]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/mm/init_64.c
Add support for Allo Piano DAC 2.1 plus add-on board for Raspberry Pi.
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 #include "ident_map.c"
61
62 /*
63 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64 * physical space so we can cache the place of the first one and move
65 * around without checking the pgd every time.
66 */
67
68 pteval_t __supported_pte_mask __read_mostly = ~0;
69 EXPORT_SYMBOL_GPL(__supported_pte_mask);
70
71 int force_personality32;
72
73 /*
74 * noexec32=on|off
75 * Control non executable heap for 32bit processes.
76 * To control the stack too use noexec=off
77 *
78 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
79 * off PROT_READ implies PROT_EXEC
80 */
81 static int __init nonx32_setup(char *str)
82 {
83 if (!strcmp(str, "on"))
84 force_personality32 &= ~READ_IMPLIES_EXEC;
85 else if (!strcmp(str, "off"))
86 force_personality32 |= READ_IMPLIES_EXEC;
87 return 1;
88 }
89 __setup("noexec32=", nonx32_setup);
90
91 /*
92 * When memory was added make sure all the processes MM have
93 * suitable PGD entries in the local PGD level page.
94 */
95 void sync_global_pgds(unsigned long start, unsigned long end)
96 {
97 unsigned long address;
98
99 for (address = start; address <= end; address += PGDIR_SIZE) {
100 const pgd_t *pgd_ref = pgd_offset_k(address);
101 struct page *page;
102
103 if (pgd_none(*pgd_ref))
104 continue;
105
106 spin_lock(&pgd_lock);
107 list_for_each_entry(page, &pgd_list, lru) {
108 pgd_t *pgd;
109 spinlock_t *pgt_lock;
110
111 pgd = (pgd_t *)page_address(page) + pgd_index(address);
112 /* the pgt_lock only for Xen */
113 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
114 spin_lock(pgt_lock);
115
116 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
117 BUG_ON(pgd_page_vaddr(*pgd)
118 != pgd_page_vaddr(*pgd_ref));
119
120 if (pgd_none(*pgd))
121 set_pgd(pgd, *pgd_ref);
122
123 spin_unlock(pgt_lock);
124 }
125 spin_unlock(&pgd_lock);
126 }
127 }
128
129 /*
130 * NOTE: This function is marked __ref because it calls __init function
131 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
132 */
133 static __ref void *spp_getpage(void)
134 {
135 void *ptr;
136
137 if (after_bootmem)
138 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
139 else
140 ptr = alloc_bootmem_pages(PAGE_SIZE);
141
142 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
143 panic("set_pte_phys: cannot allocate page data %s\n",
144 after_bootmem ? "after bootmem" : "");
145 }
146
147 pr_debug("spp_getpage %p\n", ptr);
148
149 return ptr;
150 }
151
152 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
153 {
154 if (pgd_none(*pgd)) {
155 pud_t *pud = (pud_t *)spp_getpage();
156 pgd_populate(&init_mm, pgd, pud);
157 if (pud != pud_offset(pgd, 0))
158 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
159 pud, pud_offset(pgd, 0));
160 }
161 return pud_offset(pgd, vaddr);
162 }
163
164 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
165 {
166 if (pud_none(*pud)) {
167 pmd_t *pmd = (pmd_t *) spp_getpage();
168 pud_populate(&init_mm, pud, pmd);
169 if (pmd != pmd_offset(pud, 0))
170 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
171 pmd, pmd_offset(pud, 0));
172 }
173 return pmd_offset(pud, vaddr);
174 }
175
176 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
177 {
178 if (pmd_none(*pmd)) {
179 pte_t *pte = (pte_t *) spp_getpage();
180 pmd_populate_kernel(&init_mm, pmd, pte);
181 if (pte != pte_offset_kernel(pmd, 0))
182 printk(KERN_ERR "PAGETABLE BUG #02!\n");
183 }
184 return pte_offset_kernel(pmd, vaddr);
185 }
186
187 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
188 {
189 pud_t *pud;
190 pmd_t *pmd;
191 pte_t *pte;
192
193 pud = pud_page + pud_index(vaddr);
194 pmd = fill_pmd(pud, vaddr);
195 pte = fill_pte(pmd, vaddr);
196
197 set_pte(pte, new_pte);
198
199 /*
200 * It's enough to flush this one mapping.
201 * (PGE mappings get flushed as well)
202 */
203 __flush_tlb_one(vaddr);
204 }
205
206 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
207 {
208 pgd_t *pgd;
209 pud_t *pud_page;
210
211 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
212
213 pgd = pgd_offset_k(vaddr);
214 if (pgd_none(*pgd)) {
215 printk(KERN_ERR
216 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
217 return;
218 }
219 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
220 set_pte_vaddr_pud(pud_page, vaddr, pteval);
221 }
222
223 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
224 {
225 pgd_t *pgd;
226 pud_t *pud;
227
228 pgd = pgd_offset_k(vaddr);
229 pud = fill_pud(pgd, vaddr);
230 return fill_pmd(pud, vaddr);
231 }
232
233 pte_t * __init populate_extra_pte(unsigned long vaddr)
234 {
235 pmd_t *pmd;
236
237 pmd = populate_extra_pmd(vaddr);
238 return fill_pte(pmd, vaddr);
239 }
240
241 /*
242 * Create large page table mappings for a range of physical addresses.
243 */
244 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
245 enum page_cache_mode cache)
246 {
247 pgd_t *pgd;
248 pud_t *pud;
249 pmd_t *pmd;
250 pgprot_t prot;
251
252 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
253 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
254 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
255 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
256 pgd = pgd_offset_k((unsigned long)__va(phys));
257 if (pgd_none(*pgd)) {
258 pud = (pud_t *) spp_getpage();
259 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
260 _PAGE_USER));
261 }
262 pud = pud_offset(pgd, (unsigned long)__va(phys));
263 if (pud_none(*pud)) {
264 pmd = (pmd_t *) spp_getpage();
265 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
266 _PAGE_USER));
267 }
268 pmd = pmd_offset(pud, phys);
269 BUG_ON(!pmd_none(*pmd));
270 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
271 }
272 }
273
274 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
275 {
276 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
277 }
278
279 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
280 {
281 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
282 }
283
284 /*
285 * The head.S code sets up the kernel high mapping:
286 *
287 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
288 *
289 * phys_base holds the negative offset to the kernel, which is added
290 * to the compile time generated pmds. This results in invalid pmds up
291 * to the point where we hit the physaddr 0 mapping.
292 *
293 * We limit the mappings to the region from _text to _brk_end. _brk_end
294 * is rounded up to the 2MB boundary. This catches the invalid pmds as
295 * well, as they are located before _text:
296 */
297 void __init cleanup_highmap(void)
298 {
299 unsigned long vaddr = __START_KERNEL_map;
300 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
301 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
302 pmd_t *pmd = level2_kernel_pgt;
303
304 /*
305 * Native path, max_pfn_mapped is not set yet.
306 * Xen has valid max_pfn_mapped set in
307 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
308 */
309 if (max_pfn_mapped)
310 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
311
312 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
313 if (pmd_none(*pmd))
314 continue;
315 if (vaddr < (unsigned long) _text || vaddr > end)
316 set_pmd(pmd, __pmd(0));
317 }
318 }
319
320 /*
321 * Create PTE level page table mapping for physical addresses.
322 * It returns the last physical address mapped.
323 */
324 static unsigned long __meminit
325 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
326 pgprot_t prot)
327 {
328 unsigned long pages = 0, paddr_next;
329 unsigned long paddr_last = paddr_end;
330 pte_t *pte;
331 int i;
332
333 pte = pte_page + pte_index(paddr);
334 i = pte_index(paddr);
335
336 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
337 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
338 if (paddr >= paddr_end) {
339 if (!after_bootmem &&
340 !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
341 E820_RAM) &&
342 !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
343 E820_RESERVED_KERN))
344 set_pte(pte, __pte(0));
345 continue;
346 }
347
348 /*
349 * We will re-use the existing mapping.
350 * Xen for example has some special requirements, like mapping
351 * pagetable pages as RO. So assume someone who pre-setup
352 * these mappings are more intelligent.
353 */
354 if (!pte_none(*pte)) {
355 if (!after_bootmem)
356 pages++;
357 continue;
358 }
359
360 if (0)
361 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
362 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
363 pages++;
364 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
365 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
366 }
367
368 update_page_count(PG_LEVEL_4K, pages);
369
370 return paddr_last;
371 }
372
373 /*
374 * Create PMD level page table mapping for physical addresses. The virtual
375 * and physical address have to be aligned at this level.
376 * It returns the last physical address mapped.
377 */
378 static unsigned long __meminit
379 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
380 unsigned long page_size_mask, pgprot_t prot)
381 {
382 unsigned long pages = 0, paddr_next;
383 unsigned long paddr_last = paddr_end;
384
385 int i = pmd_index(paddr);
386
387 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
388 pmd_t *pmd = pmd_page + pmd_index(paddr);
389 pte_t *pte;
390 pgprot_t new_prot = prot;
391
392 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
393 if (paddr >= paddr_end) {
394 if (!after_bootmem &&
395 !e820_any_mapped(paddr & PMD_MASK, paddr_next,
396 E820_RAM) &&
397 !e820_any_mapped(paddr & PMD_MASK, paddr_next,
398 E820_RESERVED_KERN))
399 set_pmd(pmd, __pmd(0));
400 continue;
401 }
402
403 if (!pmd_none(*pmd)) {
404 if (!pmd_large(*pmd)) {
405 spin_lock(&init_mm.page_table_lock);
406 pte = (pte_t *)pmd_page_vaddr(*pmd);
407 paddr_last = phys_pte_init(pte, paddr,
408 paddr_end, prot);
409 spin_unlock(&init_mm.page_table_lock);
410 continue;
411 }
412 /*
413 * If we are ok with PG_LEVEL_2M mapping, then we will
414 * use the existing mapping,
415 *
416 * Otherwise, we will split the large page mapping but
417 * use the same existing protection bits except for
418 * large page, so that we don't violate Intel's TLB
419 * Application note (317080) which says, while changing
420 * the page sizes, new and old translations should
421 * not differ with respect to page frame and
422 * attributes.
423 */
424 if (page_size_mask & (1 << PG_LEVEL_2M)) {
425 if (!after_bootmem)
426 pages++;
427 paddr_last = paddr_next;
428 continue;
429 }
430 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
431 }
432
433 if (page_size_mask & (1<<PG_LEVEL_2M)) {
434 pages++;
435 spin_lock(&init_mm.page_table_lock);
436 set_pte((pte_t *)pmd,
437 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
438 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
439 spin_unlock(&init_mm.page_table_lock);
440 paddr_last = paddr_next;
441 continue;
442 }
443
444 pte = alloc_low_page();
445 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
446
447 spin_lock(&init_mm.page_table_lock);
448 pmd_populate_kernel(&init_mm, pmd, pte);
449 spin_unlock(&init_mm.page_table_lock);
450 }
451 update_page_count(PG_LEVEL_2M, pages);
452 return paddr_last;
453 }
454
455 /*
456 * Create PUD level page table mapping for physical addresses. The virtual
457 * and physical address do not have to be aligned at this level. KASLR can
458 * randomize virtual addresses up to this level.
459 * It returns the last physical address mapped.
460 */
461 static unsigned long __meminit
462 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
463 unsigned long page_size_mask)
464 {
465 unsigned long pages = 0, paddr_next;
466 unsigned long paddr_last = paddr_end;
467 unsigned long vaddr = (unsigned long)__va(paddr);
468 int i = pud_index(vaddr);
469
470 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
471 pud_t *pud;
472 pmd_t *pmd;
473 pgprot_t prot = PAGE_KERNEL;
474
475 vaddr = (unsigned long)__va(paddr);
476 pud = pud_page + pud_index(vaddr);
477 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
478
479 if (paddr >= paddr_end) {
480 if (!after_bootmem &&
481 !e820_any_mapped(paddr & PUD_MASK, paddr_next,
482 E820_RAM) &&
483 !e820_any_mapped(paddr & PUD_MASK, paddr_next,
484 E820_RESERVED_KERN))
485 set_pud(pud, __pud(0));
486 continue;
487 }
488
489 if (!pud_none(*pud)) {
490 if (!pud_large(*pud)) {
491 pmd = pmd_offset(pud, 0);
492 paddr_last = phys_pmd_init(pmd, paddr,
493 paddr_end,
494 page_size_mask,
495 prot);
496 __flush_tlb_all();
497 continue;
498 }
499 /*
500 * If we are ok with PG_LEVEL_1G mapping, then we will
501 * use the existing mapping.
502 *
503 * Otherwise, we will split the gbpage mapping but use
504 * the same existing protection bits except for large
505 * page, so that we don't violate Intel's TLB
506 * Application note (317080) which says, while changing
507 * the page sizes, new and old translations should
508 * not differ with respect to page frame and
509 * attributes.
510 */
511 if (page_size_mask & (1 << PG_LEVEL_1G)) {
512 if (!after_bootmem)
513 pages++;
514 paddr_last = paddr_next;
515 continue;
516 }
517 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
518 }
519
520 if (page_size_mask & (1<<PG_LEVEL_1G)) {
521 pages++;
522 spin_lock(&init_mm.page_table_lock);
523 set_pte((pte_t *)pud,
524 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
525 PAGE_KERNEL_LARGE));
526 spin_unlock(&init_mm.page_table_lock);
527 paddr_last = paddr_next;
528 continue;
529 }
530
531 pmd = alloc_low_page();
532 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
533 page_size_mask, prot);
534
535 spin_lock(&init_mm.page_table_lock);
536 pud_populate(&init_mm, pud, pmd);
537 spin_unlock(&init_mm.page_table_lock);
538 }
539 __flush_tlb_all();
540
541 update_page_count(PG_LEVEL_1G, pages);
542
543 return paddr_last;
544 }
545
546 /*
547 * Create page table mapping for the physical memory for specific physical
548 * addresses. The virtual and physical addresses have to be aligned on PMD level
549 * down. It returns the last physical address mapped.
550 */
551 unsigned long __meminit
552 kernel_physical_mapping_init(unsigned long paddr_start,
553 unsigned long paddr_end,
554 unsigned long page_size_mask)
555 {
556 bool pgd_changed = false;
557 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
558
559 paddr_last = paddr_end;
560 vaddr = (unsigned long)__va(paddr_start);
561 vaddr_end = (unsigned long)__va(paddr_end);
562 vaddr_start = vaddr;
563
564 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
565 pgd_t *pgd = pgd_offset_k(vaddr);
566 pud_t *pud;
567
568 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
569
570 if (pgd_val(*pgd)) {
571 pud = (pud_t *)pgd_page_vaddr(*pgd);
572 paddr_last = phys_pud_init(pud, __pa(vaddr),
573 __pa(vaddr_end),
574 page_size_mask);
575 continue;
576 }
577
578 pud = alloc_low_page();
579 paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end),
580 page_size_mask);
581
582 spin_lock(&init_mm.page_table_lock);
583 pgd_populate(&init_mm, pgd, pud);
584 spin_unlock(&init_mm.page_table_lock);
585 pgd_changed = true;
586 }
587
588 if (pgd_changed)
589 sync_global_pgds(vaddr_start, vaddr_end - 1);
590
591 __flush_tlb_all();
592
593 return paddr_last;
594 }
595
596 #ifndef CONFIG_NUMA
597 void __init initmem_init(void)
598 {
599 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
600 }
601 #endif
602
603 void __init paging_init(void)
604 {
605 sparse_memory_present_with_active_regions(MAX_NUMNODES);
606 sparse_init();
607
608 /*
609 * clear the default setting with node 0
610 * note: don't use nodes_clear here, that is really clearing when
611 * numa support is not compiled in, and later node_set_state
612 * will not set it back.
613 */
614 node_clear_state(0, N_MEMORY);
615 if (N_MEMORY != N_NORMAL_MEMORY)
616 node_clear_state(0, N_NORMAL_MEMORY);
617
618 zone_sizes_init();
619 }
620
621 /*
622 * Memory hotplug specific functions
623 */
624 #ifdef CONFIG_MEMORY_HOTPLUG
625 /*
626 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
627 * updating.
628 */
629 static void update_end_of_memory_vars(u64 start, u64 size)
630 {
631 unsigned long end_pfn = PFN_UP(start + size);
632
633 if (end_pfn > max_pfn) {
634 max_pfn = end_pfn;
635 max_low_pfn = end_pfn;
636 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
637 }
638 }
639
640 /*
641 * Memory is added always to NORMAL zone. This means you will never get
642 * additional DMA/DMA32 memory.
643 */
644 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
645 {
646 struct pglist_data *pgdat = NODE_DATA(nid);
647 struct zone *zone = pgdat->node_zones +
648 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
649 unsigned long start_pfn = start >> PAGE_SHIFT;
650 unsigned long nr_pages = size >> PAGE_SHIFT;
651 int ret;
652
653 init_memory_mapping(start, start + size);
654
655 ret = __add_pages(nid, zone, start_pfn, nr_pages);
656 WARN_ON_ONCE(ret);
657
658 /* update max_pfn, max_low_pfn and high_memory */
659 update_end_of_memory_vars(start, size);
660
661 return ret;
662 }
663 EXPORT_SYMBOL_GPL(arch_add_memory);
664
665 #define PAGE_INUSE 0xFD
666
667 static void __meminit free_pagetable(struct page *page, int order)
668 {
669 unsigned long magic;
670 unsigned int nr_pages = 1 << order;
671 struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
672
673 if (altmap) {
674 vmem_altmap_free(altmap, nr_pages);
675 return;
676 }
677
678 /* bootmem page has reserved flag */
679 if (PageReserved(page)) {
680 __ClearPageReserved(page);
681
682 magic = (unsigned long)page->lru.next;
683 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
684 while (nr_pages--)
685 put_page_bootmem(page++);
686 } else
687 while (nr_pages--)
688 free_reserved_page(page++);
689 } else
690 free_pages((unsigned long)page_address(page), order);
691 }
692
693 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
694 {
695 pte_t *pte;
696 int i;
697
698 for (i = 0; i < PTRS_PER_PTE; i++) {
699 pte = pte_start + i;
700 if (!pte_none(*pte))
701 return;
702 }
703
704 /* free a pte talbe */
705 free_pagetable(pmd_page(*pmd), 0);
706 spin_lock(&init_mm.page_table_lock);
707 pmd_clear(pmd);
708 spin_unlock(&init_mm.page_table_lock);
709 }
710
711 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
712 {
713 pmd_t *pmd;
714 int i;
715
716 for (i = 0; i < PTRS_PER_PMD; i++) {
717 pmd = pmd_start + i;
718 if (!pmd_none(*pmd))
719 return;
720 }
721
722 /* free a pmd talbe */
723 free_pagetable(pud_page(*pud), 0);
724 spin_lock(&init_mm.page_table_lock);
725 pud_clear(pud);
726 spin_unlock(&init_mm.page_table_lock);
727 }
728
729 static void __meminit
730 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
731 bool direct)
732 {
733 unsigned long next, pages = 0;
734 pte_t *pte;
735 void *page_addr;
736 phys_addr_t phys_addr;
737
738 pte = pte_start + pte_index(addr);
739 for (; addr < end; addr = next, pte++) {
740 next = (addr + PAGE_SIZE) & PAGE_MASK;
741 if (next > end)
742 next = end;
743
744 if (!pte_present(*pte))
745 continue;
746
747 /*
748 * We mapped [0,1G) memory as identity mapping when
749 * initializing, in arch/x86/kernel/head_64.S. These
750 * pagetables cannot be removed.
751 */
752 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
753 if (phys_addr < (phys_addr_t)0x40000000)
754 return;
755
756 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
757 /*
758 * Do not free direct mapping pages since they were
759 * freed when offlining, or simplely not in use.
760 */
761 if (!direct)
762 free_pagetable(pte_page(*pte), 0);
763
764 spin_lock(&init_mm.page_table_lock);
765 pte_clear(&init_mm, addr, pte);
766 spin_unlock(&init_mm.page_table_lock);
767
768 /* For non-direct mapping, pages means nothing. */
769 pages++;
770 } else {
771 /*
772 * If we are here, we are freeing vmemmap pages since
773 * direct mapped memory ranges to be freed are aligned.
774 *
775 * If we are not removing the whole page, it means
776 * other page structs in this page are being used and
777 * we canot remove them. So fill the unused page_structs
778 * with 0xFD, and remove the page when it is wholly
779 * filled with 0xFD.
780 */
781 memset((void *)addr, PAGE_INUSE, next - addr);
782
783 page_addr = page_address(pte_page(*pte));
784 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
785 free_pagetable(pte_page(*pte), 0);
786
787 spin_lock(&init_mm.page_table_lock);
788 pte_clear(&init_mm, addr, pte);
789 spin_unlock(&init_mm.page_table_lock);
790 }
791 }
792 }
793
794 /* Call free_pte_table() in remove_pmd_table(). */
795 flush_tlb_all();
796 if (direct)
797 update_page_count(PG_LEVEL_4K, -pages);
798 }
799
800 static void __meminit
801 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
802 bool direct)
803 {
804 unsigned long next, pages = 0;
805 pte_t *pte_base;
806 pmd_t *pmd;
807 void *page_addr;
808
809 pmd = pmd_start + pmd_index(addr);
810 for (; addr < end; addr = next, pmd++) {
811 next = pmd_addr_end(addr, end);
812
813 if (!pmd_present(*pmd))
814 continue;
815
816 if (pmd_large(*pmd)) {
817 if (IS_ALIGNED(addr, PMD_SIZE) &&
818 IS_ALIGNED(next, PMD_SIZE)) {
819 if (!direct)
820 free_pagetable(pmd_page(*pmd),
821 get_order(PMD_SIZE));
822
823 spin_lock(&init_mm.page_table_lock);
824 pmd_clear(pmd);
825 spin_unlock(&init_mm.page_table_lock);
826 pages++;
827 } else {
828 /* If here, we are freeing vmemmap pages. */
829 memset((void *)addr, PAGE_INUSE, next - addr);
830
831 page_addr = page_address(pmd_page(*pmd));
832 if (!memchr_inv(page_addr, PAGE_INUSE,
833 PMD_SIZE)) {
834 free_pagetable(pmd_page(*pmd),
835 get_order(PMD_SIZE));
836
837 spin_lock(&init_mm.page_table_lock);
838 pmd_clear(pmd);
839 spin_unlock(&init_mm.page_table_lock);
840 }
841 }
842
843 continue;
844 }
845
846 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
847 remove_pte_table(pte_base, addr, next, direct);
848 free_pte_table(pte_base, pmd);
849 }
850
851 /* Call free_pmd_table() in remove_pud_table(). */
852 if (direct)
853 update_page_count(PG_LEVEL_2M, -pages);
854 }
855
856 static void __meminit
857 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
858 bool direct)
859 {
860 unsigned long next, pages = 0;
861 pmd_t *pmd_base;
862 pud_t *pud;
863 void *page_addr;
864
865 pud = pud_start + pud_index(addr);
866 for (; addr < end; addr = next, pud++) {
867 next = pud_addr_end(addr, end);
868
869 if (!pud_present(*pud))
870 continue;
871
872 if (pud_large(*pud)) {
873 if (IS_ALIGNED(addr, PUD_SIZE) &&
874 IS_ALIGNED(next, PUD_SIZE)) {
875 if (!direct)
876 free_pagetable(pud_page(*pud),
877 get_order(PUD_SIZE));
878
879 spin_lock(&init_mm.page_table_lock);
880 pud_clear(pud);
881 spin_unlock(&init_mm.page_table_lock);
882 pages++;
883 } else {
884 /* If here, we are freeing vmemmap pages. */
885 memset((void *)addr, PAGE_INUSE, next - addr);
886
887 page_addr = page_address(pud_page(*pud));
888 if (!memchr_inv(page_addr, PAGE_INUSE,
889 PUD_SIZE)) {
890 free_pagetable(pud_page(*pud),
891 get_order(PUD_SIZE));
892
893 spin_lock(&init_mm.page_table_lock);
894 pud_clear(pud);
895 spin_unlock(&init_mm.page_table_lock);
896 }
897 }
898
899 continue;
900 }
901
902 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
903 remove_pmd_table(pmd_base, addr, next, direct);
904 free_pmd_table(pmd_base, pud);
905 }
906
907 if (direct)
908 update_page_count(PG_LEVEL_1G, -pages);
909 }
910
911 /* start and end are both virtual address. */
912 static void __meminit
913 remove_pagetable(unsigned long start, unsigned long end, bool direct)
914 {
915 unsigned long next;
916 unsigned long addr;
917 pgd_t *pgd;
918 pud_t *pud;
919
920 for (addr = start; addr < end; addr = next) {
921 next = pgd_addr_end(addr, end);
922
923 pgd = pgd_offset_k(addr);
924 if (!pgd_present(*pgd))
925 continue;
926
927 pud = (pud_t *)pgd_page_vaddr(*pgd);
928 remove_pud_table(pud, addr, next, direct);
929 }
930
931 flush_tlb_all();
932 }
933
934 void __ref vmemmap_free(unsigned long start, unsigned long end)
935 {
936 remove_pagetable(start, end, false);
937 }
938
939 #ifdef CONFIG_MEMORY_HOTREMOVE
940 static void __meminit
941 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
942 {
943 start = (unsigned long)__va(start);
944 end = (unsigned long)__va(end);
945
946 remove_pagetable(start, end, true);
947 }
948
949 int __ref arch_remove_memory(u64 start, u64 size)
950 {
951 unsigned long start_pfn = start >> PAGE_SHIFT;
952 unsigned long nr_pages = size >> PAGE_SHIFT;
953 struct page *page = pfn_to_page(start_pfn);
954 struct vmem_altmap *altmap;
955 struct zone *zone;
956 int ret;
957
958 /* With altmap the first mapped page is offset from @start */
959 altmap = to_vmem_altmap((unsigned long) page);
960 if (altmap)
961 page += vmem_altmap_offset(altmap);
962 zone = page_zone(page);
963 ret = __remove_pages(zone, start_pfn, nr_pages);
964 WARN_ON_ONCE(ret);
965 kernel_physical_mapping_remove(start, start + size);
966
967 return ret;
968 }
969 #endif
970 #endif /* CONFIG_MEMORY_HOTPLUG */
971
972 static struct kcore_list kcore_vsyscall;
973
974 static void __init register_page_bootmem_info(void)
975 {
976 #ifdef CONFIG_NUMA
977 int i;
978
979 for_each_online_node(i)
980 register_page_bootmem_info_node(NODE_DATA(i));
981 #endif
982 }
983
984 void __init mem_init(void)
985 {
986 pci_iommu_alloc();
987
988 /* clear_bss() already clear the empty_zero_page */
989
990 register_page_bootmem_info();
991
992 /* this will put all memory onto the freelists */
993 free_all_bootmem();
994 after_bootmem = 1;
995
996 /* Register memory areas for /proc/kcore */
997 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
998 PAGE_SIZE, KCORE_OTHER);
999
1000 mem_init_print_info(NULL);
1001 }
1002
1003 const int rodata_test_data = 0xC3;
1004 EXPORT_SYMBOL_GPL(rodata_test_data);
1005
1006 int kernel_set_to_readonly;
1007
1008 void set_kernel_text_rw(void)
1009 {
1010 unsigned long start = PFN_ALIGN(_text);
1011 unsigned long end = PFN_ALIGN(__stop___ex_table);
1012
1013 if (!kernel_set_to_readonly)
1014 return;
1015
1016 pr_debug("Set kernel text: %lx - %lx for read write\n",
1017 start, end);
1018
1019 /*
1020 * Make the kernel identity mapping for text RW. Kernel text
1021 * mapping will always be RO. Refer to the comment in
1022 * static_protections() in pageattr.c
1023 */
1024 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1025 }
1026
1027 void set_kernel_text_ro(void)
1028 {
1029 unsigned long start = PFN_ALIGN(_text);
1030 unsigned long end = PFN_ALIGN(__stop___ex_table);
1031
1032 if (!kernel_set_to_readonly)
1033 return;
1034
1035 pr_debug("Set kernel text: %lx - %lx for read only\n",
1036 start, end);
1037
1038 /*
1039 * Set the kernel identity mapping for text RO.
1040 */
1041 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1042 }
1043
1044 void mark_rodata_ro(void)
1045 {
1046 unsigned long start = PFN_ALIGN(_text);
1047 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1048 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1049 unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1050 unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1051 unsigned long all_end;
1052
1053 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1054 (end - start) >> 10);
1055 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1056
1057 kernel_set_to_readonly = 1;
1058
1059 /*
1060 * The rodata/data/bss/brk section (but not the kernel text!)
1061 * should also be not-executable.
1062 *
1063 * We align all_end to PMD_SIZE because the existing mapping
1064 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1065 * split the PMD and the reminder between _brk_end and the end
1066 * of the PMD will remain mapped executable.
1067 *
1068 * Any PMD which was setup after the one which covers _brk_end
1069 * has been zapped already via cleanup_highmem().
1070 */
1071 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1072 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1073
1074 rodata_test();
1075
1076 #ifdef CONFIG_CPA_DEBUG
1077 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1078 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1079
1080 printk(KERN_INFO "Testing CPA: again\n");
1081 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1082 #endif
1083
1084 free_init_pages("unused kernel",
1085 (unsigned long) __va(__pa_symbol(text_end)),
1086 (unsigned long) __va(__pa_symbol(rodata_start)));
1087 free_init_pages("unused kernel",
1088 (unsigned long) __va(__pa_symbol(rodata_end)),
1089 (unsigned long) __va(__pa_symbol(_sdata)));
1090
1091 debug_checkwx();
1092 }
1093
1094 int kern_addr_valid(unsigned long addr)
1095 {
1096 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1097 pgd_t *pgd;
1098 pud_t *pud;
1099 pmd_t *pmd;
1100 pte_t *pte;
1101
1102 if (above != 0 && above != -1UL)
1103 return 0;
1104
1105 pgd = pgd_offset_k(addr);
1106 if (pgd_none(*pgd))
1107 return 0;
1108
1109 pud = pud_offset(pgd, addr);
1110 if (pud_none(*pud))
1111 return 0;
1112
1113 if (pud_large(*pud))
1114 return pfn_valid(pud_pfn(*pud));
1115
1116 pmd = pmd_offset(pud, addr);
1117 if (pmd_none(*pmd))
1118 return 0;
1119
1120 if (pmd_large(*pmd))
1121 return pfn_valid(pmd_pfn(*pmd));
1122
1123 pte = pte_offset_kernel(pmd, addr);
1124 if (pte_none(*pte))
1125 return 0;
1126
1127 return pfn_valid(pte_pfn(*pte));
1128 }
1129
1130 static unsigned long probe_memory_block_size(void)
1131 {
1132 unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1133
1134 /* if system is UV or has 64GB of RAM or more, use large blocks */
1135 if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1136 bz = 2UL << 30; /* 2GB */
1137
1138 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1139
1140 return bz;
1141 }
1142
1143 static unsigned long memory_block_size_probed;
1144 unsigned long memory_block_size_bytes(void)
1145 {
1146 if (!memory_block_size_probed)
1147 memory_block_size_probed = probe_memory_block_size();
1148
1149 return memory_block_size_probed;
1150 }
1151
1152 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1153 /*
1154 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1155 */
1156 static long __meminitdata addr_start, addr_end;
1157 static void __meminitdata *p_start, *p_end;
1158 static int __meminitdata node_start;
1159
1160 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1161 unsigned long end, int node, struct vmem_altmap *altmap)
1162 {
1163 unsigned long addr;
1164 unsigned long next;
1165 pgd_t *pgd;
1166 pud_t *pud;
1167 pmd_t *pmd;
1168
1169 for (addr = start; addr < end; addr = next) {
1170 next = pmd_addr_end(addr, end);
1171
1172 pgd = vmemmap_pgd_populate(addr, node);
1173 if (!pgd)
1174 return -ENOMEM;
1175
1176 pud = vmemmap_pud_populate(pgd, addr, node);
1177 if (!pud)
1178 return -ENOMEM;
1179
1180 pmd = pmd_offset(pud, addr);
1181 if (pmd_none(*pmd)) {
1182 void *p;
1183
1184 p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1185 if (p) {
1186 pte_t entry;
1187
1188 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1189 PAGE_KERNEL_LARGE);
1190 set_pmd(pmd, __pmd(pte_val(entry)));
1191
1192 /* check to see if we have contiguous blocks */
1193 if (p_end != p || node_start != node) {
1194 if (p_start)
1195 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1196 addr_start, addr_end-1, p_start, p_end-1, node_start);
1197 addr_start = addr;
1198 node_start = node;
1199 p_start = p;
1200 }
1201
1202 addr_end = addr + PMD_SIZE;
1203 p_end = p + PMD_SIZE;
1204 continue;
1205 } else if (altmap)
1206 return -ENOMEM; /* no fallback */
1207 } else if (pmd_large(*pmd)) {
1208 vmemmap_verify((pte_t *)pmd, node, addr, next);
1209 continue;
1210 }
1211 pr_warn_once("vmemmap: falling back to regular page backing\n");
1212 if (vmemmap_populate_basepages(addr, next, node))
1213 return -ENOMEM;
1214 }
1215 return 0;
1216 }
1217
1218 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1219 {
1220 struct vmem_altmap *altmap = to_vmem_altmap(start);
1221 int err;
1222
1223 if (boot_cpu_has(X86_FEATURE_PSE))
1224 err = vmemmap_populate_hugepages(start, end, node, altmap);
1225 else if (altmap) {
1226 pr_err_once("%s: no cpu support for altmap allocations\n",
1227 __func__);
1228 err = -ENOMEM;
1229 } else
1230 err = vmemmap_populate_basepages(start, end, node);
1231 if (!err)
1232 sync_global_pgds(start, end - 1);
1233 return err;
1234 }
1235
1236 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1237 void register_page_bootmem_memmap(unsigned long section_nr,
1238 struct page *start_page, unsigned long size)
1239 {
1240 unsigned long addr = (unsigned long)start_page;
1241 unsigned long end = (unsigned long)(start_page + size);
1242 unsigned long next;
1243 pgd_t *pgd;
1244 pud_t *pud;
1245 pmd_t *pmd;
1246 unsigned int nr_pages;
1247 struct page *page;
1248
1249 for (; addr < end; addr = next) {
1250 pte_t *pte = NULL;
1251
1252 pgd = pgd_offset_k(addr);
1253 if (pgd_none(*pgd)) {
1254 next = (addr + PAGE_SIZE) & PAGE_MASK;
1255 continue;
1256 }
1257 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1258
1259 pud = pud_offset(pgd, addr);
1260 if (pud_none(*pud)) {
1261 next = (addr + PAGE_SIZE) & PAGE_MASK;
1262 continue;
1263 }
1264 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1265
1266 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1267 next = (addr + PAGE_SIZE) & PAGE_MASK;
1268 pmd = pmd_offset(pud, addr);
1269 if (pmd_none(*pmd))
1270 continue;
1271 get_page_bootmem(section_nr, pmd_page(*pmd),
1272 MIX_SECTION_INFO);
1273
1274 pte = pte_offset_kernel(pmd, addr);
1275 if (pte_none(*pte))
1276 continue;
1277 get_page_bootmem(section_nr, pte_page(*pte),
1278 SECTION_INFO);
1279 } else {
1280 next = pmd_addr_end(addr, end);
1281
1282 pmd = pmd_offset(pud, addr);
1283 if (pmd_none(*pmd))
1284 continue;
1285
1286 nr_pages = 1 << (get_order(PMD_SIZE));
1287 page = pmd_page(*pmd);
1288 while (nr_pages--)
1289 get_page_bootmem(section_nr, page++,
1290 SECTION_INFO);
1291 }
1292 }
1293 }
1294 #endif
1295
1296 void __meminit vmemmap_populate_print_last(void)
1297 {
1298 if (p_start) {
1299 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1300 addr_start, addr_end-1, p_start, p_end-1, node_start);
1301 p_start = NULL;
1302 p_end = NULL;
1303 node_start = 0;
1304 }
1305 }
1306 #endif