]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/mm/pageattr.c
Merge tag 'leds-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewsk...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / mm / pageattr.c
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
31 struct cpa_data {
32 unsigned long *vaddr;
33 pgd_t *pgd;
34 pgprot_t mask_set;
35 pgprot_t mask_clr;
36 int numpages;
37 int flags;
38 unsigned long pfn;
39 unsigned force_split : 1;
40 int curpage;
41 struct page **pages;
42 };
43
44 /*
45 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47 * entries change the page attribute in parallel to some other cpu
48 * splitting a large page entry along with changing the attribute.
49 */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61 /* Protect against CPA */
62 spin_lock(&pgd_lock);
63 direct_pages_count[level] += pages;
64 spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69 direct_pages_count[level]--;
70 direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75 seq_printf(m, "DirectMap4k: %8lu kB\n",
76 direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 seq_printf(m, "DirectMap2M: %8lu kB\n",
79 direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81 seq_printf(m, "DirectMap4M: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 if (direct_gbpages)
85 seq_printf(m, "DirectMap1G: %8lu kB\n",
86 direct_pages_count[PG_LEVEL_1G] << 20);
87 }
88 #else
89 static inline void split_page_count(int level) { }
90 #endif
91
92 #ifdef CONFIG_X86_64
93
94 static inline unsigned long highmap_start_pfn(void)
95 {
96 return __pa_symbol(_text) >> PAGE_SHIFT;
97 }
98
99 static inline unsigned long highmap_end_pfn(void)
100 {
101 return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
102 }
103
104 #endif
105
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 # define debug_pagealloc 1
108 #else
109 # define debug_pagealloc 0
110 #endif
111
112 static inline int
113 within(unsigned long addr, unsigned long start, unsigned long end)
114 {
115 return addr >= start && addr < end;
116 }
117
118 /*
119 * Flushing functions
120 */
121
122 /**
123 * clflush_cache_range - flush a cache range with clflush
124 * @vaddr: virtual start address
125 * @size: number of bytes to flush
126 *
127 * clflushopt is an unordered instruction which needs fencing with mfence or
128 * sfence to avoid ordering issues.
129 */
130 void clflush_cache_range(void *vaddr, unsigned int size)
131 {
132 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
133 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
134 void *vend = vaddr + size;
135
136 if (p >= vend)
137 return;
138
139 mb();
140
141 for (; p < vend; p += clflush_size)
142 clflushopt(p);
143
144 mb();
145 }
146 EXPORT_SYMBOL_GPL(clflush_cache_range);
147
148 static void __cpa_flush_all(void *arg)
149 {
150 unsigned long cache = (unsigned long)arg;
151
152 /*
153 * Flush all to work around Errata in early athlons regarding
154 * large page flushing.
155 */
156 __flush_tlb_all();
157
158 if (cache && boot_cpu_data.x86 >= 4)
159 wbinvd();
160 }
161
162 static void cpa_flush_all(unsigned long cache)
163 {
164 BUG_ON(irqs_disabled());
165
166 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 }
168
169 static void __cpa_flush_range(void *arg)
170 {
171 /*
172 * We could optimize that further and do individual per page
173 * tlb invalidates for a low number of pages. Caveat: we must
174 * flush the high aliases on 64bit as well.
175 */
176 __flush_tlb_all();
177 }
178
179 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 {
181 unsigned int i, level;
182 unsigned long addr;
183
184 BUG_ON(irqs_disabled());
185 WARN_ON(PAGE_ALIGN(start) != start);
186
187 on_each_cpu(__cpa_flush_range, NULL, 1);
188
189 if (!cache)
190 return;
191
192 /*
193 * We only need to flush on one CPU,
194 * clflush is a MESI-coherent instruction that
195 * will cause all other CPUs to flush the same
196 * cachelines:
197 */
198 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199 pte_t *pte = lookup_address(addr, &level);
200
201 /*
202 * Only flush present addresses:
203 */
204 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
205 clflush_cache_range((void *) addr, PAGE_SIZE);
206 }
207 }
208
209 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210 int in_flags, struct page **pages)
211 {
212 unsigned int i, level;
213 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214
215 BUG_ON(irqs_disabled());
216
217 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218
219 if (!cache || do_wbinvd)
220 return;
221
222 /*
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
226 * cachelines:
227 */
228 for (i = 0; i < numpages; i++) {
229 unsigned long addr;
230 pte_t *pte;
231
232 if (in_flags & CPA_PAGES_ARRAY)
233 addr = (unsigned long)page_address(pages[i]);
234 else
235 addr = start[i];
236
237 pte = lookup_address(addr, &level);
238
239 /*
240 * Only flush present addresses:
241 */
242 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
243 clflush_cache_range((void *)addr, PAGE_SIZE);
244 }
245 }
246
247 /*
248 * Certain areas of memory on x86 require very specific protection flags,
249 * for example the BIOS area or kernel text. Callers don't always get this
250 * right (again, ioremap() on BIOS memory is not uncommon) so this function
251 * checks and fixes these known static required protection bits.
252 */
253 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254 unsigned long pfn)
255 {
256 pgprot_t forbidden = __pgprot(0);
257
258 /*
259 * The BIOS area between 640k and 1Mb needs to be executable for
260 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261 */
262 #ifdef CONFIG_PCI_BIOS
263 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264 pgprot_val(forbidden) |= _PAGE_NX;
265 #endif
266
267 /*
268 * The kernel text needs to be executable for obvious reasons
269 * Does not cover __inittext since that is gone later on. On
270 * 64bit we do not enforce !NX on the low mapping
271 */
272 if (within(address, (unsigned long)_text, (unsigned long)_etext))
273 pgprot_val(forbidden) |= _PAGE_NX;
274
275 /*
276 * The .rodata section needs to be read-only. Using the pfn
277 * catches all aliases.
278 */
279 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
280 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
281 pgprot_val(forbidden) |= _PAGE_RW;
282
283 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
284 /*
285 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286 * kernel text mappings for the large page aligned text, rodata sections
287 * will be always read-only. For the kernel identity mappings covering
288 * the holes caused by this alignment can be anything that user asks.
289 *
290 * This will preserve the large page mappings for kernel text/data
291 * at no extra cost.
292 */
293 if (kernel_set_to_readonly &&
294 within(address, (unsigned long)_text,
295 (unsigned long)__end_rodata_hpage_align)) {
296 unsigned int level;
297
298 /*
299 * Don't enforce the !RW mapping for the kernel text mapping,
300 * if the current mapping is already using small page mapping.
301 * No need to work hard to preserve large page mappings in this
302 * case.
303 *
304 * This also fixes the Linux Xen paravirt guest boot failure
305 * (because of unexpected read-only mappings for kernel identity
306 * mappings). In this paravirt guest case, the kernel text
307 * mapping and the kernel identity mapping share the same
308 * page-table pages. Thus we can't really use different
309 * protections for the kernel text and identity mappings. Also,
310 * these shared mappings are made of small page mappings.
311 * Thus this don't enforce !RW mapping for small page kernel
312 * text mapping logic will help Linux Xen parvirt guest boot
313 * as well.
314 */
315 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316 pgprot_val(forbidden) |= _PAGE_RW;
317 }
318 #endif
319
320 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
321
322 return prot;
323 }
324
325 /*
326 * Lookup the page table entry for a virtual address in a specific pgd.
327 * Return a pointer to the entry and the level of the mapping.
328 */
329 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
330 unsigned int *level)
331 {
332 pud_t *pud;
333 pmd_t *pmd;
334
335 *level = PG_LEVEL_NONE;
336
337 if (pgd_none(*pgd))
338 return NULL;
339
340 pud = pud_offset(pgd, address);
341 if (pud_none(*pud))
342 return NULL;
343
344 *level = PG_LEVEL_1G;
345 if (pud_large(*pud) || !pud_present(*pud))
346 return (pte_t *)pud;
347
348 pmd = pmd_offset(pud, address);
349 if (pmd_none(*pmd))
350 return NULL;
351
352 *level = PG_LEVEL_2M;
353 if (pmd_large(*pmd) || !pmd_present(*pmd))
354 return (pte_t *)pmd;
355
356 *level = PG_LEVEL_4K;
357
358 return pte_offset_kernel(pmd, address);
359 }
360
361 /*
362 * Lookup the page table entry for a virtual address. Return a pointer
363 * to the entry and the level of the mapping.
364 *
365 * Note: We return pud and pmd either when the entry is marked large
366 * or when the present bit is not set. Otherwise we would return a
367 * pointer to a nonexisting mapping.
368 */
369 pte_t *lookup_address(unsigned long address, unsigned int *level)
370 {
371 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
372 }
373 EXPORT_SYMBOL_GPL(lookup_address);
374
375 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
376 unsigned int *level)
377 {
378 if (cpa->pgd)
379 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
380 address, level);
381
382 return lookup_address(address, level);
383 }
384
385 /*
386 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
387 * or NULL if not present.
388 */
389 pmd_t *lookup_pmd_address(unsigned long address)
390 {
391 pgd_t *pgd;
392 pud_t *pud;
393
394 pgd = pgd_offset_k(address);
395 if (pgd_none(*pgd))
396 return NULL;
397
398 pud = pud_offset(pgd, address);
399 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
400 return NULL;
401
402 return pmd_offset(pud, address);
403 }
404
405 /*
406 * This is necessary because __pa() does not work on some
407 * kinds of memory, like vmalloc() or the alloc_remap()
408 * areas on 32-bit NUMA systems. The percpu areas can
409 * end up in this kind of memory, for instance.
410 *
411 * This could be optimized, but it is only intended to be
412 * used at inititalization time, and keeping it
413 * unoptimized should increase the testing coverage for
414 * the more obscure platforms.
415 */
416 phys_addr_t slow_virt_to_phys(void *__virt_addr)
417 {
418 unsigned long virt_addr = (unsigned long)__virt_addr;
419 unsigned long phys_addr, offset;
420 enum pg_level level;
421 pte_t *pte;
422
423 pte = lookup_address(virt_addr, &level);
424 BUG_ON(!pte);
425
426 switch (level) {
427 case PG_LEVEL_1G:
428 phys_addr = pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
429 offset = virt_addr & ~PUD_PAGE_MASK;
430 break;
431 case PG_LEVEL_2M:
432 phys_addr = pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
433 offset = virt_addr & ~PMD_PAGE_MASK;
434 break;
435 default:
436 phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
437 offset = virt_addr & ~PAGE_MASK;
438 }
439
440 return (phys_addr_t)(phys_addr | offset);
441 }
442 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
443
444 /*
445 * Set the new pmd in all the pgds we know about:
446 */
447 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
448 {
449 /* change init_mm */
450 set_pte_atomic(kpte, pte);
451 #ifdef CONFIG_X86_32
452 if (!SHARED_KERNEL_PMD) {
453 struct page *page;
454
455 list_for_each_entry(page, &pgd_list, lru) {
456 pgd_t *pgd;
457 pud_t *pud;
458 pmd_t *pmd;
459
460 pgd = (pgd_t *)page_address(page) + pgd_index(address);
461 pud = pud_offset(pgd, address);
462 pmd = pmd_offset(pud, address);
463 set_pte_atomic((pte_t *)pmd, pte);
464 }
465 }
466 #endif
467 }
468
469 static int
470 try_preserve_large_page(pte_t *kpte, unsigned long address,
471 struct cpa_data *cpa)
472 {
473 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
474 pte_t new_pte, old_pte, *tmp;
475 pgprot_t old_prot, new_prot, req_prot;
476 int i, do_split = 1;
477 enum pg_level level;
478
479 if (cpa->force_split)
480 return 1;
481
482 spin_lock(&pgd_lock);
483 /*
484 * Check for races, another CPU might have split this page
485 * up already:
486 */
487 tmp = _lookup_address_cpa(cpa, address, &level);
488 if (tmp != kpte)
489 goto out_unlock;
490
491 switch (level) {
492 case PG_LEVEL_2M:
493 old_prot = pmd_pgprot(*(pmd_t *)kpte);
494 old_pfn = pmd_pfn(*(pmd_t *)kpte);
495 break;
496 case PG_LEVEL_1G:
497 old_prot = pud_pgprot(*(pud_t *)kpte);
498 old_pfn = pud_pfn(*(pud_t *)kpte);
499 break;
500 default:
501 do_split = -EINVAL;
502 goto out_unlock;
503 }
504
505 psize = page_level_size(level);
506 pmask = page_level_mask(level);
507
508 /*
509 * Calculate the number of pages, which fit into this large
510 * page starting at address:
511 */
512 nextpage_addr = (address + psize) & pmask;
513 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
514 if (numpages < cpa->numpages)
515 cpa->numpages = numpages;
516
517 /*
518 * We are safe now. Check whether the new pgprot is the same:
519 * Convert protection attributes to 4k-format, as cpa->mask* are set
520 * up accordingly.
521 */
522 old_pte = *kpte;
523 req_prot = pgprot_large_2_4k(old_prot);
524
525 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
526 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
527
528 /*
529 * req_prot is in format of 4k pages. It must be converted to large
530 * page format: the caching mode includes the PAT bit located at
531 * different bit positions in the two formats.
532 */
533 req_prot = pgprot_4k_2_large(req_prot);
534
535 /*
536 * Set the PSE and GLOBAL flags only if the PRESENT flag is
537 * set otherwise pmd_present/pmd_huge will return true even on
538 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
539 * for the ancient hardware that doesn't support it.
540 */
541 if (pgprot_val(req_prot) & _PAGE_PRESENT)
542 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
543 else
544 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
545
546 req_prot = canon_pgprot(req_prot);
547
548 /*
549 * old_pfn points to the large page base pfn. So we need
550 * to add the offset of the virtual address:
551 */
552 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
553 cpa->pfn = pfn;
554
555 new_prot = static_protections(req_prot, address, pfn);
556
557 /*
558 * We need to check the full range, whether
559 * static_protection() requires a different pgprot for one of
560 * the pages in the range we try to preserve:
561 */
562 addr = address & pmask;
563 pfn = old_pfn;
564 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
565 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
566
567 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
568 goto out_unlock;
569 }
570
571 /*
572 * If there are no changes, return. maxpages has been updated
573 * above:
574 */
575 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
576 do_split = 0;
577 goto out_unlock;
578 }
579
580 /*
581 * We need to change the attributes. Check, whether we can
582 * change the large page in one go. We request a split, when
583 * the address is not aligned and the number of pages is
584 * smaller than the number of pages in the large page. Note
585 * that we limited the number of possible pages already to
586 * the number of pages in the large page.
587 */
588 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
589 /*
590 * The address is aligned and the number of pages
591 * covers the full page.
592 */
593 new_pte = pfn_pte(old_pfn, new_prot);
594 __set_pmd_pte(kpte, address, new_pte);
595 cpa->flags |= CPA_FLUSHTLB;
596 do_split = 0;
597 }
598
599 out_unlock:
600 spin_unlock(&pgd_lock);
601
602 return do_split;
603 }
604
605 static int
606 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
607 struct page *base)
608 {
609 pte_t *pbase = (pte_t *)page_address(base);
610 unsigned long ref_pfn, pfn, pfninc = 1;
611 unsigned int i, level;
612 pte_t *tmp;
613 pgprot_t ref_prot;
614
615 spin_lock(&pgd_lock);
616 /*
617 * Check for races, another CPU might have split this page
618 * up for us already:
619 */
620 tmp = _lookup_address_cpa(cpa, address, &level);
621 if (tmp != kpte) {
622 spin_unlock(&pgd_lock);
623 return 1;
624 }
625
626 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
627
628 switch (level) {
629 case PG_LEVEL_2M:
630 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
631 /* clear PSE and promote PAT bit to correct position */
632 ref_prot = pgprot_large_2_4k(ref_prot);
633 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
634 break;
635
636 case PG_LEVEL_1G:
637 ref_prot = pud_pgprot(*(pud_t *)kpte);
638 ref_pfn = pud_pfn(*(pud_t *)kpte);
639 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
640
641 /*
642 * Clear the PSE flags if the PRESENT flag is not set
643 * otherwise pmd_present/pmd_huge will return true
644 * even on a non present pmd.
645 */
646 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
647 pgprot_val(ref_prot) &= ~_PAGE_PSE;
648 break;
649
650 default:
651 spin_unlock(&pgd_lock);
652 return 1;
653 }
654
655 /*
656 * Set the GLOBAL flags only if the PRESENT flag is set
657 * otherwise pmd/pte_present will return true even on a non
658 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
659 * for the ancient hardware that doesn't support it.
660 */
661 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
662 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
663 else
664 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
665
666 /*
667 * Get the target pfn from the original entry:
668 */
669 pfn = ref_pfn;
670 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
671 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
672
673 if (virt_addr_valid(address)) {
674 unsigned long pfn = PFN_DOWN(__pa(address));
675
676 if (pfn_range_is_mapped(pfn, pfn + 1))
677 split_page_count(level);
678 }
679
680 /*
681 * Install the new, split up pagetable.
682 *
683 * We use the standard kernel pagetable protections for the new
684 * pagetable protections, the actual ptes set above control the
685 * primary protection behavior:
686 */
687 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
688
689 /*
690 * Intel Atom errata AAH41 workaround.
691 *
692 * The real fix should be in hw or in a microcode update, but
693 * we also probabilistically try to reduce the window of having
694 * a large TLB mixed with 4K TLBs while instruction fetches are
695 * going on.
696 */
697 __flush_tlb_all();
698 spin_unlock(&pgd_lock);
699
700 return 0;
701 }
702
703 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
704 unsigned long address)
705 {
706 struct page *base;
707
708 if (!debug_pagealloc)
709 spin_unlock(&cpa_lock);
710 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
711 if (!debug_pagealloc)
712 spin_lock(&cpa_lock);
713 if (!base)
714 return -ENOMEM;
715
716 if (__split_large_page(cpa, kpte, address, base))
717 __free_page(base);
718
719 return 0;
720 }
721
722 static bool try_to_free_pte_page(pte_t *pte)
723 {
724 int i;
725
726 for (i = 0; i < PTRS_PER_PTE; i++)
727 if (!pte_none(pte[i]))
728 return false;
729
730 free_page((unsigned long)pte);
731 return true;
732 }
733
734 static bool try_to_free_pmd_page(pmd_t *pmd)
735 {
736 int i;
737
738 for (i = 0; i < PTRS_PER_PMD; i++)
739 if (!pmd_none(pmd[i]))
740 return false;
741
742 free_page((unsigned long)pmd);
743 return true;
744 }
745
746 static bool try_to_free_pud_page(pud_t *pud)
747 {
748 int i;
749
750 for (i = 0; i < PTRS_PER_PUD; i++)
751 if (!pud_none(pud[i]))
752 return false;
753
754 free_page((unsigned long)pud);
755 return true;
756 }
757
758 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
759 {
760 pte_t *pte = pte_offset_kernel(pmd, start);
761
762 while (start < end) {
763 set_pte(pte, __pte(0));
764
765 start += PAGE_SIZE;
766 pte++;
767 }
768
769 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
770 pmd_clear(pmd);
771 return true;
772 }
773 return false;
774 }
775
776 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
777 unsigned long start, unsigned long end)
778 {
779 if (unmap_pte_range(pmd, start, end))
780 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
781 pud_clear(pud);
782 }
783
784 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
785 {
786 pmd_t *pmd = pmd_offset(pud, start);
787
788 /*
789 * Not on a 2MB page boundary?
790 */
791 if (start & (PMD_SIZE - 1)) {
792 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
793 unsigned long pre_end = min_t(unsigned long, end, next_page);
794
795 __unmap_pmd_range(pud, pmd, start, pre_end);
796
797 start = pre_end;
798 pmd++;
799 }
800
801 /*
802 * Try to unmap in 2M chunks.
803 */
804 while (end - start >= PMD_SIZE) {
805 if (pmd_large(*pmd))
806 pmd_clear(pmd);
807 else
808 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
809
810 start += PMD_SIZE;
811 pmd++;
812 }
813
814 /*
815 * 4K leftovers?
816 */
817 if (start < end)
818 return __unmap_pmd_range(pud, pmd, start, end);
819
820 /*
821 * Try again to free the PMD page if haven't succeeded above.
822 */
823 if (!pud_none(*pud))
824 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
825 pud_clear(pud);
826 }
827
828 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
829 {
830 pud_t *pud = pud_offset(pgd, start);
831
832 /*
833 * Not on a GB page boundary?
834 */
835 if (start & (PUD_SIZE - 1)) {
836 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
837 unsigned long pre_end = min_t(unsigned long, end, next_page);
838
839 unmap_pmd_range(pud, start, pre_end);
840
841 start = pre_end;
842 pud++;
843 }
844
845 /*
846 * Try to unmap in 1G chunks?
847 */
848 while (end - start >= PUD_SIZE) {
849
850 if (pud_large(*pud))
851 pud_clear(pud);
852 else
853 unmap_pmd_range(pud, start, start + PUD_SIZE);
854
855 start += PUD_SIZE;
856 pud++;
857 }
858
859 /*
860 * 2M leftovers?
861 */
862 if (start < end)
863 unmap_pmd_range(pud, start, end);
864
865 /*
866 * No need to try to free the PUD page because we'll free it in
867 * populate_pgd's error path
868 */
869 }
870
871 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
872 {
873 pgd_t *pgd_entry = root + pgd_index(addr);
874
875 unmap_pud_range(pgd_entry, addr, end);
876
877 if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
878 pgd_clear(pgd_entry);
879 }
880
881 static int alloc_pte_page(pmd_t *pmd)
882 {
883 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
884 if (!pte)
885 return -1;
886
887 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
888 return 0;
889 }
890
891 static int alloc_pmd_page(pud_t *pud)
892 {
893 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
894 if (!pmd)
895 return -1;
896
897 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
898 return 0;
899 }
900
901 static void populate_pte(struct cpa_data *cpa,
902 unsigned long start, unsigned long end,
903 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
904 {
905 pte_t *pte;
906
907 pte = pte_offset_kernel(pmd, start);
908
909 while (num_pages-- && start < end) {
910
911 /* deal with the NX bit */
912 if (!(pgprot_val(pgprot) & _PAGE_NX))
913 cpa->pfn &= ~_PAGE_NX;
914
915 set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
916
917 start += PAGE_SIZE;
918 cpa->pfn += PAGE_SIZE;
919 pte++;
920 }
921 }
922
923 static int populate_pmd(struct cpa_data *cpa,
924 unsigned long start, unsigned long end,
925 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
926 {
927 unsigned int cur_pages = 0;
928 pmd_t *pmd;
929 pgprot_t pmd_pgprot;
930
931 /*
932 * Not on a 2M boundary?
933 */
934 if (start & (PMD_SIZE - 1)) {
935 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
936 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
937
938 pre_end = min_t(unsigned long, pre_end, next_page);
939 cur_pages = (pre_end - start) >> PAGE_SHIFT;
940 cur_pages = min_t(unsigned int, num_pages, cur_pages);
941
942 /*
943 * Need a PTE page?
944 */
945 pmd = pmd_offset(pud, start);
946 if (pmd_none(*pmd))
947 if (alloc_pte_page(pmd))
948 return -1;
949
950 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
951
952 start = pre_end;
953 }
954
955 /*
956 * We mapped them all?
957 */
958 if (num_pages == cur_pages)
959 return cur_pages;
960
961 pmd_pgprot = pgprot_4k_2_large(pgprot);
962
963 while (end - start >= PMD_SIZE) {
964
965 /*
966 * We cannot use a 1G page so allocate a PMD page if needed.
967 */
968 if (pud_none(*pud))
969 if (alloc_pmd_page(pud))
970 return -1;
971
972 pmd = pmd_offset(pud, start);
973
974 set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE |
975 massage_pgprot(pmd_pgprot)));
976
977 start += PMD_SIZE;
978 cpa->pfn += PMD_SIZE;
979 cur_pages += PMD_SIZE >> PAGE_SHIFT;
980 }
981
982 /*
983 * Map trailing 4K pages.
984 */
985 if (start < end) {
986 pmd = pmd_offset(pud, start);
987 if (pmd_none(*pmd))
988 if (alloc_pte_page(pmd))
989 return -1;
990
991 populate_pte(cpa, start, end, num_pages - cur_pages,
992 pmd, pgprot);
993 }
994 return num_pages;
995 }
996
997 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
998 pgprot_t pgprot)
999 {
1000 pud_t *pud;
1001 unsigned long end;
1002 int cur_pages = 0;
1003 pgprot_t pud_pgprot;
1004
1005 end = start + (cpa->numpages << PAGE_SHIFT);
1006
1007 /*
1008 * Not on a Gb page boundary? => map everything up to it with
1009 * smaller pages.
1010 */
1011 if (start & (PUD_SIZE - 1)) {
1012 unsigned long pre_end;
1013 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1014
1015 pre_end = min_t(unsigned long, end, next_page);
1016 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1017 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1018
1019 pud = pud_offset(pgd, start);
1020
1021 /*
1022 * Need a PMD page?
1023 */
1024 if (pud_none(*pud))
1025 if (alloc_pmd_page(pud))
1026 return -1;
1027
1028 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1029 pud, pgprot);
1030 if (cur_pages < 0)
1031 return cur_pages;
1032
1033 start = pre_end;
1034 }
1035
1036 /* We mapped them all? */
1037 if (cpa->numpages == cur_pages)
1038 return cur_pages;
1039
1040 pud = pud_offset(pgd, start);
1041 pud_pgprot = pgprot_4k_2_large(pgprot);
1042
1043 /*
1044 * Map everything starting from the Gb boundary, possibly with 1G pages
1045 */
1046 while (end - start >= PUD_SIZE) {
1047 set_pud(pud, __pud(cpa->pfn | _PAGE_PSE |
1048 massage_pgprot(pud_pgprot)));
1049
1050 start += PUD_SIZE;
1051 cpa->pfn += PUD_SIZE;
1052 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1053 pud++;
1054 }
1055
1056 /* Map trailing leftover */
1057 if (start < end) {
1058 int tmp;
1059
1060 pud = pud_offset(pgd, start);
1061 if (pud_none(*pud))
1062 if (alloc_pmd_page(pud))
1063 return -1;
1064
1065 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1066 pud, pgprot);
1067 if (tmp < 0)
1068 return cur_pages;
1069
1070 cur_pages += tmp;
1071 }
1072 return cur_pages;
1073 }
1074
1075 /*
1076 * Restrictions for kernel page table do not necessarily apply when mapping in
1077 * an alternate PGD.
1078 */
1079 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1080 {
1081 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1082 pud_t *pud = NULL; /* shut up gcc */
1083 pgd_t *pgd_entry;
1084 int ret;
1085
1086 pgd_entry = cpa->pgd + pgd_index(addr);
1087
1088 /*
1089 * Allocate a PUD page and hand it down for mapping.
1090 */
1091 if (pgd_none(*pgd_entry)) {
1092 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1093 if (!pud)
1094 return -1;
1095
1096 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1097 }
1098
1099 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1100 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1101
1102 ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1103 if (ret < 0) {
1104 unmap_pgd_range(cpa->pgd, addr,
1105 addr + (cpa->numpages << PAGE_SHIFT));
1106 return ret;
1107 }
1108
1109 cpa->numpages = ret;
1110 return 0;
1111 }
1112
1113 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1114 int primary)
1115 {
1116 if (cpa->pgd)
1117 return populate_pgd(cpa, vaddr);
1118
1119 /*
1120 * Ignore all non primary paths.
1121 */
1122 if (!primary)
1123 return 0;
1124
1125 /*
1126 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1127 * to have holes.
1128 * Also set numpages to '1' indicating that we processed cpa req for
1129 * one virtual address page and its pfn. TBD: numpages can be set based
1130 * on the initial value and the level returned by lookup_address().
1131 */
1132 if (within(vaddr, PAGE_OFFSET,
1133 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1134 cpa->numpages = 1;
1135 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1136 return 0;
1137 } else {
1138 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1139 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1140 *cpa->vaddr);
1141
1142 return -EFAULT;
1143 }
1144 }
1145
1146 static int __change_page_attr(struct cpa_data *cpa, int primary)
1147 {
1148 unsigned long address;
1149 int do_split, err;
1150 unsigned int level;
1151 pte_t *kpte, old_pte;
1152
1153 if (cpa->flags & CPA_PAGES_ARRAY) {
1154 struct page *page = cpa->pages[cpa->curpage];
1155 if (unlikely(PageHighMem(page)))
1156 return 0;
1157 address = (unsigned long)page_address(page);
1158 } else if (cpa->flags & CPA_ARRAY)
1159 address = cpa->vaddr[cpa->curpage];
1160 else
1161 address = *cpa->vaddr;
1162 repeat:
1163 kpte = _lookup_address_cpa(cpa, address, &level);
1164 if (!kpte)
1165 return __cpa_process_fault(cpa, address, primary);
1166
1167 old_pte = *kpte;
1168 if (!pte_val(old_pte))
1169 return __cpa_process_fault(cpa, address, primary);
1170
1171 if (level == PG_LEVEL_4K) {
1172 pte_t new_pte;
1173 pgprot_t new_prot = pte_pgprot(old_pte);
1174 unsigned long pfn = pte_pfn(old_pte);
1175
1176 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1177 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1178
1179 new_prot = static_protections(new_prot, address, pfn);
1180
1181 /*
1182 * Set the GLOBAL flags only if the PRESENT flag is
1183 * set otherwise pte_present will return true even on
1184 * a non present pte. The canon_pgprot will clear
1185 * _PAGE_GLOBAL for the ancient hardware that doesn't
1186 * support it.
1187 */
1188 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1189 pgprot_val(new_prot) |= _PAGE_GLOBAL;
1190 else
1191 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1192
1193 /*
1194 * We need to keep the pfn from the existing PTE,
1195 * after all we're only going to change it's attributes
1196 * not the memory it points to
1197 */
1198 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1199 cpa->pfn = pfn;
1200 /*
1201 * Do we really change anything ?
1202 */
1203 if (pte_val(old_pte) != pte_val(new_pte)) {
1204 set_pte_atomic(kpte, new_pte);
1205 cpa->flags |= CPA_FLUSHTLB;
1206 }
1207 cpa->numpages = 1;
1208 return 0;
1209 }
1210
1211 /*
1212 * Check, whether we can keep the large page intact
1213 * and just change the pte:
1214 */
1215 do_split = try_preserve_large_page(kpte, address, cpa);
1216 /*
1217 * When the range fits into the existing large page,
1218 * return. cp->numpages and cpa->tlbflush have been updated in
1219 * try_large_page:
1220 */
1221 if (do_split <= 0)
1222 return do_split;
1223
1224 /*
1225 * We have to split the large page:
1226 */
1227 err = split_large_page(cpa, kpte, address);
1228 if (!err) {
1229 /*
1230 * Do a global flush tlb after splitting the large page
1231 * and before we do the actual change page attribute in the PTE.
1232 *
1233 * With out this, we violate the TLB application note, that says
1234 * "The TLBs may contain both ordinary and large-page
1235 * translations for a 4-KByte range of linear addresses. This
1236 * may occur if software modifies the paging structures so that
1237 * the page size used for the address range changes. If the two
1238 * translations differ with respect to page frame or attributes
1239 * (e.g., permissions), processor behavior is undefined and may
1240 * be implementation-specific."
1241 *
1242 * We do this global tlb flush inside the cpa_lock, so that we
1243 * don't allow any other cpu, with stale tlb entries change the
1244 * page attribute in parallel, that also falls into the
1245 * just split large page entry.
1246 */
1247 flush_tlb_all();
1248 goto repeat;
1249 }
1250
1251 return err;
1252 }
1253
1254 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1255
1256 static int cpa_process_alias(struct cpa_data *cpa)
1257 {
1258 struct cpa_data alias_cpa;
1259 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1260 unsigned long vaddr;
1261 int ret;
1262
1263 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1264 return 0;
1265
1266 /*
1267 * No need to redo, when the primary call touched the direct
1268 * mapping already:
1269 */
1270 if (cpa->flags & CPA_PAGES_ARRAY) {
1271 struct page *page = cpa->pages[cpa->curpage];
1272 if (unlikely(PageHighMem(page)))
1273 return 0;
1274 vaddr = (unsigned long)page_address(page);
1275 } else if (cpa->flags & CPA_ARRAY)
1276 vaddr = cpa->vaddr[cpa->curpage];
1277 else
1278 vaddr = *cpa->vaddr;
1279
1280 if (!(within(vaddr, PAGE_OFFSET,
1281 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1282
1283 alias_cpa = *cpa;
1284 alias_cpa.vaddr = &laddr;
1285 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1286
1287 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1288 if (ret)
1289 return ret;
1290 }
1291
1292 #ifdef CONFIG_X86_64
1293 /*
1294 * If the primary call didn't touch the high mapping already
1295 * and the physical address is inside the kernel map, we need
1296 * to touch the high mapped kernel as well:
1297 */
1298 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1299 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1300 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1301 __START_KERNEL_map - phys_base;
1302 alias_cpa = *cpa;
1303 alias_cpa.vaddr = &temp_cpa_vaddr;
1304 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1305
1306 /*
1307 * The high mapping range is imprecise, so ignore the
1308 * return value.
1309 */
1310 __change_page_attr_set_clr(&alias_cpa, 0);
1311 }
1312 #endif
1313
1314 return 0;
1315 }
1316
1317 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1318 {
1319 int ret, numpages = cpa->numpages;
1320
1321 while (numpages) {
1322 /*
1323 * Store the remaining nr of pages for the large page
1324 * preservation check.
1325 */
1326 cpa->numpages = numpages;
1327 /* for array changes, we can't use large page */
1328 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1329 cpa->numpages = 1;
1330
1331 if (!debug_pagealloc)
1332 spin_lock(&cpa_lock);
1333 ret = __change_page_attr(cpa, checkalias);
1334 if (!debug_pagealloc)
1335 spin_unlock(&cpa_lock);
1336 if (ret)
1337 return ret;
1338
1339 if (checkalias) {
1340 ret = cpa_process_alias(cpa);
1341 if (ret)
1342 return ret;
1343 }
1344
1345 /*
1346 * Adjust the number of pages with the result of the
1347 * CPA operation. Either a large page has been
1348 * preserved or a single page update happened.
1349 */
1350 BUG_ON(cpa->numpages > numpages);
1351 numpages -= cpa->numpages;
1352 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1353 cpa->curpage++;
1354 else
1355 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1356
1357 }
1358 return 0;
1359 }
1360
1361 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1362 pgprot_t mask_set, pgprot_t mask_clr,
1363 int force_split, int in_flag,
1364 struct page **pages)
1365 {
1366 struct cpa_data cpa;
1367 int ret, cache, checkalias;
1368 unsigned long baddr = 0;
1369
1370 memset(&cpa, 0, sizeof(cpa));
1371
1372 /*
1373 * Check, if we are requested to change a not supported
1374 * feature:
1375 */
1376 mask_set = canon_pgprot(mask_set);
1377 mask_clr = canon_pgprot(mask_clr);
1378 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1379 return 0;
1380
1381 /* Ensure we are PAGE_SIZE aligned */
1382 if (in_flag & CPA_ARRAY) {
1383 int i;
1384 for (i = 0; i < numpages; i++) {
1385 if (addr[i] & ~PAGE_MASK) {
1386 addr[i] &= PAGE_MASK;
1387 WARN_ON_ONCE(1);
1388 }
1389 }
1390 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1391 /*
1392 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1393 * No need to cehck in that case
1394 */
1395 if (*addr & ~PAGE_MASK) {
1396 *addr &= PAGE_MASK;
1397 /*
1398 * People should not be passing in unaligned addresses:
1399 */
1400 WARN_ON_ONCE(1);
1401 }
1402 /*
1403 * Save address for cache flush. *addr is modified in the call
1404 * to __change_page_attr_set_clr() below.
1405 */
1406 baddr = *addr;
1407 }
1408
1409 /* Must avoid aliasing mappings in the highmem code */
1410 kmap_flush_unused();
1411
1412 vm_unmap_aliases();
1413
1414 cpa.vaddr = addr;
1415 cpa.pages = pages;
1416 cpa.numpages = numpages;
1417 cpa.mask_set = mask_set;
1418 cpa.mask_clr = mask_clr;
1419 cpa.flags = 0;
1420 cpa.curpage = 0;
1421 cpa.force_split = force_split;
1422
1423 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1424 cpa.flags |= in_flag;
1425
1426 /* No alias checking for _NX bit modifications */
1427 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1428
1429 ret = __change_page_attr_set_clr(&cpa, checkalias);
1430
1431 /*
1432 * Check whether we really changed something:
1433 */
1434 if (!(cpa.flags & CPA_FLUSHTLB))
1435 goto out;
1436
1437 /*
1438 * No need to flush, when we did not set any of the caching
1439 * attributes:
1440 */
1441 cache = !!pgprot2cachemode(mask_set);
1442
1443 /*
1444 * On success we use CLFLUSH, when the CPU supports it to
1445 * avoid the WBINVD. If the CPU does not support it and in the
1446 * error case we fall back to cpa_flush_all (which uses
1447 * WBINVD):
1448 */
1449 if (!ret && cpu_has_clflush) {
1450 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1451 cpa_flush_array(addr, numpages, cache,
1452 cpa.flags, pages);
1453 } else
1454 cpa_flush_range(baddr, numpages, cache);
1455 } else
1456 cpa_flush_all(cache);
1457
1458 out:
1459 return ret;
1460 }
1461
1462 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1463 pgprot_t mask, int array)
1464 {
1465 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1466 (array ? CPA_ARRAY : 0), NULL);
1467 }
1468
1469 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1470 pgprot_t mask, int array)
1471 {
1472 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1473 (array ? CPA_ARRAY : 0), NULL);
1474 }
1475
1476 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1477 pgprot_t mask)
1478 {
1479 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1480 CPA_PAGES_ARRAY, pages);
1481 }
1482
1483 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1484 pgprot_t mask)
1485 {
1486 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1487 CPA_PAGES_ARRAY, pages);
1488 }
1489
1490 int _set_memory_uc(unsigned long addr, int numpages)
1491 {
1492 /*
1493 * for now UC MINUS. see comments in ioremap_nocache()
1494 * If you really need strong UC use ioremap_uc(), but note
1495 * that you cannot override IO areas with set_memory_*() as
1496 * these helpers cannot work with IO memory.
1497 */
1498 return change_page_attr_set(&addr, numpages,
1499 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1500 0);
1501 }
1502
1503 int set_memory_uc(unsigned long addr, int numpages)
1504 {
1505 int ret;
1506
1507 /*
1508 * for now UC MINUS. see comments in ioremap_nocache()
1509 */
1510 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1511 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1512 if (ret)
1513 goto out_err;
1514
1515 ret = _set_memory_uc(addr, numpages);
1516 if (ret)
1517 goto out_free;
1518
1519 return 0;
1520
1521 out_free:
1522 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1523 out_err:
1524 return ret;
1525 }
1526 EXPORT_SYMBOL(set_memory_uc);
1527
1528 static int _set_memory_array(unsigned long *addr, int addrinarray,
1529 enum page_cache_mode new_type)
1530 {
1531 enum page_cache_mode set_type;
1532 int i, j;
1533 int ret;
1534
1535 for (i = 0; i < addrinarray; i++) {
1536 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1537 new_type, NULL);
1538 if (ret)
1539 goto out_free;
1540 }
1541
1542 /* If WC, set to UC- first and then WC */
1543 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1544 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1545
1546 ret = change_page_attr_set(addr, addrinarray,
1547 cachemode2pgprot(set_type), 1);
1548
1549 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1550 ret = change_page_attr_set_clr(addr, addrinarray,
1551 cachemode2pgprot(
1552 _PAGE_CACHE_MODE_WC),
1553 __pgprot(_PAGE_CACHE_MASK),
1554 0, CPA_ARRAY, NULL);
1555 if (ret)
1556 goto out_free;
1557
1558 return 0;
1559
1560 out_free:
1561 for (j = 0; j < i; j++)
1562 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1563
1564 return ret;
1565 }
1566
1567 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1568 {
1569 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1570 }
1571 EXPORT_SYMBOL(set_memory_array_uc);
1572
1573 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1574 {
1575 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1576 }
1577 EXPORT_SYMBOL(set_memory_array_wc);
1578
1579 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1580 {
1581 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1582 }
1583 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1584
1585 int _set_memory_wc(unsigned long addr, int numpages)
1586 {
1587 int ret;
1588 unsigned long addr_copy = addr;
1589
1590 ret = change_page_attr_set(&addr, numpages,
1591 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1592 0);
1593 if (!ret) {
1594 ret = change_page_attr_set_clr(&addr_copy, numpages,
1595 cachemode2pgprot(
1596 _PAGE_CACHE_MODE_WC),
1597 __pgprot(_PAGE_CACHE_MASK),
1598 0, 0, NULL);
1599 }
1600 return ret;
1601 }
1602
1603 int set_memory_wc(unsigned long addr, int numpages)
1604 {
1605 int ret;
1606
1607 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1608 _PAGE_CACHE_MODE_WC, NULL);
1609 if (ret)
1610 return ret;
1611
1612 ret = _set_memory_wc(addr, numpages);
1613 if (ret)
1614 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1615
1616 return ret;
1617 }
1618 EXPORT_SYMBOL(set_memory_wc);
1619
1620 int _set_memory_wt(unsigned long addr, int numpages)
1621 {
1622 return change_page_attr_set(&addr, numpages,
1623 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1624 }
1625
1626 int set_memory_wt(unsigned long addr, int numpages)
1627 {
1628 int ret;
1629
1630 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1631 _PAGE_CACHE_MODE_WT, NULL);
1632 if (ret)
1633 return ret;
1634
1635 ret = _set_memory_wt(addr, numpages);
1636 if (ret)
1637 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1638
1639 return ret;
1640 }
1641 EXPORT_SYMBOL_GPL(set_memory_wt);
1642
1643 int _set_memory_wb(unsigned long addr, int numpages)
1644 {
1645 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1646 return change_page_attr_clear(&addr, numpages,
1647 __pgprot(_PAGE_CACHE_MASK), 0);
1648 }
1649
1650 int set_memory_wb(unsigned long addr, int numpages)
1651 {
1652 int ret;
1653
1654 ret = _set_memory_wb(addr, numpages);
1655 if (ret)
1656 return ret;
1657
1658 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1659 return 0;
1660 }
1661 EXPORT_SYMBOL(set_memory_wb);
1662
1663 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1664 {
1665 int i;
1666 int ret;
1667
1668 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1669 ret = change_page_attr_clear(addr, addrinarray,
1670 __pgprot(_PAGE_CACHE_MASK), 1);
1671 if (ret)
1672 return ret;
1673
1674 for (i = 0; i < addrinarray; i++)
1675 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1676
1677 return 0;
1678 }
1679 EXPORT_SYMBOL(set_memory_array_wb);
1680
1681 int set_memory_x(unsigned long addr, int numpages)
1682 {
1683 if (!(__supported_pte_mask & _PAGE_NX))
1684 return 0;
1685
1686 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1687 }
1688 EXPORT_SYMBOL(set_memory_x);
1689
1690 int set_memory_nx(unsigned long addr, int numpages)
1691 {
1692 if (!(__supported_pte_mask & _PAGE_NX))
1693 return 0;
1694
1695 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1696 }
1697 EXPORT_SYMBOL(set_memory_nx);
1698
1699 int set_memory_ro(unsigned long addr, int numpages)
1700 {
1701 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1702 }
1703
1704 int set_memory_rw(unsigned long addr, int numpages)
1705 {
1706 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1707 }
1708
1709 int set_memory_np(unsigned long addr, int numpages)
1710 {
1711 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1712 }
1713
1714 int set_memory_4k(unsigned long addr, int numpages)
1715 {
1716 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1717 __pgprot(0), 1, 0, NULL);
1718 }
1719
1720 int set_pages_uc(struct page *page, int numpages)
1721 {
1722 unsigned long addr = (unsigned long)page_address(page);
1723
1724 return set_memory_uc(addr, numpages);
1725 }
1726 EXPORT_SYMBOL(set_pages_uc);
1727
1728 static int _set_pages_array(struct page **pages, int addrinarray,
1729 enum page_cache_mode new_type)
1730 {
1731 unsigned long start;
1732 unsigned long end;
1733 enum page_cache_mode set_type;
1734 int i;
1735 int free_idx;
1736 int ret;
1737
1738 for (i = 0; i < addrinarray; i++) {
1739 if (PageHighMem(pages[i]))
1740 continue;
1741 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1742 end = start + PAGE_SIZE;
1743 if (reserve_memtype(start, end, new_type, NULL))
1744 goto err_out;
1745 }
1746
1747 /* If WC, set to UC- first and then WC */
1748 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1749 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1750
1751 ret = cpa_set_pages_array(pages, addrinarray,
1752 cachemode2pgprot(set_type));
1753 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1754 ret = change_page_attr_set_clr(NULL, addrinarray,
1755 cachemode2pgprot(
1756 _PAGE_CACHE_MODE_WC),
1757 __pgprot(_PAGE_CACHE_MASK),
1758 0, CPA_PAGES_ARRAY, pages);
1759 if (ret)
1760 goto err_out;
1761 return 0; /* Success */
1762 err_out:
1763 free_idx = i;
1764 for (i = 0; i < free_idx; i++) {
1765 if (PageHighMem(pages[i]))
1766 continue;
1767 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1768 end = start + PAGE_SIZE;
1769 free_memtype(start, end);
1770 }
1771 return -EINVAL;
1772 }
1773
1774 int set_pages_array_uc(struct page **pages, int addrinarray)
1775 {
1776 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1777 }
1778 EXPORT_SYMBOL(set_pages_array_uc);
1779
1780 int set_pages_array_wc(struct page **pages, int addrinarray)
1781 {
1782 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1783 }
1784 EXPORT_SYMBOL(set_pages_array_wc);
1785
1786 int set_pages_array_wt(struct page **pages, int addrinarray)
1787 {
1788 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1789 }
1790 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1791
1792 int set_pages_wb(struct page *page, int numpages)
1793 {
1794 unsigned long addr = (unsigned long)page_address(page);
1795
1796 return set_memory_wb(addr, numpages);
1797 }
1798 EXPORT_SYMBOL(set_pages_wb);
1799
1800 int set_pages_array_wb(struct page **pages, int addrinarray)
1801 {
1802 int retval;
1803 unsigned long start;
1804 unsigned long end;
1805 int i;
1806
1807 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1808 retval = cpa_clear_pages_array(pages, addrinarray,
1809 __pgprot(_PAGE_CACHE_MASK));
1810 if (retval)
1811 return retval;
1812
1813 for (i = 0; i < addrinarray; i++) {
1814 if (PageHighMem(pages[i]))
1815 continue;
1816 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1817 end = start + PAGE_SIZE;
1818 free_memtype(start, end);
1819 }
1820
1821 return 0;
1822 }
1823 EXPORT_SYMBOL(set_pages_array_wb);
1824
1825 int set_pages_x(struct page *page, int numpages)
1826 {
1827 unsigned long addr = (unsigned long)page_address(page);
1828
1829 return set_memory_x(addr, numpages);
1830 }
1831 EXPORT_SYMBOL(set_pages_x);
1832
1833 int set_pages_nx(struct page *page, int numpages)
1834 {
1835 unsigned long addr = (unsigned long)page_address(page);
1836
1837 return set_memory_nx(addr, numpages);
1838 }
1839 EXPORT_SYMBOL(set_pages_nx);
1840
1841 int set_pages_ro(struct page *page, int numpages)
1842 {
1843 unsigned long addr = (unsigned long)page_address(page);
1844
1845 return set_memory_ro(addr, numpages);
1846 }
1847
1848 int set_pages_rw(struct page *page, int numpages)
1849 {
1850 unsigned long addr = (unsigned long)page_address(page);
1851
1852 return set_memory_rw(addr, numpages);
1853 }
1854
1855 #ifdef CONFIG_DEBUG_PAGEALLOC
1856
1857 static int __set_pages_p(struct page *page, int numpages)
1858 {
1859 unsigned long tempaddr = (unsigned long) page_address(page);
1860 struct cpa_data cpa = { .vaddr = &tempaddr,
1861 .pgd = NULL,
1862 .numpages = numpages,
1863 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1864 .mask_clr = __pgprot(0),
1865 .flags = 0};
1866
1867 /*
1868 * No alias checking needed for setting present flag. otherwise,
1869 * we may need to break large pages for 64-bit kernel text
1870 * mappings (this adds to complexity if we want to do this from
1871 * atomic context especially). Let's keep it simple!
1872 */
1873 return __change_page_attr_set_clr(&cpa, 0);
1874 }
1875
1876 static int __set_pages_np(struct page *page, int numpages)
1877 {
1878 unsigned long tempaddr = (unsigned long) page_address(page);
1879 struct cpa_data cpa = { .vaddr = &tempaddr,
1880 .pgd = NULL,
1881 .numpages = numpages,
1882 .mask_set = __pgprot(0),
1883 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1884 .flags = 0};
1885
1886 /*
1887 * No alias checking needed for setting not present flag. otherwise,
1888 * we may need to break large pages for 64-bit kernel text
1889 * mappings (this adds to complexity if we want to do this from
1890 * atomic context especially). Let's keep it simple!
1891 */
1892 return __change_page_attr_set_clr(&cpa, 0);
1893 }
1894
1895 void __kernel_map_pages(struct page *page, int numpages, int enable)
1896 {
1897 if (PageHighMem(page))
1898 return;
1899 if (!enable) {
1900 debug_check_no_locks_freed(page_address(page),
1901 numpages * PAGE_SIZE);
1902 }
1903
1904 /*
1905 * The return value is ignored as the calls cannot fail.
1906 * Large pages for identity mappings are not used at boot time
1907 * and hence no memory allocations during large page split.
1908 */
1909 if (enable)
1910 __set_pages_p(page, numpages);
1911 else
1912 __set_pages_np(page, numpages);
1913
1914 /*
1915 * We should perform an IPI and flush all tlbs,
1916 * but that can deadlock->flush only current cpu:
1917 */
1918 __flush_tlb_all();
1919
1920 arch_flush_lazy_mmu_mode();
1921 }
1922
1923 #ifdef CONFIG_HIBERNATION
1924
1925 bool kernel_page_present(struct page *page)
1926 {
1927 unsigned int level;
1928 pte_t *pte;
1929
1930 if (PageHighMem(page))
1931 return false;
1932
1933 pte = lookup_address((unsigned long)page_address(page), &level);
1934 return (pte_val(*pte) & _PAGE_PRESENT);
1935 }
1936
1937 #endif /* CONFIG_HIBERNATION */
1938
1939 #endif /* CONFIG_DEBUG_PAGEALLOC */
1940
1941 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1942 unsigned numpages, unsigned long page_flags)
1943 {
1944 int retval = -EINVAL;
1945
1946 struct cpa_data cpa = {
1947 .vaddr = &address,
1948 .pfn = pfn,
1949 .pgd = pgd,
1950 .numpages = numpages,
1951 .mask_set = __pgprot(0),
1952 .mask_clr = __pgprot(0),
1953 .flags = 0,
1954 };
1955
1956 if (!(__supported_pte_mask & _PAGE_NX))
1957 goto out;
1958
1959 if (!(page_flags & _PAGE_NX))
1960 cpa.mask_clr = __pgprot(_PAGE_NX);
1961
1962 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1963
1964 retval = __change_page_attr_set_clr(&cpa, 0);
1965 __flush_tlb_all();
1966
1967 out:
1968 return retval;
1969 }
1970
1971 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1972 unsigned numpages)
1973 {
1974 unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1975 }
1976
1977 /*
1978 * The testcases use internal knowledge of the implementation that shouldn't
1979 * be exposed to the rest of the kernel. Include these directly here.
1980 */
1981 #ifdef CONFIG_CPA_DEBUG
1982 #include "pageattr-test.c"
1983 #endif