063 for (i = 0; i < 6; i++)
6064 process_smi_save_seg_32(vcpu, buf, i);
6065
6066 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6067
6068 /* revision id */
6069 put_smstate(u32, buf, 0x7efc, 0x00020000);
6070 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6071 }
6072
6073 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6074 {
6075 #ifdef CONFIG_X86_64
6076 struct desc_ptr dt;
6077 struct kvm_segment seg;
6078 unsigned long val;
6079 int i;
6080
6081 for (i = 0; i < 16; i++)
6082 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6083
6084 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6085 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6086
6087 kvm_get_dr(vcpu, 6, &val);
6088 put_smstate(u64, buf, 0x7f68, val);
6089 kvm_get_dr(vcpu, 7, &val);
6090 put_smstate(u64, buf, 0x7f60, val);
6091
6092 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6093 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6094 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6095
6096 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6097
6098 /* revision id */
6099 put_smstate(u32, buf, 0x7efc, 0x00020064);
6100
6101 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6102
6103 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6104 put_smstate(u16, buf, 0x7e90, seg.selector);
6105 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6106 put_smstate(u32, buf, 0x7e94, seg.limit);
6107 put_smstate(u64, buf, 0x7e98, seg.base);
6108
6109 kvm_x86_ops->get_idt(vcpu, &dt);
6110 put_smstate(u32, buf, 0x7e84, dt.size);
6111 put_smstate(u64, buf, 0x7e88, dt.address);
6112
6113 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6114 put_smstate(u16, buf, 0x7e70, seg.selector);
6115 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6116 put_smstate(u32, buf, 0x7e74, seg.limit);
6117 put_smstate(u64, buf, 0x7e78, seg.base);
6118
6119 kvm_x86_ops->get_gdt(vcpu, &dt);
6120 put_smstate(u32, buf, 0x7e64, dt.size);
6121 put_smstate(u64, buf, 0x7e68, dt.address);
6122
6123 for (i = 0; i < 6; i++)
6124 process_smi_save_seg_64(vcpu, buf, i);
6125 #else
6126 WARN_ON_ONCE(1);
6127 #endif
6128 }
6129
6130 static void process_smi(struct kvm_vcpu *vcpu)
6131 {
6132 struct kvm_segment cs, ds;
6133 struct desc_ptr dt;
6134 char buf[512];
6135 u32 cr0;
6136
6137 if (is_smm(vcpu)) {
6138 vcpu->arch.smi_pending = true;
6139 return;
6140 }
6141
6142 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6143 vcpu->arch.hflags |= HF_SMM_MASK;
6144 memset(buf, 0, 512);
6145 if (guest_cpuid_has_longmode(vcpu))
6146 process_smi_save_state_64(vcpu, buf);
6147 else
6148 process_smi_save_state_32(vcpu, buf);
6149
6150 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6151
6152 if (kvm_x86_ops->get_nmi_mask(vcpu))
6153 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6154 else
6155 kvm_x86_ops->set_nmi_mask(vcpu, true);
6156
6157 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6158 kvm_rip_write(vcpu, 0x8000);
6159
6160 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6161 kvm_x86_ops->set_cr0(vcpu, cr0);
6162 vcpu->arch.cr0 = cr0;
6163
6164 kvm_x86_ops->set_cr4(vcpu, 0);
6165
6166 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6167 dt.address = dt.size = 0;
6168 kvm_x86_ops->set_idt(vcpu, &dt);
6169
6170 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6171
6172 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6173 cs.base = vcpu->arch.smbase;
6174
6175 ds.selector = 0;
6176 ds.base = 0;
6177
6178 cs.limit = ds.limit = 0xffffffff;
6179 cs.type = ds.type = 0x3;
6180 cs.dpl = ds.dpl = 0;
6181 cs.db = ds.db = 0;
6182 cs.s = ds.s = 1;
6183 cs.l = ds.l = 0;
6184 cs.g = ds.g = 1;
6185 cs.avl = ds.avl = 0;
6186 cs.present = ds.present = 1;
6187 cs.unusable = ds.unusable = 0;
6188 cs.padding = ds.padding = 0;
6189
6190 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6191 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6192 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6193 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6194 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6195 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6196
6197 if (guest_cpuid_has_longmode(vcpu))
6198 kvm_x86_ops->set_efer(vcpu, 0);
6199
6200 kvm_update_cpuid(vcpu);
6201 kvm_mmu_reset_context(vcpu);
6202 }
6203
6204 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6205 {
6206 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6207 return;
6208
6209 memset(vcpu->arch.eoi_exit_bitmap, 0, 256 / 8);
6210
6211 if (irqchip_split(vcpu->kvm))
6212 kvm_scan_ioapic_routes(vcpu, vcpu->arch.eoi_exit_bitmap);
6213 else {
6214 kvm_x86_ops->sync_pir_to_irr(vcpu);
6215 kvm_ioapic_scan_entry(vcpu, vcpu->arch.eoi_exit_bitmap);
6216 }
6217 kvm_x86_ops->load_eoi_exitmap(vcpu);
6218 }
6219
6220 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6221 {
6222 ++vcpu->stat.tlb_flush;
6223 kvm_x86_ops->tlb_flush(vcpu);
6224 }
6225
6226 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6227 {
6228 struct page *page = NULL;
6229
6230 if (!lapic_in_kernel(vcpu))
6231 return;
6232
6233 if (!kvm_x86_ops->set_apic_access_page_addr)
6234 return;
6235
6236 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6237 if (is_error_page(page))
6238 return;
6239 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6240
6241 /*
6242 * Do not pin apic access page in memory, the MMU notifier
6243 * will call us again if it is migrated or swapped out.
6244 */
6245 put_page(page);
6246 }
6247 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6248
6249 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6250 unsigned long address)
6251 {
6252 /*
6253 * The physical address of apic access page is stored in the VMCS.
6254 * Update it when it becomes invalid.
6255 */
6256 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6257 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6258 }
6259
6260 /*
6261 * Returns 1 to let vcpu_run() continue the guest execution loop without
6262 * exiting to the userspace. Otherwise, the value will be returned to the
6263 * userspace.
6264 */
6265 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6266 {
6267 int r;
6268 bool req_int_win = !lapic_in_kernel(vcpu) &&
6269 vcpu->run->request_interrupt_window;
6270 bool req_immediate_exit = false;
6271
6272 if (vcpu->requests) {
6273 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6274 kvm_mmu_unload(vcpu);
6275 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6276 __kvm_migrate_timers(vcpu);
6277 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6278 kvm_gen_update_masterclock(vcpu->kvm);
6279 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6280 kvm_gen_kvmclock_update(vcpu);
6281 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6282 r = kvm_guest_time_update(vcpu);
6283 if (unlikely(r))
6284 goto out;
6285 }
6286 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6287 kvm_mmu_sync_roots(vcpu);
6288 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6289 kvm_vcpu_flush_tlb(vcpu);
6290 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6291 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6292 r = 0;
6293 goto out;
6294 }
6295 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6296 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6297 r = 0;
6298 goto out;
6299 }
6300 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6301 vcpu->fpu_active = 0;
6302 kvm_x86_ops->fpu_deactivate(vcpu);
6303 }
6304 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6305 /* Page is swapped out. Do synthetic halt */
6306 vcpu->arch.apf.halted = true;
6307 r = 1;
6308 goto out;
6309 }
6310 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6311 record_steal_time(vcpu);
6312 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6313 process_smi(vcpu);
6314 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6315 process_nmi(vcpu);
6316 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6317 kvm_pmu_handle_event(vcpu);
6318 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6319 kvm_pmu_deliver_pmi(vcpu);
6320 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6321 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6322 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6323 (void *) vcpu->arch.eoi_exit_bitmap)) {
6324 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6325 vcpu->run->eoi.vector =
6326 vcpu->arch.pending_ioapic_eoi;
6327 r = 0;
6328 goto out;
6329 }
6330 }
6331 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6332 vcpu_scan_ioapic(vcpu);
6333 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6334 kvm_vcpu_reload_apic_access_page(vcpu);
6335 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6336 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6337 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6338 r = 0;
6339 goto out;
6340 }
6341 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6342 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6343 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6344 r = 0;
6345 goto out;
6346 }
6347 }
6348
6349 /*
6350 * KVM_REQ_EVENT is not set when posted interrupts are set by
6351 * VT-d hardware, so we have to update RVI unconditionally.
6352 */
6353 if (kvm_lapic_enabled(vcpu)) {
6354 /*
6355 * Update architecture specific hints for APIC
6356 * virtual interrupt delivery.
6357 */
6358 if (kvm_x86_ops->hwapic_irr_update)
6359 kvm_x86_ops->hwapic_irr_update(vcpu,
6360 kvm_lapic_find_highest_irr(vcpu));
6361 }
6362
6363 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6364 kvm_apic_accept_events(vcpu);
6365 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6366 r = 1;
6367 goto out;
6368 }
6369
6370 if (inject_pending_event(vcpu, req_int_win) != 0)
6371 req_immediate_exit = true;
6372 /* enable NMI/IRQ window open exits if needed */
6373 else if (vcpu->arch.nmi_pending)
6374 kvm_x86_ops->enable_nmi_window(vcpu);
6375 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6376 kvm_x86_ops->enable_irq_window(vcpu);
6377
6378 if (kvm_lapic_enabled(vcpu)) {
6379 update_cr8_intercept(vcpu);
6380 kvm_lapic_sync_to_vapic(vcpu);
6381 }
6382 }
6383
6384 r = kvm_mmu_reload(vcpu);
6385 if (unlikely(r)) {
6386 goto cancel_injection;
6387 }
6388
6389 preempt_disable();
6390
6391 kvm_x86_ops->prepare_guest_switch(vcpu);
6392 if (vcpu->fpu_active)
6393 kvm_load_guest_fpu(vcpu);
6394 kvm_load_guest_xcr0(vcpu);
6395
6396 vcpu->mode = IN_GUEST_MODE;
6397
6398 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6399
6400 /* We should set ->mode before check ->requests,
6401 * see the comment in make_all_cpus_request.
6402 */
6403 smp_mb__after_srcu_read_unlock();
6404
6405 local_irq_disable();
6406
6407 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6408 || need_resched() || signal_pending(current)) {
6409 vcpu->mode = OUTSIDE_GUEST_MODE;
6410 smp_wmb();
6411 local_irq_enable();
6412 preempt_enable();
6413 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6414 r = 1;
6415 goto cancel_injection;
6416 }
6417
6418 if (req_immediate_exit)
6419 smp_send_reschedule(vcpu->cpu);
6420
6421 __kvm_guest_enter();
6422
6423 if (unlikely(vcpu->arch.switch_db_regs)) {
6424 set_debugreg(0, 7);
6425 set_debugreg(vcpu->arch.eff_db[0], 0);
6426 set_debugreg(vcpu->arch.eff_db[1], 1);
6427 set_debugreg(vcpu->arch.eff_db[2], 2);
6428 set_debugreg(vcpu->arch.eff_db[3], 3);
6429 set_debugreg(vcpu->arch.dr6, 6);
6430 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6431 }
6432
6433 trace_kvm_entry(vcpu->vcpu_id);
6434 wait_lapic_expire(vcpu);
6435 kvm_x86_ops->run(vcpu);
6436
6437 /*
6438 * Do this here before restoring debug registers on the host. And
6439 * since we do this before handling the vmexit, a DR access vmexit
6440 * can (a) read the correct value of the debug registers, (b) set
6441 * KVM_DEBUGREG_WONT_EXIT again.
6442 */
6443 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6444 int i;
6445
6446 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6447 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6448 for (i = 0; i < KVM_NR_DB_REGS; i++)
6449 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6450 }
6451
6452 /*
6453 * If the guest has used debug registers, at least dr7
6454 * will be disabled while returning to the host.
6455 * If we don't have active breakpoints in the host, we don't
6456 * care about the messed up debug address registers. But if
6457 * we have some of them active, restore the old state.
6458 */
6459 if (hw_breakpoint_active())
6460 hw_breakpoint_restore();
6461
6462 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6463 rdtsc());
6464
6465 vcpu->mode = OUTSIDE_GUEST_MODE;
6466 smp_wmb();
6467
6468 /* Interrupt is enabled by handle_external_intr() */
6469 kvm_x86_ops->handle_external_intr(vcpu);
6470
6471 ++vcpu->stat.exits;
6472
6473 /*
6474 * We must have an instruction between local_irq_enable() and
6475 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6476 * the interrupt shadow. The stat.exits increment will do nicely.
6477 * But we need to prevent reordering, hence this barrier():
6478 */
6479 barrier();
6480
6481 kvm_guest_exit();
6482
6483 preempt_enable();
6484
6485 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6486
6487 /*
6488 * Profile KVM exit RIPs:
6489 */
6490 if (unlikely(prof_on == KVM_PROFILING)) {
6491 unsigned long rip = kvm_rip_read(vcpu);
6492 profile_hit(KVM_PROFILING, (void *)rip);
6493 }
6494
6495 if (unlikely(vcpu->arch.tsc_always_catchup))
6496 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6497
6498 if (vcpu->arch.apic_attention)
6499 kvm_lapic_sync_from_vapic(vcpu);
6500
6501 r = kvm_x86_ops->handle_exit(vcpu);
6502 return r;
6503
6504 cancel_injection:
6505 kvm_x86_ops->cancel_injection(vcpu);
6506 if (unlikely(vcpu->arch.apic_attention))
6507 kvm_lapic_sync_from_vapic(vcpu);
6508 out:
6509 return r;
6510 }
6511
6512 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6513 {
6514 if (!kvm_arch_vcpu_runnable(vcpu) &&
6515 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6516 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6517 kvm_vcpu_block(vcpu);
6518 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6519
6520 if (kvm_x86_ops->post_block)
6521 kvm_x86_ops->post_block(vcpu);
6522
6523 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6524 return 1;
6525 }
6526
6527 kvm_apic_accept_events(vcpu);
6528 switch(vcpu->arch.mp_state) {
6529 case KVM_MP_STATE_HALTED:
6530 vcpu->arch.pv.pv_unhalted = false;
6531 vcpu->arch.mp_state =
6532 KVM_MP_STATE_RUNNABLE;
6533 case KVM_MP_STATE_RUNNABLE:
6534 vcpu->arch.apf.halted = false;
6535 break;
6536 case KVM_MP_STATE_INIT_RECEIVED:
6537 break;
6538 default:
6539 return -EINTR;
6540 break;
6541 }
6542 return 1;
6543 }
6544
6545 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6546 {
6547 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6548 !vcpu->arch.apf.halted);
6549 }
6550
6551 static int vcpu_run(struct kvm_vcpu *vcpu)
6552 {
6553 int r;
6554 struct kvm *kvm = vcpu->kvm;
6555
6556 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6557
6558 for (;;) {
6559 if (kvm_vcpu_running(vcpu)) {
6560 r = vcpu_enter_guest(vcpu);
6561 } else {
6562 r = vcpu_block(kvm, vcpu);
6563 }
6564
6565 if (r <= 0)
6566 break;
6567
6568 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6569 if (kvm_cpu_has_pending_timer(vcpu))
6570 kvm_inject_pending_timer_irqs(vcpu);
6571
6572 if (dm_request_for_irq_injection(vcpu)) {
6573 r = 0;
6574 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6575 ++vcpu->stat.request_irq_exits;
6576 break;
6577 }
6578
6579 kvm_check_async_pf_completion(vcpu);
6580
6581 if (signal_pending(current)) {
6582 r = -EINTR;
6583 vcpu->run->exit_reason = KVM_EXIT_INTR;
6584 ++vcpu->stat.signal_exits;
6585 break;
6586 }
6587 if (need_resched()) {
6588 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6589 cond_resched();
6590 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6591 }
6592 }
6593
6594 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6595
6596 return r;
6597 }
6598
6599 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6600 {
6601 int r;
6602 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6603 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6604 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6605 if (r != EMULATE_DONE)
6606 return 0;
6607 return 1;
6608 }
6609
6610 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6611 {
6612 BUG_ON(!vcpu->arch.pio.count);
6613
6614 return complete_emulated_io(vcpu);
6615 }
6616
6617 /*
6618 * Implements the following, as a state machine:
6619 *
6620 * read:
6621 * for each fragment
6622 * for each mmio piece in the fragment
6623 * write gpa, len
6624 * exit
6625 * copy data
6626 * execute insn
6627 *
6628 * write:
6629 * for each fragment
6630 * for each mmio piece in the fragment
6631 * write gpa, len
6632 * copy data
6633 * exit
6634 */
6635 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6636 {
6637 struct kvm_run *run = vcpu->run;
6638 struct kvm_mmio_fragment *frag;
6639 unsigned len;
6640
6641 BUG_ON(!vcpu->mmio_needed);
6642
6643 /* Complete previous fragment */
6644 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6645 len = min(8u, frag->len);
6646 if (!vcpu->mmio_is_write)
6647 memcpy(frag->data, run->mmio.data, len);
6648
6649 if (frag->len <= 8) {
6650 /* Switch to the next fragment. */
6651 frag++;
6652 vcpu->mmio_cur_fragment++;
6653 } else {
6654 /* Go forward to the next mmio piece. */
6655 frag->data += len;
6656 frag->gpa += len;
6657 frag->len -= len;
6658 }
6659
6660 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6661 vcpu->mmio_needed = 0;
6662
6663 /* FIXME: return into emulator if single-stepping. */
6664 if (vcpu->mmio_is_write)
6665 return 1;
6666 vcpu->mmio_read_completed = 1;
6667 return complete_emulated_io(vcpu);
6668 }
6669
6670 run->exit_reason = KVM_EXIT_MMIO;
6671 run->mmio.phys_addr = frag->gpa;
6672 if (vcpu->mmio_is_write)
6673 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6674 run->mmio.len = min(8u, frag->len);
6675 run->mmio.is_write = vcpu->mmio_is_write;
6676 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6677 return 0;
6678 }
6679
6680
6681 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6682 {
6683 struct fpu *fpu = &current->thread.fpu;
6684 int r;
6685 sigset_t sigsaved;
6686
6687 fpu__activate_curr(fpu);
6688
6689 if (vcpu->sigset_active)
6690 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6691
6692 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6693 kvm_vcpu_block(vcpu);
6694 kvm_apic_accept_events(vcpu);
6695 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6696 r = -EAGAIN;
6697 goto out;
6698 }
6699
6700 /* re-sync apic's tpr */
6701 if (!lapic_in_kernel(vcpu)) {
6702 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6703 r = -EINVAL;
6704 goto out;
6705 }
6706 }
6707
6708 if (unlikely(vcpu->arch.complete_userspace_io)) {
6709 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6710 vcpu->arch.complete_userspace_io = NULL;
6711 r = cui(vcpu);
6712 if (r <= 0)
6713 goto out;
6714 } else
6715 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6716
6717 r = vcpu_run(vcpu);
6718
6719 out:
6720 post_kvm_run_save(vcpu);
6721 if (vcpu->sigset_active)
6722 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6723
6724 return r;
6725 }
6726
6727 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6728 {
6729 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6730 /*
6731 * We are here if userspace calls get_regs() in the middle of
6732 * instruction emulation. Registers state needs to be copied
6733 * back from emulation context to vcpu. Userspace shouldn't do
6734 * that usually, but some bad designed PV devices (vmware
6735 * backdoor interface) need this to work
6736 */
6737 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6738 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6739 }
6740 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6741 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6742 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6743 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6744 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6745 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6746 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6747 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6748 #ifdef CONFIG_X86_64
6749 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6750 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6751 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6752 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6753 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6754 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6755 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6756 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6757 #endif
6758
6759 regs->rip = kvm_rip_read(vcpu);
6760 regs->rflags = kvm_get_rflags(vcpu);
6761
6762 return 0;
6763 }
6764
6765 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6766 {
6767 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6768 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6769
6770 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6771 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6772 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6773 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6774 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6775 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6776 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6777 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6778 #ifdef CONFIG_X86_64
6779 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6780 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6781 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6782 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6783 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6784 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6785 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6786 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6787 #endif
6788
6789 kvm_rip_write(vcpu, regs->rip);
6790 kvm_set_rflags(vcpu, regs->rflags);
6791
6792 vcpu->arch.exception.pending = false;
6793
6794 kvm_make_request(KVM_REQ_EVENT, vcpu);
6795
6796 return 0;
6797 }
6798
6799 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6800 {
6801 struct kvm_segment cs;
6802
6803 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6804 *db = cs.db;
6805 *l = cs.l;
6806 }
6807 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6808
6809 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6810 struct kvm_sregs *sregs)
6811 {
6812 struct desc_ptr dt;
6813
6814 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6815 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6816 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6817 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6818 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6819 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6820
6821 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6822 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6823
6824 kvm_x86_ops->get_idt(vcpu, &dt);
6825 sregs->idt.limit = dt.size;
6826 sregs->idt.base = dt.address;
6827 kvm_x86_ops->get_gdt(vcpu, &dt);
6828 sregs->gdt.limit = dt.size;
6829 sregs->gdt.base = dt.address;
6830
6831 sregs->cr0 = kvm_read_cr0(vcpu);
6832 sregs->cr2 = vcpu->arch.cr2;
6833 sregs->cr3 = kvm_read_cr3(vcpu);
6834 sregs->cr4 = kvm_read_cr4(vcpu);
6835 sregs->cr8 = kvm_get_cr8(vcpu);
6836 sregs->efer = vcpu->arch.efer;
6837 sregs->apic_base = kvm_get_apic_base(vcpu);
6838
6839 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6840
6841 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6842 set_bit(vcpu->arch.interrupt.nr,
6843 (unsigned long *)sregs->interrupt_bitmap);
6844
6845 return 0;
6846 }
6847
6848 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6849 struct kvm_mp_state *mp_state)
6850 {
6851 kvm_apic_accept_events(vcpu);
6852 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6853 vcpu->arch.pv.pv_unhalted)
6854 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6855 else
6856 mp_state->mp_state = vcpu->arch.mp_state;
6857
6858 return 0;
6859 }
6860
6861 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6862 struct kvm_mp_state *mp_state)
6863 {
6864 if (!kvm_vcpu_has_lapic(vcpu) &&
6865 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6866 return -EINVAL;
6867
6868 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6869 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6870 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6871 } else
6872 vcpu->arch.mp_state = mp_state->mp_state;
6873 kvm_make_request(KVM_REQ_EVENT, vcpu);
6874 return 0;
6875 }
6876
6877 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6878 int reason, bool has_error_code, u32 error_code)
6879 {
6880 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6881 int ret;
6882
6883 init_emulate_ctxt(vcpu);
6884
6885 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6886 has_error_code, error_code);
6887
6888 if (ret)
6889 return EMULATE_FAIL;
6890
6891 kvm_rip_write(vcpu, ctxt->eip);
6892 kvm_set_rflags(vcpu, ctxt->eflags);
6893 kvm_make_request(KVM_REQ_EVENT, vcpu);
6894 return EMULATE_DONE;
6895 }
6896 EXPORT_SYMBOL_GPL(kvm_task_switch);
6897
6898 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6899 struct kvm_sregs *sregs)
6900 {
6901 struct msr_data apic_base_msr;
6902 int mmu_reset_needed = 0;
6903 int pending_vec, max_bits, idx;
6904 struct desc_ptr dt;
6905
6906 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6907 return -EINVAL;
6908
6909 dt.size = sregs->idt.limit;
6910 dt.address = sregs->idt.base;
6911 kvm_x86_ops->set_idt(vcpu, &dt);
6912 dt.size = sregs->gdt.limit;
6913 dt.address = sregs->gdt.base;
6914 kvm_x86_ops->set_gdt(vcpu, &dt);
6915
6916 vcpu->arch.cr2 = sregs->cr2;
6917 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6918 vcpu->arch.cr3 = sregs->cr3;
6919 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6920
6921 kvm_set_cr8(vcpu, sregs->cr8);
6922
6923 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6924 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6925 apic_base_msr.data = sregs->apic_base;
6926 apic_base_msr.host_initiated = true;
6927 kvm_set_apic_base(vcpu, &apic_base_msr);
6928
6929 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6930 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6931 vcpu->arch.cr0 = sregs->cr0;
6932
6933 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6934 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6935 if (sregs->cr4 & X86_CR4_OSXSAVE)
6936 kvm_update_cpuid(vcpu);
6937
6938 idx = srcu_read_lock(&vcpu->kvm->srcu);
6939 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6940 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6941 mmu_reset_needed = 1;
6942 }
6943 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6944
6945 if (mmu_reset_needed)
6946 kvm_mmu_reset_context(vcpu);
6947
6948 max_bits = KVM_NR_INTERRUPTS;
6949 pending_vec = find_first_bit(
6950 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6951 if (pending_vec < max_bits) {
6952 kvm_queue_interrupt(vcpu, pending_vec, false);
6953 pr_debug("Set back pending irq %d\n", pending_vec);
6954 }
6955
6956 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6957 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6958 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6959 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6960 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6961 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6962
6963 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6964 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6965
6966 update_cr8_intercept(vcpu);
6967
6968 /* Older userspace won't unhalt the vcpu on reset. */
6969 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6970 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6971 !is_protmode(vcpu))
6972 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6973
6974 kvm_make_request(KVM_REQ_EVENT, vcpu);
6975
6976 return 0;
6977 }
6978
6979 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6980 struct kvm_guest_debug *dbg)
6981 {
6982 unsigned long rflags;
6983 int i, r;
6984
6985 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6986 r = -EBUSY;
6987 if (vcpu->arch.exception.pending)
6988 goto out;
6989 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6990 kvm_queue_exception(vcpu, DB_VECTOR);
6991 else
6992 kvm_queue_exception(vcpu, BP_VECTOR);
6993 }
6994
6995 /*
6996 * Read rflags as long as potentially injected trace flags are still
6997 * filtered out.
6998 */
6999 rflags = kvm_get_rflags(vcpu);
7000
7001 vcpu->guest_debug = dbg->control;
7002 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7003 vcpu->guest_debug = 0;
7004
7005 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7006 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7007 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7008 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7009 } else {
7010 for (i = 0; i < KVM_NR_DB_REGS; i++)
7011 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7012 }
7013 kvm_update_dr7(vcpu);
7014
7015 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7016 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7017 get_segment_base(vcpu, VCPU_SREG_CS);
7018
7019 /*
7020 * Trigger an rflags update that will inject or remove the trace
7021 * flags.
7022 */
7023 kvm_set_rflags(vcpu, rflags);
7024
7025 kvm_x86_ops->update_db_bp_intercept(vcpu);
7026
7027 r = 0;
7028
7029 out:
7030
7031 return r;
7032 }
7033
7034 /*
7035 * Translate a guest virtual address to a guest physical address.
7036 */
7037 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7038 struct kvm_translation *tr)
7039 {
7040 unsigned long vaddr = tr->linear_address;
7041 gpa_t gpa;
7042 int idx;
7043
7044 idx = srcu_read_lock(&vcpu->kvm->srcu);
7045 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7046 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7047 tr->physical_address = gpa;
7048 tr->valid = gpa != UNMAPPED_GVA;
7049 tr->writeable = 1;
7050 tr->usermode = 0;
7051
7052 return 0;
7053 }
7054
7055 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7056 {
7057 struct fxregs_state *fxsave =
7058 &vcpu->arch.guest_fpu.state.fxsave;
7059
7060 memcpy(fpu->fpr, fxsave->st_space, 128);
7061 fpu->fcw = fxsave->cwd;
7062 fpu->fsw = fxsave->swd;
7063 fpu->ftwx = fxsave->twd;
7064 fpu->last_opcode = fxsave->fop;
7065 fpu->last_ip = fxsave->rip;
7066 fpu->last_dp = fxsave->rdp;
7067 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7068
7069 return 0;
7070 }
7071
7072 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7073 {
7074 struct fxregs_state *fxsave =
7075 &vcpu->arch.guest_fpu.state.fxsave;
7076
7077 memcpy(fxsave->st_space, fpu->fpr, 128);
7078 fxsave->cwd = fpu->fcw;
7079 fxsave->swd = fpu->fsw;
7080 fxsave->twd = fpu->ftwx;
7081 fxsave->fop = fpu->last_opcode;
7082 fxsave->rip = fpu->last_ip;
7083 fxsave->rdp = fpu->last_dp;
7084 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7085
7086 return 0;
7087 }
7088
7089 static void fx_init(struct kvm_vcpu *vcpu)
7090 {
7091 fpstate_init(&vcpu->arch.guest_fpu.state);
7092 if (cpu_has_xsaves)
7093 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7094 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7095
7096 /*
7097 * Ensure guest xcr0 is valid for loading
7098 */
7099 vcpu->arch.xcr0 = XSTATE_FP;
7100
7101 vcpu->arch.cr0 |= X86_CR0_ET;
7102 }
7103
7104 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7105 {
7106 if (vcpu->guest_fpu_loaded)
7107 return;
7108
7109 /*
7110 * Restore all possible states in the guest,
7111 * and assume host would use all available bits.
7112 * Guest xcr0 would be loaded later.
7113 */
7114 kvm_put_guest_xcr0(vcpu);
7115 vcpu->guest_fpu_loaded = 1;
7116 __kernel_fpu_begin();
7117 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7118 trace_kvm_fpu(1);
7119 }
7120
7121 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7122 {
7123 kvm_put_guest_xcr0(vcpu);
7124
7125 if (!vcpu->guest_fpu_loaded) {
7126 vcpu->fpu_counter = 0;
7127 return;
7128 }
7129
7130 vcpu->guest_fpu_loaded = 0;
7131 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7132 __kernel_fpu_end();
7133 ++vcpu->stat.fpu_reload;
7134 /*
7135 * If using eager FPU mode, or if the guest is a frequent user
7136 * of the FPU, just leave the FPU active for next time.
7137 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7138 * the FPU in bursts will revert to loading it on demand.
7139 */
7140 if (!vcpu->arch.eager_fpu) {
7141 if (++vcpu->fpu_counter < 5)
7142 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7143 }
7144 trace_kvm_fpu(0);
7145 }
7146
7147 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7148 {
7149 kvmclock_reset(vcpu);
7150
7151 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7152 kvm_x86_ops->vcpu_free(vcpu);
7153 }
7154
7155 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7156 unsigned int id)
7157 {
7158 struct kvm_vcpu *vcpu;
7159
7160 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7161 printk_once(KERN_WARNING
7162 "kvm: SMP vm created on host with unstable TSC; "
7163 "guest TSC will not be reliable\n");
7164
7165 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7166
7167 return vcpu;
7168 }
7169
7170 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7171 {
7172 int r;
7173
7174 kvm_vcpu_mtrr_init(vcpu);
7175 r = vcpu_load(vcpu);
7176 if (r)
7177 return r;
7178 kvm_vcpu_reset(vcpu, false);
7179 kvm_mmu_setup(vcpu);
7180 vcpu_put(vcpu);
7181 return r;
7182 }
7183
7184 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7185 {
7186 struct msr_data msr;
7187 struct kvm *kvm = vcpu->kvm;
7188
7189 if (vcpu_load(vcpu))
7190 return;
7191 msr.data = 0x0;
7192 msr.index = MSR_IA32_TSC;
7193 msr.host_initiated = true;
7194 kvm_write_tsc(vcpu, &msr);
7195 vcpu_put(vcpu);
7196
7197 if (!kvmclock_periodic_sync)
7198 return;
7199
7200 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7201 KVMCLOCK_SYNC_PERIOD);
7202 }
7203
7204 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7205 {
7206 int r;
7207 vcpu->arch.apf.msr_val = 0;
7208
7209 r = vcpu_load(vcpu);
7210 BUG_ON(r);
7211 kvm_mmu_unload(vcpu);
7212 vcpu_put(vcpu);
7213
7214 kvm_x86_ops->vcpu_free(vcpu);
7215 }
7216
7217 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7218 {
7219 vcpu->arch.hflags = 0;
7220
7221 atomic_set(&vcpu->arch.nmi_queued, 0);
7222 vcpu->arch.nmi_pending = 0;
7223 vcpu->arch.nmi_injected = false;
7224 kvm_clear_interrupt_queue(vcpu);
7225 kvm_clear_exception_queue(vcpu);
7226
7227 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7228 kvm_update_dr0123(vcpu);
7229 vcpu->arch.dr6 = DR6_INIT;
7230 kvm_update_dr6(vcpu);
7231 vcpu->arch.dr7 = DR7_FIXED_1;
7232 kvm_update_dr7(vcpu);
7233
7234 vcpu->arch.cr2 = 0;
7235
7236 kvm_make_request(KVM_REQ_EVENT, vcpu);
7237 vcpu->arch.apf.msr_val = 0;
7238 vcpu->arch.st.msr_val = 0;
7239
7240 kvmclock_reset(vcpu);
7241
7242 kvm_clear_async_pf_completion_queue(vcpu);
7243 kvm_async_pf_hash_reset(vcpu);
7244 vcpu->arch.apf.halted = false;
7245
7246 if (!init_event) {
7247 kvm_pmu_reset(vcpu);
7248 vcpu->arch.smbase = 0x30000;
7249 }
7250
7251 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7252 vcpu->arch.regs_avail = ~0;
7253 vcpu->arch.regs_dirty = ~0;
7254
7255 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7256 }
7257
7258 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7259 {
7260 struct kvm_segment cs;
7261
7262 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7263 cs.selector = vector << 8;
7264 cs.base = vector << 12;
7265 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7266 kvm_rip_write(vcpu, 0);
7267 }
7268
7269 int kvm_arch_hardware_enable(void)
7270 {
7271 struct kvm *kvm;
7272 struct kvm_vcpu *vcpu;
7273 int i;
7274 int ret;
7275 u64 local_tsc;
7276 u64 max_tsc = 0;
7277 bool stable, backwards_tsc = false;
7278
7279 kvm_shared_msr_cpu_online();
7280 ret = kvm_x86_ops->hardware_enable();
7281 if (ret != 0)
7282 return ret;
7283
7284 local_tsc = rdtsc();
7285 stable = !check_tsc_unstable();
7286 list_for_each_entry(kvm, &vm_list, vm_list) {
7287 kvm_for_each_vcpu(i, vcpu, kvm) {
7288 if (!stable && vcpu->cpu == smp_processor_id())
7289 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7290 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7291 backwards_tsc = true;
7292 if (vcpu->arch.last_host_tsc > max_tsc)
7293 max_tsc = vcpu->arch.last_host_tsc;
7294 }
7295 }
7296 }
7297
7298 /*
7299 * Sometimes, even reliable TSCs go backwards. This happens on
7300 * platforms that reset TSC during suspend or hibernate actions, but
7301 * maintain synchronization. We must compensate. Fortunately, we can
7302 * detect that condition here, which happens early in CPU bringup,
7303 * before any KVM threads can be running. Unfortunately, we can't
7304 * bring the TSCs fully up to date with real time, as we aren't yet far
7305 * enough into CPU bringup that we know how much real time has actually
7306 * elapsed; our helper function, get_kernel_ns() will be using boot
7307 * variables that haven't been updated yet.
7308 *
7309 * So we simply find the maximum observed TSC above, then record the
7310 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7311 * the adjustment will be applied. Note that we accumulate
7312 * adjustments, in case multiple suspend cycles happen before some VCPU
7313 * gets a chance to run again. In the event that no KVM threads get a
7314 * chance to run, we will miss the entire elapsed period, as we'll have
7315 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7316 * loose cycle time. This isn't too big a deal, since the loss will be
7317 * uniform across all VCPUs (not to mention the scenario is extremely
7318 * unlikely). It is possible that a second hibernate recovery happens
7319 * much faster than a first, causing the observed TSC here to be
7320 * smaller; this would require additional padding adjustment, which is
7321 * why we set last_host_tsc to the local tsc observed here.
7322 *
7323 * N.B. - this code below runs only on platforms with reliable TSC,
7324 * as that is the only way backwards_tsc is set above. Also note
7325 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7326 * have the same delta_cyc adjustment applied if backwards_tsc
7327 * is detected. Note further, this adjustment is only done once,
7328 * as we reset last_host_tsc on all VCPUs to stop this from being
7329 * called multiple times (one for each physical CPU bringup).
7330 *
7331 * Platforms with unreliable TSCs don't have to deal with this, they
7332 * will be compensated by the logic in vcpu_load, which sets the TSC to
7333 * catchup mode. This will catchup all VCPUs to real time, but cannot
7334 * guarantee that they stay in perfect synchronization.
7335 */
7336 if (backwards_tsc) {
7337 u64 delta_cyc = max_tsc - local_tsc;
7338 backwards_tsc_observed = true;
7339 list_for_each_entry(kvm, &vm_list, vm_list) {
7340 kvm_for_each_vcpu(i, vcpu, kvm) {
7341 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7342 vcpu->arch.last_host_tsc = local_tsc;
7343 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7344 }
7345
7346 /*
7347 * We have to disable TSC offset matching.. if you were
7348 * booting a VM while issuing an S4 host suspend....
7349 * you may have some problem. Solving this issue is
7350 * left as an exercise to the reader.
7351 */
7352 kvm->arch.last_tsc_nsec = 0;
7353 kvm->arch.last_tsc_write = 0;
7354 }
7355
7356 }
7357 return 0;
7358 }
7359
7360 void kvm_arch_hardware_disable(void)
7361 {
7362 kvm_x86_ops->hardware_disable();
7363 drop_user_return_notifiers();
7364 }
7365
7366 int kvm_arch_hardware_setup(void)
7367 {
7368 int r;
7369
7370 r = kvm_x86_ops->hardware_setup();
7371 if (r != 0)
7372 return r;
7373
7374 if (kvm_has_tsc_control)
7375 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7376
7377 kvm_init_msr_list();
7378 return 0;
7379 }
7380
7381 void kvm_arch_hardware_unsetup(void)
7382 {
7383 kvm_x86_ops->hardware_unsetup();
7384 }
7385
7386 void kvm_arch_check_processor_compat(void *rtn)
7387 {
7388 kvm_x86_ops->check_processor_compatibility(rtn);
7389 }
7390
7391 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7392 {
7393 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7394 }
7395 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7396
7397 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7398 {
7399 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7400 }
7401
7402 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7403 {
7404 return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7405 }
7406
7407 struct static_key kvm_no_apic_vcpu __read_mostly;
7408
7409 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7410 {
7411 struct page *page;
7412 struct kvm *kvm;
7413 int r;
7414
7415 BUG_ON(vcpu->kvm == NULL);
7416 kvm = vcpu->kvm;
7417
7418 vcpu->arch.pv.pv_unhalted = false;
7419 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7420 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7421 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7422 else
7423 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7424
7425 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7426 if (!page) {
7427 r = -ENOMEM;
7428 goto fail;
7429 }
7430 vcpu->arch.pio_data = page_address(page);
7431
7432 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7433
7434 r = kvm_mmu_create(vcpu);
7435 if (r < 0)
7436 goto fail_free_pio_data;
7437
7438 if (irqchip_in_kernel(kvm)) {
7439 r = kvm_create_lapic(vcpu);
7440 if (r < 0)
7441 goto fail_mmu_destroy;
7442 } else
7443 static_key_slow_inc(&kvm_no_apic_vcpu);
7444
7445 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7446 GFP_KERNEL);
7447 if (!vcpu->arch.mce_banks) {
7448 r = -ENOMEM;
7449 goto fail_free_lapic;
7450 }
7451 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7452
7453 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7454 r = -ENOMEM;
7455 goto fail_free_mce_banks;
7456 }
7457
7458 fx_init(vcpu);
7459
7460 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7461 vcpu->arch.pv_time_enabled = false;
7462
7463 vcpu->arch.guest_supported_xcr0 = 0;
7464 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7465
7466 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7467
7468 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7469
7470 kvm_async_pf_hash_reset(vcpu);
7471 kvm_pmu_init(vcpu);
7472
7473 vcpu->arch.pending_external_vector = -1;
7474
7475 return 0;
7476
7477 fail_free_mce_banks:
7478 kfree(vcpu->arch.mce_banks);
7479 fail_free_lapic:
7480 kvm_free_lapic(vcpu);
7481 fail_mmu_destroy:
7482 kvm_mmu_destroy(vcpu);
7483 fail_free_pio_data:
7484 free_page((unsigned long)vcpu->arch.pio_data);
7485 fail:
7486 return r;
7487 }
7488
7489 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7490 {
7491 int idx;
7492
7493 kvm_pmu_destroy(vcpu);
7494 kfree(vcpu->arch.mce_banks);
7495 kvm_free_lapic(vcpu);
7496 idx = srcu_read_lock(&vcpu->kvm->srcu);
7497 kvm_mmu_destroy(vcpu);
7498 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7499 free_page((unsigned long)vcpu->arch.pio_data);
7500 if (!lapic_in_kernel(vcpu))
7501 static_key_slow_dec(&kvm_no_apic_vcpu);
7502 }
7503
7504 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7505 {
7506 kvm_x86_ops->sched_in(vcpu, cpu);
7507 }
7508
7509 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7510 {
7511 if (type)
7512 return -EINVAL;
7513
7514 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7515 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7516 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7517 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7518 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7519
7520 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7521 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7522 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7523 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7524 &kvm->arch.irq_sources_bitmap);
7525
7526 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7527 mutex_init(&kvm->arch.apic_map_lock);
7528 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7529
7530 pvclock_update_vm_gtod_copy(kvm);
7531
7532 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7533 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7534
7535 return 0;
7536 }
7537
7538 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7539 {
7540 int r;
7541 r = vcpu_load(vcpu);
7542 BUG_ON(r);
7543 kvm_mmu_unload(vcpu);
7544 vcpu_put(vcpu);
7545 }
7546
7547 static void kvm_free_vcpus(struct kvm *kvm)
7548 {
7549 unsigned int i;
7550 struct kvm_vcpu *vcpu;
7551
7552 /*
7553 * Unpin any mmu pages first.
7554 */
7555 kvm_for_each_vcpu(i, vcpu, kvm) {
7556 kvm_clear_async_pf_completion_queue(vcpu);
7557 kvm_unload_vcpu_mmu(vcpu);
7558 }
7559 kvm_for_each_vcpu(i, vcpu, kvm)
7560 kvm_arch_vcpu_free(vcpu);
7561
7562 mutex_lock(&kvm->lock);
7563 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7564 kvm->vcpus[i] = NULL;
7565
7566 atomic_set(&kvm->online_vcpus, 0);
7567 mutex_unlock(&kvm->lock);
7568 }
7569
7570 void kvm_arch_sync_events(struct kvm *kvm)
7571 {
7572 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7573 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7574 kvm_free_all_assigned_devices(kvm);
7575 kvm_free_pit(kvm);
7576 }
7577
7578 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7579 {
7580 int i, r;
7581 unsigned long hva;
7582 struct kvm_memslots *slots = kvm_memslots(kvm);
7583 struct kvm_memory_slot *slot, old;
7584
7585 /* Called with kvm->slots_lock held. */
7586 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7587 return -EINVAL;
7588
7589 slot = id_to_memslot(slots, id);
7590 if (size) {
7591 if (WARN_ON(slot->npages))
7592 return -EEXIST;
7593
7594 /*
7595 * MAP_SHARED to prevent internal slot pages from being moved
7596 * by fork()/COW.
7597 */
7598 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7599 MAP_SHARED | MAP_ANONYMOUS, 0);
7600 if (IS_ERR((void *)hva))
7601 return PTR_ERR((void *)hva);
7602 } else {
7603 if (!slot->npages)
7604 return 0;
7605
7606 hva = 0;
7607 }
7608
7609 old = *slot;
7610 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7611 struct kvm_userspace_memory_region m;
7612
7613 m.slot = id | (i << 16);
7614 m.flags = 0;
7615 m.guest_phys_addr = gpa;
7616 m.userspace_addr = hva;
7617 m.memory_size = size;
7618 r = __kvm_set_memory_region(kvm, &m);
7619 if (r < 0)
7620 return r;
7621 }
7622
7623 if (!size) {
7624 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7625 WARN_ON(r < 0);
7626 }
7627
7628 return 0;
7629 }
7630 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7631
7632 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7633 {
7634 int r;
7635
7636 mutex_lock(&kvm->slots_lock);
7637 r = __x86_set_memory_region(kvm, id, gpa, size);
7638 mutex_unlock(&kvm->slots_lock);
7639
7640 return r;
7641 }
7642 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7643
7644 void kvm_arch_destroy_vm(struct kvm *kvm)
7645 {
7646 if (current->mm == kvm->mm) {
7647 /*
7648 * Free memory regions allocated on behalf of userspace,
7649 * unless the the memory map has changed due to process exit
7650 * or fd copying.
7651 */
7652 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7653 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7654 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7655 }
7656 kvm_iommu_unmap_guest(kvm);
7657 kfree(kvm->arch.vpic);
7658 kfree(kvm->arch.vioapic);
7659 kvm_free_vcpus(kvm);
7660 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7661 }
7662
7663 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7664 struct kvm_memory_slot *dont)
7665 {
7666 int i;
7667
7668 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7669 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7670 kvfree(free->arch.rmap[i]);
7671 free->arch.rmap[i] = NULL;
7672 }
7673 if (i == 0)
7674 continue;
7675
7676 if (!dont || free->arch.lpage_info[i - 1] !=
7677 dont->arch.lpage_info[i - 1]) {
7678 kvfree(free->arch.lpage_info[i - 1]);
7679 free->arch.lpage_info[i - 1] = NULL;
7680 }
7681 }
7682 }
7683
7684 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7685 unsigned long npages)
7686 {
7687 int i;
7688
7689 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7690 unsigned long ugfn;
7691 int lpages;
7692 int level = i + 1;
7693
7694 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7695 slot->base_gfn, level) + 1;
7696
7697 slot->arch.rmap[i] =
7698 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7699 if (!slot->arch.rmap[i])
7700 goto out_free;
7701 if (i == 0)
7702 continue;
7703
7704 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7705 sizeof(*slot->arch.lpage_info[i - 1]));
7706 if (!slot->arch.lpage_info[i - 1])
7707 goto out_free;
7708
7709 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7710 slot->arch.lpage_info[i - 1][0].write_count = 1;
7711 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7712 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7713 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7714 /*
7715 * If the gfn and userspace address are not aligned wrt each
7716 * other, or if explicitly asked to, disable large page
7717 * support for this slot
7718 */
7719 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7720 !kvm_largepages_enabled()) {
7721 unsigned long j;
7722
7723 for (j = 0; j < lpages; ++j)
7724 slot->arch.lpage_info[i - 1][j].write_count = 1;
7725 }
7726 }
7727
7728 return 0;
7729
7730 out_free:
7731 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7732 kvfree(slot->arch.rmap[i]);
7733 slot->arch.rmap[i] = NULL;
7734 if (i == 0)
7735 continue;
7736
7737 kvfree(slot->arch.lpage_info[i - 1]);
7738 slot->arch.lpage_info[i - 1] = NULL;
7739 }
7740 return -ENOMEM;
7741 }
7742
7743 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7744 {
7745 /*
7746 * memslots->generation has been incremented.
7747 * mmio generation may have reached its maximum value.
7748 */
7749 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7750 }
7751
7752 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7753 struct kvm_memory_slot *memslot,
7754 const struct kvm_userspace_memory_region *mem,
7755 enum kvm_mr_change change)
7756 {
7757 return 0;
7758 }
7759
7760 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7761 struct kvm_memory_slot *new)
7762 {
7763 /* Still write protect RO slot */
7764 if (new->flags & KVM_MEM_READONLY) {
7765 kvm_mmu_slot_remove_write_access(kvm, new);
7766 return;
7767 }
7768
7769 /*
7770 * Call kvm_x86_ops dirty logging hooks when they are valid.
7771 *
7772 * kvm_x86_ops->slot_disable_log_dirty is called when:
7773 *
7774 * - KVM_MR_CREATE with dirty logging is disabled
7775 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7776 *
7777 * The reason is, in case of PML, we need to set D-bit for any slots
7778 * with dirty logging disabled in order to eliminate unnecessary GPA
7779 * logging in PML buffer (and potential PML buffer full VMEXT). This
7780 * guarantees leaving PML enabled during guest's lifetime won't have
7781 * any additonal overhead from PML when guest is running with dirty
7782 * logging disabled for memory slots.
7783 *
7784 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7785 * to dirty logging mode.
7786 *
7787 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7788 *
7789 * In case of write protect:
7790 *
7791 * Write protect all pages for dirty logging.
7792 *
7793 * All the sptes including the large sptes which point to this
7794 * slot are set to readonly. We can not create any new large
7795 * spte on this slot until the end of the logging.
7796 *
7797 * See the comments in fast_page_fault().
7798 */
7799 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7800 if (kvm_x86_ops->slot_enable_log_dirty)
7801 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7802 else
7803 kvm_mmu_slot_remove_write_access(kvm, new);
7804 } else {
7805 if (kvm_x86_ops->slot_disable_log_dirty)
7806 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7807 }
7808 }
7809
7810 void kvm_arch_commit_memory_region(struct kvm *kvm,
7811 const struct kvm_userspace_memory_region *mem,
7812 const struct kvm_memory_slot *old,
7813 const struct kvm_memory_slot *new,
7814 enum kvm_mr_change change)
7815 {
7816 int nr_mmu_pages = 0;
7817
7818 if (!kvm->arch.n_requested_mmu_pages)
7819 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7820
7821 if (nr_mmu_pages)
7822 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7823
7824 /*
7825 * Dirty logging tracks sptes in 4k granularity, meaning that large
7826 * sptes have to be split. If live migration is successful, the guest
7827 * in the source machine will be destroyed and large sptes will be
7828 * created in the destination. However, if the guest continues to run
7829 * in the source machine (for example if live migration fails), small
7830 * sptes will remain around and cause bad performance.
7831 *
7832 * Scan sptes if dirty logging has been stopped, dropping those
7833 * which can be collapsed into a single large-page spte. Later
7834 * page faults will create the large-page sptes.
7835 */
7836 if ((change != KVM_MR_DELETE) &&
7837 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7838 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7839 kvm_mmu_zap_collapsible_sptes(kvm, new);
7840
7841 /*
7842 * Set up write protection and/or dirty logging for the new slot.
7843 *
7844 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7845 * been zapped so no dirty logging staff is needed for old slot. For
7846 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7847 * new and it's also covered when dealing with the new slot.
7848 *
7849 * FIXME: const-ify all uses of struct kvm_memory_slot.
7850 */
7851 if (change != KVM_MR_DELETE)
7852 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7853 }
7854
7855 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7856 {
7857 kvm_mmu_invalidate_zap_all_pages(kvm);
7858 }
7859
7860 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7861 struct kvm_memory_slot *slot)
7862 {
7863 kvm_mmu_invalidate_zap_all_pages(kvm);
7864 }
7865
7866 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
7867 {
7868 if (!list_empty_careful(&vcpu->async_pf.done))
7869 return true;
7870
7871 if (kvm_apic_has_events(vcpu))
7872 return true;
7873
7874 if (vcpu->arch.pv.pv_unhalted)
7875 return true;
7876
7877 if (atomic_read(&vcpu->arch.nmi_queued))
7878 return true;
7879
7880 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
7881 return true;
7882
7883 if (kvm_arch_interrupt_allowed(vcpu) &&
7884 kvm_cpu_has_interrupt(vcpu))
7885 return true;
7886
7887 return false;
7888 }
7889
7890 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7891 {
7892 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7893 kvm_x86_ops->check_nested_events(vcpu, false);
7894
7895 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
7896 }
7897
7898 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7899 {
7900 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7901 }
7902
7903 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7904 {
7905 return kvm_x86_ops->interrupt_allowed(vcpu);
7906 }
7907
7908 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7909 {
7910 if (is_64_bit_mode(vcpu))
7911 return kvm_rip_read(vcpu);
7912 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7913 kvm_rip_read(vcpu));
7914 }
7915 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7916
7917 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7918 {
7919 return kvm_get_linear_rip(vcpu) == linear_rip;
7920 }
7921 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7922
7923 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7924 {
7925 unsigned long rflags;
7926
7927 rflags = kvm_x86_ops->get_rflags(vcpu);
7928 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7929 rflags &= ~X86_EFLAGS_TF;
7930 return rflags;
7931 }
7932 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7933
7934 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7935 {
7936 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7937 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7938 rflags |= X86_EFLAGS_TF;
7939 kvm_x86_ops->set_rflags(vcpu, rflags);
7940 }
7941
7942 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7943 {
7944 __kvm_set_rflags(vcpu, rflags);
7945 kvm_make_request(KVM_REQ_EVENT, vcpu);
7946 }
7947 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7948
7949 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7950 {
7951 int r;
7952
7953 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7954 work->wakeup_all)
7955 return;
7956
7957 r = kvm_mmu_reload(vcpu);
7958 if (unlikely(r))
7959 return;
7960
7961 if (!vcpu->arch.mmu.direct_map &&
7962 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7963 return;
7964
7965 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7966 }
7967
7968 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7969 {
7970 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7971 }
7972
7973 static inline u32 kvm_async_pf_next_probe(u32 key)
7974 {
7975 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7976 }
7977
7978 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7979 {
7980 u32 key = kvm_async_pf_hash_fn(gfn);
7981
7982 while (vcpu->arch.apf.gfns[key] != ~0)
7983 key = kvm_async_pf_next_probe(key);
7984
7985 vcpu->arch.apf.gfns[key] = gfn;
7986 }
7987
7988 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7989 {
7990 int i;
7991 u32 key = kvm_async_pf_hash_fn(gfn);
7992
7993 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7994 (vcpu->arch.apf.gfns[key] != gfn &&
7995 vcpu->arch.apf.gfns[key] != ~0); i++)
7996 key = kvm_async_pf_next_probe(key);
7997
7998 return key;
7999 }
8000
8001 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8002 {
8003 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8004 }
8005
8006 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8007 {
8008 u32 i, j, k;
8009
8010 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8011 while (true) {
8012 vcpu->arch.apf.gfns[i] = ~0;
8013 do {
8014 j = kvm_async_pf_next_probe(j);
8015 if (vcpu->arch.apf.gfns[j] == ~0)
8016 return;
8017 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8018 /*
8019 * k lies cyclically in ]i,j]
8020 * | i.k.j |
8021 * |....j i.k.| or |.k..j i...|
8022 */
8023 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8024 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8025 i = j;
8026 }
8027 }
8028
8029 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8030 {
8031
8032 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8033 sizeof(val));
8034 }
8035
8036 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8037 struct kvm_async_pf *work)
8038 {
8039 struct x86_exception fault;
8040
8041 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8042 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8043
8044 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8045 (vcpu->arch.apf.send_user_only &&
8046 kvm_x86_ops->get_cpl(vcpu) == 0))
8047 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8048 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8049 fault.vector = PF_VECTOR;
8050 fault.error_code_valid = true;
8051 fault.error_code = 0;
8052 fault.nested_page_fault = false;
8053 fault.address = work->arch.token;
8054 kvm_inject_page_fault(vcpu, &fault);
8055 }
8056 }
8057
8058 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8059 struct kvm_async_pf *work)
8060 {
8061 struct x86_exception fault;
8062
8063 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8064 if (work->wakeup_all)
8065 work->arch.token = ~0; /* broadcast wakeup */
8066 else
8067 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8068
8069 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8070 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8071 fault.vector = PF_VECTOR;
8072 fault.error_code_valid = true;
8073 fault.error_code = 0;
8074 fault.nested_page_fault = false;
8075 fault.address = work->arch.token;
8076 kvm_inject_page_fault(vcpu, &fault);
8077 }
8078 vcpu->arch.apf.halted = false;
8079 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8080 }
8081
8082 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8083 {
8084 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8085 return true;
8086 else
8087 return !kvm_event_needs_reinjection(vcpu) &&
8088 kvm_x86_ops->interrupt_allowed(vcpu);
8089 }
8090
8091 void kvm_arch_start_assignment(struct kvm *kvm)
8092 {
8093 atomic_inc(&kvm->arch.assigned_device_count);
8094 }
8095 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8096
8097 void kvm_arch_end_assignment(struct kvm *kvm)
8098 {
8099 atomic_dec(&kvm->arch.assigned_device_count);
8100 }
8101 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8102
8103 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8104 {
8105 return atomic_read(&kvm->arch.assigned_device_count);
8106 }
8107 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8108
8109 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8110 {
8111 atomic_inc(&kvm->arch.noncoherent_dma_count);
8112 }
8113 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8114
8115 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8116 {
8117 atomic_dec(&kvm->arch.noncoherent_dma_count);
8118 }
8119 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8120
8121 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8122 {
8123 return atomic_read(&kvm->arch.noncoherent_dma_count);
8124 }
8125 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8126
8127 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8128 struct irq_bypass_producer *prod)
8129 {
8130 struct kvm_kernel_irqfd *irqfd =
8131 container_of(cons, struct kvm_kernel_irqfd, consumer);
8132
8133 if (kvm_x86_ops->update_pi_irte) {
8134 irqfd->producer = prod;
8135 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8136 prod->irq, irqfd->gsi, 1);
8137 }
8138
8139 return -EINVAL;
8140 }
8141
8142 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8143 struct irq_bypass_producer *prod)
8144 {
8145 int ret;
8146 struct kvm_kernel_irqfd *irqfd =
8147 container_of(cons, struct kvm_kernel_irqfd, consumer);
8148
8149 if (!kvm_x86_ops->update_pi_irte) {
8150 WARN_ON(irqfd->producer != NULL);
8151 return;
8152 }
8153
8154 WARN_ON(irqfd->producer != prod);
8155 irqfd->producer = NULL;
8156
8157 /*
8158 * When producer of consumer is unregistered, we change back to
8159 * remapped mode, so we can re-use the current implementation
8160 * when the irq is masked/disabed or the consumer side (KVM
8161 * int this case doesn't want to receive the interrupts.
8162 */
8163 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8164 if (ret)
8165 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8166 " fails: %d\n", irqfd->consumer.token, ret);
8167 }
8168
8169 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8170 uint32_t guest_irq, bool set)
8171 {
8172 if (!kvm_x86_ops->update_pi_irte)
8173 return -EINVAL;
8174
8175 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8176 }
8177
8178 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8179 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8180 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8181 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8182 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8183 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8184 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8185 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8186 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8187 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8188 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8189 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8190 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8191 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8192 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8193 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8194 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);