]> git.proxmox.com Git - mirror_lxcfs.git/blob - bindings.c
Use clone instead of fork in write_task_init_pid_exit
[mirror_lxcfs.git] / bindings.c
1 /* lxcfs
2 *
3 * Copyright © 2014-2016 Canonical, Inc
4 * Author: Serge Hallyn <serge.hallyn@ubuntu.com>
5 *
6 * See COPYING file for details.
7 */
8
9 #define FUSE_USE_VERSION 26
10
11 #include <stdio.h>
12 #include <dirent.h>
13 #include <fcntl.h>
14 #include <fuse.h>
15 #include <unistd.h>
16 #include <errno.h>
17 #include <stdbool.h>
18 #include <time.h>
19 #include <string.h>
20 #include <stdlib.h>
21 #include <libgen.h>
22 #include <sched.h>
23 #include <pthread.h>
24 #include <linux/sched.h>
25 #include <sys/param.h>
26 #include <sys/socket.h>
27 #include <sys/mount.h>
28 #include <sys/epoll.h>
29 #include <wait.h>
30
31 #include "bindings.h"
32
33 #include "config.h" // for VERSION
34
35 enum {
36 LXC_TYPE_CGDIR,
37 LXC_TYPE_CGFILE,
38 LXC_TYPE_PROC_MEMINFO,
39 LXC_TYPE_PROC_CPUINFO,
40 LXC_TYPE_PROC_UPTIME,
41 LXC_TYPE_PROC_STAT,
42 LXC_TYPE_PROC_DISKSTATS,
43 LXC_TYPE_PROC_SWAPS,
44 };
45
46 struct file_info {
47 char *controller;
48 char *cgroup;
49 char *file;
50 int type;
51 char *buf; // unused as of yet
52 int buflen;
53 int size; //actual data size
54 int cached;
55 };
56
57 /* reserve buffer size, for cpuall in /proc/stat */
58 #define BUF_RESERVE_SIZE 256
59
60 /*
61 * A table caching which pid is init for a pid namespace.
62 * When looking up which pid is init for $qpid, we first
63 * 1. Stat /proc/$qpid/ns/pid.
64 * 2. Check whether the ino_t is in our store.
65 * a. if not, fork a child in qpid's ns to send us
66 * ucred.pid = 1, and read the initpid. Cache
67 * initpid and creation time for /proc/initpid
68 * in a new store entry.
69 * b. if so, verify that /proc/initpid still matches
70 * what we have saved. If not, clear the store
71 * entry and go back to a. If so, return the
72 * cached initpid.
73 */
74 struct pidns_init_store {
75 ino_t ino; // inode number for /proc/$pid/ns/pid
76 pid_t initpid; // the pid of nit in that ns
77 long int ctime; // the time at which /proc/$initpid was created
78 struct pidns_init_store *next;
79 long int lastcheck;
80 };
81
82 /* lol - look at how they are allocated in the kernel */
83 #define PIDNS_HASH_SIZE 4096
84 #define HASH(x) ((x) % PIDNS_HASH_SIZE)
85
86 static struct pidns_init_store *pidns_hash_table[PIDNS_HASH_SIZE];
87 static pthread_mutex_t pidns_store_mutex = PTHREAD_MUTEX_INITIALIZER;
88 static void lock_mutex(pthread_mutex_t *l)
89 {
90 int ret;
91
92 if ((ret = pthread_mutex_lock(l)) != 0) {
93 fprintf(stderr, "pthread_mutex_lock returned:%d %s\n", ret, strerror(ret));
94 exit(1);
95 }
96 }
97
98 static void unlock_mutex(pthread_mutex_t *l)
99 {
100 int ret;
101
102 if ((ret = pthread_mutex_unlock(l)) != 0) {
103 fprintf(stderr, "pthread_mutex_unlock returned:%d %s\n", ret, strerror(ret));
104 exit(1);
105 }
106 }
107
108 static void store_lock(void)
109 {
110 lock_mutex(&pidns_store_mutex);
111 }
112
113 static void store_unlock(void)
114 {
115 unlock_mutex(&pidns_store_mutex);
116 }
117
118 /* Must be called under store_lock */
119 static bool initpid_still_valid(struct pidns_init_store *e, struct stat *nsfdsb)
120 {
121 struct stat initsb;
122 char fnam[100];
123
124 snprintf(fnam, 100, "/proc/%d", e->initpid);
125 if (stat(fnam, &initsb) < 0)
126 return false;
127 #if DEBUG
128 fprintf(stderr, "comparing ctime %ld %ld for pid %d\n",
129 e->ctime, initsb.st_ctime, e->initpid);
130 #endif
131 if (e->ctime != initsb.st_ctime)
132 return false;
133 return true;
134 }
135
136 /* Must be called under store_lock */
137 static void remove_initpid(struct pidns_init_store *e)
138 {
139 struct pidns_init_store *tmp;
140 int h;
141
142 #if DEBUG
143 fprintf(stderr, "remove_initpid: removing entry for %d\n", e->initpid);
144 #endif
145 h = HASH(e->ino);
146 if (pidns_hash_table[h] == e) {
147 pidns_hash_table[h] = e->next;
148 free(e);
149 return;
150 }
151
152 tmp = pidns_hash_table[h];
153 while (tmp) {
154 if (tmp->next == e) {
155 tmp->next = e->next;
156 free(e);
157 return;
158 }
159 tmp = tmp->next;
160 }
161 }
162
163 #define PURGE_SECS 5
164 /* Must be called under store_lock */
165 static void prune_initpid_store(void)
166 {
167 static long int last_prune = 0;
168 struct pidns_init_store *e, *prev, *delme;
169 long int now, threshold;
170 int i;
171
172 if (!last_prune) {
173 last_prune = time(NULL);
174 return;
175 }
176 now = time(NULL);
177 if (now < last_prune + PURGE_SECS)
178 return;
179 #if DEBUG
180 fprintf(stderr, "pruning\n");
181 #endif
182 last_prune = now;
183 threshold = now - 2 * PURGE_SECS;
184
185 for (i = 0; i < PIDNS_HASH_SIZE; i++) {
186 for (prev = NULL, e = pidns_hash_table[i]; e; ) {
187 if (e->lastcheck < threshold) {
188 #if DEBUG
189 fprintf(stderr, "Removing cached entry for %d\n", e->initpid);
190 #endif
191 delme = e;
192 if (prev)
193 prev->next = e->next;
194 else
195 pidns_hash_table[i] = e->next;
196 e = e->next;
197 free(delme);
198 } else {
199 prev = e;
200 e = e->next;
201 }
202 }
203 }
204 }
205
206 /* Must be called under store_lock */
207 static void save_initpid(struct stat *sb, pid_t pid)
208 {
209 struct pidns_init_store *e;
210 char fpath[100];
211 struct stat procsb;
212 int h;
213
214 #if DEBUG
215 fprintf(stderr, "save_initpid: adding entry for %d\n", pid);
216 #endif
217 snprintf(fpath, 100, "/proc/%d", pid);
218 if (stat(fpath, &procsb) < 0)
219 return;
220 do {
221 e = malloc(sizeof(*e));
222 } while (!e);
223 e->ino = sb->st_ino;
224 e->initpid = pid;
225 e->ctime = procsb.st_ctime;
226 h = HASH(e->ino);
227 e->next = pidns_hash_table[h];
228 e->lastcheck = time(NULL);
229 pidns_hash_table[h] = e;
230 }
231
232 /*
233 * Given the stat(2) info for a nsfd pid inode, lookup the init_pid_store
234 * entry for the inode number and creation time. Verify that the init pid
235 * is still valid. If not, remove it. Return the entry if valid, NULL
236 * otherwise.
237 * Must be called under store_lock
238 */
239 static struct pidns_init_store *lookup_verify_initpid(struct stat *sb)
240 {
241 int h = HASH(sb->st_ino);
242 struct pidns_init_store *e = pidns_hash_table[h];
243
244 while (e) {
245 if (e->ino == sb->st_ino) {
246 if (initpid_still_valid(e, sb)) {
247 e->lastcheck = time(NULL);
248 return e;
249 }
250 remove_initpid(e);
251 return NULL;
252 }
253 e = e->next;
254 }
255
256 return NULL;
257 }
258
259 static int is_dir(const char *path)
260 {
261 struct stat statbuf;
262 int ret = stat(path, &statbuf);
263 if (ret == 0 && S_ISDIR(statbuf.st_mode))
264 return 1;
265 return 0;
266 }
267
268 static char *must_copy_string(const char *str)
269 {
270 char *dup = NULL;
271 if (!str)
272 return NULL;
273 do {
274 dup = strdup(str);
275 } while (!dup);
276
277 return dup;
278 }
279
280 static inline void drop_trailing_newlines(char *s)
281 {
282 int l;
283
284 for (l=strlen(s); l>0 && s[l-1] == '\n'; l--)
285 s[l-1] = '\0';
286 }
287
288 #define BATCH_SIZE 50
289 static void dorealloc(char **mem, size_t oldlen, size_t newlen)
290 {
291 int newbatches = (newlen / BATCH_SIZE) + 1;
292 int oldbatches = (oldlen / BATCH_SIZE) + 1;
293
294 if (!*mem || newbatches > oldbatches) {
295 char *tmp;
296 do {
297 tmp = realloc(*mem, newbatches * BATCH_SIZE);
298 } while (!tmp);
299 *mem = tmp;
300 }
301 }
302 static void append_line(char **contents, size_t *len, char *line, ssize_t linelen)
303 {
304 size_t newlen = *len + linelen;
305 dorealloc(contents, *len, newlen + 1);
306 memcpy(*contents + *len, line, linelen+1);
307 *len = newlen;
308 }
309
310 static char *slurp_file(const char *from)
311 {
312 char *line = NULL;
313 char *contents = NULL;
314 FILE *f = fopen(from, "r");
315 size_t len = 0, fulllen = 0;
316 ssize_t linelen;
317
318 if (!f)
319 return NULL;
320
321 while ((linelen = getline(&line, &len, f)) != -1) {
322 append_line(&contents, &fulllen, line, linelen);
323 }
324 fclose(f);
325
326 if (contents)
327 drop_trailing_newlines(contents);
328 free(line);
329 return contents;
330 }
331
332 static bool write_string(const char *fnam, const char *string)
333 {
334 FILE *f;
335 size_t len, ret;
336
337 if (!(f = fopen(fnam, "w")))
338 return false;
339 len = strlen(string);
340 ret = fwrite(string, 1, len, f);
341 if (ret != len) {
342 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
343 fclose(f);
344 return false;
345 }
346 if (fclose(f) < 0) {
347 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
348 return false;
349 }
350 return true;
351 }
352
353 /*
354 * hierarchies, i.e. 'cpu,cpuacct'
355 */
356 char **hierarchies;
357 int num_hierarchies;
358
359 struct cgfs_files {
360 char *name;
361 uint32_t uid, gid;
362 uint32_t mode;
363 };
364
365 #define ALLOC_NUM 20
366 static bool store_hierarchy(char *stridx, char *h)
367 {
368 if (num_hierarchies % ALLOC_NUM == 0) {
369 size_t n = (num_hierarchies / ALLOC_NUM) + 1;
370 n *= ALLOC_NUM;
371 char **tmp = realloc(hierarchies, n * sizeof(char *));
372 if (!tmp) {
373 fprintf(stderr, "Out of memory\n");
374 exit(1);
375 }
376 hierarchies = tmp;
377 }
378
379 hierarchies[num_hierarchies++] = must_copy_string(h);
380 return true;
381 }
382
383 static void print_subsystems(void)
384 {
385 int i;
386
387 fprintf(stderr, "hierarchies:");
388 for (i = 0; i < num_hierarchies; i++) {
389 if (hierarchies[i])
390 fprintf(stderr, " %d: %s\n", i, hierarchies[i]);
391 }
392 }
393
394 static bool in_comma_list(const char *needle, const char *haystack)
395 {
396 const char *s = haystack, *e;
397 size_t nlen = strlen(needle);
398
399 while (*s && (e = index(s, ','))) {
400 if (nlen != e - s) {
401 s = e + 1;
402 continue;
403 }
404 if (strncmp(needle, s, nlen) == 0)
405 return true;
406 s = e + 1;
407 }
408 if (strcmp(needle, s) == 0)
409 return true;
410 return false;
411 }
412
413 /* do we need to do any massaging here? I'm not sure... */
414 static char *find_mounted_controller(const char *controller)
415 {
416 int i;
417
418 for (i = 0; i < num_hierarchies; i++) {
419 if (!hierarchies[i])
420 continue;
421 if (strcmp(hierarchies[i], controller) == 0)
422 return hierarchies[i];
423 if (in_comma_list(controller, hierarchies[i]))
424 return hierarchies[i];
425 }
426
427 return NULL;
428 }
429
430 bool cgfs_set_value(const char *controller, const char *cgroup, const char *file,
431 const char *value)
432 {
433 size_t len;
434 char *fnam, *tmpc = find_mounted_controller(controller);
435
436 if (!tmpc)
437 return false;
438 /* basedir / tmpc / cgroup / file \0 */
439 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(file) + 4;
440 fnam = alloca(len);
441 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, file);
442
443 return write_string(fnam, value);
444 }
445
446 // Chown all the files in the cgroup directory. We do this when we create
447 // a cgroup on behalf of a user.
448 static void chown_all_cgroup_files(const char *dirname, uid_t uid, gid_t gid)
449 {
450 struct dirent dirent, *direntp;
451 char path[MAXPATHLEN];
452 size_t len;
453 DIR *d;
454 int ret;
455
456 len = strlen(dirname);
457 if (len >= MAXPATHLEN) {
458 fprintf(stderr, "chown_all_cgroup_files: pathname too long: %s\n", dirname);
459 return;
460 }
461
462 d = opendir(dirname);
463 if (!d) {
464 fprintf(stderr, "chown_all_cgroup_files: failed to open %s\n", dirname);
465 return;
466 }
467
468 while (readdir_r(d, &dirent, &direntp) == 0 && direntp) {
469 if (!strcmp(direntp->d_name, ".") || !strcmp(direntp->d_name, ".."))
470 continue;
471 ret = snprintf(path, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
472 if (ret < 0 || ret >= MAXPATHLEN) {
473 fprintf(stderr, "chown_all_cgroup_files: pathname too long under %s\n", dirname);
474 continue;
475 }
476 if (chown(path, uid, gid) < 0)
477 fprintf(stderr, "Failed to chown file %s to %u:%u", path, uid, gid);
478 }
479 closedir(d);
480 }
481
482 int cgfs_create(const char *controller, const char *cg, uid_t uid, gid_t gid)
483 {
484 size_t len;
485 char *dirnam, *tmpc = find_mounted_controller(controller);
486
487 if (!tmpc)
488 return -EINVAL;
489 /* basedir / tmpc / cg \0 */
490 len = strlen(basedir) + strlen(tmpc) + strlen(cg) + 3;
491 dirnam = alloca(len);
492 snprintf(dirnam, len, "%s/%s/%s", basedir,tmpc, cg);
493
494 if (mkdir(dirnam, 0755) < 0)
495 return -errno;
496
497 if (uid == 0 && gid == 0)
498 return 0;
499
500 if (chown(dirnam, uid, gid) < 0)
501 return -errno;
502
503 chown_all_cgroup_files(dirnam, uid, gid);
504
505 return 0;
506 }
507
508 static bool recursive_rmdir(const char *dirname)
509 {
510 struct dirent dirent, *direntp;
511 DIR *dir;
512 bool ret = false;
513 char pathname[MAXPATHLEN];
514
515 dir = opendir(dirname);
516 if (!dir) {
517 #if DEBUG
518 fprintf(stderr, "%s: failed to open %s: %s\n", __func__, dirname, strerror(errno));
519 #endif
520 return false;
521 }
522
523 while (!readdir_r(dir, &dirent, &direntp)) {
524 struct stat mystat;
525 int rc;
526
527 if (!direntp)
528 break;
529
530 if (!strcmp(direntp->d_name, ".") ||
531 !strcmp(direntp->d_name, ".."))
532 continue;
533
534 rc = snprintf(pathname, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
535 if (rc < 0 || rc >= MAXPATHLEN) {
536 fprintf(stderr, "pathname too long\n");
537 continue;
538 }
539
540 ret = lstat(pathname, &mystat);
541 if (ret) {
542 #if DEBUG
543 fprintf(stderr, "%s: failed to stat %s: %s\n", __func__, pathname, strerror(errno));
544 #endif
545 continue;
546 }
547 if (S_ISDIR(mystat.st_mode)) {
548 if (!recursive_rmdir(pathname)) {
549 #if DEBUG
550 fprintf(stderr, "Error removing %s\n", pathname);
551 #endif
552 }
553 }
554 }
555
556 ret = true;
557 if (closedir(dir) < 0) {
558 fprintf(stderr, "%s: failed to close directory %s: %s\n", __func__, dirname, strerror(errno));
559 ret = false;
560 }
561
562 if (rmdir(dirname) < 0) {
563 #if DEBUG
564 fprintf(stderr, "%s: failed to delete %s: %s\n", __func__, dirname, strerror(errno));
565 #endif
566 ret = false;
567 }
568
569 return ret;
570 }
571
572 bool cgfs_remove(const char *controller, const char *cg)
573 {
574 size_t len;
575 char *dirnam, *tmpc = find_mounted_controller(controller);
576
577 if (!tmpc)
578 return false;
579 /* basedir / tmpc / cg \0 */
580 len = strlen(basedir) + strlen(tmpc) + strlen(cg) + 3;
581 dirnam = alloca(len);
582 snprintf(dirnam, len, "%s/%s/%s", basedir,tmpc, cg);
583 return recursive_rmdir(dirnam);
584 }
585
586 bool cgfs_chmod_file(const char *controller, const char *file, mode_t mode)
587 {
588 size_t len;
589 char *pathname, *tmpc = find_mounted_controller(controller);
590
591 if (!tmpc)
592 return false;
593 /* basedir / tmpc / file \0 */
594 len = strlen(basedir) + strlen(tmpc) + strlen(file) + 3;
595 pathname = alloca(len);
596 snprintf(pathname, len, "%s/%s/%s", basedir, tmpc, file);
597 if (chmod(pathname, mode) < 0)
598 return false;
599 return true;
600 }
601
602 static int chown_tasks_files(const char *dirname, uid_t uid, gid_t gid)
603 {
604 size_t len;
605 char *fname;
606
607 len = strlen(dirname) + strlen("/cgroup.procs") + 1;
608 fname = alloca(len);
609 snprintf(fname, len, "%s/tasks", dirname);
610 if (chown(fname, uid, gid) != 0)
611 return -errno;
612 snprintf(fname, len, "%s/cgroup.procs", dirname);
613 if (chown(fname, uid, gid) != 0)
614 return -errno;
615 return 0;
616 }
617
618 int cgfs_chown_file(const char *controller, const char *file, uid_t uid, gid_t gid)
619 {
620 size_t len;
621 char *pathname, *tmpc = find_mounted_controller(controller);
622
623 if (!tmpc)
624 return -EINVAL;
625 /* basedir / tmpc / file \0 */
626 len = strlen(basedir) + strlen(tmpc) + strlen(file) + 3;
627 pathname = alloca(len);
628 snprintf(pathname, len, "%s/%s/%s", basedir, tmpc, file);
629 if (chown(pathname, uid, gid) < 0)
630 return -errno;
631
632 if (is_dir(pathname))
633 // like cgmanager did, we want to chown the tasks file as well
634 return chown_tasks_files(pathname, uid, gid);
635
636 return 0;
637 }
638
639 FILE *open_pids_file(const char *controller, const char *cgroup)
640 {
641 size_t len;
642 char *pathname, *tmpc = find_mounted_controller(controller);
643
644 if (!tmpc)
645 return NULL;
646 /* basedir / tmpc / cgroup / "cgroup.procs" \0 */
647 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 4 + strlen("cgroup.procs");
648 pathname = alloca(len);
649 snprintf(pathname, len, "%s/%s/%s/cgroup.procs", basedir, tmpc, cgroup);
650 return fopen(pathname, "w");
651 }
652
653 static bool cgfs_iterate_cgroup(const char *controller, const char *cgroup, bool directories,
654 void ***list, size_t typesize,
655 void* (*iterator)(const char*, const char*, const char*))
656 {
657 size_t len;
658 char *dirname, *tmpc = find_mounted_controller(controller);
659 char pathname[MAXPATHLEN];
660 size_t sz = 0, asz = 0;
661 struct dirent dirent, *direntp;
662 DIR *dir;
663 int ret;
664
665 *list = NULL;
666 if (!tmpc)
667 return false;
668
669 /* basedir / tmpc / cgroup \0 */
670 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 3;
671 dirname = alloca(len);
672 snprintf(dirname, len, "%s/%s/%s", basedir, tmpc, cgroup);
673
674 dir = opendir(dirname);
675 if (!dir)
676 return false;
677
678 while (!readdir_r(dir, &dirent, &direntp)) {
679 struct stat mystat;
680 int rc;
681
682 if (!direntp)
683 break;
684
685 if (!strcmp(direntp->d_name, ".") ||
686 !strcmp(direntp->d_name, ".."))
687 continue;
688
689 rc = snprintf(pathname, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
690 if (rc < 0 || rc >= MAXPATHLEN) {
691 fprintf(stderr, "%s: pathname too long under %s\n", __func__, dirname);
692 continue;
693 }
694
695 ret = lstat(pathname, &mystat);
696 if (ret) {
697 fprintf(stderr, "%s: failed to stat %s: %s\n", __func__, pathname, strerror(errno));
698 continue;
699 }
700 if ((!directories && !S_ISREG(mystat.st_mode)) ||
701 (directories && !S_ISDIR(mystat.st_mode)))
702 continue;
703
704 if (sz+2 >= asz) {
705 void **tmp;
706 asz += BATCH_SIZE;
707 do {
708 tmp = realloc(*list, asz * typesize);
709 } while (!tmp);
710 *list = tmp;
711 }
712 (*list)[sz] = (*iterator)(controller, cgroup, direntp->d_name);
713 (*list)[sz+1] = NULL;
714 sz++;
715 }
716 if (closedir(dir) < 0) {
717 fprintf(stderr, "%s: failed closedir for %s: %s\n", __func__, dirname, strerror(errno));
718 return false;
719 }
720 return true;
721 }
722
723 static void *make_children_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
724 {
725 char *dup;
726 do {
727 dup = strdup(dir_entry);
728 } while (!dup);
729 return dup;
730 }
731
732 bool cgfs_list_children(const char *controller, const char *cgroup, char ***list)
733 {
734 return cgfs_iterate_cgroup(controller, cgroup, true, (void***)list, sizeof(*list), &make_children_list_entry);
735 }
736
737 void free_key(struct cgfs_files *k)
738 {
739 if (!k)
740 return;
741 free(k->name);
742 free(k);
743 }
744
745 void free_keys(struct cgfs_files **keys)
746 {
747 int i;
748
749 if (!keys)
750 return;
751 for (i = 0; keys[i]; i++) {
752 free_key(keys[i]);
753 }
754 free(keys);
755 }
756
757 bool cgfs_get_value(const char *controller, const char *cgroup, const char *file, char **value)
758 {
759 size_t len;
760 char *fnam, *tmpc = find_mounted_controller(controller);
761
762 if (!tmpc)
763 return false;
764 /* basedir / tmpc / cgroup / file \0 */
765 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(file) + 4;
766 fnam = alloca(len);
767 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, file);
768
769 *value = slurp_file(fnam);
770 return *value != NULL;
771 }
772
773 struct cgfs_files *cgfs_get_key(const char *controller, const char *cgroup, const char *file)
774 {
775 size_t len;
776 char *fnam, *tmpc = find_mounted_controller(controller);
777 struct stat sb;
778 struct cgfs_files *newkey;
779 int ret;
780
781 if (!tmpc)
782 return false;
783
784 if (file && *file == '/')
785 file++;
786
787 if (file && index(file, '/'))
788 return NULL;
789
790 /* basedir / tmpc / cgroup / file \0 */
791 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 3;
792 if (file)
793 len += strlen(file) + 1;
794 fnam = alloca(len);
795 snprintf(fnam, len, "%s/%s/%s%s%s", basedir, tmpc, cgroup,
796 file ? "/" : "", file ? file : "");
797
798 ret = stat(fnam, &sb);
799 if (ret < 0)
800 return NULL;
801
802 do {
803 newkey = malloc(sizeof(struct cgfs_files));
804 } while (!newkey);
805 if (file)
806 newkey->name = must_copy_string(file);
807 else if (rindex(cgroup, '/'))
808 newkey->name = must_copy_string(rindex(cgroup, '/'));
809 else
810 newkey->name = must_copy_string(cgroup);
811 newkey->uid = sb.st_uid;
812 newkey->gid = sb.st_gid;
813 newkey->mode = sb.st_mode;
814
815 return newkey;
816 }
817
818 static void *make_key_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
819 {
820 struct cgfs_files *entry = cgfs_get_key(controller, cgroup, dir_entry);
821 if (!entry) {
822 fprintf(stderr, "%s: Error getting files under %s:%s\n",
823 __func__, controller, cgroup);
824 }
825 return entry;
826 }
827
828 bool cgfs_list_keys(const char *controller, const char *cgroup, struct cgfs_files ***keys)
829 {
830 return cgfs_iterate_cgroup(controller, cgroup, false, (void***)keys, sizeof(*keys), &make_key_list_entry);
831 }
832
833 bool is_child_cgroup(const char *controller, const char *cgroup, const char *f)
834 { size_t len;
835 char *fnam, *tmpc = find_mounted_controller(controller);
836 int ret;
837 struct stat sb;
838
839 if (!tmpc)
840 return false;
841 /* basedir / tmpc / cgroup / f \0 */
842 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(f) + 4;
843 fnam = alloca(len);
844 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, f);
845
846 ret = stat(fnam, &sb);
847 if (ret < 0 || !S_ISDIR(sb.st_mode))
848 return false;
849 return true;
850 }
851
852 #define SEND_CREDS_OK 0
853 #define SEND_CREDS_NOTSK 1
854 #define SEND_CREDS_FAIL 2
855 static bool recv_creds(int sock, struct ucred *cred, char *v);
856 static int wait_for_pid(pid_t pid);
857 static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst);
858 static int send_creds_clone_wrapper(void *arg);
859
860 /*
861 * clone a task which switches to @task's namespace and writes '1'.
862 * over a unix sock so we can read the task's reaper's pid in our
863 * namespace
864 *
865 * Note: glibc's fork() does not respect pidns, which can lead to failed
866 * assertions inside glibc (and thus failed forks) if the child's pid in
867 * the pidns and the parent pid outside are identical. Using clone prevents
868 * this issue.
869 */
870 static void write_task_init_pid_exit(int sock, pid_t target)
871 {
872 char fnam[100];
873 pid_t pid;
874 int fd, ret;
875 size_t stack_size = sysconf(_SC_PAGESIZE);
876 void *stack = alloca(stack_size);
877
878 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", (int)target);
879 if (ret < 0 || ret >= sizeof(fnam))
880 _exit(1);
881
882 fd = open(fnam, O_RDONLY);
883 if (fd < 0) {
884 perror("write_task_init_pid_exit open of ns/pid");
885 _exit(1);
886 }
887 if (setns(fd, 0)) {
888 perror("write_task_init_pid_exit setns 1");
889 close(fd);
890 _exit(1);
891 }
892 pid = clone(send_creds_clone_wrapper, stack + stack_size, SIGCHLD, &sock);
893 if (pid < 0)
894 _exit(1);
895 if (pid != 0) {
896 if (!wait_for_pid(pid))
897 _exit(1);
898 _exit(0);
899 }
900 }
901
902 static int send_creds_clone_wrapper(void *arg) {
903 struct ucred cred;
904 char v;
905 int sock = *(int *)arg;
906
907 /* we are the child */
908 cred.uid = 0;
909 cred.gid = 0;
910 cred.pid = 1;
911 v = '1';
912 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK)
913 return 1;
914 return 0;
915 }
916
917 static pid_t get_init_pid_for_task(pid_t task)
918 {
919 int sock[2];
920 pid_t pid;
921 pid_t ret = -1;
922 char v = '0';
923 struct ucred cred;
924
925 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
926 perror("socketpair");
927 return -1;
928 }
929
930 pid = fork();
931 if (pid < 0)
932 goto out;
933 if (!pid) {
934 close(sock[1]);
935 write_task_init_pid_exit(sock[0], task);
936 _exit(0);
937 }
938
939 if (!recv_creds(sock[1], &cred, &v))
940 goto out;
941 ret = cred.pid;
942
943 out:
944 close(sock[0]);
945 close(sock[1]);
946 if (pid > 0)
947 wait_for_pid(pid);
948 return ret;
949 }
950
951 static pid_t lookup_initpid_in_store(pid_t qpid)
952 {
953 pid_t answer = 0;
954 struct stat sb;
955 struct pidns_init_store *e;
956 char fnam[100];
957
958 snprintf(fnam, 100, "/proc/%d/ns/pid", qpid);
959 store_lock();
960 if (stat(fnam, &sb) < 0)
961 goto out;
962 e = lookup_verify_initpid(&sb);
963 if (e) {
964 answer = e->initpid;
965 goto out;
966 }
967 answer = get_init_pid_for_task(qpid);
968 if (answer > 0)
969 save_initpid(&sb, answer);
970
971 out:
972 /* we prune at end in case we are returning
973 * the value we were about to return */
974 prune_initpid_store();
975 store_unlock();
976 return answer;
977 }
978
979 static int wait_for_pid(pid_t pid)
980 {
981 int status, ret;
982
983 if (pid <= 0)
984 return -1;
985
986 again:
987 ret = waitpid(pid, &status, 0);
988 if (ret == -1) {
989 if (errno == EINTR)
990 goto again;
991 return -1;
992 }
993 if (ret != pid)
994 goto again;
995 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0)
996 return -1;
997 return 0;
998 }
999
1000
1001 /*
1002 * append pid to *src.
1003 * src: a pointer to a char* in which ot append the pid.
1004 * sz: the number of characters printed so far, minus trailing \0.
1005 * asz: the allocated size so far
1006 * pid: the pid to append
1007 */
1008 static void must_strcat_pid(char **src, size_t *sz, size_t *asz, pid_t pid)
1009 {
1010 char tmp[30];
1011
1012 int tmplen = sprintf(tmp, "%d\n", (int)pid);
1013
1014 if (!*src || tmplen + *sz + 1 >= *asz) {
1015 char *tmp;
1016 do {
1017 tmp = realloc(*src, *asz + BUF_RESERVE_SIZE);
1018 } while (!tmp);
1019 *src = tmp;
1020 *asz += BUF_RESERVE_SIZE;
1021 }
1022 memcpy((*src) +*sz , tmp, tmplen+1); /* include the \0 */
1023 *sz += tmplen;
1024 }
1025
1026 /*
1027 * Given a open file * to /proc/pid/{u,g}id_map, and an id
1028 * valid in the caller's namespace, return the id mapped into
1029 * pid's namespace.
1030 * Returns the mapped id, or -1 on error.
1031 */
1032 unsigned int
1033 convert_id_to_ns(FILE *idfile, unsigned int in_id)
1034 {
1035 unsigned int nsuid, // base id for a range in the idfile's namespace
1036 hostuid, // base id for a range in the caller's namespace
1037 count; // number of ids in this range
1038 char line[400];
1039 int ret;
1040
1041 fseek(idfile, 0L, SEEK_SET);
1042 while (fgets(line, 400, idfile)) {
1043 ret = sscanf(line, "%u %u %u\n", &nsuid, &hostuid, &count);
1044 if (ret != 3)
1045 continue;
1046 if (hostuid + count < hostuid || nsuid + count < nsuid) {
1047 /*
1048 * uids wrapped around - unexpected as this is a procfile,
1049 * so just bail.
1050 */
1051 fprintf(stderr, "pid wrapparound at entry %u %u %u in %s\n",
1052 nsuid, hostuid, count, line);
1053 return -1;
1054 }
1055 if (hostuid <= in_id && hostuid+count > in_id) {
1056 /*
1057 * now since hostuid <= in_id < hostuid+count, and
1058 * hostuid+count and nsuid+count do not wrap around,
1059 * we know that nsuid+(in_id-hostuid) which must be
1060 * less that nsuid+(count) must not wrap around
1061 */
1062 return (in_id - hostuid) + nsuid;
1063 }
1064 }
1065
1066 // no answer found
1067 return -1;
1068 }
1069
1070 /*
1071 * for is_privileged_over,
1072 * specify whether we require the calling uid to be root in his
1073 * namespace
1074 */
1075 #define NS_ROOT_REQD true
1076 #define NS_ROOT_OPT false
1077
1078 #define PROCLEN 100
1079
1080 static bool is_privileged_over(pid_t pid, uid_t uid, uid_t victim, bool req_ns_root)
1081 {
1082 char fpath[PROCLEN];
1083 int ret;
1084 bool answer = false;
1085 uid_t nsuid;
1086
1087 if (victim == -1 || uid == -1)
1088 return false;
1089
1090 /*
1091 * If the request is one not requiring root in the namespace,
1092 * then having the same uid suffices. (i.e. uid 1000 has write
1093 * access to files owned by uid 1000
1094 */
1095 if (!req_ns_root && uid == victim)
1096 return true;
1097
1098 ret = snprintf(fpath, PROCLEN, "/proc/%d/uid_map", pid);
1099 if (ret < 0 || ret >= PROCLEN)
1100 return false;
1101 FILE *f = fopen(fpath, "r");
1102 if (!f)
1103 return false;
1104
1105 /* if caller's not root in his namespace, reject */
1106 nsuid = convert_id_to_ns(f, uid);
1107 if (nsuid)
1108 goto out;
1109
1110 /*
1111 * If victim is not mapped into caller's ns, reject.
1112 * XXX I'm not sure this check is needed given that fuse
1113 * will be sending requests where the vfs has converted
1114 */
1115 nsuid = convert_id_to_ns(f, victim);
1116 if (nsuid == -1)
1117 goto out;
1118
1119 answer = true;
1120
1121 out:
1122 fclose(f);
1123 return answer;
1124 }
1125
1126 static bool perms_include(int fmode, mode_t req_mode)
1127 {
1128 mode_t r;
1129
1130 switch (req_mode & O_ACCMODE) {
1131 case O_RDONLY:
1132 r = S_IROTH;
1133 break;
1134 case O_WRONLY:
1135 r = S_IWOTH;
1136 break;
1137 case O_RDWR:
1138 r = S_IROTH | S_IWOTH;
1139 break;
1140 default:
1141 return false;
1142 }
1143 return ((fmode & r) == r);
1144 }
1145
1146
1147 /*
1148 * taskcg is a/b/c
1149 * querycg is /a/b/c/d/e
1150 * we return 'd'
1151 */
1152 static char *get_next_cgroup_dir(const char *taskcg, const char *querycg)
1153 {
1154 char *start, *end;
1155
1156 if (strlen(taskcg) <= strlen(querycg)) {
1157 fprintf(stderr, "%s: I was fed bad input\n", __func__);
1158 return NULL;
1159 }
1160
1161 if (strcmp(querycg, "/") == 0)
1162 start = strdup(taskcg + 1);
1163 else
1164 start = strdup(taskcg + strlen(querycg) + 1);
1165 if (!start)
1166 return NULL;
1167 end = strchr(start, '/');
1168 if (end)
1169 *end = '\0';
1170 return start;
1171 }
1172
1173 static void stripnewline(char *x)
1174 {
1175 size_t l = strlen(x);
1176 if (l && x[l-1] == '\n')
1177 x[l-1] = '\0';
1178 }
1179
1180 static char *get_pid_cgroup(pid_t pid, const char *contrl)
1181 {
1182 char fnam[PROCLEN];
1183 FILE *f;
1184 char *answer = NULL;
1185 char *line = NULL;
1186 size_t len = 0;
1187 int ret;
1188 const char *h = find_mounted_controller(contrl);
1189 if (!h)
1190 return NULL;
1191
1192 ret = snprintf(fnam, PROCLEN, "/proc/%d/cgroup", pid);
1193 if (ret < 0 || ret >= PROCLEN)
1194 return NULL;
1195 if (!(f = fopen(fnam, "r")))
1196 return NULL;
1197
1198 while (getline(&line, &len, f) != -1) {
1199 char *c1, *c2;
1200 if (!line[0])
1201 continue;
1202 c1 = strchr(line, ':');
1203 if (!c1)
1204 goto out;
1205 c1++;
1206 c2 = strchr(c1, ':');
1207 if (!c2)
1208 goto out;
1209 *c2 = '\0';
1210 if (strcmp(c1, h) != 0)
1211 continue;
1212 c2++;
1213 stripnewline(c2);
1214 do {
1215 answer = strdup(c2);
1216 } while (!answer);
1217 break;
1218 }
1219
1220 out:
1221 fclose(f);
1222 free(line);
1223 return answer;
1224 }
1225
1226 /*
1227 * check whether a fuse context may access a cgroup dir or file
1228 *
1229 * If file is not null, it is a cgroup file to check under cg.
1230 * If file is null, then we are checking perms on cg itself.
1231 *
1232 * For files we can check the mode of the list_keys result.
1233 * For cgroups, we must make assumptions based on the files under the
1234 * cgroup, because cgmanager doesn't tell us ownership/perms of cgroups
1235 * yet.
1236 */
1237 static bool fc_may_access(struct fuse_context *fc, const char *contrl, const char *cg, const char *file, mode_t mode)
1238 {
1239 struct cgfs_files *k = NULL;
1240 bool ret = false;
1241
1242 k = cgfs_get_key(contrl, cg, file);
1243 if (!k)
1244 return false;
1245
1246 if (is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
1247 if (perms_include(k->mode >> 6, mode)) {
1248 ret = true;
1249 goto out;
1250 }
1251 }
1252 if (fc->gid == k->gid) {
1253 if (perms_include(k->mode >> 3, mode)) {
1254 ret = true;
1255 goto out;
1256 }
1257 }
1258 ret = perms_include(k->mode, mode);
1259
1260 out:
1261 free_key(k);
1262 return ret;
1263 }
1264
1265 #define INITSCOPE "/init.scope"
1266 static void prune_init_slice(char *cg)
1267 {
1268 char *point;
1269 size_t cg_len = strlen(cg), initscope_len = strlen(INITSCOPE);
1270
1271 if (cg_len < initscope_len)
1272 return;
1273
1274 point = cg + cg_len - initscope_len;
1275 if (strcmp(point, INITSCOPE) == 0) {
1276 if (point == cg)
1277 *(point+1) = '\0';
1278 else
1279 *point = '\0';
1280 }
1281 }
1282
1283 /*
1284 * If pid is in /a/b/c/d, he may only act on things under cg=/a/b/c/d.
1285 * If pid is in /a, he may act on /a/b, but not on /b.
1286 * if the answer is false and nextcg is not NULL, then *nextcg will point
1287 * to a string containing the next cgroup directory under cg, which must be
1288 * freed by the caller.
1289 */
1290 static bool caller_is_in_ancestor(pid_t pid, const char *contrl, const char *cg, char **nextcg)
1291 {
1292 bool answer = false;
1293 char *c2 = get_pid_cgroup(pid, contrl);
1294 char *linecmp;
1295
1296 if (!c2)
1297 return false;
1298 prune_init_slice(c2);
1299
1300 /*
1301 * callers pass in '/' for root cgroup, otherwise they pass
1302 * in a cgroup without leading '/'
1303 */
1304 linecmp = *cg == '/' ? c2 : c2+1;
1305 if (strncmp(linecmp, cg, strlen(linecmp)) != 0) {
1306 if (nextcg) {
1307 *nextcg = get_next_cgroup_dir(linecmp, cg);
1308 }
1309 goto out;
1310 }
1311 answer = true;
1312
1313 out:
1314 free(c2);
1315 return answer;
1316 }
1317
1318 /*
1319 * If pid is in /a/b/c, he may see that /a exists, but not /b or /a/c.
1320 */
1321 static bool caller_may_see_dir(pid_t pid, const char *contrl, const char *cg)
1322 {
1323 bool answer = false;
1324 char *c2, *task_cg;
1325 size_t target_len, task_len;
1326
1327 if (strcmp(cg, "/") == 0)
1328 return true;
1329
1330 c2 = get_pid_cgroup(pid, contrl);
1331 if (!c2)
1332 return false;
1333 prune_init_slice(c2);
1334
1335 task_cg = c2 + 1;
1336 target_len = strlen(cg);
1337 task_len = strlen(task_cg);
1338 if (task_len == 0) {
1339 /* Task is in the root cg, it can see everything. This case is
1340 * not handled by the strmcps below, since they test for the
1341 * last /, but that is the first / that we've chopped off
1342 * above.
1343 */
1344 answer = true;
1345 goto out;
1346 }
1347 if (strcmp(cg, task_cg) == 0) {
1348 answer = true;
1349 goto out;
1350 }
1351 if (target_len < task_len) {
1352 /* looking up a parent dir */
1353 if (strncmp(task_cg, cg, target_len) == 0 && task_cg[target_len] == '/')
1354 answer = true;
1355 goto out;
1356 }
1357 if (target_len > task_len) {
1358 /* looking up a child dir */
1359 if (strncmp(task_cg, cg, task_len) == 0 && cg[task_len] == '/')
1360 answer = true;
1361 goto out;
1362 }
1363
1364 out:
1365 free(c2);
1366 return answer;
1367 }
1368
1369 /*
1370 * given /cgroup/freezer/a/b, return "freezer".
1371 * the returned char* should NOT be freed.
1372 */
1373 static char *pick_controller_from_path(struct fuse_context *fc, const char *path)
1374 {
1375 const char *p1;
1376 char *contr, *slash;
1377
1378 if (strlen(path) < 9)
1379 return NULL;
1380 if (*(path+7) != '/')
1381 return NULL;
1382 p1 = path+8;
1383 contr = strdupa(p1);
1384 if (!contr)
1385 return NULL;
1386 slash = strstr(contr, "/");
1387 if (slash)
1388 *slash = '\0';
1389
1390 int i;
1391 for (i = 0; i < num_hierarchies; i++) {
1392 if (hierarchies[i] && strcmp(hierarchies[i], contr) == 0)
1393 return hierarchies[i];
1394 }
1395 return NULL;
1396 }
1397
1398 /*
1399 * Find the start of cgroup in /cgroup/controller/the/cgroup/path
1400 * Note that the returned value may include files (keynames) etc
1401 */
1402 static const char *find_cgroup_in_path(const char *path)
1403 {
1404 const char *p1;
1405
1406 if (strlen(path) < 9)
1407 return NULL;
1408 p1 = strstr(path+8, "/");
1409 if (!p1)
1410 return NULL;
1411 return p1+1;
1412 }
1413
1414 /*
1415 * split the last path element from the path in @cg.
1416 * @dir is newly allocated and should be freed, @last not
1417 */
1418 static void get_cgdir_and_path(const char *cg, char **dir, char **last)
1419 {
1420 char *p;
1421
1422 do {
1423 *dir = strdup(cg);
1424 } while (!*dir);
1425 *last = strrchr(cg, '/');
1426 if (!*last) {
1427 *last = NULL;
1428 return;
1429 }
1430 p = strrchr(*dir, '/');
1431 *p = '\0';
1432 }
1433
1434 /*
1435 * FUSE ops for /cgroup
1436 */
1437
1438 int cg_getattr(const char *path, struct stat *sb)
1439 {
1440 struct timespec now;
1441 struct fuse_context *fc = fuse_get_context();
1442 char * cgdir = NULL;
1443 char *last = NULL, *path1, *path2;
1444 struct cgfs_files *k = NULL;
1445 const char *cgroup;
1446 const char *controller = NULL;
1447 int ret = -ENOENT;
1448
1449
1450 if (!fc)
1451 return -EIO;
1452
1453 memset(sb, 0, sizeof(struct stat));
1454
1455 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
1456 return -EINVAL;
1457
1458 sb->st_uid = sb->st_gid = 0;
1459 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
1460 sb->st_size = 0;
1461
1462 if (strcmp(path, "/cgroup") == 0) {
1463 sb->st_mode = S_IFDIR | 00755;
1464 sb->st_nlink = 2;
1465 return 0;
1466 }
1467
1468 controller = pick_controller_from_path(fc, path);
1469 if (!controller)
1470 return -EIO;
1471 cgroup = find_cgroup_in_path(path);
1472 if (!cgroup) {
1473 /* this is just /cgroup/controller, return it as a dir */
1474 sb->st_mode = S_IFDIR | 00755;
1475 sb->st_nlink = 2;
1476 return 0;
1477 }
1478
1479 get_cgdir_and_path(cgroup, &cgdir, &last);
1480
1481 if (!last) {
1482 path1 = "/";
1483 path2 = cgdir;
1484 } else {
1485 path1 = cgdir;
1486 path2 = last;
1487 }
1488
1489 pid_t initpid = lookup_initpid_in_store(fc->pid);
1490 if (initpid <= 0)
1491 initpid = fc->pid;
1492 /* check that cgcopy is either a child cgroup of cgdir, or listed in its keys.
1493 * Then check that caller's cgroup is under path if last is a child
1494 * cgroup, or cgdir if last is a file */
1495
1496 if (is_child_cgroup(controller, path1, path2)) {
1497 if (!caller_may_see_dir(initpid, controller, cgroup)) {
1498 ret = -ENOENT;
1499 goto out;
1500 }
1501 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
1502 /* this is just /cgroup/controller, return it as a dir */
1503 sb->st_mode = S_IFDIR | 00555;
1504 sb->st_nlink = 2;
1505 ret = 0;
1506 goto out;
1507 }
1508 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY)) {
1509 ret = -EACCES;
1510 goto out;
1511 }
1512
1513 // get uid, gid, from '/tasks' file and make up a mode
1514 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
1515 sb->st_mode = S_IFDIR | 00755;
1516 k = cgfs_get_key(controller, cgroup, NULL);
1517 if (!k) {
1518 sb->st_uid = sb->st_gid = 0;
1519 } else {
1520 sb->st_uid = k->uid;
1521 sb->st_gid = k->gid;
1522 }
1523 free_key(k);
1524 sb->st_nlink = 2;
1525 ret = 0;
1526 goto out;
1527 }
1528
1529 if ((k = cgfs_get_key(controller, path1, path2)) != NULL) {
1530 sb->st_mode = S_IFREG | k->mode;
1531 sb->st_nlink = 1;
1532 sb->st_uid = k->uid;
1533 sb->st_gid = k->gid;
1534 sb->st_size = 0;
1535 free_key(k);
1536 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
1537 ret = -ENOENT;
1538 goto out;
1539 }
1540 if (!fc_may_access(fc, controller, path1, path2, O_RDONLY)) {
1541 ret = -EACCES;
1542 goto out;
1543 }
1544
1545 ret = 0;
1546 }
1547
1548 out:
1549 free(cgdir);
1550 return ret;
1551 }
1552
1553 int cg_opendir(const char *path, struct fuse_file_info *fi)
1554 {
1555 struct fuse_context *fc = fuse_get_context();
1556 const char *cgroup;
1557 struct file_info *dir_info;
1558 char *controller = NULL;
1559
1560 if (!fc)
1561 return -EIO;
1562
1563 if (strcmp(path, "/cgroup") == 0) {
1564 cgroup = NULL;
1565 controller = NULL;
1566 } else {
1567 // return list of keys for the controller, and list of child cgroups
1568 controller = pick_controller_from_path(fc, path);
1569 if (!controller)
1570 return -EIO;
1571
1572 cgroup = find_cgroup_in_path(path);
1573 if (!cgroup) {
1574 /* this is just /cgroup/controller, return its contents */
1575 cgroup = "/";
1576 }
1577 }
1578
1579 pid_t initpid = lookup_initpid_in_store(fc->pid);
1580 if (initpid <= 0)
1581 initpid = fc->pid;
1582 if (cgroup) {
1583 if (!caller_may_see_dir(initpid, controller, cgroup))
1584 return -ENOENT;
1585 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY))
1586 return -EACCES;
1587 }
1588
1589 /* we'll free this at cg_releasedir */
1590 dir_info = malloc(sizeof(*dir_info));
1591 if (!dir_info)
1592 return -ENOMEM;
1593 dir_info->controller = must_copy_string(controller);
1594 dir_info->cgroup = must_copy_string(cgroup);
1595 dir_info->type = LXC_TYPE_CGDIR;
1596 dir_info->buf = NULL;
1597 dir_info->file = NULL;
1598 dir_info->buflen = 0;
1599
1600 fi->fh = (unsigned long)dir_info;
1601 return 0;
1602 }
1603
1604 int cg_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
1605 struct fuse_file_info *fi)
1606 {
1607 struct file_info *d = (struct file_info *)fi->fh;
1608 struct cgfs_files **list = NULL;
1609 int i, ret;
1610 char *nextcg = NULL;
1611 struct fuse_context *fc = fuse_get_context();
1612 char **clist = NULL;
1613
1614 if (d->type != LXC_TYPE_CGDIR) {
1615 fprintf(stderr, "Internal error: file cache info used in readdir\n");
1616 return -EIO;
1617 }
1618 if (!d->cgroup && !d->controller) {
1619 // ls /var/lib/lxcfs/cgroup - just show list of controllers
1620 int i;
1621
1622 for (i = 0; i < num_hierarchies; i++) {
1623 if (hierarchies[i] && filler(buf, hierarchies[i], NULL, 0) != 0) {
1624 return -EIO;
1625 }
1626 }
1627 return 0;
1628 }
1629
1630 if (!cgfs_list_keys(d->controller, d->cgroup, &list)) {
1631 // not a valid cgroup
1632 ret = -EINVAL;
1633 goto out;
1634 }
1635
1636 pid_t initpid = lookup_initpid_in_store(fc->pid);
1637 if (initpid <= 0)
1638 initpid = fc->pid;
1639 if (!caller_is_in_ancestor(initpid, d->controller, d->cgroup, &nextcg)) {
1640 if (nextcg) {
1641 ret = filler(buf, nextcg, NULL, 0);
1642 free(nextcg);
1643 if (ret != 0) {
1644 ret = -EIO;
1645 goto out;
1646 }
1647 }
1648 ret = 0;
1649 goto out;
1650 }
1651
1652 for (i = 0; list[i]; i++) {
1653 if (filler(buf, list[i]->name, NULL, 0) != 0) {
1654 ret = -EIO;
1655 goto out;
1656 }
1657 }
1658
1659 // now get the list of child cgroups
1660
1661 if (!cgfs_list_children(d->controller, d->cgroup, &clist)) {
1662 ret = 0;
1663 goto out;
1664 }
1665 if (clist) {
1666 for (i = 0; clist[i]; i++) {
1667 if (filler(buf, clist[i], NULL, 0) != 0) {
1668 ret = -EIO;
1669 goto out;
1670 }
1671 }
1672 }
1673 ret = 0;
1674
1675 out:
1676 free_keys(list);
1677 if (clist) {
1678 for (i = 0; clist[i]; i++)
1679 free(clist[i]);
1680 free(clist);
1681 }
1682 return ret;
1683 }
1684
1685 static void do_release_file_info(struct file_info *f)
1686 {
1687 if (!f)
1688 return;
1689 free(f->controller);
1690 free(f->cgroup);
1691 free(f->file);
1692 free(f->buf);
1693 free(f);
1694 }
1695
1696 int cg_releasedir(const char *path, struct fuse_file_info *fi)
1697 {
1698 struct file_info *d = (struct file_info *)fi->fh;
1699
1700 do_release_file_info(d);
1701 return 0;
1702 }
1703
1704 int cg_open(const char *path, struct fuse_file_info *fi)
1705 {
1706 const char *cgroup;
1707 char *last = NULL, *path1, *path2, * cgdir = NULL, *controller;
1708 struct cgfs_files *k = NULL;
1709 struct file_info *file_info;
1710 struct fuse_context *fc = fuse_get_context();
1711 int ret;
1712
1713 if (!fc)
1714 return -EIO;
1715
1716 controller = pick_controller_from_path(fc, path);
1717 if (!controller)
1718 return -EIO;
1719 cgroup = find_cgroup_in_path(path);
1720 if (!cgroup)
1721 return -EINVAL;
1722
1723 get_cgdir_and_path(cgroup, &cgdir, &last);
1724 if (!last) {
1725 path1 = "/";
1726 path2 = cgdir;
1727 } else {
1728 path1 = cgdir;
1729 path2 = last;
1730 }
1731
1732 k = cgfs_get_key(controller, path1, path2);
1733 if (!k) {
1734 ret = -EINVAL;
1735 goto out;
1736 }
1737 free_key(k);
1738
1739 pid_t initpid = lookup_initpid_in_store(fc->pid);
1740 if (initpid <= 0)
1741 initpid = fc->pid;
1742 if (!caller_may_see_dir(initpid, controller, path1)) {
1743 ret = -ENOENT;
1744 goto out;
1745 }
1746 if (!fc_may_access(fc, controller, path1, path2, fi->flags)) {
1747 // should never get here
1748 ret = -EACCES;
1749 goto out;
1750 }
1751
1752 /* we'll free this at cg_release */
1753 file_info = malloc(sizeof(*file_info));
1754 if (!file_info) {
1755 ret = -ENOMEM;
1756 goto out;
1757 }
1758 file_info->controller = must_copy_string(controller);
1759 file_info->cgroup = must_copy_string(path1);
1760 file_info->file = must_copy_string(path2);
1761 file_info->type = LXC_TYPE_CGFILE;
1762 file_info->buf = NULL;
1763 file_info->buflen = 0;
1764
1765 fi->fh = (unsigned long)file_info;
1766 ret = 0;
1767
1768 out:
1769 free(cgdir);
1770 return ret;
1771 }
1772
1773 int cg_release(const char *path, struct fuse_file_info *fi)
1774 {
1775 struct file_info *f = (struct file_info *)fi->fh;
1776
1777 do_release_file_info(f);
1778 return 0;
1779 }
1780
1781 #define POLLIN_SET ( EPOLLIN | EPOLLHUP | EPOLLRDHUP )
1782
1783 static bool wait_for_sock(int sock, int timeout)
1784 {
1785 struct epoll_event ev;
1786 int epfd, ret, now, starttime, deltatime, saved_errno;
1787
1788 if ((starttime = time(NULL)) < 0)
1789 return false;
1790
1791 if ((epfd = epoll_create(1)) < 0) {
1792 fprintf(stderr, "Failed to create epoll socket: %m\n");
1793 return false;
1794 }
1795
1796 ev.events = POLLIN_SET;
1797 ev.data.fd = sock;
1798 if (epoll_ctl(epfd, EPOLL_CTL_ADD, sock, &ev) < 0) {
1799 fprintf(stderr, "Failed adding socket to epoll: %m\n");
1800 close(epfd);
1801 return false;
1802 }
1803
1804 again:
1805 if ((now = time(NULL)) < 0) {
1806 close(epfd);
1807 return false;
1808 }
1809
1810 deltatime = (starttime + timeout) - now;
1811 if (deltatime < 0) { // timeout
1812 errno = 0;
1813 close(epfd);
1814 return false;
1815 }
1816 ret = epoll_wait(epfd, &ev, 1, 1000*deltatime + 1);
1817 if (ret < 0 && errno == EINTR)
1818 goto again;
1819 saved_errno = errno;
1820 close(epfd);
1821
1822 if (ret <= 0) {
1823 errno = saved_errno;
1824 return false;
1825 }
1826 return true;
1827 }
1828
1829 static int msgrecv(int sockfd, void *buf, size_t len)
1830 {
1831 if (!wait_for_sock(sockfd, 2))
1832 return -1;
1833 return recv(sockfd, buf, len, MSG_DONTWAIT);
1834 }
1835
1836 static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst)
1837 {
1838 struct msghdr msg = { 0 };
1839 struct iovec iov;
1840 struct cmsghdr *cmsg;
1841 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
1842 char buf[1];
1843 buf[0] = 'p';
1844
1845 if (pingfirst) {
1846 if (msgrecv(sock, buf, 1) != 1) {
1847 fprintf(stderr, "%s: Error getting reply from server over socketpair\n",
1848 __func__);
1849 return SEND_CREDS_FAIL;
1850 }
1851 }
1852
1853 msg.msg_control = cmsgbuf;
1854 msg.msg_controllen = sizeof(cmsgbuf);
1855
1856 cmsg = CMSG_FIRSTHDR(&msg);
1857 cmsg->cmsg_len = CMSG_LEN(sizeof(struct ucred));
1858 cmsg->cmsg_level = SOL_SOCKET;
1859 cmsg->cmsg_type = SCM_CREDENTIALS;
1860 memcpy(CMSG_DATA(cmsg), cred, sizeof(*cred));
1861
1862 msg.msg_name = NULL;
1863 msg.msg_namelen = 0;
1864
1865 buf[0] = v;
1866 iov.iov_base = buf;
1867 iov.iov_len = sizeof(buf);
1868 msg.msg_iov = &iov;
1869 msg.msg_iovlen = 1;
1870
1871 if (sendmsg(sock, &msg, 0) < 0) {
1872 fprintf(stderr, "%s: failed at sendmsg: %s\n", __func__,
1873 strerror(errno));
1874 if (errno == 3)
1875 return SEND_CREDS_NOTSK;
1876 return SEND_CREDS_FAIL;
1877 }
1878
1879 return SEND_CREDS_OK;
1880 }
1881
1882 static bool recv_creds(int sock, struct ucred *cred, char *v)
1883 {
1884 struct msghdr msg = { 0 };
1885 struct iovec iov;
1886 struct cmsghdr *cmsg;
1887 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
1888 char buf[1];
1889 int ret;
1890 int optval = 1;
1891
1892 *v = '1';
1893
1894 cred->pid = -1;
1895 cred->uid = -1;
1896 cred->gid = -1;
1897
1898 if (setsockopt(sock, SOL_SOCKET, SO_PASSCRED, &optval, sizeof(optval)) == -1) {
1899 fprintf(stderr, "Failed to set passcred: %s\n", strerror(errno));
1900 return false;
1901 }
1902 buf[0] = '1';
1903 if (write(sock, buf, 1) != 1) {
1904 fprintf(stderr, "Failed to start write on scm fd: %s\n", strerror(errno));
1905 return false;
1906 }
1907
1908 msg.msg_name = NULL;
1909 msg.msg_namelen = 0;
1910 msg.msg_control = cmsgbuf;
1911 msg.msg_controllen = sizeof(cmsgbuf);
1912
1913 iov.iov_base = buf;
1914 iov.iov_len = sizeof(buf);
1915 msg.msg_iov = &iov;
1916 msg.msg_iovlen = 1;
1917
1918 if (!wait_for_sock(sock, 2)) {
1919 fprintf(stderr, "Timed out waiting for scm_cred: %s\n",
1920 strerror(errno));
1921 return false;
1922 }
1923 ret = recvmsg(sock, &msg, MSG_DONTWAIT);
1924 if (ret < 0) {
1925 fprintf(stderr, "Failed to receive scm_cred: %s\n",
1926 strerror(errno));
1927 return false;
1928 }
1929
1930 cmsg = CMSG_FIRSTHDR(&msg);
1931
1932 if (cmsg && cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred)) &&
1933 cmsg->cmsg_level == SOL_SOCKET &&
1934 cmsg->cmsg_type == SCM_CREDENTIALS) {
1935 memcpy(cred, CMSG_DATA(cmsg), sizeof(*cred));
1936 }
1937 *v = buf[0];
1938
1939 return true;
1940 }
1941
1942
1943 /*
1944 * pid_to_ns - reads pids from a ucred over a socket, then writes the
1945 * int value back over the socket. This shifts the pid from the
1946 * sender's pidns into tpid's pidns.
1947 */
1948 static void pid_to_ns(int sock, pid_t tpid)
1949 {
1950 char v = '0';
1951 struct ucred cred;
1952
1953 while (recv_creds(sock, &cred, &v)) {
1954 if (v == '1')
1955 _exit(0);
1956 if (write(sock, &cred.pid, sizeof(pid_t)) != sizeof(pid_t))
1957 _exit(1);
1958 }
1959 _exit(0);
1960 }
1961
1962 /*
1963 * pid_to_ns_wrapper: when you setns into a pidns, you yourself remain
1964 * in your old pidns. Only children which you fork will be in the target
1965 * pidns. So the pid_to_ns_wrapper does the setns, then forks a child to
1966 * actually convert pids
1967 */
1968 static void pid_to_ns_wrapper(int sock, pid_t tpid)
1969 {
1970 int newnsfd = -1, ret, cpipe[2];
1971 char fnam[100];
1972 pid_t cpid;
1973 char v;
1974
1975 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
1976 if (ret < 0 || ret >= sizeof(fnam))
1977 _exit(1);
1978 newnsfd = open(fnam, O_RDONLY);
1979 if (newnsfd < 0)
1980 _exit(1);
1981 if (setns(newnsfd, 0) < 0)
1982 _exit(1);
1983 close(newnsfd);
1984
1985 if (pipe(cpipe) < 0)
1986 _exit(1);
1987
1988 cpid = fork();
1989 if (cpid < 0)
1990 _exit(1);
1991
1992 if (!cpid) {
1993 char b = '1';
1994 close(cpipe[0]);
1995 if (write(cpipe[1], &b, sizeof(char)) < 0) {
1996 fprintf(stderr, "%s (child): erorr on write: %s\n",
1997 __func__, strerror(errno));
1998 }
1999 close(cpipe[1]);
2000 pid_to_ns(sock, tpid);
2001 _exit(1); // not reached
2002 }
2003 // give the child 1 second to be done forking and
2004 // write its ack
2005 if (!wait_for_sock(cpipe[0], 1))
2006 _exit(1);
2007 ret = read(cpipe[0], &v, 1);
2008 if (ret != sizeof(char) || v != '1')
2009 _exit(1);
2010
2011 if (!wait_for_pid(cpid))
2012 _exit(1);
2013 _exit(0);
2014 }
2015
2016 /*
2017 * To read cgroup files with a particular pid, we will setns into the child
2018 * pidns, open a pipe, fork a child - which will be the first to really be in
2019 * the child ns - which does the cgfs_get_value and writes the data to the pipe.
2020 */
2021 bool do_read_pids(pid_t tpid, const char *contrl, const char *cg, const char *file, char **d)
2022 {
2023 int sock[2] = {-1, -1};
2024 char *tmpdata = NULL;
2025 int ret;
2026 pid_t qpid, cpid = -1;
2027 bool answer = false;
2028 char v = '0';
2029 struct ucred cred;
2030 size_t sz = 0, asz = 0;
2031
2032 if (!cgfs_get_value(contrl, cg, file, &tmpdata))
2033 return false;
2034
2035 /*
2036 * Now we read the pids from returned data one by one, pass
2037 * them into a child in the target namespace, read back the
2038 * translated pids, and put them into our to-return data
2039 */
2040
2041 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2042 perror("socketpair");
2043 free(tmpdata);
2044 return false;
2045 }
2046
2047 cpid = fork();
2048 if (cpid == -1)
2049 goto out;
2050
2051 if (!cpid) // child - exits when done
2052 pid_to_ns_wrapper(sock[1], tpid);
2053
2054 char *ptr = tmpdata;
2055 cred.uid = 0;
2056 cred.gid = 0;
2057 while (sscanf(ptr, "%d\n", &qpid) == 1) {
2058 cred.pid = qpid;
2059 ret = send_creds(sock[0], &cred, v, true);
2060
2061 if (ret == SEND_CREDS_NOTSK)
2062 goto next;
2063 if (ret == SEND_CREDS_FAIL)
2064 goto out;
2065
2066 // read converted results
2067 if (!wait_for_sock(sock[0], 2)) {
2068 fprintf(stderr, "%s: timed out waiting for pid from child: %s\n",
2069 __func__, strerror(errno));
2070 goto out;
2071 }
2072 if (read(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2073 fprintf(stderr, "%s: error reading pid from child: %s\n",
2074 __func__, strerror(errno));
2075 goto out;
2076 }
2077 must_strcat_pid(d, &sz, &asz, qpid);
2078 next:
2079 ptr = strchr(ptr, '\n');
2080 if (!ptr)
2081 break;
2082 ptr++;
2083 }
2084
2085 cred.pid = getpid();
2086 v = '1';
2087 if (send_creds(sock[0], &cred, v, true) != SEND_CREDS_OK) {
2088 // failed to ask child to exit
2089 fprintf(stderr, "%s: failed to ask child to exit: %s\n",
2090 __func__, strerror(errno));
2091 goto out;
2092 }
2093
2094 answer = true;
2095
2096 out:
2097 free(tmpdata);
2098 if (cpid != -1)
2099 wait_for_pid(cpid);
2100 if (sock[0] != -1) {
2101 close(sock[0]);
2102 close(sock[1]);
2103 }
2104 return answer;
2105 }
2106
2107 int cg_read(const char *path, char *buf, size_t size, off_t offset,
2108 struct fuse_file_info *fi)
2109 {
2110 struct fuse_context *fc = fuse_get_context();
2111 struct file_info *f = (struct file_info *)fi->fh;
2112 struct cgfs_files *k = NULL;
2113 char *data = NULL;
2114 int ret, s;
2115 bool r;
2116
2117 if (f->type != LXC_TYPE_CGFILE) {
2118 fprintf(stderr, "Internal error: directory cache info used in cg_read\n");
2119 return -EIO;
2120 }
2121
2122 if (offset)
2123 return 0;
2124
2125 if (!fc)
2126 return -EIO;
2127
2128 if (!f->controller)
2129 return -EINVAL;
2130
2131 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2132 return -EINVAL;
2133 }
2134 free_key(k);
2135
2136
2137 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_RDONLY)) { // should never get here
2138 ret = -EACCES;
2139 goto out;
2140 }
2141
2142 if (strcmp(f->file, "tasks") == 0 ||
2143 strcmp(f->file, "/tasks") == 0 ||
2144 strcmp(f->file, "/cgroup.procs") == 0 ||
2145 strcmp(f->file, "cgroup.procs") == 0)
2146 // special case - we have to translate the pids
2147 r = do_read_pids(fc->pid, f->controller, f->cgroup, f->file, &data);
2148 else
2149 r = cgfs_get_value(f->controller, f->cgroup, f->file, &data);
2150
2151 if (!r) {
2152 ret = -EINVAL;
2153 goto out;
2154 }
2155
2156 if (!data) {
2157 ret = 0;
2158 goto out;
2159 }
2160 s = strlen(data);
2161 if (s > size)
2162 s = size;
2163 memcpy(buf, data, s);
2164 if (s > 0 && s < size && data[s-1] != '\n')
2165 buf[s++] = '\n';
2166
2167 ret = s;
2168
2169 out:
2170 free(data);
2171 return ret;
2172 }
2173
2174 static void pid_from_ns(int sock, pid_t tpid)
2175 {
2176 pid_t vpid;
2177 struct ucred cred;
2178 char v;
2179 int ret;
2180
2181 cred.uid = 0;
2182 cred.gid = 0;
2183 while (1) {
2184 if (!wait_for_sock(sock, 2)) {
2185 fprintf(stderr, "%s: timeout reading from parent\n", __func__);
2186 _exit(1);
2187 }
2188 if ((ret = read(sock, &vpid, sizeof(pid_t))) != sizeof(pid_t)) {
2189 fprintf(stderr, "%s: bad read from parent: %s\n",
2190 __func__, strerror(errno));
2191 _exit(1);
2192 }
2193 if (vpid == -1) // done
2194 break;
2195 v = '0';
2196 cred.pid = vpid;
2197 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK) {
2198 v = '1';
2199 cred.pid = getpid();
2200 if (send_creds(sock, &cred, v, false) != SEND_CREDS_OK)
2201 _exit(1);
2202 }
2203 }
2204 _exit(0);
2205 }
2206
2207 static void pid_from_ns_wrapper(int sock, pid_t tpid)
2208 {
2209 int newnsfd = -1, ret, cpipe[2];
2210 char fnam[100];
2211 pid_t cpid;
2212 char v;
2213
2214 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
2215 if (ret < 0 || ret >= sizeof(fnam))
2216 _exit(1);
2217 newnsfd = open(fnam, O_RDONLY);
2218 if (newnsfd < 0)
2219 _exit(1);
2220 if (setns(newnsfd, 0) < 0)
2221 _exit(1);
2222 close(newnsfd);
2223
2224 if (pipe(cpipe) < 0)
2225 _exit(1);
2226
2227 loop:
2228 cpid = fork();
2229
2230 if (cpid < 0)
2231 _exit(1);
2232
2233 if (!cpid) {
2234 char b = '1';
2235 close(cpipe[0]);
2236 if (write(cpipe[1], &b, sizeof(char)) < 0) {
2237 fprintf(stderr, "%s (child): erorr on write: %s\n",
2238 __func__, strerror(errno));
2239 }
2240 close(cpipe[1]);
2241 pid_from_ns(sock, tpid);
2242 }
2243
2244 // give the child 1 second to be done forking and
2245 // write its ack
2246 if (!wait_for_sock(cpipe[0], 1))
2247 goto again;
2248 ret = read(cpipe[0], &v, 1);
2249 if (ret != sizeof(char) || v != '1') {
2250 goto again;
2251 }
2252
2253 if (!wait_for_pid(cpid))
2254 _exit(1);
2255 _exit(0);
2256
2257 again:
2258 kill(cpid, SIGKILL);
2259 wait_for_pid(cpid);
2260 goto loop;
2261 }
2262
2263 /*
2264 * Given host @uid, return the uid to which it maps in
2265 * @pid's user namespace, or -1 if none.
2266 */
2267 bool hostuid_to_ns(uid_t uid, pid_t pid, uid_t *answer)
2268 {
2269 FILE *f;
2270 char line[400];
2271
2272 sprintf(line, "/proc/%d/uid_map", pid);
2273 if ((f = fopen(line, "r")) == NULL) {
2274 return false;
2275 }
2276
2277 *answer = convert_id_to_ns(f, uid);
2278 fclose(f);
2279
2280 if (*answer == -1)
2281 return false;
2282 return true;
2283 }
2284
2285 /*
2286 * get_pid_creds: get the real uid and gid of @pid from
2287 * /proc/$$/status
2288 * (XXX should we use euid here?)
2289 */
2290 void get_pid_creds(pid_t pid, uid_t *uid, gid_t *gid)
2291 {
2292 char line[400];
2293 uid_t u;
2294 gid_t g;
2295 FILE *f;
2296
2297 *uid = -1;
2298 *gid = -1;
2299 sprintf(line, "/proc/%d/status", pid);
2300 if ((f = fopen(line, "r")) == NULL) {
2301 fprintf(stderr, "Error opening %s: %s\n", line, strerror(errno));
2302 return;
2303 }
2304 while (fgets(line, 400, f)) {
2305 if (strncmp(line, "Uid:", 4) == 0) {
2306 if (sscanf(line+4, "%u", &u) != 1) {
2307 fprintf(stderr, "bad uid line for pid %u\n", pid);
2308 fclose(f);
2309 return;
2310 }
2311 *uid = u;
2312 } else if (strncmp(line, "Gid:", 4) == 0) {
2313 if (sscanf(line+4, "%u", &g) != 1) {
2314 fprintf(stderr, "bad gid line for pid %u\n", pid);
2315 fclose(f);
2316 return;
2317 }
2318 *gid = g;
2319 }
2320 }
2321 fclose(f);
2322 }
2323
2324 /*
2325 * May the requestor @r move victim @v to a new cgroup?
2326 * This is allowed if
2327 * . they are the same task
2328 * . they are ownedy by the same uid
2329 * . @r is root on the host, or
2330 * . @v's uid is mapped into @r's where @r is root.
2331 */
2332 bool may_move_pid(pid_t r, uid_t r_uid, pid_t v)
2333 {
2334 uid_t v_uid, tmpuid;
2335 gid_t v_gid;
2336
2337 if (r == v)
2338 return true;
2339 if (r_uid == 0)
2340 return true;
2341 get_pid_creds(v, &v_uid, &v_gid);
2342 if (r_uid == v_uid)
2343 return true;
2344 if (hostuid_to_ns(r_uid, r, &tmpuid) && tmpuid == 0
2345 && hostuid_to_ns(v_uid, r, &tmpuid))
2346 return true;
2347 return false;
2348 }
2349
2350 static bool do_write_pids(pid_t tpid, uid_t tuid, const char *contrl, const char *cg,
2351 const char *file, const char *buf)
2352 {
2353 int sock[2] = {-1, -1};
2354 pid_t qpid, cpid = -1;
2355 FILE *pids_file = NULL;
2356 bool answer = false, fail = false;
2357
2358 pids_file = open_pids_file(contrl, cg);
2359 if (!pids_file)
2360 return false;
2361
2362 /*
2363 * write the pids to a socket, have helper in writer's pidns
2364 * call movepid for us
2365 */
2366 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2367 perror("socketpair");
2368 goto out;
2369 }
2370
2371 cpid = fork();
2372 if (cpid == -1)
2373 goto out;
2374
2375 if (!cpid) { // child
2376 fclose(pids_file);
2377 pid_from_ns_wrapper(sock[1], tpid);
2378 }
2379
2380 const char *ptr = buf;
2381 while (sscanf(ptr, "%d", &qpid) == 1) {
2382 struct ucred cred;
2383 char v;
2384
2385 if (write(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2386 fprintf(stderr, "%s: error writing pid to child: %s\n",
2387 __func__, strerror(errno));
2388 goto out;
2389 }
2390
2391 if (recv_creds(sock[0], &cred, &v)) {
2392 if (v == '0') {
2393 if (!may_move_pid(tpid, tuid, cred.pid)) {
2394 fail = true;
2395 break;
2396 }
2397 if (fprintf(pids_file, "%d", (int) cred.pid) < 0)
2398 fail = true;
2399 }
2400 }
2401
2402 ptr = strchr(ptr, '\n');
2403 if (!ptr)
2404 break;
2405 ptr++;
2406 }
2407
2408 /* All good, write the value */
2409 qpid = -1;
2410 if (write(sock[0], &qpid ,sizeof(qpid)) != sizeof(qpid))
2411 fprintf(stderr, "Warning: failed to ask child to exit\n");
2412
2413 if (!fail)
2414 answer = true;
2415
2416 out:
2417 if (cpid != -1)
2418 wait_for_pid(cpid);
2419 if (sock[0] != -1) {
2420 close(sock[0]);
2421 close(sock[1]);
2422 }
2423 if (pids_file) {
2424 if (fclose(pids_file) != 0)
2425 answer = false;
2426 }
2427 return answer;
2428 }
2429
2430 int cg_write(const char *path, const char *buf, size_t size, off_t offset,
2431 struct fuse_file_info *fi)
2432 {
2433 struct fuse_context *fc = fuse_get_context();
2434 char *localbuf = NULL;
2435 struct cgfs_files *k = NULL;
2436 struct file_info *f = (struct file_info *)fi->fh;
2437 bool r;
2438
2439 if (f->type != LXC_TYPE_CGFILE) {
2440 fprintf(stderr, "Internal error: directory cache info used in cg_write\n");
2441 return -EIO;
2442 }
2443
2444 if (offset)
2445 return 0;
2446
2447 if (!fc)
2448 return -EIO;
2449
2450 localbuf = alloca(size+1);
2451 localbuf[size] = '\0';
2452 memcpy(localbuf, buf, size);
2453
2454 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2455 size = -EINVAL;
2456 goto out;
2457 }
2458
2459 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_WRONLY)) {
2460 size = -EACCES;
2461 goto out;
2462 }
2463
2464 if (strcmp(f->file, "tasks") == 0 ||
2465 strcmp(f->file, "/tasks") == 0 ||
2466 strcmp(f->file, "/cgroup.procs") == 0 ||
2467 strcmp(f->file, "cgroup.procs") == 0)
2468 // special case - we have to translate the pids
2469 r = do_write_pids(fc->pid, fc->uid, f->controller, f->cgroup, f->file, localbuf);
2470 else
2471 r = cgfs_set_value(f->controller, f->cgroup, f->file, localbuf);
2472
2473 if (!r)
2474 size = -EINVAL;
2475
2476 out:
2477 free_key(k);
2478 return size;
2479 }
2480
2481 int cg_chown(const char *path, uid_t uid, gid_t gid)
2482 {
2483 struct fuse_context *fc = fuse_get_context();
2484 char *cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2485 struct cgfs_files *k = NULL;
2486 const char *cgroup;
2487 int ret;
2488
2489 if (!fc)
2490 return -EIO;
2491
2492 if (strcmp(path, "/cgroup") == 0)
2493 return -EINVAL;
2494
2495 controller = pick_controller_from_path(fc, path);
2496 if (!controller)
2497 return -EINVAL;
2498 cgroup = find_cgroup_in_path(path);
2499 if (!cgroup)
2500 /* this is just /cgroup/controller */
2501 return -EINVAL;
2502
2503 get_cgdir_and_path(cgroup, &cgdir, &last);
2504
2505 if (!last) {
2506 path1 = "/";
2507 path2 = cgdir;
2508 } else {
2509 path1 = cgdir;
2510 path2 = last;
2511 }
2512
2513 if (is_child_cgroup(controller, path1, path2)) {
2514 // get uid, gid, from '/tasks' file and make up a mode
2515 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2516 k = cgfs_get_key(controller, cgroup, "tasks");
2517
2518 } else
2519 k = cgfs_get_key(controller, path1, path2);
2520
2521 if (!k) {
2522 ret = -EINVAL;
2523 goto out;
2524 }
2525
2526 /*
2527 * This being a fuse request, the uid and gid must be valid
2528 * in the caller's namespace. So we can just check to make
2529 * sure that the caller is root in his uid, and privileged
2530 * over the file's current owner.
2531 */
2532 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_REQD)) {
2533 ret = -EACCES;
2534 goto out;
2535 }
2536
2537 ret = cgfs_chown_file(controller, cgroup, uid, gid);
2538
2539 out:
2540 free_key(k);
2541 free(cgdir);
2542
2543 return ret;
2544 }
2545
2546 int cg_chmod(const char *path, mode_t mode)
2547 {
2548 struct fuse_context *fc = fuse_get_context();
2549 char * cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2550 struct cgfs_files *k = NULL;
2551 const char *cgroup;
2552 int ret;
2553
2554 if (!fc)
2555 return -EIO;
2556
2557 if (strcmp(path, "/cgroup") == 0)
2558 return -EINVAL;
2559
2560 controller = pick_controller_from_path(fc, path);
2561 if (!controller)
2562 return -EINVAL;
2563 cgroup = find_cgroup_in_path(path);
2564 if (!cgroup)
2565 /* this is just /cgroup/controller */
2566 return -EINVAL;
2567
2568 get_cgdir_and_path(cgroup, &cgdir, &last);
2569
2570 if (!last) {
2571 path1 = "/";
2572 path2 = cgdir;
2573 } else {
2574 path1 = cgdir;
2575 path2 = last;
2576 }
2577
2578 if (is_child_cgroup(controller, path1, path2)) {
2579 // get uid, gid, from '/tasks' file and make up a mode
2580 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2581 k = cgfs_get_key(controller, cgroup, "tasks");
2582
2583 } else
2584 k = cgfs_get_key(controller, path1, path2);
2585
2586 if (!k) {
2587 ret = -EINVAL;
2588 goto out;
2589 }
2590
2591 /*
2592 * This being a fuse request, the uid and gid must be valid
2593 * in the caller's namespace. So we can just check to make
2594 * sure that the caller is root in his uid, and privileged
2595 * over the file's current owner.
2596 */
2597 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
2598 ret = -EPERM;
2599 goto out;
2600 }
2601
2602 if (!cgfs_chmod_file(controller, cgroup, mode)) {
2603 ret = -EINVAL;
2604 goto out;
2605 }
2606
2607 ret = 0;
2608 out:
2609 free_key(k);
2610 free(cgdir);
2611 return ret;
2612 }
2613
2614 int cg_mkdir(const char *path, mode_t mode)
2615 {
2616 struct fuse_context *fc = fuse_get_context();
2617 char *last = NULL, *path1, *cgdir = NULL, *controller, *next = NULL;
2618 const char *cgroup;
2619 int ret;
2620
2621 if (!fc)
2622 return -EIO;
2623
2624
2625 controller = pick_controller_from_path(fc, path);
2626 if (!controller)
2627 return -EINVAL;
2628
2629 cgroup = find_cgroup_in_path(path);
2630 if (!cgroup)
2631 return -EINVAL;
2632
2633 get_cgdir_and_path(cgroup, &cgdir, &last);
2634 if (!last)
2635 path1 = "/";
2636 else
2637 path1 = cgdir;
2638
2639 pid_t initpid = lookup_initpid_in_store(fc->pid);
2640 if (initpid <= 0)
2641 initpid = fc->pid;
2642 if (!caller_is_in_ancestor(initpid, controller, path1, &next)) {
2643 if (!next)
2644 ret = -EINVAL;
2645 else if (last && strcmp(next, last) == 0)
2646 ret = -EEXIST;
2647 else
2648 ret = -ENOENT;
2649 goto out;
2650 }
2651
2652 if (!fc_may_access(fc, controller, path1, NULL, O_RDWR)) {
2653 ret = -EACCES;
2654 goto out;
2655 }
2656 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
2657 ret = -EACCES;
2658 goto out;
2659 }
2660
2661 ret = cgfs_create(controller, cgroup, fc->uid, fc->gid);
2662
2663 out:
2664 free(cgdir);
2665 free(next);
2666 return ret;
2667 }
2668
2669 int cg_rmdir(const char *path)
2670 {
2671 struct fuse_context *fc = fuse_get_context();
2672 char *last = NULL, *cgdir = NULL, *controller, *next = NULL;
2673 const char *cgroup;
2674 int ret;
2675
2676 if (!fc)
2677 return -EIO;
2678
2679 controller = pick_controller_from_path(fc, path);
2680 if (!controller)
2681 return -EINVAL;
2682
2683 cgroup = find_cgroup_in_path(path);
2684 if (!cgroup)
2685 return -EINVAL;
2686
2687 get_cgdir_and_path(cgroup, &cgdir, &last);
2688 if (!last) {
2689 ret = -EINVAL;
2690 goto out;
2691 }
2692
2693 pid_t initpid = lookup_initpid_in_store(fc->pid);
2694 if (initpid <= 0)
2695 initpid = fc->pid;
2696 if (!caller_is_in_ancestor(initpid, controller, cgroup, &next)) {
2697 if (!last || strcmp(next, last) == 0)
2698 ret = -EBUSY;
2699 else
2700 ret = -ENOENT;
2701 goto out;
2702 }
2703
2704 if (!fc_may_access(fc, controller, cgdir, NULL, O_WRONLY)) {
2705 ret = -EACCES;
2706 goto out;
2707 }
2708 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
2709 ret = -EACCES;
2710 goto out;
2711 }
2712
2713 if (!cgfs_remove(controller, cgroup)) {
2714 ret = -EINVAL;
2715 goto out;
2716 }
2717
2718 ret = 0;
2719
2720 out:
2721 free(cgdir);
2722 free(next);
2723 return ret;
2724 }
2725
2726 static bool startswith(const char *line, const char *pref)
2727 {
2728 if (strncmp(line, pref, strlen(pref)) == 0)
2729 return true;
2730 return false;
2731 }
2732
2733 static void get_mem_cached(char *memstat, unsigned long *v)
2734 {
2735 char *eol;
2736
2737 *v = 0;
2738 while (*memstat) {
2739 if (startswith(memstat, "total_cache")) {
2740 sscanf(memstat + 11, "%lu", v);
2741 *v /= 1024;
2742 return;
2743 }
2744 eol = strchr(memstat, '\n');
2745 if (!eol)
2746 return;
2747 memstat = eol+1;
2748 }
2749 }
2750
2751 static void get_blkio_io_value(char *str, unsigned major, unsigned minor, char *iotype, unsigned long *v)
2752 {
2753 char *eol;
2754 char key[32];
2755
2756 memset(key, 0, 32);
2757 snprintf(key, 32, "%u:%u %s", major, minor, iotype);
2758
2759 size_t len = strlen(key);
2760 *v = 0;
2761
2762 while (*str) {
2763 if (startswith(str, key)) {
2764 sscanf(str + len, "%lu", v);
2765 return;
2766 }
2767 eol = strchr(str, '\n');
2768 if (!eol)
2769 return;
2770 str = eol+1;
2771 }
2772 }
2773
2774 static int read_file(const char *path, char *buf, size_t size,
2775 struct file_info *d)
2776 {
2777 size_t linelen = 0, total_len = 0, rv = 0;
2778 char *line = NULL;
2779 char *cache = d->buf;
2780 size_t cache_size = d->buflen;
2781 FILE *f = fopen(path, "r");
2782 if (!f)
2783 return 0;
2784
2785 while (getline(&line, &linelen, f) != -1) {
2786 size_t l = snprintf(cache, cache_size, "%s", line);
2787 if (l < 0) {
2788 perror("Error writing to cache");
2789 rv = 0;
2790 goto err;
2791 }
2792 if (l >= cache_size) {
2793 fprintf(stderr, "Internal error: truncated write to cache\n");
2794 rv = 0;
2795 goto err;
2796 }
2797 cache += l;
2798 cache_size -= l;
2799 total_len += l;
2800 }
2801
2802 d->size = total_len;
2803 if (total_len > size ) total_len = size;
2804
2805 /* read from off 0 */
2806 memcpy(buf, d->buf, total_len);
2807 rv = total_len;
2808 err:
2809 fclose(f);
2810 free(line);
2811 return rv;
2812 }
2813
2814 /*
2815 * FUSE ops for /proc
2816 */
2817
2818 static unsigned long get_memlimit(const char *cgroup)
2819 {
2820 char *memlimit_str = NULL;
2821 unsigned long memlimit = -1;
2822
2823 if (cgfs_get_value("memory", cgroup, "memory.limit_in_bytes", &memlimit_str))
2824 memlimit = strtoul(memlimit_str, NULL, 10);
2825
2826 free(memlimit_str);
2827
2828 return memlimit;
2829 }
2830
2831 static unsigned long get_min_memlimit(const char *cgroup)
2832 {
2833 char *copy = strdupa(cgroup);
2834 unsigned long memlimit = 0, retlimit;
2835
2836 retlimit = get_memlimit(copy);
2837
2838 while (strcmp(copy, "/") != 0) {
2839 copy = dirname(copy);
2840 memlimit = get_memlimit(copy);
2841 if (memlimit != -1 && memlimit < retlimit)
2842 retlimit = memlimit;
2843 };
2844
2845 return retlimit;
2846 }
2847
2848 static int proc_meminfo_read(char *buf, size_t size, off_t offset,
2849 struct fuse_file_info *fi)
2850 {
2851 struct fuse_context *fc = fuse_get_context();
2852 struct file_info *d = (struct file_info *)fi->fh;
2853 char *cg;
2854 char *memusage_str = NULL, *memstat_str = NULL,
2855 *memswlimit_str = NULL, *memswusage_str = NULL,
2856 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
2857 unsigned long memlimit = 0, memusage = 0, memswlimit = 0, memswusage = 0,
2858 cached = 0, hosttotal = 0;
2859 char *line = NULL;
2860 size_t linelen = 0, total_len = 0, rv = 0;
2861 char *cache = d->buf;
2862 size_t cache_size = d->buflen;
2863 FILE *f = NULL;
2864
2865 if (offset){
2866 if (offset > d->size)
2867 return -EINVAL;
2868 if (!d->cached)
2869 return 0;
2870 int left = d->size - offset;
2871 total_len = left > size ? size: left;
2872 memcpy(buf, cache + offset, total_len);
2873 return total_len;
2874 }
2875
2876 pid_t initpid = lookup_initpid_in_store(fc->pid);
2877 if (initpid <= 0)
2878 initpid = fc->pid;
2879 cg = get_pid_cgroup(initpid, "memory");
2880 if (!cg)
2881 return read_file("/proc/meminfo", buf, size, d);
2882
2883 memlimit = get_min_memlimit(cg);
2884 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
2885 goto err;
2886 if (!cgfs_get_value("memory", cg, "memory.stat", &memstat_str))
2887 goto err;
2888
2889 // Following values are allowed to fail, because swapaccount might be turned
2890 // off for current kernel
2891 if(cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str) &&
2892 cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str))
2893 {
2894 /* If swapaccounting is turned on, then default value is assumed to be that of cgroup / */
2895 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
2896 goto err;
2897 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
2898 goto err;
2899
2900 memswlimit = strtoul(memswlimit_str, NULL, 10);
2901 memswusage = strtoul(memswusage_str, NULL, 10);
2902
2903 if (!strcmp(memswlimit_str, memswlimit_default_str))
2904 memswlimit = 0;
2905 if (!strcmp(memswusage_str, memswusage_default_str))
2906 memswusage = 0;
2907
2908 memswlimit = memswlimit / 1024;
2909 memswusage = memswusage / 1024;
2910 }
2911
2912 memusage = strtoul(memusage_str, NULL, 10);
2913 memlimit /= 1024;
2914 memusage /= 1024;
2915
2916 get_mem_cached(memstat_str, &cached);
2917
2918 f = fopen("/proc/meminfo", "r");
2919 if (!f)
2920 goto err;
2921
2922 while (getline(&line, &linelen, f) != -1) {
2923 size_t l;
2924 char *printme, lbuf[100];
2925
2926 memset(lbuf, 0, 100);
2927 if (startswith(line, "MemTotal:")) {
2928 sscanf(line+14, "%lu", &hosttotal);
2929 if (hosttotal < memlimit)
2930 memlimit = hosttotal;
2931 snprintf(lbuf, 100, "MemTotal: %8lu kB\n", memlimit);
2932 printme = lbuf;
2933 } else if (startswith(line, "MemFree:")) {
2934 snprintf(lbuf, 100, "MemFree: %8lu kB\n", memlimit - memusage);
2935 printme = lbuf;
2936 } else if (startswith(line, "MemAvailable:")) {
2937 snprintf(lbuf, 100, "MemAvailable: %8lu kB\n", memlimit - memusage);
2938 printme = lbuf;
2939 } else if (startswith(line, "SwapTotal:") && memswlimit > 0) {
2940 snprintf(lbuf, 100, "SwapTotal: %8lu kB\n", memswlimit - memlimit);
2941 printme = lbuf;
2942 } else if (startswith(line, "SwapFree:") && memswlimit > 0 && memswusage > 0) {
2943 snprintf(lbuf, 100, "SwapFree: %8lu kB\n",
2944 (memswlimit - memlimit) - (memswusage - memusage));
2945 printme = lbuf;
2946 } else if (startswith(line, "Buffers:")) {
2947 snprintf(lbuf, 100, "Buffers: %8lu kB\n", 0UL);
2948 printme = lbuf;
2949 } else if (startswith(line, "Cached:")) {
2950 snprintf(lbuf, 100, "Cached: %8lu kB\n", cached);
2951 printme = lbuf;
2952 } else if (startswith(line, "SwapCached:")) {
2953 snprintf(lbuf, 100, "SwapCached: %8lu kB\n", 0UL);
2954 printme = lbuf;
2955 } else
2956 printme = line;
2957
2958 l = snprintf(cache, cache_size, "%s", printme);
2959 if (l < 0) {
2960 perror("Error writing to cache");
2961 rv = 0;
2962 goto err;
2963
2964 }
2965 if (l >= cache_size) {
2966 fprintf(stderr, "Internal error: truncated write to cache\n");
2967 rv = 0;
2968 goto err;
2969 }
2970
2971 cache += l;
2972 cache_size -= l;
2973 total_len += l;
2974 }
2975
2976 d->cached = 1;
2977 d->size = total_len;
2978 if (total_len > size ) total_len = size;
2979 memcpy(buf, d->buf, total_len);
2980
2981 rv = total_len;
2982 err:
2983 if (f)
2984 fclose(f);
2985 free(line);
2986 free(cg);
2987 free(memusage_str);
2988 free(memswlimit_str);
2989 free(memswusage_str);
2990 free(memstat_str);
2991 free(memswlimit_default_str);
2992 free(memswusage_default_str);
2993 return rv;
2994 }
2995
2996 /*
2997 * Read the cpuset.cpus for cg
2998 * Return the answer in a newly allocated string which must be freed
2999 */
3000 static char *get_cpuset(const char *cg)
3001 {
3002 char *answer;
3003
3004 if (!cgfs_get_value("cpuset", cg, "cpuset.cpus", &answer))
3005 return NULL;
3006 return answer;
3007 }
3008
3009 bool cpu_in_cpuset(int cpu, const char *cpuset);
3010
3011 static bool cpuline_in_cpuset(const char *line, const char *cpuset)
3012 {
3013 int cpu;
3014
3015 if (sscanf(line, "processor : %d", &cpu) != 1)
3016 return false;
3017 return cpu_in_cpuset(cpu, cpuset);
3018 }
3019
3020 /*
3021 * check whether this is a '^processor" line in /proc/cpuinfo
3022 */
3023 static bool is_processor_line(const char *line)
3024 {
3025 int cpu;
3026
3027 if (sscanf(line, "processor : %d", &cpu) == 1)
3028 return true;
3029 return false;
3030 }
3031
3032 static int proc_cpuinfo_read(char *buf, size_t size, off_t offset,
3033 struct fuse_file_info *fi)
3034 {
3035 struct fuse_context *fc = fuse_get_context();
3036 struct file_info *d = (struct file_info *)fi->fh;
3037 char *cg;
3038 char *cpuset = NULL;
3039 char *line = NULL;
3040 size_t linelen = 0, total_len = 0, rv = 0;
3041 bool am_printing = false;
3042 int curcpu = -1;
3043 char *cache = d->buf;
3044 size_t cache_size = d->buflen;
3045 FILE *f = NULL;
3046
3047 if (offset){
3048 if (offset > d->size)
3049 return -EINVAL;
3050 if (!d->cached)
3051 return 0;
3052 int left = d->size - offset;
3053 total_len = left > size ? size: left;
3054 memcpy(buf, cache + offset, total_len);
3055 return total_len;
3056 }
3057
3058 pid_t initpid = lookup_initpid_in_store(fc->pid);
3059 if (initpid <= 0)
3060 initpid = fc->pid;
3061 cg = get_pid_cgroup(initpid, "cpuset");
3062 if (!cg)
3063 return read_file("proc/cpuinfo", buf, size, d);
3064
3065 cpuset = get_cpuset(cg);
3066 if (!cpuset)
3067 goto err;
3068
3069 f = fopen("/proc/cpuinfo", "r");
3070 if (!f)
3071 goto err;
3072
3073 while (getline(&line, &linelen, f) != -1) {
3074 size_t l;
3075 if (is_processor_line(line)) {
3076 am_printing = cpuline_in_cpuset(line, cpuset);
3077 if (am_printing) {
3078 curcpu ++;
3079 l = snprintf(cache, cache_size, "processor : %d\n", curcpu);
3080 if (l < 0) {
3081 perror("Error writing to cache");
3082 rv = 0;
3083 goto err;
3084 }
3085 if (l >= cache_size) {
3086 fprintf(stderr, "Internal error: truncated write to cache\n");
3087 rv = 0;
3088 goto err;
3089 }
3090 cache += l;
3091 cache_size -= l;
3092 total_len += l;
3093 }
3094 continue;
3095 }
3096 if (am_printing) {
3097 l = snprintf(cache, cache_size, "%s", line);
3098 if (l < 0) {
3099 perror("Error writing to cache");
3100 rv = 0;
3101 goto err;
3102 }
3103 if (l >= cache_size) {
3104 fprintf(stderr, "Internal error: truncated write to cache\n");
3105 rv = 0;
3106 goto err;
3107 }
3108 cache += l;
3109 cache_size -= l;
3110 total_len += l;
3111 }
3112 }
3113
3114 d->cached = 1;
3115 d->size = total_len;
3116 if (total_len > size ) total_len = size;
3117
3118 /* read from off 0 */
3119 memcpy(buf, d->buf, total_len);
3120 rv = total_len;
3121 err:
3122 if (f)
3123 fclose(f);
3124 free(line);
3125 free(cpuset);
3126 free(cg);
3127 return rv;
3128 }
3129
3130 static int proc_stat_read(char *buf, size_t size, off_t offset,
3131 struct fuse_file_info *fi)
3132 {
3133 struct fuse_context *fc = fuse_get_context();
3134 struct file_info *d = (struct file_info *)fi->fh;
3135 char *cg;
3136 char *cpuset = NULL;
3137 char *line = NULL;
3138 size_t linelen = 0, total_len = 0, rv = 0;
3139 int curcpu = -1; /* cpu numbering starts at 0 */
3140 unsigned long user = 0, nice = 0, system = 0, idle = 0, iowait = 0, irq = 0, softirq = 0, steal = 0, guest = 0;
3141 unsigned long user_sum = 0, nice_sum = 0, system_sum = 0, idle_sum = 0, iowait_sum = 0,
3142 irq_sum = 0, softirq_sum = 0, steal_sum = 0, guest_sum = 0;
3143 #define CPUALL_MAX_SIZE BUF_RESERVE_SIZE
3144 char cpuall[CPUALL_MAX_SIZE];
3145 /* reserve for cpu all */
3146 char *cache = d->buf + CPUALL_MAX_SIZE;
3147 size_t cache_size = d->buflen - CPUALL_MAX_SIZE;
3148 FILE *f = NULL;
3149
3150 if (offset){
3151 if (offset > d->size)
3152 return -EINVAL;
3153 if (!d->cached)
3154 return 0;
3155 int left = d->size - offset;
3156 total_len = left > size ? size: left;
3157 memcpy(buf, d->buf + offset, total_len);
3158 return total_len;
3159 }
3160
3161 pid_t initpid = lookup_initpid_in_store(fc->pid);
3162 if (initpid <= 0)
3163 initpid = fc->pid;
3164 cg = get_pid_cgroup(initpid, "cpuset");
3165 if (!cg)
3166 return read_file("/proc/stat", buf, size, d);
3167
3168 cpuset = get_cpuset(cg);
3169 if (!cpuset)
3170 goto err;
3171
3172 f = fopen("/proc/stat", "r");
3173 if (!f)
3174 goto err;
3175
3176 //skip first line
3177 if (getline(&line, &linelen, f) < 0) {
3178 fprintf(stderr, "proc_stat_read read first line failed\n");
3179 goto err;
3180 }
3181
3182 while (getline(&line, &linelen, f) != -1) {
3183 size_t l;
3184 int cpu;
3185 char cpu_char[10]; /* That's a lot of cores */
3186 char *c;
3187
3188 if (sscanf(line, "cpu%9[^ ]", cpu_char) != 1) {
3189 /* not a ^cpuN line containing a number N, just print it */
3190 l = snprintf(cache, cache_size, "%s", line);
3191 if (l < 0) {
3192 perror("Error writing to cache");
3193 rv = 0;
3194 goto err;
3195 }
3196 if (l >= cache_size) {
3197 fprintf(stderr, "Internal error: truncated write to cache\n");
3198 rv = 0;
3199 goto err;
3200 }
3201 cache += l;
3202 cache_size -= l;
3203 total_len += l;
3204 continue;
3205 }
3206
3207 if (sscanf(cpu_char, "%d", &cpu) != 1)
3208 continue;
3209 if (!cpu_in_cpuset(cpu, cpuset))
3210 continue;
3211 curcpu ++;
3212
3213 c = strchr(line, ' ');
3214 if (!c)
3215 continue;
3216 l = snprintf(cache, cache_size, "cpu%d%s", curcpu, c);
3217 if (l < 0) {
3218 perror("Error writing to cache");
3219 rv = 0;
3220 goto err;
3221
3222 }
3223 if (l >= cache_size) {
3224 fprintf(stderr, "Internal error: truncated write to cache\n");
3225 rv = 0;
3226 goto err;
3227 }
3228
3229 cache += l;
3230 cache_size -= l;
3231 total_len += l;
3232
3233 if (sscanf(line, "%*s %lu %lu %lu %lu %lu %lu %lu %lu %lu", &user, &nice, &system, &idle, &iowait, &irq,
3234 &softirq, &steal, &guest) != 9)
3235 continue;
3236 user_sum += user;
3237 nice_sum += nice;
3238 system_sum += system;
3239 idle_sum += idle;
3240 iowait_sum += iowait;
3241 irq_sum += irq;
3242 softirq_sum += softirq;
3243 steal_sum += steal;
3244 guest_sum += guest;
3245 }
3246
3247 cache = d->buf;
3248
3249 int cpuall_len = snprintf(cpuall, CPUALL_MAX_SIZE, "%s %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3250 "cpu ", user_sum, nice_sum, system_sum, idle_sum, iowait_sum, irq_sum, softirq_sum, steal_sum, guest_sum);
3251 if (cpuall_len > 0 && cpuall_len < CPUALL_MAX_SIZE){
3252 memcpy(cache, cpuall, cpuall_len);
3253 cache += cpuall_len;
3254 } else{
3255 /* shouldn't happen */
3256 fprintf(stderr, "proc_stat_read copy cpuall failed, cpuall_len=%d\n", cpuall_len);
3257 cpuall_len = 0;
3258 }
3259
3260 memmove(cache, d->buf + CPUALL_MAX_SIZE, total_len);
3261 total_len += cpuall_len;
3262 d->cached = 1;
3263 d->size = total_len;
3264 if (total_len > size ) total_len = size;
3265
3266 memcpy(buf, d->buf, total_len);
3267 rv = total_len;
3268
3269 err:
3270 if (f)
3271 fclose(f);
3272 free(line);
3273 free(cpuset);
3274 free(cg);
3275 return rv;
3276 }
3277
3278 static long int getreaperage(pid_t pid)
3279 {
3280 char fnam[100];
3281 struct stat sb;
3282 int ret;
3283 pid_t qpid;
3284
3285 qpid = lookup_initpid_in_store(pid);
3286 if (qpid <= 0)
3287 return 0;
3288
3289 ret = snprintf(fnam, 100, "/proc/%d", qpid);
3290 if (ret < 0 || ret >= 100)
3291 return 0;
3292
3293 if (lstat(fnam, &sb) < 0)
3294 return 0;
3295
3296 return time(NULL) - sb.st_ctime;
3297 }
3298
3299 static unsigned long get_reaper_busy(pid_t task)
3300 {
3301 pid_t initpid = lookup_initpid_in_store(task);
3302 char *cgroup = NULL, *usage_str = NULL;
3303 unsigned long usage = 0;
3304
3305 if (initpid <= 0)
3306 return 0;
3307
3308 cgroup = get_pid_cgroup(initpid, "cpuacct");
3309 if (!cgroup)
3310 goto out;
3311 if (!cgfs_get_value("cpuacct", cgroup, "cpuacct.usage", &usage_str))
3312 goto out;
3313 usage = strtoul(usage_str, NULL, 10);
3314 usage /= 1000000000;
3315
3316 out:
3317 free(cgroup);
3318 free(usage_str);
3319 return usage;
3320 }
3321
3322 #if RELOADTEST
3323 void iwashere(void)
3324 {
3325 char *name, *cwd = get_current_dir_name();
3326 size_t len;
3327 int fd;
3328
3329 if (!cwd)
3330 exit(1);
3331 len = strlen(cwd) + strlen("/iwashere") + 1;
3332 name = alloca(len);
3333 snprintf(name, len, "%s/iwashere", cwd);
3334 free(cwd);
3335 fd = creat(name, 0755);
3336 if (fd >= 0)
3337 close(fd);
3338 }
3339 #endif
3340
3341 /*
3342 * We read /proc/uptime and reuse its second field.
3343 * For the first field, we use the mtime for the reaper for
3344 * the calling pid as returned by getreaperage
3345 */
3346 static int proc_uptime_read(char *buf, size_t size, off_t offset,
3347 struct fuse_file_info *fi)
3348 {
3349 struct fuse_context *fc = fuse_get_context();
3350 struct file_info *d = (struct file_info *)fi->fh;
3351 long int reaperage = getreaperage(fc->pid);
3352 unsigned long int busytime = get_reaper_busy(fc->pid), idletime;
3353 char *cache = d->buf;
3354 size_t total_len = 0;
3355
3356 #if RELOADTEST
3357 iwashere();
3358 #endif
3359
3360 if (offset){
3361 if (offset > d->size)
3362 return -EINVAL;
3363 if (!d->cached)
3364 return 0;
3365 int left = d->size - offset;
3366 total_len = left > size ? size: left;
3367 memcpy(buf, cache + offset, total_len);
3368 return total_len;
3369 }
3370
3371 idletime = reaperage - busytime;
3372 if (idletime > reaperage)
3373 idletime = reaperage;
3374
3375 total_len = snprintf(d->buf, d->size, "%ld.0 %lu.0\n", reaperage, idletime);
3376 if (total_len < 0){
3377 perror("Error writing to cache");
3378 return 0;
3379 }
3380
3381 d->size = (int)total_len;
3382 d->cached = 1;
3383
3384 if (total_len > size) total_len = size;
3385
3386 memcpy(buf, d->buf, total_len);
3387 return total_len;
3388 }
3389
3390 static int proc_diskstats_read(char *buf, size_t size, off_t offset,
3391 struct fuse_file_info *fi)
3392 {
3393 char dev_name[72];
3394 struct fuse_context *fc = fuse_get_context();
3395 struct file_info *d = (struct file_info *)fi->fh;
3396 char *cg;
3397 char *io_serviced_str = NULL, *io_merged_str = NULL, *io_service_bytes_str = NULL,
3398 *io_wait_time_str = NULL, *io_service_time_str = NULL;
3399 unsigned long read = 0, write = 0;
3400 unsigned long read_merged = 0, write_merged = 0;
3401 unsigned long read_sectors = 0, write_sectors = 0;
3402 unsigned long read_ticks = 0, write_ticks = 0;
3403 unsigned long ios_pgr = 0, tot_ticks = 0, rq_ticks = 0;
3404 unsigned long rd_svctm = 0, wr_svctm = 0, rd_wait = 0, wr_wait = 0;
3405 char *cache = d->buf;
3406 size_t cache_size = d->buflen;
3407 char *line = NULL;
3408 size_t linelen = 0, total_len = 0, rv = 0;
3409 unsigned int major = 0, minor = 0;
3410 int i = 0;
3411 FILE *f = NULL;
3412
3413 if (offset){
3414 if (offset > d->size)
3415 return -EINVAL;
3416 if (!d->cached)
3417 return 0;
3418 int left = d->size - offset;
3419 total_len = left > size ? size: left;
3420 memcpy(buf, cache + offset, total_len);
3421 return total_len;
3422 }
3423
3424 pid_t initpid = lookup_initpid_in_store(fc->pid);
3425 if (initpid <= 0)
3426 initpid = fc->pid;
3427 cg = get_pid_cgroup(initpid, "blkio");
3428 if (!cg)
3429 return read_file("/proc/diskstats", buf, size, d);
3430
3431 if (!cgfs_get_value("blkio", cg, "blkio.io_serviced", &io_serviced_str))
3432 goto err;
3433 if (!cgfs_get_value("blkio", cg, "blkio.io_merged", &io_merged_str))
3434 goto err;
3435 if (!cgfs_get_value("blkio", cg, "blkio.io_service_bytes", &io_service_bytes_str))
3436 goto err;
3437 if (!cgfs_get_value("blkio", cg, "blkio.io_wait_time", &io_wait_time_str))
3438 goto err;
3439 if (!cgfs_get_value("blkio", cg, "blkio.io_service_time", &io_service_time_str))
3440 goto err;
3441
3442
3443 f = fopen("/proc/diskstats", "r");
3444 if (!f)
3445 goto err;
3446
3447 while (getline(&line, &linelen, f) != -1) {
3448 size_t l;
3449 char *printme, lbuf[256];
3450
3451 i = sscanf(line, "%u %u %71s", &major, &minor, dev_name);
3452 if(i == 3){
3453 get_blkio_io_value(io_serviced_str, major, minor, "Read", &read);
3454 get_blkio_io_value(io_serviced_str, major, minor, "Write", &write);
3455 get_blkio_io_value(io_merged_str, major, minor, "Read", &read_merged);
3456 get_blkio_io_value(io_merged_str, major, minor, "Write", &write_merged);
3457 get_blkio_io_value(io_service_bytes_str, major, minor, "Read", &read_sectors);
3458 read_sectors = read_sectors/512;
3459 get_blkio_io_value(io_service_bytes_str, major, minor, "Write", &write_sectors);
3460 write_sectors = write_sectors/512;
3461
3462 get_blkio_io_value(io_service_time_str, major, minor, "Read", &rd_svctm);
3463 rd_svctm = rd_svctm/1000000;
3464 get_blkio_io_value(io_wait_time_str, major, minor, "Read", &rd_wait);
3465 rd_wait = rd_wait/1000000;
3466 read_ticks = rd_svctm + rd_wait;
3467
3468 get_blkio_io_value(io_service_time_str, major, minor, "Write", &wr_svctm);
3469 wr_svctm = wr_svctm/1000000;
3470 get_blkio_io_value(io_wait_time_str, major, minor, "Write", &wr_wait);
3471 wr_wait = wr_wait/1000000;
3472 write_ticks = wr_svctm + wr_wait;
3473
3474 get_blkio_io_value(io_service_time_str, major, minor, "Total", &tot_ticks);
3475 tot_ticks = tot_ticks/1000000;
3476 }else{
3477 continue;
3478 }
3479
3480 memset(lbuf, 0, 256);
3481 if (read || write || read_merged || write_merged || read_sectors || write_sectors || read_ticks || write_ticks) {
3482 snprintf(lbuf, 256, "%u %u %s %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3483 major, minor, dev_name, read, read_merged, read_sectors, read_ticks,
3484 write, write_merged, write_sectors, write_ticks, ios_pgr, tot_ticks, rq_ticks);
3485 printme = lbuf;
3486 } else
3487 continue;
3488
3489 l = snprintf(cache, cache_size, "%s", printme);
3490 if (l < 0) {
3491 perror("Error writing to fuse buf");
3492 rv = 0;
3493 goto err;
3494 }
3495 if (l >= cache_size) {
3496 fprintf(stderr, "Internal error: truncated write to cache\n");
3497 rv = 0;
3498 goto err;
3499 }
3500 cache += l;
3501 cache_size -= l;
3502 total_len += l;
3503 }
3504
3505 d->cached = 1;
3506 d->size = total_len;
3507 if (total_len > size ) total_len = size;
3508 memcpy(buf, d->buf, total_len);
3509
3510 rv = total_len;
3511 err:
3512 free(cg);
3513 if (f)
3514 fclose(f);
3515 free(line);
3516 free(io_serviced_str);
3517 free(io_merged_str);
3518 free(io_service_bytes_str);
3519 free(io_wait_time_str);
3520 free(io_service_time_str);
3521 return rv;
3522 }
3523
3524 static int proc_swaps_read(char *buf, size_t size, off_t offset,
3525 struct fuse_file_info *fi)
3526 {
3527 struct fuse_context *fc = fuse_get_context();
3528 struct file_info *d = (struct file_info *)fi->fh;
3529 char *cg = NULL;
3530 char *memswlimit_str = NULL, *memlimit_str = NULL, *memusage_str = NULL, *memswusage_str = NULL,
3531 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
3532 unsigned long memswlimit = 0, memlimit = 0, memusage = 0, memswusage = 0, swap_total = 0, swap_free = 0;
3533 size_t total_len = 0, rv = 0;
3534 char *cache = d->buf;
3535
3536 if (offset) {
3537 if (offset > d->size)
3538 return -EINVAL;
3539 if (!d->cached)
3540 return 0;
3541 int left = d->size - offset;
3542 total_len = left > size ? size: left;
3543 memcpy(buf, cache + offset, total_len);
3544 return total_len;
3545 }
3546
3547 pid_t initpid = lookup_initpid_in_store(fc->pid);
3548 if (initpid <= 0)
3549 initpid = fc->pid;
3550 cg = get_pid_cgroup(initpid, "memory");
3551 if (!cg)
3552 return read_file("/proc/swaps", buf, size, d);
3553
3554 if (!cgfs_get_value("memory", cg, "memory.limit_in_bytes", &memlimit_str))
3555 goto err;
3556
3557 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
3558 goto err;
3559
3560 memlimit = strtoul(memlimit_str, NULL, 10);
3561 memusage = strtoul(memusage_str, NULL, 10);
3562
3563 if (cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str) &&
3564 cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str)) {
3565
3566 /* If swap accounting is turned on, then default value is assumed to be that of cgroup / */
3567 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
3568 goto err;
3569 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
3570 goto err;
3571
3572 memswlimit = strtoul(memswlimit_str, NULL, 10);
3573 memswusage = strtoul(memswusage_str, NULL, 10);
3574
3575 if (!strcmp(memswlimit_str, memswlimit_default_str))
3576 memswlimit = 0;
3577 if (!strcmp(memswusage_str, memswusage_default_str))
3578 memswusage = 0;
3579
3580 swap_total = (memswlimit - memlimit) / 1024;
3581 swap_free = (memswusage - memusage) / 1024;
3582 }
3583
3584 total_len = snprintf(d->buf, d->size, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
3585
3586 /* When no mem + swap limit is specified or swapaccount=0*/
3587 if (!memswlimit) {
3588 char *line = NULL;
3589 size_t linelen = 0;
3590 FILE *f = fopen("/proc/meminfo", "r");
3591
3592 if (!f)
3593 goto err;
3594
3595 while (getline(&line, &linelen, f) != -1) {
3596 if (startswith(line, "SwapTotal:")) {
3597 sscanf(line, "SwapTotal: %8lu kB", &swap_total);
3598 } else if (startswith(line, "SwapFree:")) {
3599 sscanf(line, "SwapFree: %8lu kB", &swap_free);
3600 }
3601 }
3602
3603 free(line);
3604 fclose(f);
3605 }
3606
3607 if (swap_total > 0) {
3608 total_len += snprintf(d->buf + total_len, d->size - total_len,
3609 "none%*svirtual\t\t%lu\t%lu\t0\n", 36, " ",
3610 swap_total, swap_free);
3611 }
3612
3613 if (total_len < 0) {
3614 perror("Error writing to cache");
3615 rv = 0;
3616 goto err;
3617 }
3618
3619 d->cached = 1;
3620 d->size = (int)total_len;
3621
3622 if (total_len > size) total_len = size;
3623 memcpy(buf, d->buf, total_len);
3624 rv = total_len;
3625
3626 err:
3627 free(cg);
3628 free(memswlimit_str);
3629 free(memlimit_str);
3630 free(memusage_str);
3631 free(memswusage_str);
3632 free(memswusage_default_str);
3633 free(memswlimit_default_str);
3634 return rv;
3635 }
3636
3637 static off_t get_procfile_size(const char *which)
3638 {
3639 FILE *f = fopen(which, "r");
3640 char *line = NULL;
3641 size_t len = 0;
3642 ssize_t sz, answer = 0;
3643 if (!f)
3644 return 0;
3645
3646 while ((sz = getline(&line, &len, f)) != -1)
3647 answer += sz;
3648 fclose (f);
3649 free(line);
3650
3651 return answer;
3652 }
3653
3654 int proc_getattr(const char *path, struct stat *sb)
3655 {
3656 struct timespec now;
3657
3658 memset(sb, 0, sizeof(struct stat));
3659 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
3660 return -EINVAL;
3661 sb->st_uid = sb->st_gid = 0;
3662 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
3663 if (strcmp(path, "/proc") == 0) {
3664 sb->st_mode = S_IFDIR | 00555;
3665 sb->st_nlink = 2;
3666 return 0;
3667 }
3668 if (strcmp(path, "/proc/meminfo") == 0 ||
3669 strcmp(path, "/proc/cpuinfo") == 0 ||
3670 strcmp(path, "/proc/uptime") == 0 ||
3671 strcmp(path, "/proc/stat") == 0 ||
3672 strcmp(path, "/proc/diskstats") == 0 ||
3673 strcmp(path, "/proc/swaps") == 0) {
3674 sb->st_size = 0;
3675 sb->st_mode = S_IFREG | 00444;
3676 sb->st_nlink = 1;
3677 return 0;
3678 }
3679
3680 return -ENOENT;
3681 }
3682
3683 int proc_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
3684 struct fuse_file_info *fi)
3685 {
3686 if (filler(buf, "cpuinfo", NULL, 0) != 0 ||
3687 filler(buf, "meminfo", NULL, 0) != 0 ||
3688 filler(buf, "stat", NULL, 0) != 0 ||
3689 filler(buf, "uptime", NULL, 0) != 0 ||
3690 filler(buf, "diskstats", NULL, 0) != 0 ||
3691 filler(buf, "swaps", NULL, 0) != 0)
3692 return -EINVAL;
3693 return 0;
3694 }
3695
3696 int proc_open(const char *path, struct fuse_file_info *fi)
3697 {
3698 int type = -1;
3699 struct file_info *info;
3700
3701 if (strcmp(path, "/proc/meminfo") == 0)
3702 type = LXC_TYPE_PROC_MEMINFO;
3703 else if (strcmp(path, "/proc/cpuinfo") == 0)
3704 type = LXC_TYPE_PROC_CPUINFO;
3705 else if (strcmp(path, "/proc/uptime") == 0)
3706 type = LXC_TYPE_PROC_UPTIME;
3707 else if (strcmp(path, "/proc/stat") == 0)
3708 type = LXC_TYPE_PROC_STAT;
3709 else if (strcmp(path, "/proc/diskstats") == 0)
3710 type = LXC_TYPE_PROC_DISKSTATS;
3711 else if (strcmp(path, "/proc/swaps") == 0)
3712 type = LXC_TYPE_PROC_SWAPS;
3713 if (type == -1)
3714 return -ENOENT;
3715
3716 info = malloc(sizeof(*info));
3717 if (!info)
3718 return -ENOMEM;
3719
3720 memset(info, 0, sizeof(*info));
3721 info->type = type;
3722
3723 info->buflen = get_procfile_size(path) + BUF_RESERVE_SIZE;
3724 do {
3725 info->buf = malloc(info->buflen);
3726 } while (!info->buf);
3727 memset(info->buf, 0, info->buflen);
3728 /* set actual size to buffer size */
3729 info->size = info->buflen;
3730
3731 fi->fh = (unsigned long)info;
3732 return 0;
3733 }
3734
3735 int proc_release(const char *path, struct fuse_file_info *fi)
3736 {
3737 struct file_info *f = (struct file_info *)fi->fh;
3738
3739 do_release_file_info(f);
3740 return 0;
3741 }
3742
3743 int proc_read(const char *path, char *buf, size_t size, off_t offset,
3744 struct fuse_file_info *fi)
3745 {
3746 struct file_info *f = (struct file_info *) fi->fh;
3747
3748 switch (f->type) {
3749 case LXC_TYPE_PROC_MEMINFO:
3750 return proc_meminfo_read(buf, size, offset, fi);
3751 case LXC_TYPE_PROC_CPUINFO:
3752 return proc_cpuinfo_read(buf, size, offset, fi);
3753 case LXC_TYPE_PROC_UPTIME:
3754 return proc_uptime_read(buf, size, offset, fi);
3755 case LXC_TYPE_PROC_STAT:
3756 return proc_stat_read(buf, size, offset, fi);
3757 case LXC_TYPE_PROC_DISKSTATS:
3758 return proc_diskstats_read(buf, size, offset, fi);
3759 case LXC_TYPE_PROC_SWAPS:
3760 return proc_swaps_read(buf, size, offset, fi);
3761 default:
3762 return -EINVAL;
3763 }
3764 }
3765
3766 static void __attribute__((constructor)) collect_subsystems(void)
3767 {
3768 FILE *f;
3769 char *line = NULL;
3770 size_t len = 0;
3771
3772 if ((f = fopen("/proc/self/cgroup", "r")) == NULL) {
3773 fprintf(stderr, "Error opening /proc/self/cgroup: %s\n", strerror(errno));
3774 return;
3775 }
3776 while (getline(&line, &len, f) != -1) {
3777 char *p, *p2;
3778
3779 p = strchr(line, ':');
3780 if (!p)
3781 goto out;
3782 *(p++) = '\0';
3783
3784 p2 = strrchr(p, ':');
3785 if (!p2)
3786 goto out;
3787 *p2 = '\0';
3788
3789 if (!store_hierarchy(line, p))
3790 goto out;
3791 }
3792
3793 print_subsystems();
3794
3795 out:
3796 free(line);
3797 fclose(f);
3798 }
3799
3800 static void __attribute__((destructor)) free_subsystems(void)
3801 {
3802 int i;
3803
3804 for (i = 0; i < num_hierarchies; i++)
3805 if (hierarchies[i])
3806 free(hierarchies[i]);
3807 free(hierarchies);
3808 }