]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-mq.c
Revert "net: phy: Uniform PHY driver access"
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64 }
65
66 /*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91 {
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98 struct block_device *part;
99 unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105 {
106 struct mq_inflight *mi = priv;
107
108 if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 mi->inflight[rq_data_dir(rq)]++;
111
112 return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 struct block_device *part)
117 {
118 struct mq_inflight mi = { .part = part };
119
120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122 return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 unsigned int inflight[2])
127 {
128 struct mq_inflight mi = { .part = part };
129
130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 inflight[0] = mi.inflight[0];
132 inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 mutex_lock(&q->mq_freeze_lock);
138 if (++q->mq_freeze_depth == 1) {
139 percpu_ref_kill(&q->q_usage_counter);
140 mutex_unlock(&q->mq_freeze_lock);
141 if (queue_is_mq(q))
142 blk_mq_run_hw_queues(q, false);
143 } else {
144 mutex_unlock(&q->mq_freeze_lock);
145 }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 unsigned long timeout)
157 {
158 return wait_event_timeout(q->mq_freeze_wq,
159 percpu_ref_is_zero(&q->q_usage_counter),
160 timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165 * Guarantee no request is in use, so we can change any data structure of
166 * the queue afterward.
167 */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 /*
171 * In the !blk_mq case we are only calling this to kill the
172 * q_usage_counter, otherwise this increases the freeze depth
173 * and waits for it to return to zero. For this reason there is
174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 * exported to drivers as the only user for unfreeze is blk_mq.
176 */
177 blk_freeze_queue_start(q);
178 blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 /*
184 * ...just an alias to keep freeze and unfreeze actions balanced
185 * in the blk_mq_* namespace
186 */
187 blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 mutex_lock(&q->mq_freeze_lock);
194 q->mq_freeze_depth--;
195 WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 if (!q->mq_freeze_depth) {
197 percpu_ref_resurrect(&q->q_usage_counter);
198 wake_up_all(&q->mq_freeze_wq);
199 }
200 mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206 * mpt3sas driver such that this function can be removed.
207 */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216 * @q: request queue.
217 *
218 * Note: this function does not prevent that the struct request end_io()
219 * callback function is invoked. Once this function is returned, we make
220 * sure no dispatch can happen until the queue is unquiesced via
221 * blk_mq_unquiesce_queue().
222 */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 struct blk_mq_hw_ctx *hctx;
226 unsigned int i;
227 bool rcu = false;
228
229 blk_mq_quiesce_queue_nowait(q);
230
231 queue_for_each_hw_ctx(q, hctx, i) {
232 if (hctx->flags & BLK_MQ_F_BLOCKING)
233 synchronize_srcu(hctx->srcu);
234 else
235 rcu = true;
236 }
237 if (rcu)
238 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244 * @q: request queue.
245 *
246 * This function recovers queue into the state before quiescing
247 * which is done by blk_mq_quiesce_queue.
248 */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253 /* dispatch requests which are inserted during quiescing */
254 blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 struct blk_mq_hw_ctx *hctx;
261 unsigned int i;
262
263 queue_for_each_hw_ctx(q, hctx, i)
264 if (blk_mq_hw_queue_mapped(hctx))
265 blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269 * Only need start/end time stamping if we have iostat or
270 * blk stats enabled, or using an IO scheduler.
271 */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, u64 alloc_time_ns)
279 {
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
282
283 if (data->q->elevator) {
284 rq->tag = BLK_MQ_NO_TAG;
285 rq->internal_tag = tag;
286 } else {
287 rq->tag = tag;
288 rq->internal_tag = BLK_MQ_NO_TAG;
289 }
290
291 /* csd/requeue_work/fifo_time is initialized before use */
292 rq->q = data->q;
293 rq->mq_ctx = data->ctx;
294 rq->mq_hctx = data->hctx;
295 rq->rq_flags = 0;
296 rq->cmd_flags = data->cmd_flags;
297 if (data->flags & BLK_MQ_REQ_PM)
298 rq->rq_flags |= RQF_PM;
299 if (blk_queue_io_stat(data->q))
300 rq->rq_flags |= RQF_IO_STAT;
301 INIT_LIST_HEAD(&rq->queuelist);
302 INIT_HLIST_NODE(&rq->hash);
303 RB_CLEAR_NODE(&rq->rb_node);
304 rq->rq_disk = NULL;
305 rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 if (blk_mq_need_time_stamp(rq))
310 rq->start_time_ns = ktime_get_ns();
311 else
312 rq->start_time_ns = 0;
313 rq->io_start_time_ns = 0;
314 rq->stats_sectors = 0;
315 rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 rq->nr_integrity_segments = 0;
318 #endif
319 blk_crypto_rq_set_defaults(rq);
320 /* tag was already set */
321 WRITE_ONCE(rq->deadline, 0);
322
323 rq->timeout = 0;
324
325 rq->end_io = NULL;
326 rq->end_io_data = NULL;
327
328 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 refcount_set(&rq->ref, 1);
330
331 if (!op_is_flush(data->cmd_flags)) {
332 struct elevator_queue *e = data->q->elevator;
333
334 rq->elv.icq = NULL;
335 if (e && e->type->ops.prepare_request) {
336 if (e->type->icq_cache)
337 blk_mq_sched_assign_ioc(rq);
338
339 e->type->ops.prepare_request(rq);
340 rq->rq_flags |= RQF_ELVPRIV;
341 }
342 }
343
344 data->hctx->queued++;
345 return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 struct request_queue *q = data->q;
351 struct elevator_queue *e = q->elevator;
352 u64 alloc_time_ns = 0;
353 unsigned int tag;
354
355 /* alloc_time includes depth and tag waits */
356 if (blk_queue_rq_alloc_time(q))
357 alloc_time_ns = ktime_get_ns();
358
359 if (data->cmd_flags & REQ_NOWAIT)
360 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362 if (e) {
363 /*
364 * Flush/passthrough requests are special and go directly to the
365 * dispatch list. Don't include reserved tags in the
366 * limiting, as it isn't useful.
367 */
368 if (!op_is_flush(data->cmd_flags) &&
369 !blk_op_is_passthrough(data->cmd_flags) &&
370 e->type->ops.limit_depth &&
371 !(data->flags & BLK_MQ_REQ_RESERVED))
372 e->type->ops.limit_depth(data->cmd_flags, data);
373 }
374
375 retry:
376 data->ctx = blk_mq_get_ctx(q);
377 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378 if (!e)
379 blk_mq_tag_busy(data->hctx);
380
381 /*
382 * Waiting allocations only fail because of an inactive hctx. In that
383 * case just retry the hctx assignment and tag allocation as CPU hotplug
384 * should have migrated us to an online CPU by now.
385 */
386 tag = blk_mq_get_tag(data);
387 if (tag == BLK_MQ_NO_TAG) {
388 if (data->flags & BLK_MQ_REQ_NOWAIT)
389 return NULL;
390
391 /*
392 * Give up the CPU and sleep for a random short time to ensure
393 * that thread using a realtime scheduling class are migrated
394 * off the CPU, and thus off the hctx that is going away.
395 */
396 msleep(3);
397 goto retry;
398 }
399 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403 blk_mq_req_flags_t flags)
404 {
405 struct blk_mq_alloc_data data = {
406 .q = q,
407 .flags = flags,
408 .cmd_flags = op,
409 };
410 struct request *rq;
411 int ret;
412
413 ret = blk_queue_enter(q, flags);
414 if (ret)
415 return ERR_PTR(ret);
416
417 rq = __blk_mq_alloc_request(&data);
418 if (!rq)
419 goto out_queue_exit;
420 rq->__data_len = 0;
421 rq->__sector = (sector_t) -1;
422 rq->bio = rq->biotail = NULL;
423 return rq;
424 out_queue_exit:
425 blk_queue_exit(q);
426 return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433 struct blk_mq_alloc_data data = {
434 .q = q,
435 .flags = flags,
436 .cmd_flags = op,
437 };
438 u64 alloc_time_ns = 0;
439 unsigned int cpu;
440 unsigned int tag;
441 int ret;
442
443 /* alloc_time includes depth and tag waits */
444 if (blk_queue_rq_alloc_time(q))
445 alloc_time_ns = ktime_get_ns();
446
447 /*
448 * If the tag allocator sleeps we could get an allocation for a
449 * different hardware context. No need to complicate the low level
450 * allocator for this for the rare use case of a command tied to
451 * a specific queue.
452 */
453 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454 return ERR_PTR(-EINVAL);
455
456 if (hctx_idx >= q->nr_hw_queues)
457 return ERR_PTR(-EIO);
458
459 ret = blk_queue_enter(q, flags);
460 if (ret)
461 return ERR_PTR(ret);
462
463 /*
464 * Check if the hardware context is actually mapped to anything.
465 * If not tell the caller that it should skip this queue.
466 */
467 ret = -EXDEV;
468 data.hctx = q->queue_hw_ctx[hctx_idx];
469 if (!blk_mq_hw_queue_mapped(data.hctx))
470 goto out_queue_exit;
471 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472 data.ctx = __blk_mq_get_ctx(q, cpu);
473
474 if (!q->elevator)
475 blk_mq_tag_busy(data.hctx);
476
477 ret = -EWOULDBLOCK;
478 tag = blk_mq_get_tag(&data);
479 if (tag == BLK_MQ_NO_TAG)
480 goto out_queue_exit;
481 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482
483 out_queue_exit:
484 blk_queue_exit(q);
485 return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488
489 static void __blk_mq_free_request(struct request *rq)
490 {
491 struct request_queue *q = rq->q;
492 struct blk_mq_ctx *ctx = rq->mq_ctx;
493 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494 const int sched_tag = rq->internal_tag;
495
496 blk_crypto_free_request(rq);
497 blk_pm_mark_last_busy(rq);
498 rq->mq_hctx = NULL;
499 if (rq->tag != BLK_MQ_NO_TAG)
500 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501 if (sched_tag != BLK_MQ_NO_TAG)
502 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503 blk_mq_sched_restart(hctx);
504 blk_queue_exit(q);
505 }
506
507 void blk_mq_free_request(struct request *rq)
508 {
509 struct request_queue *q = rq->q;
510 struct elevator_queue *e = q->elevator;
511 struct blk_mq_ctx *ctx = rq->mq_ctx;
512 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513
514 if (rq->rq_flags & RQF_ELVPRIV) {
515 if (e && e->type->ops.finish_request)
516 e->type->ops.finish_request(rq);
517 if (rq->elv.icq) {
518 put_io_context(rq->elv.icq->ioc);
519 rq->elv.icq = NULL;
520 }
521 }
522
523 ctx->rq_completed[rq_is_sync(rq)]++;
524 if (rq->rq_flags & RQF_MQ_INFLIGHT)
525 __blk_mq_dec_active_requests(hctx);
526
527 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528 laptop_io_completion(q->disk->bdi);
529
530 rq_qos_done(q, rq);
531
532 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533 if (refcount_dec_and_test(&rq->ref))
534 __blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540 u64 now = 0;
541
542 if (blk_mq_need_time_stamp(rq))
543 now = ktime_get_ns();
544
545 if (rq->rq_flags & RQF_STATS) {
546 blk_mq_poll_stats_start(rq->q);
547 blk_stat_add(rq, now);
548 }
549
550 blk_mq_sched_completed_request(rq, now);
551
552 blk_account_io_done(rq, now);
553
554 if (rq->end_io) {
555 rq_qos_done(rq->q, rq);
556 rq->end_io(rq, error);
557 } else {
558 blk_mq_free_request(rq);
559 }
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566 BUG();
567 __blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574 struct request *rq, *next;
575
576 llist_for_each_entry_safe(rq, next, entry, ipi_list)
577 rq->q->mq_ops->complete(rq);
578 }
579
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588 return 0;
589 }
590
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598 int cpu = raw_smp_processor_id();
599
600 if (!IS_ENABLED(CONFIG_SMP) ||
601 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602 return false;
603 /*
604 * With force threaded interrupts enabled, raising softirq from an SMP
605 * function call will always result in waking the ksoftirqd thread.
606 * This is probably worse than completing the request on a different
607 * cache domain.
608 */
609 if (force_irqthreads())
610 return false;
611
612 /* same CPU or cache domain? Complete locally */
613 if (cpu == rq->mq_ctx->cpu ||
614 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616 return false;
617
618 /* don't try to IPI to an offline CPU */
619 return cpu_online(rq->mq_ctx->cpu);
620 }
621
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624 struct llist_head *list;
625 unsigned int cpu;
626
627 cpu = rq->mq_ctx->cpu;
628 list = &per_cpu(blk_cpu_done, cpu);
629 if (llist_add(&rq->ipi_list, list)) {
630 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631 smp_call_function_single_async(cpu, &rq->csd);
632 }
633 }
634
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637 struct llist_head *list;
638
639 preempt_disable();
640 list = this_cpu_ptr(&blk_cpu_done);
641 if (llist_add(&rq->ipi_list, list))
642 raise_softirq(BLOCK_SOFTIRQ);
643 preempt_enable();
644 }
645
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649
650 /*
651 * For a polled request, always complete locallly, it's pointless
652 * to redirect the completion.
653 */
654 if (rq->cmd_flags & REQ_HIPRI)
655 return false;
656
657 if (blk_mq_complete_need_ipi(rq)) {
658 blk_mq_complete_send_ipi(rq);
659 return true;
660 }
661
662 if (rq->q->nr_hw_queues == 1) {
663 blk_mq_raise_softirq(rq);
664 return true;
665 }
666 return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669
670 /**
671 * blk_mq_complete_request - end I/O on a request
672 * @rq: the request being processed
673 *
674 * Description:
675 * Complete a request by scheduling the ->complete_rq operation.
676 **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679 if (!blk_mq_complete_request_remote(rq))
680 rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685 __releases(hctx->srcu)
686 {
687 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688 rcu_read_unlock();
689 else
690 srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694 __acquires(hctx->srcu)
695 {
696 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697 /* shut up gcc false positive */
698 *srcu_idx = 0;
699 rcu_read_lock();
700 } else
701 *srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703
704 /**
705 * blk_mq_start_request - Start processing a request
706 * @rq: Pointer to request to be started
707 *
708 * Function used by device drivers to notify the block layer that a request
709 * is going to be processed now, so blk layer can do proper initializations
710 * such as starting the timeout timer.
711 */
712 void blk_mq_start_request(struct request *rq)
713 {
714 struct request_queue *q = rq->q;
715
716 trace_block_rq_issue(rq);
717
718 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719 rq->io_start_time_ns = ktime_get_ns();
720 rq->stats_sectors = blk_rq_sectors(rq);
721 rq->rq_flags |= RQF_STATS;
722 rq_qos_issue(q, rq);
723 }
724
725 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726
727 blk_add_timer(rq);
728 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732 q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739 struct request_queue *q = rq->q;
740
741 blk_mq_put_driver_tag(rq);
742
743 trace_block_rq_requeue(rq);
744 rq_qos_requeue(q, rq);
745
746 if (blk_mq_request_started(rq)) {
747 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748 rq->rq_flags &= ~RQF_TIMED_OUT;
749 }
750 }
751
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754 __blk_mq_requeue_request(rq);
755
756 /* this request will be re-inserted to io scheduler queue */
757 blk_mq_sched_requeue_request(rq);
758
759 BUG_ON(!list_empty(&rq->queuelist));
760 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766 struct request_queue *q =
767 container_of(work, struct request_queue, requeue_work.work);
768 LIST_HEAD(rq_list);
769 struct request *rq, *next;
770
771 spin_lock_irq(&q->requeue_lock);
772 list_splice_init(&q->requeue_list, &rq_list);
773 spin_unlock_irq(&q->requeue_lock);
774
775 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777 continue;
778
779 rq->rq_flags &= ~RQF_SOFTBARRIER;
780 list_del_init(&rq->queuelist);
781 /*
782 * If RQF_DONTPREP, rq has contained some driver specific
783 * data, so insert it to hctx dispatch list to avoid any
784 * merge.
785 */
786 if (rq->rq_flags & RQF_DONTPREP)
787 blk_mq_request_bypass_insert(rq, false, false);
788 else
789 blk_mq_sched_insert_request(rq, true, false, false);
790 }
791
792 while (!list_empty(&rq_list)) {
793 rq = list_entry(rq_list.next, struct request, queuelist);
794 list_del_init(&rq->queuelist);
795 blk_mq_sched_insert_request(rq, false, false, false);
796 }
797
798 blk_mq_run_hw_queues(q, false);
799 }
800
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802 bool kick_requeue_list)
803 {
804 struct request_queue *q = rq->q;
805 unsigned long flags;
806
807 /*
808 * We abuse this flag that is otherwise used by the I/O scheduler to
809 * request head insertion from the workqueue.
810 */
811 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812
813 spin_lock_irqsave(&q->requeue_lock, flags);
814 if (at_head) {
815 rq->rq_flags |= RQF_SOFTBARRIER;
816 list_add(&rq->queuelist, &q->requeue_list);
817 } else {
818 list_add_tail(&rq->queuelist, &q->requeue_list);
819 }
820 spin_unlock_irqrestore(&q->requeue_lock, flags);
821
822 if (kick_requeue_list)
823 blk_mq_kick_requeue_list(q);
824 }
825
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833 unsigned long msecs)
834 {
835 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836 msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842 if (tag < tags->nr_tags) {
843 prefetch(tags->rqs[tag]);
844 return tags->rqs[tag];
845 }
846
847 return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852 void *priv, bool reserved)
853 {
854 /*
855 * If we find a request that isn't idle and the queue matches,
856 * we know the queue is busy. Return false to stop the iteration.
857 */
858 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859 bool *busy = priv;
860
861 *busy = true;
862 return false;
863 }
864
865 return true;
866 }
867
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870 bool busy = false;
871
872 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873 return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879 req->rq_flags |= RQF_TIMED_OUT;
880 if (req->q->mq_ops->timeout) {
881 enum blk_eh_timer_return ret;
882
883 ret = req->q->mq_ops->timeout(req, reserved);
884 if (ret == BLK_EH_DONE)
885 return;
886 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887 }
888
889 blk_add_timer(req);
890 }
891
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894 unsigned long deadline;
895
896 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897 return false;
898 if (rq->rq_flags & RQF_TIMED_OUT)
899 return false;
900
901 deadline = READ_ONCE(rq->deadline);
902 if (time_after_eq(jiffies, deadline))
903 return true;
904
905 if (*next == 0)
906 *next = deadline;
907 else if (time_after(*next, deadline))
908 *next = deadline;
909 return false;
910 }
911
912 void blk_mq_put_rq_ref(struct request *rq)
913 {
914 if (is_flush_rq(rq))
915 rq->end_io(rq, 0);
916 else if (refcount_dec_and_test(&rq->ref))
917 __blk_mq_free_request(rq);
918 }
919
920 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
921 struct request *rq, void *priv, bool reserved)
922 {
923 unsigned long *next = priv;
924
925 /*
926 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
927 * be reallocated underneath the timeout handler's processing, then
928 * the expire check is reliable. If the request is not expired, then
929 * it was completed and reallocated as a new request after returning
930 * from blk_mq_check_expired().
931 */
932 if (blk_mq_req_expired(rq, next))
933 blk_mq_rq_timed_out(rq, reserved);
934 return true;
935 }
936
937 static void blk_mq_timeout_work(struct work_struct *work)
938 {
939 struct request_queue *q =
940 container_of(work, struct request_queue, timeout_work);
941 unsigned long next = 0;
942 struct blk_mq_hw_ctx *hctx;
943 int i;
944
945 /* A deadlock might occur if a request is stuck requiring a
946 * timeout at the same time a queue freeze is waiting
947 * completion, since the timeout code would not be able to
948 * acquire the queue reference here.
949 *
950 * That's why we don't use blk_queue_enter here; instead, we use
951 * percpu_ref_tryget directly, because we need to be able to
952 * obtain a reference even in the short window between the queue
953 * starting to freeze, by dropping the first reference in
954 * blk_freeze_queue_start, and the moment the last request is
955 * consumed, marked by the instant q_usage_counter reaches
956 * zero.
957 */
958 if (!percpu_ref_tryget(&q->q_usage_counter))
959 return;
960
961 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
962
963 if (next != 0) {
964 mod_timer(&q->timeout, next);
965 } else {
966 /*
967 * Request timeouts are handled as a forward rolling timer. If
968 * we end up here it means that no requests are pending and
969 * also that no request has been pending for a while. Mark
970 * each hctx as idle.
971 */
972 queue_for_each_hw_ctx(q, hctx, i) {
973 /* the hctx may be unmapped, so check it here */
974 if (blk_mq_hw_queue_mapped(hctx))
975 blk_mq_tag_idle(hctx);
976 }
977 }
978 blk_queue_exit(q);
979 }
980
981 struct flush_busy_ctx_data {
982 struct blk_mq_hw_ctx *hctx;
983 struct list_head *list;
984 };
985
986 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
987 {
988 struct flush_busy_ctx_data *flush_data = data;
989 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
990 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
991 enum hctx_type type = hctx->type;
992
993 spin_lock(&ctx->lock);
994 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
995 sbitmap_clear_bit(sb, bitnr);
996 spin_unlock(&ctx->lock);
997 return true;
998 }
999
1000 /*
1001 * Process software queues that have been marked busy, splicing them
1002 * to the for-dispatch
1003 */
1004 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1005 {
1006 struct flush_busy_ctx_data data = {
1007 .hctx = hctx,
1008 .list = list,
1009 };
1010
1011 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1012 }
1013 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1014
1015 struct dispatch_rq_data {
1016 struct blk_mq_hw_ctx *hctx;
1017 struct request *rq;
1018 };
1019
1020 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1021 void *data)
1022 {
1023 struct dispatch_rq_data *dispatch_data = data;
1024 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1025 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1026 enum hctx_type type = hctx->type;
1027
1028 spin_lock(&ctx->lock);
1029 if (!list_empty(&ctx->rq_lists[type])) {
1030 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1031 list_del_init(&dispatch_data->rq->queuelist);
1032 if (list_empty(&ctx->rq_lists[type]))
1033 sbitmap_clear_bit(sb, bitnr);
1034 }
1035 spin_unlock(&ctx->lock);
1036
1037 return !dispatch_data->rq;
1038 }
1039
1040 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1041 struct blk_mq_ctx *start)
1042 {
1043 unsigned off = start ? start->index_hw[hctx->type] : 0;
1044 struct dispatch_rq_data data = {
1045 .hctx = hctx,
1046 .rq = NULL,
1047 };
1048
1049 __sbitmap_for_each_set(&hctx->ctx_map, off,
1050 dispatch_rq_from_ctx, &data);
1051
1052 return data.rq;
1053 }
1054
1055 static inline unsigned int queued_to_index(unsigned int queued)
1056 {
1057 if (!queued)
1058 return 0;
1059
1060 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1061 }
1062
1063 static bool __blk_mq_get_driver_tag(struct request *rq)
1064 {
1065 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1066 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1067 int tag;
1068
1069 blk_mq_tag_busy(rq->mq_hctx);
1070
1071 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1072 bt = rq->mq_hctx->tags->breserved_tags;
1073 tag_offset = 0;
1074 } else {
1075 if (!hctx_may_queue(rq->mq_hctx, bt))
1076 return false;
1077 }
1078
1079 tag = __sbitmap_queue_get(bt);
1080 if (tag == BLK_MQ_NO_TAG)
1081 return false;
1082
1083 rq->tag = tag + tag_offset;
1084 return true;
1085 }
1086
1087 bool blk_mq_get_driver_tag(struct request *rq)
1088 {
1089 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1090
1091 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1092 return false;
1093
1094 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1095 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1096 rq->rq_flags |= RQF_MQ_INFLIGHT;
1097 __blk_mq_inc_active_requests(hctx);
1098 }
1099 hctx->tags->rqs[rq->tag] = rq;
1100 return true;
1101 }
1102
1103 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1104 int flags, void *key)
1105 {
1106 struct blk_mq_hw_ctx *hctx;
1107
1108 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1109
1110 spin_lock(&hctx->dispatch_wait_lock);
1111 if (!list_empty(&wait->entry)) {
1112 struct sbitmap_queue *sbq;
1113
1114 list_del_init(&wait->entry);
1115 sbq = hctx->tags->bitmap_tags;
1116 atomic_dec(&sbq->ws_active);
1117 }
1118 spin_unlock(&hctx->dispatch_wait_lock);
1119
1120 blk_mq_run_hw_queue(hctx, true);
1121 return 1;
1122 }
1123
1124 /*
1125 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1126 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1127 * restart. For both cases, take care to check the condition again after
1128 * marking us as waiting.
1129 */
1130 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1131 struct request *rq)
1132 {
1133 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1134 struct wait_queue_head *wq;
1135 wait_queue_entry_t *wait;
1136 bool ret;
1137
1138 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1139 blk_mq_sched_mark_restart_hctx(hctx);
1140
1141 /*
1142 * It's possible that a tag was freed in the window between the
1143 * allocation failure and adding the hardware queue to the wait
1144 * queue.
1145 *
1146 * Don't clear RESTART here, someone else could have set it.
1147 * At most this will cost an extra queue run.
1148 */
1149 return blk_mq_get_driver_tag(rq);
1150 }
1151
1152 wait = &hctx->dispatch_wait;
1153 if (!list_empty_careful(&wait->entry))
1154 return false;
1155
1156 wq = &bt_wait_ptr(sbq, hctx)->wait;
1157
1158 spin_lock_irq(&wq->lock);
1159 spin_lock(&hctx->dispatch_wait_lock);
1160 if (!list_empty(&wait->entry)) {
1161 spin_unlock(&hctx->dispatch_wait_lock);
1162 spin_unlock_irq(&wq->lock);
1163 return false;
1164 }
1165
1166 atomic_inc(&sbq->ws_active);
1167 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1168 __add_wait_queue(wq, wait);
1169
1170 /*
1171 * It's possible that a tag was freed in the window between the
1172 * allocation failure and adding the hardware queue to the wait
1173 * queue.
1174 */
1175 ret = blk_mq_get_driver_tag(rq);
1176 if (!ret) {
1177 spin_unlock(&hctx->dispatch_wait_lock);
1178 spin_unlock_irq(&wq->lock);
1179 return false;
1180 }
1181
1182 /*
1183 * We got a tag, remove ourselves from the wait queue to ensure
1184 * someone else gets the wakeup.
1185 */
1186 list_del_init(&wait->entry);
1187 atomic_dec(&sbq->ws_active);
1188 spin_unlock(&hctx->dispatch_wait_lock);
1189 spin_unlock_irq(&wq->lock);
1190
1191 return true;
1192 }
1193
1194 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1195 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1196 /*
1197 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1198 * - EWMA is one simple way to compute running average value
1199 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1200 * - take 4 as factor for avoiding to get too small(0) result, and this
1201 * factor doesn't matter because EWMA decreases exponentially
1202 */
1203 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1204 {
1205 unsigned int ewma;
1206
1207 ewma = hctx->dispatch_busy;
1208
1209 if (!ewma && !busy)
1210 return;
1211
1212 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1213 if (busy)
1214 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1215 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1216
1217 hctx->dispatch_busy = ewma;
1218 }
1219
1220 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1221
1222 static void blk_mq_handle_dev_resource(struct request *rq,
1223 struct list_head *list)
1224 {
1225 struct request *next =
1226 list_first_entry_or_null(list, struct request, queuelist);
1227
1228 /*
1229 * If an I/O scheduler has been configured and we got a driver tag for
1230 * the next request already, free it.
1231 */
1232 if (next)
1233 blk_mq_put_driver_tag(next);
1234
1235 list_add(&rq->queuelist, list);
1236 __blk_mq_requeue_request(rq);
1237 }
1238
1239 static void blk_mq_handle_zone_resource(struct request *rq,
1240 struct list_head *zone_list)
1241 {
1242 /*
1243 * If we end up here it is because we cannot dispatch a request to a
1244 * specific zone due to LLD level zone-write locking or other zone
1245 * related resource not being available. In this case, set the request
1246 * aside in zone_list for retrying it later.
1247 */
1248 list_add(&rq->queuelist, zone_list);
1249 __blk_mq_requeue_request(rq);
1250 }
1251
1252 enum prep_dispatch {
1253 PREP_DISPATCH_OK,
1254 PREP_DISPATCH_NO_TAG,
1255 PREP_DISPATCH_NO_BUDGET,
1256 };
1257
1258 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1259 bool need_budget)
1260 {
1261 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1262 int budget_token = -1;
1263
1264 if (need_budget) {
1265 budget_token = blk_mq_get_dispatch_budget(rq->q);
1266 if (budget_token < 0) {
1267 blk_mq_put_driver_tag(rq);
1268 return PREP_DISPATCH_NO_BUDGET;
1269 }
1270 blk_mq_set_rq_budget_token(rq, budget_token);
1271 }
1272
1273 if (!blk_mq_get_driver_tag(rq)) {
1274 /*
1275 * The initial allocation attempt failed, so we need to
1276 * rerun the hardware queue when a tag is freed. The
1277 * waitqueue takes care of that. If the queue is run
1278 * before we add this entry back on the dispatch list,
1279 * we'll re-run it below.
1280 */
1281 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1282 /*
1283 * All budgets not got from this function will be put
1284 * together during handling partial dispatch
1285 */
1286 if (need_budget)
1287 blk_mq_put_dispatch_budget(rq->q, budget_token);
1288 return PREP_DISPATCH_NO_TAG;
1289 }
1290 }
1291
1292 return PREP_DISPATCH_OK;
1293 }
1294
1295 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1296 static void blk_mq_release_budgets(struct request_queue *q,
1297 struct list_head *list)
1298 {
1299 struct request *rq;
1300
1301 list_for_each_entry(rq, list, queuelist) {
1302 int budget_token = blk_mq_get_rq_budget_token(rq);
1303
1304 if (budget_token >= 0)
1305 blk_mq_put_dispatch_budget(q, budget_token);
1306 }
1307 }
1308
1309 /*
1310 * Returns true if we did some work AND can potentially do more.
1311 */
1312 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1313 unsigned int nr_budgets)
1314 {
1315 enum prep_dispatch prep;
1316 struct request_queue *q = hctx->queue;
1317 struct request *rq, *nxt;
1318 int errors, queued;
1319 blk_status_t ret = BLK_STS_OK;
1320 LIST_HEAD(zone_list);
1321
1322 if (list_empty(list))
1323 return false;
1324
1325 /*
1326 * Now process all the entries, sending them to the driver.
1327 */
1328 errors = queued = 0;
1329 do {
1330 struct blk_mq_queue_data bd;
1331
1332 rq = list_first_entry(list, struct request, queuelist);
1333
1334 WARN_ON_ONCE(hctx != rq->mq_hctx);
1335 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1336 if (prep != PREP_DISPATCH_OK)
1337 break;
1338
1339 list_del_init(&rq->queuelist);
1340
1341 bd.rq = rq;
1342
1343 /*
1344 * Flag last if we have no more requests, or if we have more
1345 * but can't assign a driver tag to it.
1346 */
1347 if (list_empty(list))
1348 bd.last = true;
1349 else {
1350 nxt = list_first_entry(list, struct request, queuelist);
1351 bd.last = !blk_mq_get_driver_tag(nxt);
1352 }
1353
1354 /*
1355 * once the request is queued to lld, no need to cover the
1356 * budget any more
1357 */
1358 if (nr_budgets)
1359 nr_budgets--;
1360 ret = q->mq_ops->queue_rq(hctx, &bd);
1361 switch (ret) {
1362 case BLK_STS_OK:
1363 queued++;
1364 break;
1365 case BLK_STS_RESOURCE:
1366 case BLK_STS_DEV_RESOURCE:
1367 blk_mq_handle_dev_resource(rq, list);
1368 goto out;
1369 case BLK_STS_ZONE_RESOURCE:
1370 /*
1371 * Move the request to zone_list and keep going through
1372 * the dispatch list to find more requests the drive can
1373 * accept.
1374 */
1375 blk_mq_handle_zone_resource(rq, &zone_list);
1376 break;
1377 default:
1378 errors++;
1379 blk_mq_end_request(rq, ret);
1380 }
1381 } while (!list_empty(list));
1382 out:
1383 if (!list_empty(&zone_list))
1384 list_splice_tail_init(&zone_list, list);
1385
1386 hctx->dispatched[queued_to_index(queued)]++;
1387
1388 /* If we didn't flush the entire list, we could have told the driver
1389 * there was more coming, but that turned out to be a lie.
1390 */
1391 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1392 q->mq_ops->commit_rqs(hctx);
1393 /*
1394 * Any items that need requeuing? Stuff them into hctx->dispatch,
1395 * that is where we will continue on next queue run.
1396 */
1397 if (!list_empty(list)) {
1398 bool needs_restart;
1399 /* For non-shared tags, the RESTART check will suffice */
1400 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1401 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1402 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1403
1404 if (nr_budgets)
1405 blk_mq_release_budgets(q, list);
1406
1407 spin_lock(&hctx->lock);
1408 list_splice_tail_init(list, &hctx->dispatch);
1409 spin_unlock(&hctx->lock);
1410
1411 /*
1412 * Order adding requests to hctx->dispatch and checking
1413 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1414 * in blk_mq_sched_restart(). Avoid restart code path to
1415 * miss the new added requests to hctx->dispatch, meantime
1416 * SCHED_RESTART is observed here.
1417 */
1418 smp_mb();
1419
1420 /*
1421 * If SCHED_RESTART was set by the caller of this function and
1422 * it is no longer set that means that it was cleared by another
1423 * thread and hence that a queue rerun is needed.
1424 *
1425 * If 'no_tag' is set, that means that we failed getting
1426 * a driver tag with an I/O scheduler attached. If our dispatch
1427 * waitqueue is no longer active, ensure that we run the queue
1428 * AFTER adding our entries back to the list.
1429 *
1430 * If no I/O scheduler has been configured it is possible that
1431 * the hardware queue got stopped and restarted before requests
1432 * were pushed back onto the dispatch list. Rerun the queue to
1433 * avoid starvation. Notes:
1434 * - blk_mq_run_hw_queue() checks whether or not a queue has
1435 * been stopped before rerunning a queue.
1436 * - Some but not all block drivers stop a queue before
1437 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1438 * and dm-rq.
1439 *
1440 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1441 * bit is set, run queue after a delay to avoid IO stalls
1442 * that could otherwise occur if the queue is idle. We'll do
1443 * similar if we couldn't get budget and SCHED_RESTART is set.
1444 */
1445 needs_restart = blk_mq_sched_needs_restart(hctx);
1446 if (!needs_restart ||
1447 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1448 blk_mq_run_hw_queue(hctx, true);
1449 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1450 no_budget_avail))
1451 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1452
1453 blk_mq_update_dispatch_busy(hctx, true);
1454 return false;
1455 } else
1456 blk_mq_update_dispatch_busy(hctx, false);
1457
1458 return (queued + errors) != 0;
1459 }
1460
1461 /**
1462 * __blk_mq_run_hw_queue - Run a hardware queue.
1463 * @hctx: Pointer to the hardware queue to run.
1464 *
1465 * Send pending requests to the hardware.
1466 */
1467 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1468 {
1469 int srcu_idx;
1470
1471 /*
1472 * We can't run the queue inline with ints disabled. Ensure that
1473 * we catch bad users of this early.
1474 */
1475 WARN_ON_ONCE(in_interrupt());
1476
1477 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1478
1479 hctx_lock(hctx, &srcu_idx);
1480 blk_mq_sched_dispatch_requests(hctx);
1481 hctx_unlock(hctx, srcu_idx);
1482 }
1483
1484 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1485 {
1486 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1487
1488 if (cpu >= nr_cpu_ids)
1489 cpu = cpumask_first(hctx->cpumask);
1490 return cpu;
1491 }
1492
1493 /*
1494 * It'd be great if the workqueue API had a way to pass
1495 * in a mask and had some smarts for more clever placement.
1496 * For now we just round-robin here, switching for every
1497 * BLK_MQ_CPU_WORK_BATCH queued items.
1498 */
1499 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1500 {
1501 bool tried = false;
1502 int next_cpu = hctx->next_cpu;
1503
1504 if (hctx->queue->nr_hw_queues == 1)
1505 return WORK_CPU_UNBOUND;
1506
1507 if (--hctx->next_cpu_batch <= 0) {
1508 select_cpu:
1509 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1510 cpu_online_mask);
1511 if (next_cpu >= nr_cpu_ids)
1512 next_cpu = blk_mq_first_mapped_cpu(hctx);
1513 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1514 }
1515
1516 /*
1517 * Do unbound schedule if we can't find a online CPU for this hctx,
1518 * and it should only happen in the path of handling CPU DEAD.
1519 */
1520 if (!cpu_online(next_cpu)) {
1521 if (!tried) {
1522 tried = true;
1523 goto select_cpu;
1524 }
1525
1526 /*
1527 * Make sure to re-select CPU next time once after CPUs
1528 * in hctx->cpumask become online again.
1529 */
1530 hctx->next_cpu = next_cpu;
1531 hctx->next_cpu_batch = 1;
1532 return WORK_CPU_UNBOUND;
1533 }
1534
1535 hctx->next_cpu = next_cpu;
1536 return next_cpu;
1537 }
1538
1539 /**
1540 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1541 * @hctx: Pointer to the hardware queue to run.
1542 * @async: If we want to run the queue asynchronously.
1543 * @msecs: Milliseconds of delay to wait before running the queue.
1544 *
1545 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1546 * with a delay of @msecs.
1547 */
1548 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1549 unsigned long msecs)
1550 {
1551 if (unlikely(blk_mq_hctx_stopped(hctx)))
1552 return;
1553
1554 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1555 int cpu = get_cpu();
1556 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1557 __blk_mq_run_hw_queue(hctx);
1558 put_cpu();
1559 return;
1560 }
1561
1562 put_cpu();
1563 }
1564
1565 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1566 msecs_to_jiffies(msecs));
1567 }
1568
1569 /**
1570 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1571 * @hctx: Pointer to the hardware queue to run.
1572 * @msecs: Milliseconds of delay to wait before running the queue.
1573 *
1574 * Run a hardware queue asynchronously with a delay of @msecs.
1575 */
1576 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1577 {
1578 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1579 }
1580 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1581
1582 /**
1583 * blk_mq_run_hw_queue - Start to run a hardware queue.
1584 * @hctx: Pointer to the hardware queue to run.
1585 * @async: If we want to run the queue asynchronously.
1586 *
1587 * Check if the request queue is not in a quiesced state and if there are
1588 * pending requests to be sent. If this is true, run the queue to send requests
1589 * to hardware.
1590 */
1591 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1592 {
1593 int srcu_idx;
1594 bool need_run;
1595
1596 /*
1597 * When queue is quiesced, we may be switching io scheduler, or
1598 * updating nr_hw_queues, or other things, and we can't run queue
1599 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1600 *
1601 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1602 * quiesced.
1603 */
1604 hctx_lock(hctx, &srcu_idx);
1605 need_run = !blk_queue_quiesced(hctx->queue) &&
1606 blk_mq_hctx_has_pending(hctx);
1607 hctx_unlock(hctx, srcu_idx);
1608
1609 if (need_run)
1610 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1611 }
1612 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1613
1614 /*
1615 * Is the request queue handled by an IO scheduler that does not respect
1616 * hardware queues when dispatching?
1617 */
1618 static bool blk_mq_has_sqsched(struct request_queue *q)
1619 {
1620 struct elevator_queue *e = q->elevator;
1621
1622 if (e && e->type->ops.dispatch_request &&
1623 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1624 return true;
1625 return false;
1626 }
1627
1628 /*
1629 * Return prefered queue to dispatch from (if any) for non-mq aware IO
1630 * scheduler.
1631 */
1632 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1633 {
1634 struct blk_mq_hw_ctx *hctx;
1635
1636 /*
1637 * If the IO scheduler does not respect hardware queues when
1638 * dispatching, we just don't bother with multiple HW queues and
1639 * dispatch from hctx for the current CPU since running multiple queues
1640 * just causes lock contention inside the scheduler and pointless cache
1641 * bouncing.
1642 */
1643 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1644 raw_smp_processor_id());
1645 if (!blk_mq_hctx_stopped(hctx))
1646 return hctx;
1647 return NULL;
1648 }
1649
1650 /**
1651 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1652 * @q: Pointer to the request queue to run.
1653 * @async: If we want to run the queue asynchronously.
1654 */
1655 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1656 {
1657 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1658 int i;
1659
1660 sq_hctx = NULL;
1661 if (blk_mq_has_sqsched(q))
1662 sq_hctx = blk_mq_get_sq_hctx(q);
1663 queue_for_each_hw_ctx(q, hctx, i) {
1664 if (blk_mq_hctx_stopped(hctx))
1665 continue;
1666 /*
1667 * Dispatch from this hctx either if there's no hctx preferred
1668 * by IO scheduler or if it has requests that bypass the
1669 * scheduler.
1670 */
1671 if (!sq_hctx || sq_hctx == hctx ||
1672 !list_empty_careful(&hctx->dispatch))
1673 blk_mq_run_hw_queue(hctx, async);
1674 }
1675 }
1676 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1677
1678 /**
1679 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1680 * @q: Pointer to the request queue to run.
1681 * @msecs: Milliseconds of delay to wait before running the queues.
1682 */
1683 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1684 {
1685 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1686 int i;
1687
1688 sq_hctx = NULL;
1689 if (blk_mq_has_sqsched(q))
1690 sq_hctx = blk_mq_get_sq_hctx(q);
1691 queue_for_each_hw_ctx(q, hctx, i) {
1692 if (blk_mq_hctx_stopped(hctx))
1693 continue;
1694 /*
1695 * Dispatch from this hctx either if there's no hctx preferred
1696 * by IO scheduler or if it has requests that bypass the
1697 * scheduler.
1698 */
1699 if (!sq_hctx || sq_hctx == hctx ||
1700 !list_empty_careful(&hctx->dispatch))
1701 blk_mq_delay_run_hw_queue(hctx, msecs);
1702 }
1703 }
1704 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1705
1706 /**
1707 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1708 * @q: request queue.
1709 *
1710 * The caller is responsible for serializing this function against
1711 * blk_mq_{start,stop}_hw_queue().
1712 */
1713 bool blk_mq_queue_stopped(struct request_queue *q)
1714 {
1715 struct blk_mq_hw_ctx *hctx;
1716 int i;
1717
1718 queue_for_each_hw_ctx(q, hctx, i)
1719 if (blk_mq_hctx_stopped(hctx))
1720 return true;
1721
1722 return false;
1723 }
1724 EXPORT_SYMBOL(blk_mq_queue_stopped);
1725
1726 /*
1727 * This function is often used for pausing .queue_rq() by driver when
1728 * there isn't enough resource or some conditions aren't satisfied, and
1729 * BLK_STS_RESOURCE is usually returned.
1730 *
1731 * We do not guarantee that dispatch can be drained or blocked
1732 * after blk_mq_stop_hw_queue() returns. Please use
1733 * blk_mq_quiesce_queue() for that requirement.
1734 */
1735 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1736 {
1737 cancel_delayed_work(&hctx->run_work);
1738
1739 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1740 }
1741 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1742
1743 /*
1744 * This function is often used for pausing .queue_rq() by driver when
1745 * there isn't enough resource or some conditions aren't satisfied, and
1746 * BLK_STS_RESOURCE is usually returned.
1747 *
1748 * We do not guarantee that dispatch can be drained or blocked
1749 * after blk_mq_stop_hw_queues() returns. Please use
1750 * blk_mq_quiesce_queue() for that requirement.
1751 */
1752 void blk_mq_stop_hw_queues(struct request_queue *q)
1753 {
1754 struct blk_mq_hw_ctx *hctx;
1755 int i;
1756
1757 queue_for_each_hw_ctx(q, hctx, i)
1758 blk_mq_stop_hw_queue(hctx);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1761
1762 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1763 {
1764 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1765
1766 blk_mq_run_hw_queue(hctx, false);
1767 }
1768 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1769
1770 void blk_mq_start_hw_queues(struct request_queue *q)
1771 {
1772 struct blk_mq_hw_ctx *hctx;
1773 int i;
1774
1775 queue_for_each_hw_ctx(q, hctx, i)
1776 blk_mq_start_hw_queue(hctx);
1777 }
1778 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1779
1780 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1781 {
1782 if (!blk_mq_hctx_stopped(hctx))
1783 return;
1784
1785 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1786 blk_mq_run_hw_queue(hctx, async);
1787 }
1788 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1789
1790 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1791 {
1792 struct blk_mq_hw_ctx *hctx;
1793 int i;
1794
1795 queue_for_each_hw_ctx(q, hctx, i)
1796 blk_mq_start_stopped_hw_queue(hctx, async);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1799
1800 static void blk_mq_run_work_fn(struct work_struct *work)
1801 {
1802 struct blk_mq_hw_ctx *hctx;
1803
1804 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1805
1806 /*
1807 * If we are stopped, don't run the queue.
1808 */
1809 if (blk_mq_hctx_stopped(hctx))
1810 return;
1811
1812 __blk_mq_run_hw_queue(hctx);
1813 }
1814
1815 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1816 struct request *rq,
1817 bool at_head)
1818 {
1819 struct blk_mq_ctx *ctx = rq->mq_ctx;
1820 enum hctx_type type = hctx->type;
1821
1822 lockdep_assert_held(&ctx->lock);
1823
1824 trace_block_rq_insert(rq);
1825
1826 if (at_head)
1827 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1828 else
1829 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1830 }
1831
1832 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1833 bool at_head)
1834 {
1835 struct blk_mq_ctx *ctx = rq->mq_ctx;
1836
1837 lockdep_assert_held(&ctx->lock);
1838
1839 __blk_mq_insert_req_list(hctx, rq, at_head);
1840 blk_mq_hctx_mark_pending(hctx, ctx);
1841 }
1842
1843 /**
1844 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1845 * @rq: Pointer to request to be inserted.
1846 * @at_head: true if the request should be inserted at the head of the list.
1847 * @run_queue: If we should run the hardware queue after inserting the request.
1848 *
1849 * Should only be used carefully, when the caller knows we want to
1850 * bypass a potential IO scheduler on the target device.
1851 */
1852 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1853 bool run_queue)
1854 {
1855 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856
1857 spin_lock(&hctx->lock);
1858 if (at_head)
1859 list_add(&rq->queuelist, &hctx->dispatch);
1860 else
1861 list_add_tail(&rq->queuelist, &hctx->dispatch);
1862 spin_unlock(&hctx->lock);
1863
1864 if (run_queue)
1865 blk_mq_run_hw_queue(hctx, false);
1866 }
1867
1868 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1869 struct list_head *list)
1870
1871 {
1872 struct request *rq;
1873 enum hctx_type type = hctx->type;
1874
1875 /*
1876 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1877 * offline now
1878 */
1879 list_for_each_entry(rq, list, queuelist) {
1880 BUG_ON(rq->mq_ctx != ctx);
1881 trace_block_rq_insert(rq);
1882 }
1883
1884 spin_lock(&ctx->lock);
1885 list_splice_tail_init(list, &ctx->rq_lists[type]);
1886 blk_mq_hctx_mark_pending(hctx, ctx);
1887 spin_unlock(&ctx->lock);
1888 }
1889
1890 static int plug_rq_cmp(void *priv, const struct list_head *a,
1891 const struct list_head *b)
1892 {
1893 struct request *rqa = container_of(a, struct request, queuelist);
1894 struct request *rqb = container_of(b, struct request, queuelist);
1895
1896 if (rqa->mq_ctx != rqb->mq_ctx)
1897 return rqa->mq_ctx > rqb->mq_ctx;
1898 if (rqa->mq_hctx != rqb->mq_hctx)
1899 return rqa->mq_hctx > rqb->mq_hctx;
1900
1901 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1902 }
1903
1904 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1905 {
1906 LIST_HEAD(list);
1907
1908 if (list_empty(&plug->mq_list))
1909 return;
1910 list_splice_init(&plug->mq_list, &list);
1911
1912 if (plug->rq_count > 2 && plug->multiple_queues)
1913 list_sort(NULL, &list, plug_rq_cmp);
1914
1915 plug->rq_count = 0;
1916
1917 do {
1918 struct list_head rq_list;
1919 struct request *rq, *head_rq = list_entry_rq(list.next);
1920 struct list_head *pos = &head_rq->queuelist; /* skip first */
1921 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1922 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1923 unsigned int depth = 1;
1924
1925 list_for_each_continue(pos, &list) {
1926 rq = list_entry_rq(pos);
1927 BUG_ON(!rq->q);
1928 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1929 break;
1930 depth++;
1931 }
1932
1933 list_cut_before(&rq_list, &list, pos);
1934 trace_block_unplug(head_rq->q, depth, !from_schedule);
1935 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1936 from_schedule);
1937 } while(!list_empty(&list));
1938 }
1939
1940 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1941 unsigned int nr_segs)
1942 {
1943 int err;
1944
1945 if (bio->bi_opf & REQ_RAHEAD)
1946 rq->cmd_flags |= REQ_FAILFAST_MASK;
1947
1948 rq->__sector = bio->bi_iter.bi_sector;
1949 rq->write_hint = bio->bi_write_hint;
1950 blk_rq_bio_prep(rq, bio, nr_segs);
1951
1952 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1953 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1954 WARN_ON_ONCE(err);
1955
1956 blk_account_io_start(rq);
1957 }
1958
1959 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1960 struct request *rq,
1961 blk_qc_t *cookie, bool last)
1962 {
1963 struct request_queue *q = rq->q;
1964 struct blk_mq_queue_data bd = {
1965 .rq = rq,
1966 .last = last,
1967 };
1968 blk_qc_t new_cookie;
1969 blk_status_t ret;
1970
1971 new_cookie = request_to_qc_t(hctx, rq);
1972
1973 /*
1974 * For OK queue, we are done. For error, caller may kill it.
1975 * Any other error (busy), just add it to our list as we
1976 * previously would have done.
1977 */
1978 ret = q->mq_ops->queue_rq(hctx, &bd);
1979 switch (ret) {
1980 case BLK_STS_OK:
1981 blk_mq_update_dispatch_busy(hctx, false);
1982 *cookie = new_cookie;
1983 break;
1984 case BLK_STS_RESOURCE:
1985 case BLK_STS_DEV_RESOURCE:
1986 blk_mq_update_dispatch_busy(hctx, true);
1987 __blk_mq_requeue_request(rq);
1988 break;
1989 default:
1990 blk_mq_update_dispatch_busy(hctx, false);
1991 *cookie = BLK_QC_T_NONE;
1992 break;
1993 }
1994
1995 return ret;
1996 }
1997
1998 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1999 struct request *rq,
2000 blk_qc_t *cookie,
2001 bool bypass_insert, bool last)
2002 {
2003 struct request_queue *q = rq->q;
2004 bool run_queue = true;
2005 int budget_token;
2006
2007 /*
2008 * RCU or SRCU read lock is needed before checking quiesced flag.
2009 *
2010 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2011 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2012 * and avoid driver to try to dispatch again.
2013 */
2014 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2015 run_queue = false;
2016 bypass_insert = false;
2017 goto insert;
2018 }
2019
2020 if (q->elevator && !bypass_insert)
2021 goto insert;
2022
2023 budget_token = blk_mq_get_dispatch_budget(q);
2024 if (budget_token < 0)
2025 goto insert;
2026
2027 blk_mq_set_rq_budget_token(rq, budget_token);
2028
2029 if (!blk_mq_get_driver_tag(rq)) {
2030 blk_mq_put_dispatch_budget(q, budget_token);
2031 goto insert;
2032 }
2033
2034 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2035 insert:
2036 if (bypass_insert)
2037 return BLK_STS_RESOURCE;
2038
2039 blk_mq_sched_insert_request(rq, false, run_queue, false);
2040
2041 return BLK_STS_OK;
2042 }
2043
2044 /**
2045 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2046 * @hctx: Pointer of the associated hardware queue.
2047 * @rq: Pointer to request to be sent.
2048 * @cookie: Request queue cookie.
2049 *
2050 * If the device has enough resources to accept a new request now, send the
2051 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2052 * we can try send it another time in the future. Requests inserted at this
2053 * queue have higher priority.
2054 */
2055 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2056 struct request *rq, blk_qc_t *cookie)
2057 {
2058 blk_status_t ret;
2059 int srcu_idx;
2060
2061 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2062
2063 hctx_lock(hctx, &srcu_idx);
2064
2065 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2066 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2067 blk_mq_request_bypass_insert(rq, false, true);
2068 else if (ret != BLK_STS_OK)
2069 blk_mq_end_request(rq, ret);
2070
2071 hctx_unlock(hctx, srcu_idx);
2072 }
2073
2074 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2075 {
2076 blk_status_t ret;
2077 int srcu_idx;
2078 blk_qc_t unused_cookie;
2079 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2080
2081 hctx_lock(hctx, &srcu_idx);
2082 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2083 hctx_unlock(hctx, srcu_idx);
2084
2085 return ret;
2086 }
2087
2088 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2089 struct list_head *list)
2090 {
2091 int queued = 0;
2092 int errors = 0;
2093
2094 while (!list_empty(list)) {
2095 blk_status_t ret;
2096 struct request *rq = list_first_entry(list, struct request,
2097 queuelist);
2098
2099 list_del_init(&rq->queuelist);
2100 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2101 if (ret != BLK_STS_OK) {
2102 if (ret == BLK_STS_RESOURCE ||
2103 ret == BLK_STS_DEV_RESOURCE) {
2104 blk_mq_request_bypass_insert(rq, false,
2105 list_empty(list));
2106 break;
2107 }
2108 blk_mq_end_request(rq, ret);
2109 errors++;
2110 } else
2111 queued++;
2112 }
2113
2114 /*
2115 * If we didn't flush the entire list, we could have told
2116 * the driver there was more coming, but that turned out to
2117 * be a lie.
2118 */
2119 if ((!list_empty(list) || errors) &&
2120 hctx->queue->mq_ops->commit_rqs && queued)
2121 hctx->queue->mq_ops->commit_rqs(hctx);
2122 }
2123
2124 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2125 {
2126 list_add_tail(&rq->queuelist, &plug->mq_list);
2127 plug->rq_count++;
2128 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2129 struct request *tmp;
2130
2131 tmp = list_first_entry(&plug->mq_list, struct request,
2132 queuelist);
2133 if (tmp->q != rq->q)
2134 plug->multiple_queues = true;
2135 }
2136 }
2137
2138 /**
2139 * blk_mq_submit_bio - Create and send a request to block device.
2140 * @bio: Bio pointer.
2141 *
2142 * Builds up a request structure from @q and @bio and send to the device. The
2143 * request may not be queued directly to hardware if:
2144 * * This request can be merged with another one
2145 * * We want to place request at plug queue for possible future merging
2146 * * There is an IO scheduler active at this queue
2147 *
2148 * It will not queue the request if there is an error with the bio, or at the
2149 * request creation.
2150 *
2151 * Returns: Request queue cookie.
2152 */
2153 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2154 {
2155 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2156 const int is_sync = op_is_sync(bio->bi_opf);
2157 const int is_flush_fua = op_is_flush(bio->bi_opf);
2158 struct blk_mq_alloc_data data = {
2159 .q = q,
2160 };
2161 struct request *rq;
2162 struct blk_plug *plug;
2163 struct request *same_queue_rq = NULL;
2164 unsigned int nr_segs;
2165 blk_qc_t cookie;
2166 blk_status_t ret;
2167 bool hipri;
2168
2169 blk_queue_bounce(q, &bio);
2170 __blk_queue_split(&bio, &nr_segs);
2171
2172 if (!bio_integrity_prep(bio))
2173 goto queue_exit;
2174
2175 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2176 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2177 goto queue_exit;
2178
2179 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2180 goto queue_exit;
2181
2182 rq_qos_throttle(q, bio);
2183
2184 hipri = bio->bi_opf & REQ_HIPRI;
2185
2186 data.cmd_flags = bio->bi_opf;
2187 rq = __blk_mq_alloc_request(&data);
2188 if (unlikely(!rq)) {
2189 rq_qos_cleanup(q, bio);
2190 if (bio->bi_opf & REQ_NOWAIT)
2191 bio_wouldblock_error(bio);
2192 goto queue_exit;
2193 }
2194
2195 trace_block_getrq(bio);
2196
2197 rq_qos_track(q, rq, bio);
2198
2199 cookie = request_to_qc_t(data.hctx, rq);
2200
2201 blk_mq_bio_to_request(rq, bio, nr_segs);
2202
2203 ret = blk_crypto_init_request(rq);
2204 if (ret != BLK_STS_OK) {
2205 bio->bi_status = ret;
2206 bio_endio(bio);
2207 blk_mq_free_request(rq);
2208 return BLK_QC_T_NONE;
2209 }
2210
2211 plug = blk_mq_plug(q, bio);
2212 if (unlikely(is_flush_fua)) {
2213 /* Bypass scheduler for flush requests */
2214 blk_insert_flush(rq);
2215 blk_mq_run_hw_queue(data.hctx, true);
2216 } else if (plug && (q->nr_hw_queues == 1 ||
2217 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2218 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2219 /*
2220 * Use plugging if we have a ->commit_rqs() hook as well, as
2221 * we know the driver uses bd->last in a smart fashion.
2222 *
2223 * Use normal plugging if this disk is slow HDD, as sequential
2224 * IO may benefit a lot from plug merging.
2225 */
2226 unsigned int request_count = plug->rq_count;
2227 struct request *last = NULL;
2228
2229 if (!request_count)
2230 trace_block_plug(q);
2231 else
2232 last = list_entry_rq(plug->mq_list.prev);
2233
2234 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2235 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2236 blk_flush_plug_list(plug, false);
2237 trace_block_plug(q);
2238 }
2239
2240 blk_add_rq_to_plug(plug, rq);
2241 } else if (q->elevator) {
2242 /* Insert the request at the IO scheduler queue */
2243 blk_mq_sched_insert_request(rq, false, true, true);
2244 } else if (plug && !blk_queue_nomerges(q)) {
2245 /*
2246 * We do limited plugging. If the bio can be merged, do that.
2247 * Otherwise the existing request in the plug list will be
2248 * issued. So the plug list will have one request at most
2249 * The plug list might get flushed before this. If that happens,
2250 * the plug list is empty, and same_queue_rq is invalid.
2251 */
2252 if (list_empty(&plug->mq_list))
2253 same_queue_rq = NULL;
2254 if (same_queue_rq) {
2255 list_del_init(&same_queue_rq->queuelist);
2256 plug->rq_count--;
2257 }
2258 blk_add_rq_to_plug(plug, rq);
2259 trace_block_plug(q);
2260
2261 if (same_queue_rq) {
2262 data.hctx = same_queue_rq->mq_hctx;
2263 trace_block_unplug(q, 1, true);
2264 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2265 &cookie);
2266 }
2267 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2268 !data.hctx->dispatch_busy) {
2269 /*
2270 * There is no scheduler and we can try to send directly
2271 * to the hardware.
2272 */
2273 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2274 } else {
2275 /* Default case. */
2276 blk_mq_sched_insert_request(rq, false, true, true);
2277 }
2278
2279 if (!hipri)
2280 return BLK_QC_T_NONE;
2281 return cookie;
2282 queue_exit:
2283 blk_queue_exit(q);
2284 return BLK_QC_T_NONE;
2285 }
2286
2287 static size_t order_to_size(unsigned int order)
2288 {
2289 return (size_t)PAGE_SIZE << order;
2290 }
2291
2292 /* called before freeing request pool in @tags */
2293 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2294 struct blk_mq_tags *tags, unsigned int hctx_idx)
2295 {
2296 struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2297 struct page *page;
2298 unsigned long flags;
2299
2300 list_for_each_entry(page, &tags->page_list, lru) {
2301 unsigned long start = (unsigned long)page_address(page);
2302 unsigned long end = start + order_to_size(page->private);
2303 int i;
2304
2305 for (i = 0; i < set->queue_depth; i++) {
2306 struct request *rq = drv_tags->rqs[i];
2307 unsigned long rq_addr = (unsigned long)rq;
2308
2309 if (rq_addr >= start && rq_addr < end) {
2310 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2311 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2312 }
2313 }
2314 }
2315
2316 /*
2317 * Wait until all pending iteration is done.
2318 *
2319 * Request reference is cleared and it is guaranteed to be observed
2320 * after the ->lock is released.
2321 */
2322 spin_lock_irqsave(&drv_tags->lock, flags);
2323 spin_unlock_irqrestore(&drv_tags->lock, flags);
2324 }
2325
2326 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2327 unsigned int hctx_idx)
2328 {
2329 struct page *page;
2330
2331 if (tags->rqs && set->ops->exit_request) {
2332 int i;
2333
2334 for (i = 0; i < tags->nr_tags; i++) {
2335 struct request *rq = tags->static_rqs[i];
2336
2337 if (!rq)
2338 continue;
2339 set->ops->exit_request(set, rq, hctx_idx);
2340 tags->static_rqs[i] = NULL;
2341 }
2342 }
2343
2344 blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2345
2346 while (!list_empty(&tags->page_list)) {
2347 page = list_first_entry(&tags->page_list, struct page, lru);
2348 list_del_init(&page->lru);
2349 /*
2350 * Remove kmemleak object previously allocated in
2351 * blk_mq_alloc_rqs().
2352 */
2353 kmemleak_free(page_address(page));
2354 __free_pages(page, page->private);
2355 }
2356 }
2357
2358 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2359 {
2360 kfree(tags->rqs);
2361 tags->rqs = NULL;
2362 kfree(tags->static_rqs);
2363 tags->static_rqs = NULL;
2364
2365 blk_mq_free_tags(tags, flags);
2366 }
2367
2368 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2369 unsigned int hctx_idx,
2370 unsigned int nr_tags,
2371 unsigned int reserved_tags,
2372 unsigned int flags)
2373 {
2374 struct blk_mq_tags *tags;
2375 int node;
2376
2377 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2378 if (node == NUMA_NO_NODE)
2379 node = set->numa_node;
2380
2381 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2382 if (!tags)
2383 return NULL;
2384
2385 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2386 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2387 node);
2388 if (!tags->rqs) {
2389 blk_mq_free_tags(tags, flags);
2390 return NULL;
2391 }
2392
2393 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2394 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2395 node);
2396 if (!tags->static_rqs) {
2397 kfree(tags->rqs);
2398 blk_mq_free_tags(tags, flags);
2399 return NULL;
2400 }
2401
2402 return tags;
2403 }
2404
2405 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2406 unsigned int hctx_idx, int node)
2407 {
2408 int ret;
2409
2410 if (set->ops->init_request) {
2411 ret = set->ops->init_request(set, rq, hctx_idx, node);
2412 if (ret)
2413 return ret;
2414 }
2415
2416 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2417 return 0;
2418 }
2419
2420 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2421 unsigned int hctx_idx, unsigned int depth)
2422 {
2423 unsigned int i, j, entries_per_page, max_order = 4;
2424 size_t rq_size, left;
2425 int node;
2426
2427 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2428 if (node == NUMA_NO_NODE)
2429 node = set->numa_node;
2430
2431 INIT_LIST_HEAD(&tags->page_list);
2432
2433 /*
2434 * rq_size is the size of the request plus driver payload, rounded
2435 * to the cacheline size
2436 */
2437 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2438 cache_line_size());
2439 left = rq_size * depth;
2440
2441 for (i = 0; i < depth; ) {
2442 int this_order = max_order;
2443 struct page *page;
2444 int to_do;
2445 void *p;
2446
2447 while (this_order && left < order_to_size(this_order - 1))
2448 this_order--;
2449
2450 do {
2451 page = alloc_pages_node(node,
2452 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2453 this_order);
2454 if (page)
2455 break;
2456 if (!this_order--)
2457 break;
2458 if (order_to_size(this_order) < rq_size)
2459 break;
2460 } while (1);
2461
2462 if (!page)
2463 goto fail;
2464
2465 page->private = this_order;
2466 list_add_tail(&page->lru, &tags->page_list);
2467
2468 p = page_address(page);
2469 /*
2470 * Allow kmemleak to scan these pages as they contain pointers
2471 * to additional allocations like via ops->init_request().
2472 */
2473 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2474 entries_per_page = order_to_size(this_order) / rq_size;
2475 to_do = min(entries_per_page, depth - i);
2476 left -= to_do * rq_size;
2477 for (j = 0; j < to_do; j++) {
2478 struct request *rq = p;
2479
2480 tags->static_rqs[i] = rq;
2481 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2482 tags->static_rqs[i] = NULL;
2483 goto fail;
2484 }
2485
2486 p += rq_size;
2487 i++;
2488 }
2489 }
2490 return 0;
2491
2492 fail:
2493 blk_mq_free_rqs(set, tags, hctx_idx);
2494 return -ENOMEM;
2495 }
2496
2497 struct rq_iter_data {
2498 struct blk_mq_hw_ctx *hctx;
2499 bool has_rq;
2500 };
2501
2502 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2503 {
2504 struct rq_iter_data *iter_data = data;
2505
2506 if (rq->mq_hctx != iter_data->hctx)
2507 return true;
2508 iter_data->has_rq = true;
2509 return false;
2510 }
2511
2512 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2513 {
2514 struct blk_mq_tags *tags = hctx->sched_tags ?
2515 hctx->sched_tags : hctx->tags;
2516 struct rq_iter_data data = {
2517 .hctx = hctx,
2518 };
2519
2520 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2521 return data.has_rq;
2522 }
2523
2524 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2525 struct blk_mq_hw_ctx *hctx)
2526 {
2527 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2528 return false;
2529 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2530 return false;
2531 return true;
2532 }
2533
2534 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2535 {
2536 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2537 struct blk_mq_hw_ctx, cpuhp_online);
2538
2539 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2540 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2541 return 0;
2542
2543 /*
2544 * Prevent new request from being allocated on the current hctx.
2545 *
2546 * The smp_mb__after_atomic() Pairs with the implied barrier in
2547 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2548 * seen once we return from the tag allocator.
2549 */
2550 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2551 smp_mb__after_atomic();
2552
2553 /*
2554 * Try to grab a reference to the queue and wait for any outstanding
2555 * requests. If we could not grab a reference the queue has been
2556 * frozen and there are no requests.
2557 */
2558 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2559 while (blk_mq_hctx_has_requests(hctx))
2560 msleep(5);
2561 percpu_ref_put(&hctx->queue->q_usage_counter);
2562 }
2563
2564 return 0;
2565 }
2566
2567 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2568 {
2569 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2570 struct blk_mq_hw_ctx, cpuhp_online);
2571
2572 if (cpumask_test_cpu(cpu, hctx->cpumask))
2573 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2574 return 0;
2575 }
2576
2577 /*
2578 * 'cpu' is going away. splice any existing rq_list entries from this
2579 * software queue to the hw queue dispatch list, and ensure that it
2580 * gets run.
2581 */
2582 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2583 {
2584 struct blk_mq_hw_ctx *hctx;
2585 struct blk_mq_ctx *ctx;
2586 LIST_HEAD(tmp);
2587 enum hctx_type type;
2588
2589 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2590 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2591 return 0;
2592
2593 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2594 type = hctx->type;
2595
2596 spin_lock(&ctx->lock);
2597 if (!list_empty(&ctx->rq_lists[type])) {
2598 list_splice_init(&ctx->rq_lists[type], &tmp);
2599 blk_mq_hctx_clear_pending(hctx, ctx);
2600 }
2601 spin_unlock(&ctx->lock);
2602
2603 if (list_empty(&tmp))
2604 return 0;
2605
2606 spin_lock(&hctx->lock);
2607 list_splice_tail_init(&tmp, &hctx->dispatch);
2608 spin_unlock(&hctx->lock);
2609
2610 blk_mq_run_hw_queue(hctx, true);
2611 return 0;
2612 }
2613
2614 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2615 {
2616 if (!(hctx->flags & BLK_MQ_F_STACKING))
2617 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2618 &hctx->cpuhp_online);
2619 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2620 &hctx->cpuhp_dead);
2621 }
2622
2623 /*
2624 * Before freeing hw queue, clearing the flush request reference in
2625 * tags->rqs[] for avoiding potential UAF.
2626 */
2627 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2628 unsigned int queue_depth, struct request *flush_rq)
2629 {
2630 int i;
2631 unsigned long flags;
2632
2633 /* The hw queue may not be mapped yet */
2634 if (!tags)
2635 return;
2636
2637 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2638
2639 for (i = 0; i < queue_depth; i++)
2640 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2641
2642 /*
2643 * Wait until all pending iteration is done.
2644 *
2645 * Request reference is cleared and it is guaranteed to be observed
2646 * after the ->lock is released.
2647 */
2648 spin_lock_irqsave(&tags->lock, flags);
2649 spin_unlock_irqrestore(&tags->lock, flags);
2650 }
2651
2652 /* hctx->ctxs will be freed in queue's release handler */
2653 static void blk_mq_exit_hctx(struct request_queue *q,
2654 struct blk_mq_tag_set *set,
2655 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2656 {
2657 struct request *flush_rq = hctx->fq->flush_rq;
2658
2659 if (blk_mq_hw_queue_mapped(hctx))
2660 blk_mq_tag_idle(hctx);
2661
2662 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2663 set->queue_depth, flush_rq);
2664 if (set->ops->exit_request)
2665 set->ops->exit_request(set, flush_rq, hctx_idx);
2666
2667 if (set->ops->exit_hctx)
2668 set->ops->exit_hctx(hctx, hctx_idx);
2669
2670 blk_mq_remove_cpuhp(hctx);
2671
2672 spin_lock(&q->unused_hctx_lock);
2673 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2674 spin_unlock(&q->unused_hctx_lock);
2675 }
2676
2677 static void blk_mq_exit_hw_queues(struct request_queue *q,
2678 struct blk_mq_tag_set *set, int nr_queue)
2679 {
2680 struct blk_mq_hw_ctx *hctx;
2681 unsigned int i;
2682
2683 queue_for_each_hw_ctx(q, hctx, i) {
2684 if (i == nr_queue)
2685 break;
2686 blk_mq_debugfs_unregister_hctx(hctx);
2687 blk_mq_exit_hctx(q, set, hctx, i);
2688 }
2689 }
2690
2691 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2692 {
2693 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2694
2695 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2696 __alignof__(struct blk_mq_hw_ctx)) !=
2697 sizeof(struct blk_mq_hw_ctx));
2698
2699 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2700 hw_ctx_size += sizeof(struct srcu_struct);
2701
2702 return hw_ctx_size;
2703 }
2704
2705 static int blk_mq_init_hctx(struct request_queue *q,
2706 struct blk_mq_tag_set *set,
2707 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2708 {
2709 hctx->queue_num = hctx_idx;
2710
2711 if (!(hctx->flags & BLK_MQ_F_STACKING))
2712 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2713 &hctx->cpuhp_online);
2714 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2715
2716 hctx->tags = set->tags[hctx_idx];
2717
2718 if (set->ops->init_hctx &&
2719 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2720 goto unregister_cpu_notifier;
2721
2722 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2723 hctx->numa_node))
2724 goto exit_hctx;
2725 return 0;
2726
2727 exit_hctx:
2728 if (set->ops->exit_hctx)
2729 set->ops->exit_hctx(hctx, hctx_idx);
2730 unregister_cpu_notifier:
2731 blk_mq_remove_cpuhp(hctx);
2732 return -1;
2733 }
2734
2735 static struct blk_mq_hw_ctx *
2736 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2737 int node)
2738 {
2739 struct blk_mq_hw_ctx *hctx;
2740 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2741
2742 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2743 if (!hctx)
2744 goto fail_alloc_hctx;
2745
2746 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2747 goto free_hctx;
2748
2749 atomic_set(&hctx->nr_active, 0);
2750 if (node == NUMA_NO_NODE)
2751 node = set->numa_node;
2752 hctx->numa_node = node;
2753
2754 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2755 spin_lock_init(&hctx->lock);
2756 INIT_LIST_HEAD(&hctx->dispatch);
2757 hctx->queue = q;
2758 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2759
2760 INIT_LIST_HEAD(&hctx->hctx_list);
2761
2762 /*
2763 * Allocate space for all possible cpus to avoid allocation at
2764 * runtime
2765 */
2766 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2767 gfp, node);
2768 if (!hctx->ctxs)
2769 goto free_cpumask;
2770
2771 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2772 gfp, node, false, false))
2773 goto free_ctxs;
2774 hctx->nr_ctx = 0;
2775
2776 spin_lock_init(&hctx->dispatch_wait_lock);
2777 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2778 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2779
2780 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2781 if (!hctx->fq)
2782 goto free_bitmap;
2783
2784 if (hctx->flags & BLK_MQ_F_BLOCKING)
2785 init_srcu_struct(hctx->srcu);
2786 blk_mq_hctx_kobj_init(hctx);
2787
2788 return hctx;
2789
2790 free_bitmap:
2791 sbitmap_free(&hctx->ctx_map);
2792 free_ctxs:
2793 kfree(hctx->ctxs);
2794 free_cpumask:
2795 free_cpumask_var(hctx->cpumask);
2796 free_hctx:
2797 kfree(hctx);
2798 fail_alloc_hctx:
2799 return NULL;
2800 }
2801
2802 static void blk_mq_init_cpu_queues(struct request_queue *q,
2803 unsigned int nr_hw_queues)
2804 {
2805 struct blk_mq_tag_set *set = q->tag_set;
2806 unsigned int i, j;
2807
2808 for_each_possible_cpu(i) {
2809 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2810 struct blk_mq_hw_ctx *hctx;
2811 int k;
2812
2813 __ctx->cpu = i;
2814 spin_lock_init(&__ctx->lock);
2815 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2816 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2817
2818 __ctx->queue = q;
2819
2820 /*
2821 * Set local node, IFF we have more than one hw queue. If
2822 * not, we remain on the home node of the device
2823 */
2824 for (j = 0; j < set->nr_maps; j++) {
2825 hctx = blk_mq_map_queue_type(q, j, i);
2826 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2827 hctx->numa_node = cpu_to_node(i);
2828 }
2829 }
2830 }
2831
2832 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2833 int hctx_idx)
2834 {
2835 unsigned int flags = set->flags;
2836 int ret = 0;
2837
2838 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2839 set->queue_depth, set->reserved_tags, flags);
2840 if (!set->tags[hctx_idx])
2841 return false;
2842
2843 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2844 set->queue_depth);
2845 if (!ret)
2846 return true;
2847
2848 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2849 set->tags[hctx_idx] = NULL;
2850 return false;
2851 }
2852
2853 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2854 unsigned int hctx_idx)
2855 {
2856 unsigned int flags = set->flags;
2857
2858 if (set->tags && set->tags[hctx_idx]) {
2859 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2860 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2861 set->tags[hctx_idx] = NULL;
2862 }
2863 }
2864
2865 static void blk_mq_map_swqueue(struct request_queue *q)
2866 {
2867 unsigned int i, j, hctx_idx;
2868 struct blk_mq_hw_ctx *hctx;
2869 struct blk_mq_ctx *ctx;
2870 struct blk_mq_tag_set *set = q->tag_set;
2871
2872 queue_for_each_hw_ctx(q, hctx, i) {
2873 cpumask_clear(hctx->cpumask);
2874 hctx->nr_ctx = 0;
2875 hctx->dispatch_from = NULL;
2876 }
2877
2878 /*
2879 * Map software to hardware queues.
2880 *
2881 * If the cpu isn't present, the cpu is mapped to first hctx.
2882 */
2883 for_each_possible_cpu(i) {
2884
2885 ctx = per_cpu_ptr(q->queue_ctx, i);
2886 for (j = 0; j < set->nr_maps; j++) {
2887 if (!set->map[j].nr_queues) {
2888 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2889 HCTX_TYPE_DEFAULT, i);
2890 continue;
2891 }
2892 hctx_idx = set->map[j].mq_map[i];
2893 /* unmapped hw queue can be remapped after CPU topo changed */
2894 if (!set->tags[hctx_idx] &&
2895 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2896 /*
2897 * If tags initialization fail for some hctx,
2898 * that hctx won't be brought online. In this
2899 * case, remap the current ctx to hctx[0] which
2900 * is guaranteed to always have tags allocated
2901 */
2902 set->map[j].mq_map[i] = 0;
2903 }
2904
2905 hctx = blk_mq_map_queue_type(q, j, i);
2906 ctx->hctxs[j] = hctx;
2907 /*
2908 * If the CPU is already set in the mask, then we've
2909 * mapped this one already. This can happen if
2910 * devices share queues across queue maps.
2911 */
2912 if (cpumask_test_cpu(i, hctx->cpumask))
2913 continue;
2914
2915 cpumask_set_cpu(i, hctx->cpumask);
2916 hctx->type = j;
2917 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2918 hctx->ctxs[hctx->nr_ctx++] = ctx;
2919
2920 /*
2921 * If the nr_ctx type overflows, we have exceeded the
2922 * amount of sw queues we can support.
2923 */
2924 BUG_ON(!hctx->nr_ctx);
2925 }
2926
2927 for (; j < HCTX_MAX_TYPES; j++)
2928 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2929 HCTX_TYPE_DEFAULT, i);
2930 }
2931
2932 queue_for_each_hw_ctx(q, hctx, i) {
2933 /*
2934 * If no software queues are mapped to this hardware queue,
2935 * disable it and free the request entries.
2936 */
2937 if (!hctx->nr_ctx) {
2938 /* Never unmap queue 0. We need it as a
2939 * fallback in case of a new remap fails
2940 * allocation
2941 */
2942 if (i && set->tags[i])
2943 blk_mq_free_map_and_requests(set, i);
2944
2945 hctx->tags = NULL;
2946 continue;
2947 }
2948
2949 hctx->tags = set->tags[i];
2950 WARN_ON(!hctx->tags);
2951
2952 /*
2953 * Set the map size to the number of mapped software queues.
2954 * This is more accurate and more efficient than looping
2955 * over all possibly mapped software queues.
2956 */
2957 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2958
2959 /*
2960 * Initialize batch roundrobin counts
2961 */
2962 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2963 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2964 }
2965 }
2966
2967 /*
2968 * Caller needs to ensure that we're either frozen/quiesced, or that
2969 * the queue isn't live yet.
2970 */
2971 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2972 {
2973 struct blk_mq_hw_ctx *hctx;
2974 int i;
2975
2976 queue_for_each_hw_ctx(q, hctx, i) {
2977 if (shared) {
2978 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2979 } else {
2980 blk_mq_tag_idle(hctx);
2981 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2982 }
2983 }
2984 }
2985
2986 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2987 bool shared)
2988 {
2989 struct request_queue *q;
2990
2991 lockdep_assert_held(&set->tag_list_lock);
2992
2993 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2994 blk_mq_freeze_queue(q);
2995 queue_set_hctx_shared(q, shared);
2996 blk_mq_unfreeze_queue(q);
2997 }
2998 }
2999
3000 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3001 {
3002 struct blk_mq_tag_set *set = q->tag_set;
3003
3004 mutex_lock(&set->tag_list_lock);
3005 list_del(&q->tag_set_list);
3006 if (list_is_singular(&set->tag_list)) {
3007 /* just transitioned to unshared */
3008 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3009 /* update existing queue */
3010 blk_mq_update_tag_set_shared(set, false);
3011 }
3012 mutex_unlock(&set->tag_list_lock);
3013 INIT_LIST_HEAD(&q->tag_set_list);
3014 }
3015
3016 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3017 struct request_queue *q)
3018 {
3019 mutex_lock(&set->tag_list_lock);
3020
3021 /*
3022 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3023 */
3024 if (!list_empty(&set->tag_list) &&
3025 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3026 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3027 /* update existing queue */
3028 blk_mq_update_tag_set_shared(set, true);
3029 }
3030 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3031 queue_set_hctx_shared(q, true);
3032 list_add_tail(&q->tag_set_list, &set->tag_list);
3033
3034 mutex_unlock(&set->tag_list_lock);
3035 }
3036
3037 /* All allocations will be freed in release handler of q->mq_kobj */
3038 static int blk_mq_alloc_ctxs(struct request_queue *q)
3039 {
3040 struct blk_mq_ctxs *ctxs;
3041 int cpu;
3042
3043 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3044 if (!ctxs)
3045 return -ENOMEM;
3046
3047 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3048 if (!ctxs->queue_ctx)
3049 goto fail;
3050
3051 for_each_possible_cpu(cpu) {
3052 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3053 ctx->ctxs = ctxs;
3054 }
3055
3056 q->mq_kobj = &ctxs->kobj;
3057 q->queue_ctx = ctxs->queue_ctx;
3058
3059 return 0;
3060 fail:
3061 kfree(ctxs);
3062 return -ENOMEM;
3063 }
3064
3065 /*
3066 * It is the actual release handler for mq, but we do it from
3067 * request queue's release handler for avoiding use-after-free
3068 * and headache because q->mq_kobj shouldn't have been introduced,
3069 * but we can't group ctx/kctx kobj without it.
3070 */
3071 void blk_mq_release(struct request_queue *q)
3072 {
3073 struct blk_mq_hw_ctx *hctx, *next;
3074 int i;
3075
3076 queue_for_each_hw_ctx(q, hctx, i)
3077 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3078
3079 /* all hctx are in .unused_hctx_list now */
3080 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3081 list_del_init(&hctx->hctx_list);
3082 kobject_put(&hctx->kobj);
3083 }
3084
3085 kfree(q->queue_hw_ctx);
3086
3087 /*
3088 * release .mq_kobj and sw queue's kobject now because
3089 * both share lifetime with request queue.
3090 */
3091 blk_mq_sysfs_deinit(q);
3092 }
3093
3094 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3095 void *queuedata)
3096 {
3097 struct request_queue *q;
3098 int ret;
3099
3100 q = blk_alloc_queue(set->numa_node);
3101 if (!q)
3102 return ERR_PTR(-ENOMEM);
3103 q->queuedata = queuedata;
3104 ret = blk_mq_init_allocated_queue(set, q);
3105 if (ret) {
3106 blk_cleanup_queue(q);
3107 return ERR_PTR(ret);
3108 }
3109 return q;
3110 }
3111
3112 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3113 {
3114 return blk_mq_init_queue_data(set, NULL);
3115 }
3116 EXPORT_SYMBOL(blk_mq_init_queue);
3117
3118 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3119 struct lock_class_key *lkclass)
3120 {
3121 struct request_queue *q;
3122 struct gendisk *disk;
3123
3124 q = blk_mq_init_queue_data(set, queuedata);
3125 if (IS_ERR(q))
3126 return ERR_CAST(q);
3127
3128 disk = __alloc_disk_node(q, set->numa_node, lkclass);
3129 if (!disk) {
3130 blk_cleanup_queue(q);
3131 return ERR_PTR(-ENOMEM);
3132 }
3133 return disk;
3134 }
3135 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3136
3137 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3138 struct blk_mq_tag_set *set, struct request_queue *q,
3139 int hctx_idx, int node)
3140 {
3141 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3142
3143 /* reuse dead hctx first */
3144 spin_lock(&q->unused_hctx_lock);
3145 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3146 if (tmp->numa_node == node) {
3147 hctx = tmp;
3148 break;
3149 }
3150 }
3151 if (hctx)
3152 list_del_init(&hctx->hctx_list);
3153 spin_unlock(&q->unused_hctx_lock);
3154
3155 if (!hctx)
3156 hctx = blk_mq_alloc_hctx(q, set, node);
3157 if (!hctx)
3158 goto fail;
3159
3160 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3161 goto free_hctx;
3162
3163 return hctx;
3164
3165 free_hctx:
3166 kobject_put(&hctx->kobj);
3167 fail:
3168 return NULL;
3169 }
3170
3171 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3172 struct request_queue *q)
3173 {
3174 int i, j, end;
3175 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3176
3177 if (q->nr_hw_queues < set->nr_hw_queues) {
3178 struct blk_mq_hw_ctx **new_hctxs;
3179
3180 new_hctxs = kcalloc_node(set->nr_hw_queues,
3181 sizeof(*new_hctxs), GFP_KERNEL,
3182 set->numa_node);
3183 if (!new_hctxs)
3184 return;
3185 if (hctxs)
3186 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3187 sizeof(*hctxs));
3188 q->queue_hw_ctx = new_hctxs;
3189 kfree(hctxs);
3190 hctxs = new_hctxs;
3191 }
3192
3193 /* protect against switching io scheduler */
3194 mutex_lock(&q->sysfs_lock);
3195 for (i = 0; i < set->nr_hw_queues; i++) {
3196 int node;
3197 struct blk_mq_hw_ctx *hctx;
3198
3199 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3200 /*
3201 * If the hw queue has been mapped to another numa node,
3202 * we need to realloc the hctx. If allocation fails, fallback
3203 * to use the previous one.
3204 */
3205 if (hctxs[i] && (hctxs[i]->numa_node == node))
3206 continue;
3207
3208 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3209 if (hctx) {
3210 if (hctxs[i])
3211 blk_mq_exit_hctx(q, set, hctxs[i], i);
3212 hctxs[i] = hctx;
3213 } else {
3214 if (hctxs[i])
3215 pr_warn("Allocate new hctx on node %d fails,\
3216 fallback to previous one on node %d\n",
3217 node, hctxs[i]->numa_node);
3218 else
3219 break;
3220 }
3221 }
3222 /*
3223 * Increasing nr_hw_queues fails. Free the newly allocated
3224 * hctxs and keep the previous q->nr_hw_queues.
3225 */
3226 if (i != set->nr_hw_queues) {
3227 j = q->nr_hw_queues;
3228 end = i;
3229 } else {
3230 j = i;
3231 end = q->nr_hw_queues;
3232 q->nr_hw_queues = set->nr_hw_queues;
3233 }
3234
3235 for (; j < end; j++) {
3236 struct blk_mq_hw_ctx *hctx = hctxs[j];
3237
3238 if (hctx) {
3239 if (hctx->tags)
3240 blk_mq_free_map_and_requests(set, j);
3241 blk_mq_exit_hctx(q, set, hctx, j);
3242 hctxs[j] = NULL;
3243 }
3244 }
3245 mutex_unlock(&q->sysfs_lock);
3246 }
3247
3248 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3249 struct request_queue *q)
3250 {
3251 /* mark the queue as mq asap */
3252 q->mq_ops = set->ops;
3253
3254 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3255 blk_mq_poll_stats_bkt,
3256 BLK_MQ_POLL_STATS_BKTS, q);
3257 if (!q->poll_cb)
3258 goto err_exit;
3259
3260 if (blk_mq_alloc_ctxs(q))
3261 goto err_poll;
3262
3263 /* init q->mq_kobj and sw queues' kobjects */
3264 blk_mq_sysfs_init(q);
3265
3266 INIT_LIST_HEAD(&q->unused_hctx_list);
3267 spin_lock_init(&q->unused_hctx_lock);
3268
3269 blk_mq_realloc_hw_ctxs(set, q);
3270 if (!q->nr_hw_queues)
3271 goto err_hctxs;
3272
3273 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3274 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3275
3276 q->tag_set = set;
3277
3278 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3279 if (set->nr_maps > HCTX_TYPE_POLL &&
3280 set->map[HCTX_TYPE_POLL].nr_queues)
3281 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3282
3283 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3284 INIT_LIST_HEAD(&q->requeue_list);
3285 spin_lock_init(&q->requeue_lock);
3286
3287 q->nr_requests = set->queue_depth;
3288
3289 /*
3290 * Default to classic polling
3291 */
3292 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3293
3294 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3295 blk_mq_add_queue_tag_set(set, q);
3296 blk_mq_map_swqueue(q);
3297 return 0;
3298
3299 err_hctxs:
3300 kfree(q->queue_hw_ctx);
3301 q->nr_hw_queues = 0;
3302 blk_mq_sysfs_deinit(q);
3303 err_poll:
3304 blk_stat_free_callback(q->poll_cb);
3305 q->poll_cb = NULL;
3306 err_exit:
3307 q->mq_ops = NULL;
3308 return -ENOMEM;
3309 }
3310 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3311
3312 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3313 void blk_mq_exit_queue(struct request_queue *q)
3314 {
3315 struct blk_mq_tag_set *set = q->tag_set;
3316
3317 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3318 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3319 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3320 blk_mq_del_queue_tag_set(q);
3321 }
3322
3323 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3324 {
3325 int i;
3326
3327 for (i = 0; i < set->nr_hw_queues; i++) {
3328 if (!__blk_mq_alloc_map_and_request(set, i))
3329 goto out_unwind;
3330 cond_resched();
3331 }
3332
3333 return 0;
3334
3335 out_unwind:
3336 while (--i >= 0)
3337 blk_mq_free_map_and_requests(set, i);
3338
3339 return -ENOMEM;
3340 }
3341
3342 /*
3343 * Allocate the request maps associated with this tag_set. Note that this
3344 * may reduce the depth asked for, if memory is tight. set->queue_depth
3345 * will be updated to reflect the allocated depth.
3346 */
3347 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3348 {
3349 unsigned int depth;
3350 int err;
3351
3352 depth = set->queue_depth;
3353 do {
3354 err = __blk_mq_alloc_rq_maps(set);
3355 if (!err)
3356 break;
3357
3358 set->queue_depth >>= 1;
3359 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3360 err = -ENOMEM;
3361 break;
3362 }
3363 } while (set->queue_depth);
3364
3365 if (!set->queue_depth || err) {
3366 pr_err("blk-mq: failed to allocate request map\n");
3367 return -ENOMEM;
3368 }
3369
3370 if (depth != set->queue_depth)
3371 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3372 depth, set->queue_depth);
3373
3374 return 0;
3375 }
3376
3377 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3378 {
3379 /*
3380 * blk_mq_map_queues() and multiple .map_queues() implementations
3381 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3382 * number of hardware queues.
3383 */
3384 if (set->nr_maps == 1)
3385 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3386
3387 if (set->ops->map_queues && !is_kdump_kernel()) {
3388 int i;
3389
3390 /*
3391 * transport .map_queues is usually done in the following
3392 * way:
3393 *
3394 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3395 * mask = get_cpu_mask(queue)
3396 * for_each_cpu(cpu, mask)
3397 * set->map[x].mq_map[cpu] = queue;
3398 * }
3399 *
3400 * When we need to remap, the table has to be cleared for
3401 * killing stale mapping since one CPU may not be mapped
3402 * to any hw queue.
3403 */
3404 for (i = 0; i < set->nr_maps; i++)
3405 blk_mq_clear_mq_map(&set->map[i]);
3406
3407 return set->ops->map_queues(set);
3408 } else {
3409 BUG_ON(set->nr_maps > 1);
3410 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3411 }
3412 }
3413
3414 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3415 int cur_nr_hw_queues, int new_nr_hw_queues)
3416 {
3417 struct blk_mq_tags **new_tags;
3418
3419 if (cur_nr_hw_queues >= new_nr_hw_queues)
3420 return 0;
3421
3422 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3423 GFP_KERNEL, set->numa_node);
3424 if (!new_tags)
3425 return -ENOMEM;
3426
3427 if (set->tags)
3428 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3429 sizeof(*set->tags));
3430 kfree(set->tags);
3431 set->tags = new_tags;
3432 set->nr_hw_queues = new_nr_hw_queues;
3433
3434 return 0;
3435 }
3436
3437 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3438 int new_nr_hw_queues)
3439 {
3440 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3441 }
3442
3443 /*
3444 * Alloc a tag set to be associated with one or more request queues.
3445 * May fail with EINVAL for various error conditions. May adjust the
3446 * requested depth down, if it's too large. In that case, the set
3447 * value will be stored in set->queue_depth.
3448 */
3449 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3450 {
3451 int i, ret;
3452
3453 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3454
3455 if (!set->nr_hw_queues)
3456 return -EINVAL;
3457 if (!set->queue_depth)
3458 return -EINVAL;
3459 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3460 return -EINVAL;
3461
3462 if (!set->ops->queue_rq)
3463 return -EINVAL;
3464
3465 if (!set->ops->get_budget ^ !set->ops->put_budget)
3466 return -EINVAL;
3467
3468 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3469 pr_info("blk-mq: reduced tag depth to %u\n",
3470 BLK_MQ_MAX_DEPTH);
3471 set->queue_depth = BLK_MQ_MAX_DEPTH;
3472 }
3473
3474 if (!set->nr_maps)
3475 set->nr_maps = 1;
3476 else if (set->nr_maps > HCTX_MAX_TYPES)
3477 return -EINVAL;
3478
3479 /*
3480 * If a crashdump is active, then we are potentially in a very
3481 * memory constrained environment. Limit us to 1 queue and
3482 * 64 tags to prevent using too much memory.
3483 */
3484 if (is_kdump_kernel()) {
3485 set->nr_hw_queues = 1;
3486 set->nr_maps = 1;
3487 set->queue_depth = min(64U, set->queue_depth);
3488 }
3489 /*
3490 * There is no use for more h/w queues than cpus if we just have
3491 * a single map
3492 */
3493 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3494 set->nr_hw_queues = nr_cpu_ids;
3495
3496 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3497 return -ENOMEM;
3498
3499 ret = -ENOMEM;
3500 for (i = 0; i < set->nr_maps; i++) {
3501 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3502 sizeof(set->map[i].mq_map[0]),
3503 GFP_KERNEL, set->numa_node);
3504 if (!set->map[i].mq_map)
3505 goto out_free_mq_map;
3506 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3507 }
3508
3509 ret = blk_mq_update_queue_map(set);
3510 if (ret)
3511 goto out_free_mq_map;
3512
3513 ret = blk_mq_alloc_map_and_requests(set);
3514 if (ret)
3515 goto out_free_mq_map;
3516
3517 if (blk_mq_is_sbitmap_shared(set->flags)) {
3518 atomic_set(&set->active_queues_shared_sbitmap, 0);
3519
3520 if (blk_mq_init_shared_sbitmap(set)) {
3521 ret = -ENOMEM;
3522 goto out_free_mq_rq_maps;
3523 }
3524 }
3525
3526 mutex_init(&set->tag_list_lock);
3527 INIT_LIST_HEAD(&set->tag_list);
3528
3529 return 0;
3530
3531 out_free_mq_rq_maps:
3532 for (i = 0; i < set->nr_hw_queues; i++)
3533 blk_mq_free_map_and_requests(set, i);
3534 out_free_mq_map:
3535 for (i = 0; i < set->nr_maps; i++) {
3536 kfree(set->map[i].mq_map);
3537 set->map[i].mq_map = NULL;
3538 }
3539 kfree(set->tags);
3540 set->tags = NULL;
3541 return ret;
3542 }
3543 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3544
3545 /* allocate and initialize a tagset for a simple single-queue device */
3546 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3547 const struct blk_mq_ops *ops, unsigned int queue_depth,
3548 unsigned int set_flags)
3549 {
3550 memset(set, 0, sizeof(*set));
3551 set->ops = ops;
3552 set->nr_hw_queues = 1;
3553 set->nr_maps = 1;
3554 set->queue_depth = queue_depth;
3555 set->numa_node = NUMA_NO_NODE;
3556 set->flags = set_flags;
3557 return blk_mq_alloc_tag_set(set);
3558 }
3559 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3560
3561 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3562 {
3563 int i, j;
3564
3565 for (i = 0; i < set->nr_hw_queues; i++)
3566 blk_mq_free_map_and_requests(set, i);
3567
3568 if (blk_mq_is_sbitmap_shared(set->flags))
3569 blk_mq_exit_shared_sbitmap(set);
3570
3571 for (j = 0; j < set->nr_maps; j++) {
3572 kfree(set->map[j].mq_map);
3573 set->map[j].mq_map = NULL;
3574 }
3575
3576 kfree(set->tags);
3577 set->tags = NULL;
3578 }
3579 EXPORT_SYMBOL(blk_mq_free_tag_set);
3580
3581 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3582 {
3583 struct blk_mq_tag_set *set = q->tag_set;
3584 struct blk_mq_hw_ctx *hctx;
3585 int i, ret;
3586
3587 if (!set)
3588 return -EINVAL;
3589
3590 if (q->nr_requests == nr)
3591 return 0;
3592
3593 blk_mq_freeze_queue(q);
3594 blk_mq_quiesce_queue(q);
3595
3596 ret = 0;
3597 queue_for_each_hw_ctx(q, hctx, i) {
3598 if (!hctx->tags)
3599 continue;
3600 /*
3601 * If we're using an MQ scheduler, just update the scheduler
3602 * queue depth. This is similar to what the old code would do.
3603 */
3604 if (!hctx->sched_tags) {
3605 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3606 false);
3607 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3608 blk_mq_tag_resize_shared_sbitmap(set, nr);
3609 } else {
3610 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3611 nr, true);
3612 if (blk_mq_is_sbitmap_shared(set->flags)) {
3613 hctx->sched_tags->bitmap_tags =
3614 &q->sched_bitmap_tags;
3615 hctx->sched_tags->breserved_tags =
3616 &q->sched_breserved_tags;
3617 }
3618 }
3619 if (ret)
3620 break;
3621 if (q->elevator && q->elevator->type->ops.depth_updated)
3622 q->elevator->type->ops.depth_updated(hctx);
3623 }
3624 if (!ret) {
3625 q->nr_requests = nr;
3626 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3627 sbitmap_queue_resize(&q->sched_bitmap_tags,
3628 nr - set->reserved_tags);
3629 }
3630
3631 blk_mq_unquiesce_queue(q);
3632 blk_mq_unfreeze_queue(q);
3633
3634 return ret;
3635 }
3636
3637 /*
3638 * request_queue and elevator_type pair.
3639 * It is just used by __blk_mq_update_nr_hw_queues to cache
3640 * the elevator_type associated with a request_queue.
3641 */
3642 struct blk_mq_qe_pair {
3643 struct list_head node;
3644 struct request_queue *q;
3645 struct elevator_type *type;
3646 };
3647
3648 /*
3649 * Cache the elevator_type in qe pair list and switch the
3650 * io scheduler to 'none'
3651 */
3652 static bool blk_mq_elv_switch_none(struct list_head *head,
3653 struct request_queue *q)
3654 {
3655 struct blk_mq_qe_pair *qe;
3656
3657 if (!q->elevator)
3658 return true;
3659
3660 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3661 if (!qe)
3662 return false;
3663
3664 INIT_LIST_HEAD(&qe->node);
3665 qe->q = q;
3666 qe->type = q->elevator->type;
3667 list_add(&qe->node, head);
3668
3669 mutex_lock(&q->sysfs_lock);
3670 /*
3671 * After elevator_switch_mq, the previous elevator_queue will be
3672 * released by elevator_release. The reference of the io scheduler
3673 * module get by elevator_get will also be put. So we need to get
3674 * a reference of the io scheduler module here to prevent it to be
3675 * removed.
3676 */
3677 __module_get(qe->type->elevator_owner);
3678 elevator_switch_mq(q, NULL);
3679 mutex_unlock(&q->sysfs_lock);
3680
3681 return true;
3682 }
3683
3684 static void blk_mq_elv_switch_back(struct list_head *head,
3685 struct request_queue *q)
3686 {
3687 struct blk_mq_qe_pair *qe;
3688 struct elevator_type *t = NULL;
3689
3690 list_for_each_entry(qe, head, node)
3691 if (qe->q == q) {
3692 t = qe->type;
3693 break;
3694 }
3695
3696 if (!t)
3697 return;
3698
3699 list_del(&qe->node);
3700 kfree(qe);
3701
3702 mutex_lock(&q->sysfs_lock);
3703 elevator_switch_mq(q, t);
3704 mutex_unlock(&q->sysfs_lock);
3705 }
3706
3707 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3708 int nr_hw_queues)
3709 {
3710 struct request_queue *q;
3711 LIST_HEAD(head);
3712 int prev_nr_hw_queues;
3713
3714 lockdep_assert_held(&set->tag_list_lock);
3715
3716 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3717 nr_hw_queues = nr_cpu_ids;
3718 if (nr_hw_queues < 1)
3719 return;
3720 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3721 return;
3722
3723 list_for_each_entry(q, &set->tag_list, tag_set_list)
3724 blk_mq_freeze_queue(q);
3725 /*
3726 * Switch IO scheduler to 'none', cleaning up the data associated
3727 * with the previous scheduler. We will switch back once we are done
3728 * updating the new sw to hw queue mappings.
3729 */
3730 list_for_each_entry(q, &set->tag_list, tag_set_list)
3731 if (!blk_mq_elv_switch_none(&head, q))
3732 goto switch_back;
3733
3734 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3735 blk_mq_debugfs_unregister_hctxs(q);
3736 blk_mq_sysfs_unregister(q);
3737 }
3738
3739 prev_nr_hw_queues = set->nr_hw_queues;
3740 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3741 0)
3742 goto reregister;
3743
3744 set->nr_hw_queues = nr_hw_queues;
3745 fallback:
3746 blk_mq_update_queue_map(set);
3747 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3748 blk_mq_realloc_hw_ctxs(set, q);
3749 if (q->nr_hw_queues != set->nr_hw_queues) {
3750 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3751 nr_hw_queues, prev_nr_hw_queues);
3752 set->nr_hw_queues = prev_nr_hw_queues;
3753 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3754 goto fallback;
3755 }
3756 blk_mq_map_swqueue(q);
3757 }
3758
3759 reregister:
3760 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3761 blk_mq_sysfs_register(q);
3762 blk_mq_debugfs_register_hctxs(q);
3763 }
3764
3765 switch_back:
3766 list_for_each_entry(q, &set->tag_list, tag_set_list)
3767 blk_mq_elv_switch_back(&head, q);
3768
3769 list_for_each_entry(q, &set->tag_list, tag_set_list)
3770 blk_mq_unfreeze_queue(q);
3771 }
3772
3773 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3774 {
3775 mutex_lock(&set->tag_list_lock);
3776 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3777 mutex_unlock(&set->tag_list_lock);
3778 }
3779 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3780
3781 /* Enable polling stats and return whether they were already enabled. */
3782 static bool blk_poll_stats_enable(struct request_queue *q)
3783 {
3784 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3785 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3786 return true;
3787 blk_stat_add_callback(q, q->poll_cb);
3788 return false;
3789 }
3790
3791 static void blk_mq_poll_stats_start(struct request_queue *q)
3792 {
3793 /*
3794 * We don't arm the callback if polling stats are not enabled or the
3795 * callback is already active.
3796 */
3797 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3798 blk_stat_is_active(q->poll_cb))
3799 return;
3800
3801 blk_stat_activate_msecs(q->poll_cb, 100);
3802 }
3803
3804 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3805 {
3806 struct request_queue *q = cb->data;
3807 int bucket;
3808
3809 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3810 if (cb->stat[bucket].nr_samples)
3811 q->poll_stat[bucket] = cb->stat[bucket];
3812 }
3813 }
3814
3815 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3816 struct request *rq)
3817 {
3818 unsigned long ret = 0;
3819 int bucket;
3820
3821 /*
3822 * If stats collection isn't on, don't sleep but turn it on for
3823 * future users
3824 */
3825 if (!blk_poll_stats_enable(q))
3826 return 0;
3827
3828 /*
3829 * As an optimistic guess, use half of the mean service time
3830 * for this type of request. We can (and should) make this smarter.
3831 * For instance, if the completion latencies are tight, we can
3832 * get closer than just half the mean. This is especially
3833 * important on devices where the completion latencies are longer
3834 * than ~10 usec. We do use the stats for the relevant IO size
3835 * if available which does lead to better estimates.
3836 */
3837 bucket = blk_mq_poll_stats_bkt(rq);
3838 if (bucket < 0)
3839 return ret;
3840
3841 if (q->poll_stat[bucket].nr_samples)
3842 ret = (q->poll_stat[bucket].mean + 1) / 2;
3843
3844 return ret;
3845 }
3846
3847 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3848 struct request *rq)
3849 {
3850 struct hrtimer_sleeper hs;
3851 enum hrtimer_mode mode;
3852 unsigned int nsecs;
3853 ktime_t kt;
3854
3855 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3856 return false;
3857
3858 /*
3859 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3860 *
3861 * 0: use half of prev avg
3862 * >0: use this specific value
3863 */
3864 if (q->poll_nsec > 0)
3865 nsecs = q->poll_nsec;
3866 else
3867 nsecs = blk_mq_poll_nsecs(q, rq);
3868
3869 if (!nsecs)
3870 return false;
3871
3872 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3873
3874 /*
3875 * This will be replaced with the stats tracking code, using
3876 * 'avg_completion_time / 2' as the pre-sleep target.
3877 */
3878 kt = nsecs;
3879
3880 mode = HRTIMER_MODE_REL;
3881 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3882 hrtimer_set_expires(&hs.timer, kt);
3883
3884 do {
3885 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3886 break;
3887 set_current_state(TASK_UNINTERRUPTIBLE);
3888 hrtimer_sleeper_start_expires(&hs, mode);
3889 if (hs.task)
3890 io_schedule();
3891 hrtimer_cancel(&hs.timer);
3892 mode = HRTIMER_MODE_ABS;
3893 } while (hs.task && !signal_pending(current));
3894
3895 __set_current_state(TASK_RUNNING);
3896 destroy_hrtimer_on_stack(&hs.timer);
3897 return true;
3898 }
3899
3900 static bool blk_mq_poll_hybrid(struct request_queue *q,
3901 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3902 {
3903 struct request *rq;
3904
3905 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3906 return false;
3907
3908 if (!blk_qc_t_is_internal(cookie))
3909 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3910 else {
3911 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3912 /*
3913 * With scheduling, if the request has completed, we'll
3914 * get a NULL return here, as we clear the sched tag when
3915 * that happens. The request still remains valid, like always,
3916 * so we should be safe with just the NULL check.
3917 */
3918 if (!rq)
3919 return false;
3920 }
3921
3922 return blk_mq_poll_hybrid_sleep(q, rq);
3923 }
3924
3925 /**
3926 * blk_poll - poll for IO completions
3927 * @q: the queue
3928 * @cookie: cookie passed back at IO submission time
3929 * @spin: whether to spin for completions
3930 *
3931 * Description:
3932 * Poll for completions on the passed in queue. Returns number of
3933 * completed entries found. If @spin is true, then blk_poll will continue
3934 * looping until at least one completion is found, unless the task is
3935 * otherwise marked running (or we need to reschedule).
3936 */
3937 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3938 {
3939 struct blk_mq_hw_ctx *hctx;
3940 unsigned int state;
3941
3942 if (!blk_qc_t_valid(cookie) ||
3943 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3944 return 0;
3945
3946 if (current->plug)
3947 blk_flush_plug_list(current->plug, false);
3948
3949 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3950
3951 /*
3952 * If we sleep, have the caller restart the poll loop to reset
3953 * the state. Like for the other success return cases, the
3954 * caller is responsible for checking if the IO completed. If
3955 * the IO isn't complete, we'll get called again and will go
3956 * straight to the busy poll loop. If specified not to spin,
3957 * we also should not sleep.
3958 */
3959 if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3960 return 1;
3961
3962 hctx->poll_considered++;
3963
3964 state = get_current_state();
3965 do {
3966 int ret;
3967
3968 hctx->poll_invoked++;
3969
3970 ret = q->mq_ops->poll(hctx);
3971 if (ret > 0) {
3972 hctx->poll_success++;
3973 __set_current_state(TASK_RUNNING);
3974 return ret;
3975 }
3976
3977 if (signal_pending_state(state, current))
3978 __set_current_state(TASK_RUNNING);
3979
3980 if (task_is_running(current))
3981 return 1;
3982 if (ret < 0 || !spin)
3983 break;
3984 cpu_relax();
3985 } while (!need_resched());
3986
3987 __set_current_state(TASK_RUNNING);
3988 return 0;
3989 }
3990 EXPORT_SYMBOL_GPL(blk_poll);
3991
3992 unsigned int blk_mq_rq_cpu(struct request *rq)
3993 {
3994 return rq->mq_ctx->cpu;
3995 }
3996 EXPORT_SYMBOL(blk_mq_rq_cpu);
3997
3998 static int __init blk_mq_init(void)
3999 {
4000 int i;
4001
4002 for_each_possible_cpu(i)
4003 init_llist_head(&per_cpu(blk_cpu_done, i));
4004 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4005
4006 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4007 "block/softirq:dead", NULL,
4008 blk_softirq_cpu_dead);
4009 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4010 blk_mq_hctx_notify_dead);
4011 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4012 blk_mq_hctx_notify_online,
4013 blk_mq_hctx_notify_offline);
4014 return 0;
4015 }
4016 subsys_initcall(blk_mq_init);