]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
blk-mq: avoid excessive boot delays with large lun counts
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25
26 #include <trace/events/block.h>
27
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
38 /*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 unsigned int i;
44
45 for (i = 0; i < hctx->ctx_map.size; i++)
46 if (hctx->ctx_map.map[i].word)
47 return true;
48
49 return false;
50 }
51
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54 {
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
61 /*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66 {
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80
81 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
82 {
83 while (true) {
84 int ret;
85
86 if (percpu_ref_tryget_live(&q->mq_usage_counter))
87 return 0;
88
89 if (!(gfp & __GFP_WAIT))
90 return -EBUSY;
91
92 ret = wait_event_interruptible(q->mq_freeze_wq,
93 !atomic_read(&q->mq_freeze_depth) ||
94 blk_queue_dying(q));
95 if (blk_queue_dying(q))
96 return -ENODEV;
97 if (ret)
98 return ret;
99 }
100 }
101
102 static void blk_mq_queue_exit(struct request_queue *q)
103 {
104 percpu_ref_put(&q->mq_usage_counter);
105 }
106
107 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
108 {
109 struct request_queue *q =
110 container_of(ref, struct request_queue, mq_usage_counter);
111
112 wake_up_all(&q->mq_freeze_wq);
113 }
114
115 void blk_mq_freeze_queue_start(struct request_queue *q)
116 {
117 int freeze_depth;
118
119 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
120 if (freeze_depth == 1) {
121 percpu_ref_kill(&q->mq_usage_counter);
122 blk_mq_run_hw_queues(q, false);
123 }
124 }
125 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
126
127 static void blk_mq_freeze_queue_wait(struct request_queue *q)
128 {
129 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
130 }
131
132 /*
133 * Guarantee no request is in use, so we can change any data structure of
134 * the queue afterward.
135 */
136 void blk_mq_freeze_queue(struct request_queue *q)
137 {
138 blk_mq_freeze_queue_start(q);
139 blk_mq_freeze_queue_wait(q);
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142
143 void blk_mq_unfreeze_queue(struct request_queue *q)
144 {
145 int freeze_depth;
146
147 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
148 WARN_ON_ONCE(freeze_depth < 0);
149 if (!freeze_depth) {
150 percpu_ref_reinit(&q->mq_usage_counter);
151 wake_up_all(&q->mq_freeze_wq);
152 }
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155
156 void blk_mq_wake_waiters(struct request_queue *q)
157 {
158 struct blk_mq_hw_ctx *hctx;
159 unsigned int i;
160
161 queue_for_each_hw_ctx(q, hctx, i)
162 if (blk_mq_hw_queue_mapped(hctx))
163 blk_mq_tag_wakeup_all(hctx->tags, true);
164
165 /*
166 * If we are called because the queue has now been marked as
167 * dying, we need to ensure that processes currently waiting on
168 * the queue are notified as well.
169 */
170 wake_up_all(&q->mq_freeze_wq);
171 }
172
173 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
174 {
175 return blk_mq_has_free_tags(hctx->tags);
176 }
177 EXPORT_SYMBOL(blk_mq_can_queue);
178
179 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
180 struct request *rq, unsigned int rw_flags)
181 {
182 if (blk_queue_io_stat(q))
183 rw_flags |= REQ_IO_STAT;
184
185 INIT_LIST_HEAD(&rq->queuelist);
186 /* csd/requeue_work/fifo_time is initialized before use */
187 rq->q = q;
188 rq->mq_ctx = ctx;
189 rq->cmd_flags |= rw_flags;
190 /* do not touch atomic flags, it needs atomic ops against the timer */
191 rq->cpu = -1;
192 INIT_HLIST_NODE(&rq->hash);
193 RB_CLEAR_NODE(&rq->rb_node);
194 rq->rq_disk = NULL;
195 rq->part = NULL;
196 rq->start_time = jiffies;
197 #ifdef CONFIG_BLK_CGROUP
198 rq->rl = NULL;
199 set_start_time_ns(rq);
200 rq->io_start_time_ns = 0;
201 #endif
202 rq->nr_phys_segments = 0;
203 #if defined(CONFIG_BLK_DEV_INTEGRITY)
204 rq->nr_integrity_segments = 0;
205 #endif
206 rq->special = NULL;
207 /* tag was already set */
208 rq->errors = 0;
209
210 rq->cmd = rq->__cmd;
211
212 rq->extra_len = 0;
213 rq->sense_len = 0;
214 rq->resid_len = 0;
215 rq->sense = NULL;
216
217 INIT_LIST_HEAD(&rq->timeout_list);
218 rq->timeout = 0;
219
220 rq->end_io = NULL;
221 rq->end_io_data = NULL;
222 rq->next_rq = NULL;
223
224 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
225 }
226
227 static struct request *
228 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
229 {
230 struct request *rq;
231 unsigned int tag;
232
233 tag = blk_mq_get_tag(data);
234 if (tag != BLK_MQ_TAG_FAIL) {
235 rq = data->hctx->tags->rqs[tag];
236
237 if (blk_mq_tag_busy(data->hctx)) {
238 rq->cmd_flags = REQ_MQ_INFLIGHT;
239 atomic_inc(&data->hctx->nr_active);
240 }
241
242 rq->tag = tag;
243 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
244 return rq;
245 }
246
247 return NULL;
248 }
249
250 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
251 bool reserved)
252 {
253 struct blk_mq_ctx *ctx;
254 struct blk_mq_hw_ctx *hctx;
255 struct request *rq;
256 struct blk_mq_alloc_data alloc_data;
257 int ret;
258
259 ret = blk_mq_queue_enter(q, gfp);
260 if (ret)
261 return ERR_PTR(ret);
262
263 ctx = blk_mq_get_ctx(q);
264 hctx = q->mq_ops->map_queue(q, ctx->cpu);
265 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
266 reserved, ctx, hctx);
267
268 rq = __blk_mq_alloc_request(&alloc_data, rw);
269 if (!rq && (gfp & __GFP_WAIT)) {
270 __blk_mq_run_hw_queue(hctx);
271 blk_mq_put_ctx(ctx);
272
273 ctx = blk_mq_get_ctx(q);
274 hctx = q->mq_ops->map_queue(q, ctx->cpu);
275 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
276 hctx);
277 rq = __blk_mq_alloc_request(&alloc_data, rw);
278 ctx = alloc_data.ctx;
279 }
280 blk_mq_put_ctx(ctx);
281 if (!rq) {
282 blk_mq_queue_exit(q);
283 return ERR_PTR(-EWOULDBLOCK);
284 }
285 return rq;
286 }
287 EXPORT_SYMBOL(blk_mq_alloc_request);
288
289 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
290 struct blk_mq_ctx *ctx, struct request *rq)
291 {
292 const int tag = rq->tag;
293 struct request_queue *q = rq->q;
294
295 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
296 atomic_dec(&hctx->nr_active);
297 rq->cmd_flags = 0;
298
299 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
300 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
301 blk_mq_queue_exit(q);
302 }
303
304 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
305 {
306 struct blk_mq_ctx *ctx = rq->mq_ctx;
307
308 ctx->rq_completed[rq_is_sync(rq)]++;
309 __blk_mq_free_request(hctx, ctx, rq);
310
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
313
314 void blk_mq_free_request(struct request *rq)
315 {
316 struct blk_mq_hw_ctx *hctx;
317 struct request_queue *q = rq->q;
318
319 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
320 blk_mq_free_hctx_request(hctx, rq);
321 }
322 EXPORT_SYMBOL_GPL(blk_mq_free_request);
323
324 inline void __blk_mq_end_request(struct request *rq, int error)
325 {
326 blk_account_io_done(rq);
327
328 if (rq->end_io) {
329 rq->end_io(rq, error);
330 } else {
331 if (unlikely(blk_bidi_rq(rq)))
332 blk_mq_free_request(rq->next_rq);
333 blk_mq_free_request(rq);
334 }
335 }
336 EXPORT_SYMBOL(__blk_mq_end_request);
337
338 void blk_mq_end_request(struct request *rq, int error)
339 {
340 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
341 BUG();
342 __blk_mq_end_request(rq, error);
343 }
344 EXPORT_SYMBOL(blk_mq_end_request);
345
346 static void __blk_mq_complete_request_remote(void *data)
347 {
348 struct request *rq = data;
349
350 rq->q->softirq_done_fn(rq);
351 }
352
353 static void blk_mq_ipi_complete_request(struct request *rq)
354 {
355 struct blk_mq_ctx *ctx = rq->mq_ctx;
356 bool shared = false;
357 int cpu;
358
359 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
360 rq->q->softirq_done_fn(rq);
361 return;
362 }
363
364 cpu = get_cpu();
365 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
366 shared = cpus_share_cache(cpu, ctx->cpu);
367
368 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
369 rq->csd.func = __blk_mq_complete_request_remote;
370 rq->csd.info = rq;
371 rq->csd.flags = 0;
372 smp_call_function_single_async(ctx->cpu, &rq->csd);
373 } else {
374 rq->q->softirq_done_fn(rq);
375 }
376 put_cpu();
377 }
378
379 void __blk_mq_complete_request(struct request *rq)
380 {
381 struct request_queue *q = rq->q;
382
383 if (!q->softirq_done_fn)
384 blk_mq_end_request(rq, rq->errors);
385 else
386 blk_mq_ipi_complete_request(rq);
387 }
388
389 /**
390 * blk_mq_complete_request - end I/O on a request
391 * @rq: the request being processed
392 *
393 * Description:
394 * Ends all I/O on a request. It does not handle partial completions.
395 * The actual completion happens out-of-order, through a IPI handler.
396 **/
397 void blk_mq_complete_request(struct request *rq, int error)
398 {
399 struct request_queue *q = rq->q;
400
401 if (unlikely(blk_should_fake_timeout(q)))
402 return;
403 if (!blk_mark_rq_complete(rq)) {
404 rq->errors = error;
405 __blk_mq_complete_request(rq);
406 }
407 }
408 EXPORT_SYMBOL(blk_mq_complete_request);
409
410 int blk_mq_request_started(struct request *rq)
411 {
412 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 }
414 EXPORT_SYMBOL_GPL(blk_mq_request_started);
415
416 void blk_mq_start_request(struct request *rq)
417 {
418 struct request_queue *q = rq->q;
419
420 trace_block_rq_issue(q, rq);
421
422 rq->resid_len = blk_rq_bytes(rq);
423 if (unlikely(blk_bidi_rq(rq)))
424 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
425
426 blk_add_timer(rq);
427
428 /*
429 * Ensure that ->deadline is visible before set the started
430 * flag and clear the completed flag.
431 */
432 smp_mb__before_atomic();
433
434 /*
435 * Mark us as started and clear complete. Complete might have been
436 * set if requeue raced with timeout, which then marked it as
437 * complete. So be sure to clear complete again when we start
438 * the request, otherwise we'll ignore the completion event.
439 */
440 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
441 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
442 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
443 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
444
445 if (q->dma_drain_size && blk_rq_bytes(rq)) {
446 /*
447 * Make sure space for the drain appears. We know we can do
448 * this because max_hw_segments has been adjusted to be one
449 * fewer than the device can handle.
450 */
451 rq->nr_phys_segments++;
452 }
453 }
454 EXPORT_SYMBOL(blk_mq_start_request);
455
456 static void __blk_mq_requeue_request(struct request *rq)
457 {
458 struct request_queue *q = rq->q;
459
460 trace_block_rq_requeue(q, rq);
461
462 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
463 if (q->dma_drain_size && blk_rq_bytes(rq))
464 rq->nr_phys_segments--;
465 }
466 }
467
468 void blk_mq_requeue_request(struct request *rq)
469 {
470 __blk_mq_requeue_request(rq);
471
472 BUG_ON(blk_queued_rq(rq));
473 blk_mq_add_to_requeue_list(rq, true);
474 }
475 EXPORT_SYMBOL(blk_mq_requeue_request);
476
477 static void blk_mq_requeue_work(struct work_struct *work)
478 {
479 struct request_queue *q =
480 container_of(work, struct request_queue, requeue_work);
481 LIST_HEAD(rq_list);
482 struct request *rq, *next;
483 unsigned long flags;
484
485 spin_lock_irqsave(&q->requeue_lock, flags);
486 list_splice_init(&q->requeue_list, &rq_list);
487 spin_unlock_irqrestore(&q->requeue_lock, flags);
488
489 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
490 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
491 continue;
492
493 rq->cmd_flags &= ~REQ_SOFTBARRIER;
494 list_del_init(&rq->queuelist);
495 blk_mq_insert_request(rq, true, false, false);
496 }
497
498 while (!list_empty(&rq_list)) {
499 rq = list_entry(rq_list.next, struct request, queuelist);
500 list_del_init(&rq->queuelist);
501 blk_mq_insert_request(rq, false, false, false);
502 }
503
504 /*
505 * Use the start variant of queue running here, so that running
506 * the requeue work will kick stopped queues.
507 */
508 blk_mq_start_hw_queues(q);
509 }
510
511 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
512 {
513 struct request_queue *q = rq->q;
514 unsigned long flags;
515
516 /*
517 * We abuse this flag that is otherwise used by the I/O scheduler to
518 * request head insertation from the workqueue.
519 */
520 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
521
522 spin_lock_irqsave(&q->requeue_lock, flags);
523 if (at_head) {
524 rq->cmd_flags |= REQ_SOFTBARRIER;
525 list_add(&rq->queuelist, &q->requeue_list);
526 } else {
527 list_add_tail(&rq->queuelist, &q->requeue_list);
528 }
529 spin_unlock_irqrestore(&q->requeue_lock, flags);
530 }
531 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
532
533 void blk_mq_cancel_requeue_work(struct request_queue *q)
534 {
535 cancel_work_sync(&q->requeue_work);
536 }
537 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
538
539 void blk_mq_kick_requeue_list(struct request_queue *q)
540 {
541 kblockd_schedule_work(&q->requeue_work);
542 }
543 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
544
545 void blk_mq_abort_requeue_list(struct request_queue *q)
546 {
547 unsigned long flags;
548 LIST_HEAD(rq_list);
549
550 spin_lock_irqsave(&q->requeue_lock, flags);
551 list_splice_init(&q->requeue_list, &rq_list);
552 spin_unlock_irqrestore(&q->requeue_lock, flags);
553
554 while (!list_empty(&rq_list)) {
555 struct request *rq;
556
557 rq = list_first_entry(&rq_list, struct request, queuelist);
558 list_del_init(&rq->queuelist);
559 rq->errors = -EIO;
560 blk_mq_end_request(rq, rq->errors);
561 }
562 }
563 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
564
565 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
566 {
567 return tags->rqs[tag];
568 }
569 EXPORT_SYMBOL(blk_mq_tag_to_rq);
570
571 struct blk_mq_timeout_data {
572 unsigned long next;
573 unsigned int next_set;
574 };
575
576 void blk_mq_rq_timed_out(struct request *req, bool reserved)
577 {
578 struct blk_mq_ops *ops = req->q->mq_ops;
579 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
580
581 /*
582 * We know that complete is set at this point. If STARTED isn't set
583 * anymore, then the request isn't active and the "timeout" should
584 * just be ignored. This can happen due to the bitflag ordering.
585 * Timeout first checks if STARTED is set, and if it is, assumes
586 * the request is active. But if we race with completion, then
587 * we both flags will get cleared. So check here again, and ignore
588 * a timeout event with a request that isn't active.
589 */
590 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
591 return;
592
593 if (ops->timeout)
594 ret = ops->timeout(req, reserved);
595
596 switch (ret) {
597 case BLK_EH_HANDLED:
598 __blk_mq_complete_request(req);
599 break;
600 case BLK_EH_RESET_TIMER:
601 blk_add_timer(req);
602 blk_clear_rq_complete(req);
603 break;
604 case BLK_EH_NOT_HANDLED:
605 break;
606 default:
607 printk(KERN_ERR "block: bad eh return: %d\n", ret);
608 break;
609 }
610 }
611
612 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
613 struct request *rq, void *priv, bool reserved)
614 {
615 struct blk_mq_timeout_data *data = priv;
616
617 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
618 /*
619 * If a request wasn't started before the queue was
620 * marked dying, kill it here or it'll go unnoticed.
621 */
622 if (unlikely(blk_queue_dying(rq->q)))
623 blk_mq_complete_request(rq, -EIO);
624 return;
625 }
626 if (rq->cmd_flags & REQ_NO_TIMEOUT)
627 return;
628
629 if (time_after_eq(jiffies, rq->deadline)) {
630 if (!blk_mark_rq_complete(rq))
631 blk_mq_rq_timed_out(rq, reserved);
632 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
633 data->next = rq->deadline;
634 data->next_set = 1;
635 }
636 }
637
638 static void blk_mq_rq_timer(unsigned long priv)
639 {
640 struct request_queue *q = (struct request_queue *)priv;
641 struct blk_mq_timeout_data data = {
642 .next = 0,
643 .next_set = 0,
644 };
645 int i;
646
647 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
648
649 if (data.next_set) {
650 data.next = blk_rq_timeout(round_jiffies_up(data.next));
651 mod_timer(&q->timeout, data.next);
652 } else {
653 struct blk_mq_hw_ctx *hctx;
654
655 queue_for_each_hw_ctx(q, hctx, i) {
656 /* the hctx may be unmapped, so check it here */
657 if (blk_mq_hw_queue_mapped(hctx))
658 blk_mq_tag_idle(hctx);
659 }
660 }
661 }
662
663 /*
664 * Reverse check our software queue for entries that we could potentially
665 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
666 * too much time checking for merges.
667 */
668 static bool blk_mq_attempt_merge(struct request_queue *q,
669 struct blk_mq_ctx *ctx, struct bio *bio)
670 {
671 struct request *rq;
672 int checked = 8;
673
674 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
675 int el_ret;
676
677 if (!checked--)
678 break;
679
680 if (!blk_rq_merge_ok(rq, bio))
681 continue;
682
683 el_ret = blk_try_merge(rq, bio);
684 if (el_ret == ELEVATOR_BACK_MERGE) {
685 if (bio_attempt_back_merge(q, rq, bio)) {
686 ctx->rq_merged++;
687 return true;
688 }
689 break;
690 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
691 if (bio_attempt_front_merge(q, rq, bio)) {
692 ctx->rq_merged++;
693 return true;
694 }
695 break;
696 }
697 }
698
699 return false;
700 }
701
702 /*
703 * Process software queues that have been marked busy, splicing them
704 * to the for-dispatch
705 */
706 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
707 {
708 struct blk_mq_ctx *ctx;
709 int i;
710
711 for (i = 0; i < hctx->ctx_map.size; i++) {
712 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
713 unsigned int off, bit;
714
715 if (!bm->word)
716 continue;
717
718 bit = 0;
719 off = i * hctx->ctx_map.bits_per_word;
720 do {
721 bit = find_next_bit(&bm->word, bm->depth, bit);
722 if (bit >= bm->depth)
723 break;
724
725 ctx = hctx->ctxs[bit + off];
726 clear_bit(bit, &bm->word);
727 spin_lock(&ctx->lock);
728 list_splice_tail_init(&ctx->rq_list, list);
729 spin_unlock(&ctx->lock);
730
731 bit++;
732 } while (1);
733 }
734 }
735
736 /*
737 * Run this hardware queue, pulling any software queues mapped to it in.
738 * Note that this function currently has various problems around ordering
739 * of IO. In particular, we'd like FIFO behaviour on handling existing
740 * items on the hctx->dispatch list. Ignore that for now.
741 */
742 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
743 {
744 struct request_queue *q = hctx->queue;
745 struct request *rq;
746 LIST_HEAD(rq_list);
747 LIST_HEAD(driver_list);
748 struct list_head *dptr;
749 int queued;
750
751 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
752
753 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
754 return;
755
756 hctx->run++;
757
758 /*
759 * Touch any software queue that has pending entries.
760 */
761 flush_busy_ctxs(hctx, &rq_list);
762
763 /*
764 * If we have previous entries on our dispatch list, grab them
765 * and stuff them at the front for more fair dispatch.
766 */
767 if (!list_empty_careful(&hctx->dispatch)) {
768 spin_lock(&hctx->lock);
769 if (!list_empty(&hctx->dispatch))
770 list_splice_init(&hctx->dispatch, &rq_list);
771 spin_unlock(&hctx->lock);
772 }
773
774 /*
775 * Start off with dptr being NULL, so we start the first request
776 * immediately, even if we have more pending.
777 */
778 dptr = NULL;
779
780 /*
781 * Now process all the entries, sending them to the driver.
782 */
783 queued = 0;
784 while (!list_empty(&rq_list)) {
785 struct blk_mq_queue_data bd;
786 int ret;
787
788 rq = list_first_entry(&rq_list, struct request, queuelist);
789 list_del_init(&rq->queuelist);
790
791 bd.rq = rq;
792 bd.list = dptr;
793 bd.last = list_empty(&rq_list);
794
795 ret = q->mq_ops->queue_rq(hctx, &bd);
796 switch (ret) {
797 case BLK_MQ_RQ_QUEUE_OK:
798 queued++;
799 continue;
800 case BLK_MQ_RQ_QUEUE_BUSY:
801 list_add(&rq->queuelist, &rq_list);
802 __blk_mq_requeue_request(rq);
803 break;
804 default:
805 pr_err("blk-mq: bad return on queue: %d\n", ret);
806 case BLK_MQ_RQ_QUEUE_ERROR:
807 rq->errors = -EIO;
808 blk_mq_end_request(rq, rq->errors);
809 break;
810 }
811
812 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
813 break;
814
815 /*
816 * We've done the first request. If we have more than 1
817 * left in the list, set dptr to defer issue.
818 */
819 if (!dptr && rq_list.next != rq_list.prev)
820 dptr = &driver_list;
821 }
822
823 if (!queued)
824 hctx->dispatched[0]++;
825 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
826 hctx->dispatched[ilog2(queued) + 1]++;
827
828 /*
829 * Any items that need requeuing? Stuff them into hctx->dispatch,
830 * that is where we will continue on next queue run.
831 */
832 if (!list_empty(&rq_list)) {
833 spin_lock(&hctx->lock);
834 list_splice(&rq_list, &hctx->dispatch);
835 spin_unlock(&hctx->lock);
836 /*
837 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
838 * it's possible the queue is stopped and restarted again
839 * before this. Queue restart will dispatch requests. And since
840 * requests in rq_list aren't added into hctx->dispatch yet,
841 * the requests in rq_list might get lost.
842 *
843 * blk_mq_run_hw_queue() already checks the STOPPED bit
844 **/
845 blk_mq_run_hw_queue(hctx, true);
846 }
847 }
848
849 /*
850 * It'd be great if the workqueue API had a way to pass
851 * in a mask and had some smarts for more clever placement.
852 * For now we just round-robin here, switching for every
853 * BLK_MQ_CPU_WORK_BATCH queued items.
854 */
855 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
856 {
857 if (hctx->queue->nr_hw_queues == 1)
858 return WORK_CPU_UNBOUND;
859
860 if (--hctx->next_cpu_batch <= 0) {
861 int cpu = hctx->next_cpu, next_cpu;
862
863 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
864 if (next_cpu >= nr_cpu_ids)
865 next_cpu = cpumask_first(hctx->cpumask);
866
867 hctx->next_cpu = next_cpu;
868 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
869
870 return cpu;
871 }
872
873 return hctx->next_cpu;
874 }
875
876 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
877 {
878 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
879 !blk_mq_hw_queue_mapped(hctx)))
880 return;
881
882 if (!async) {
883 int cpu = get_cpu();
884 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
885 __blk_mq_run_hw_queue(hctx);
886 put_cpu();
887 return;
888 }
889
890 put_cpu();
891 }
892
893 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
894 &hctx->run_work, 0);
895 }
896
897 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
898 {
899 struct blk_mq_hw_ctx *hctx;
900 int i;
901
902 queue_for_each_hw_ctx(q, hctx, i) {
903 if ((!blk_mq_hctx_has_pending(hctx) &&
904 list_empty_careful(&hctx->dispatch)) ||
905 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
906 continue;
907
908 blk_mq_run_hw_queue(hctx, async);
909 }
910 }
911 EXPORT_SYMBOL(blk_mq_run_hw_queues);
912
913 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
914 {
915 cancel_delayed_work(&hctx->run_work);
916 cancel_delayed_work(&hctx->delay_work);
917 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
918 }
919 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
920
921 void blk_mq_stop_hw_queues(struct request_queue *q)
922 {
923 struct blk_mq_hw_ctx *hctx;
924 int i;
925
926 queue_for_each_hw_ctx(q, hctx, i)
927 blk_mq_stop_hw_queue(hctx);
928 }
929 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
930
931 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
932 {
933 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
934
935 blk_mq_run_hw_queue(hctx, false);
936 }
937 EXPORT_SYMBOL(blk_mq_start_hw_queue);
938
939 void blk_mq_start_hw_queues(struct request_queue *q)
940 {
941 struct blk_mq_hw_ctx *hctx;
942 int i;
943
944 queue_for_each_hw_ctx(q, hctx, i)
945 blk_mq_start_hw_queue(hctx);
946 }
947 EXPORT_SYMBOL(blk_mq_start_hw_queues);
948
949 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
950 {
951 struct blk_mq_hw_ctx *hctx;
952 int i;
953
954 queue_for_each_hw_ctx(q, hctx, i) {
955 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
956 continue;
957
958 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
959 blk_mq_run_hw_queue(hctx, async);
960 }
961 }
962 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
963
964 static void blk_mq_run_work_fn(struct work_struct *work)
965 {
966 struct blk_mq_hw_ctx *hctx;
967
968 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
969
970 __blk_mq_run_hw_queue(hctx);
971 }
972
973 static void blk_mq_delay_work_fn(struct work_struct *work)
974 {
975 struct blk_mq_hw_ctx *hctx;
976
977 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
978
979 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
980 __blk_mq_run_hw_queue(hctx);
981 }
982
983 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
984 {
985 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
986 return;
987
988 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
989 &hctx->delay_work, msecs_to_jiffies(msecs));
990 }
991 EXPORT_SYMBOL(blk_mq_delay_queue);
992
993 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
994 struct blk_mq_ctx *ctx,
995 struct request *rq,
996 bool at_head)
997 {
998 trace_block_rq_insert(hctx->queue, rq);
999
1000 if (at_head)
1001 list_add(&rq->queuelist, &ctx->rq_list);
1002 else
1003 list_add_tail(&rq->queuelist, &ctx->rq_list);
1004 }
1005
1006 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1007 struct request *rq, bool at_head)
1008 {
1009 struct blk_mq_ctx *ctx = rq->mq_ctx;
1010
1011 __blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1012 blk_mq_hctx_mark_pending(hctx, ctx);
1013 }
1014
1015 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1016 bool async)
1017 {
1018 struct request_queue *q = rq->q;
1019 struct blk_mq_hw_ctx *hctx;
1020 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1021
1022 current_ctx = blk_mq_get_ctx(q);
1023 if (!cpu_online(ctx->cpu))
1024 rq->mq_ctx = ctx = current_ctx;
1025
1026 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1027
1028 spin_lock(&ctx->lock);
1029 __blk_mq_insert_request(hctx, rq, at_head);
1030 spin_unlock(&ctx->lock);
1031
1032 if (run_queue)
1033 blk_mq_run_hw_queue(hctx, async);
1034
1035 blk_mq_put_ctx(current_ctx);
1036 }
1037
1038 static void blk_mq_insert_requests(struct request_queue *q,
1039 struct blk_mq_ctx *ctx,
1040 struct list_head *list,
1041 int depth,
1042 bool from_schedule)
1043
1044 {
1045 struct blk_mq_hw_ctx *hctx;
1046 struct blk_mq_ctx *current_ctx;
1047
1048 trace_block_unplug(q, depth, !from_schedule);
1049
1050 current_ctx = blk_mq_get_ctx(q);
1051
1052 if (!cpu_online(ctx->cpu))
1053 ctx = current_ctx;
1054 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1055
1056 /*
1057 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1058 * offline now
1059 */
1060 spin_lock(&ctx->lock);
1061 while (!list_empty(list)) {
1062 struct request *rq;
1063
1064 rq = list_first_entry(list, struct request, queuelist);
1065 list_del_init(&rq->queuelist);
1066 rq->mq_ctx = ctx;
1067 __blk_mq_insert_req_list(hctx, ctx, rq, false);
1068 }
1069 blk_mq_hctx_mark_pending(hctx, ctx);
1070 spin_unlock(&ctx->lock);
1071
1072 blk_mq_run_hw_queue(hctx, from_schedule);
1073 blk_mq_put_ctx(current_ctx);
1074 }
1075
1076 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1077 {
1078 struct request *rqa = container_of(a, struct request, queuelist);
1079 struct request *rqb = container_of(b, struct request, queuelist);
1080
1081 return !(rqa->mq_ctx < rqb->mq_ctx ||
1082 (rqa->mq_ctx == rqb->mq_ctx &&
1083 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1084 }
1085
1086 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1087 {
1088 struct blk_mq_ctx *this_ctx;
1089 struct request_queue *this_q;
1090 struct request *rq;
1091 LIST_HEAD(list);
1092 LIST_HEAD(ctx_list);
1093 unsigned int depth;
1094
1095 list_splice_init(&plug->mq_list, &list);
1096
1097 list_sort(NULL, &list, plug_ctx_cmp);
1098
1099 this_q = NULL;
1100 this_ctx = NULL;
1101 depth = 0;
1102
1103 while (!list_empty(&list)) {
1104 rq = list_entry_rq(list.next);
1105 list_del_init(&rq->queuelist);
1106 BUG_ON(!rq->q);
1107 if (rq->mq_ctx != this_ctx) {
1108 if (this_ctx) {
1109 blk_mq_insert_requests(this_q, this_ctx,
1110 &ctx_list, depth,
1111 from_schedule);
1112 }
1113
1114 this_ctx = rq->mq_ctx;
1115 this_q = rq->q;
1116 depth = 0;
1117 }
1118
1119 depth++;
1120 list_add_tail(&rq->queuelist, &ctx_list);
1121 }
1122
1123 /*
1124 * If 'this_ctx' is set, we know we have entries to complete
1125 * on 'ctx_list'. Do those.
1126 */
1127 if (this_ctx) {
1128 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1129 from_schedule);
1130 }
1131 }
1132
1133 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1134 {
1135 init_request_from_bio(rq, bio);
1136
1137 if (blk_do_io_stat(rq))
1138 blk_account_io_start(rq, 1);
1139 }
1140
1141 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1142 {
1143 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1144 !blk_queue_nomerges(hctx->queue);
1145 }
1146
1147 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1148 struct blk_mq_ctx *ctx,
1149 struct request *rq, struct bio *bio)
1150 {
1151 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1152 blk_mq_bio_to_request(rq, bio);
1153 spin_lock(&ctx->lock);
1154 insert_rq:
1155 __blk_mq_insert_request(hctx, rq, false);
1156 spin_unlock(&ctx->lock);
1157 return false;
1158 } else {
1159 struct request_queue *q = hctx->queue;
1160
1161 spin_lock(&ctx->lock);
1162 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1163 blk_mq_bio_to_request(rq, bio);
1164 goto insert_rq;
1165 }
1166
1167 spin_unlock(&ctx->lock);
1168 __blk_mq_free_request(hctx, ctx, rq);
1169 return true;
1170 }
1171 }
1172
1173 struct blk_map_ctx {
1174 struct blk_mq_hw_ctx *hctx;
1175 struct blk_mq_ctx *ctx;
1176 };
1177
1178 static struct request *blk_mq_map_request(struct request_queue *q,
1179 struct bio *bio,
1180 struct blk_map_ctx *data)
1181 {
1182 struct blk_mq_hw_ctx *hctx;
1183 struct blk_mq_ctx *ctx;
1184 struct request *rq;
1185 int rw = bio_data_dir(bio);
1186 struct blk_mq_alloc_data alloc_data;
1187
1188 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1189 bio_io_error(bio);
1190 return NULL;
1191 }
1192
1193 ctx = blk_mq_get_ctx(q);
1194 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1195
1196 if (rw_is_sync(bio->bi_rw))
1197 rw |= REQ_SYNC;
1198
1199 trace_block_getrq(q, bio, rw);
1200 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1201 hctx);
1202 rq = __blk_mq_alloc_request(&alloc_data, rw);
1203 if (unlikely(!rq)) {
1204 __blk_mq_run_hw_queue(hctx);
1205 blk_mq_put_ctx(ctx);
1206 trace_block_sleeprq(q, bio, rw);
1207
1208 ctx = blk_mq_get_ctx(q);
1209 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1210 blk_mq_set_alloc_data(&alloc_data, q,
1211 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1212 rq = __blk_mq_alloc_request(&alloc_data, rw);
1213 ctx = alloc_data.ctx;
1214 hctx = alloc_data.hctx;
1215 }
1216
1217 hctx->queued++;
1218 data->hctx = hctx;
1219 data->ctx = ctx;
1220 return rq;
1221 }
1222
1223 static int blk_mq_direct_issue_request(struct request *rq)
1224 {
1225 int ret;
1226 struct request_queue *q = rq->q;
1227 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1228 rq->mq_ctx->cpu);
1229 struct blk_mq_queue_data bd = {
1230 .rq = rq,
1231 .list = NULL,
1232 .last = 1
1233 };
1234
1235 /*
1236 * For OK queue, we are done. For error, kill it. Any other
1237 * error (busy), just add it to our list as we previously
1238 * would have done
1239 */
1240 ret = q->mq_ops->queue_rq(hctx, &bd);
1241 if (ret == BLK_MQ_RQ_QUEUE_OK)
1242 return 0;
1243 else {
1244 __blk_mq_requeue_request(rq);
1245
1246 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1247 rq->errors = -EIO;
1248 blk_mq_end_request(rq, rq->errors);
1249 return 0;
1250 }
1251 return -1;
1252 }
1253 }
1254
1255 /*
1256 * Multiple hardware queue variant. This will not use per-process plugs,
1257 * but will attempt to bypass the hctx queueing if we can go straight to
1258 * hardware for SYNC IO.
1259 */
1260 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1261 {
1262 const int is_sync = rw_is_sync(bio->bi_rw);
1263 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1264 struct blk_map_ctx data;
1265 struct request *rq;
1266 unsigned int request_count = 0;
1267 struct blk_plug *plug;
1268 struct request *same_queue_rq = NULL;
1269
1270 blk_queue_bounce(q, &bio);
1271
1272 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1273 bio_io_error(bio);
1274 return;
1275 }
1276
1277 blk_queue_split(q, &bio, q->bio_split);
1278
1279 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1280 if (blk_attempt_plug_merge(q, bio, &request_count,
1281 &same_queue_rq))
1282 return;
1283 } else
1284 request_count = blk_plug_queued_count(q);
1285
1286 rq = blk_mq_map_request(q, bio, &data);
1287 if (unlikely(!rq))
1288 return;
1289
1290 if (unlikely(is_flush_fua)) {
1291 blk_mq_bio_to_request(rq, bio);
1292 blk_insert_flush(rq);
1293 goto run_queue;
1294 }
1295
1296 plug = current->plug;
1297 /*
1298 * If the driver supports defer issued based on 'last', then
1299 * queue it up like normal since we can potentially save some
1300 * CPU this way.
1301 */
1302 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1303 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1304 struct request *old_rq = NULL;
1305
1306 blk_mq_bio_to_request(rq, bio);
1307
1308 /*
1309 * we do limited pluging. If bio can be merged, do merge.
1310 * Otherwise the existing request in the plug list will be
1311 * issued. So the plug list will have one request at most
1312 */
1313 if (plug) {
1314 /*
1315 * The plug list might get flushed before this. If that
1316 * happens, same_queue_rq is invalid and plug list is empty
1317 **/
1318 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1319 old_rq = same_queue_rq;
1320 list_del_init(&old_rq->queuelist);
1321 }
1322 list_add_tail(&rq->queuelist, &plug->mq_list);
1323 } else /* is_sync */
1324 old_rq = rq;
1325 blk_mq_put_ctx(data.ctx);
1326 if (!old_rq)
1327 return;
1328 if (!blk_mq_direct_issue_request(old_rq))
1329 return;
1330 blk_mq_insert_request(old_rq, false, true, true);
1331 return;
1332 }
1333
1334 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1335 /*
1336 * For a SYNC request, send it to the hardware immediately. For
1337 * an ASYNC request, just ensure that we run it later on. The
1338 * latter allows for merging opportunities and more efficient
1339 * dispatching.
1340 */
1341 run_queue:
1342 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1343 }
1344 blk_mq_put_ctx(data.ctx);
1345 }
1346
1347 /*
1348 * Single hardware queue variant. This will attempt to use any per-process
1349 * plug for merging and IO deferral.
1350 */
1351 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1352 {
1353 const int is_sync = rw_is_sync(bio->bi_rw);
1354 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1355 struct blk_plug *plug;
1356 unsigned int request_count = 0;
1357 struct blk_map_ctx data;
1358 struct request *rq;
1359
1360 blk_queue_bounce(q, &bio);
1361
1362 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1363 bio_io_error(bio);
1364 return;
1365 }
1366
1367 blk_queue_split(q, &bio, q->bio_split);
1368
1369 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1370 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1371 return;
1372
1373 rq = blk_mq_map_request(q, bio, &data);
1374 if (unlikely(!rq))
1375 return;
1376
1377 if (unlikely(is_flush_fua)) {
1378 blk_mq_bio_to_request(rq, bio);
1379 blk_insert_flush(rq);
1380 goto run_queue;
1381 }
1382
1383 /*
1384 * A task plug currently exists. Since this is completely lockless,
1385 * utilize that to temporarily store requests until the task is
1386 * either done or scheduled away.
1387 */
1388 plug = current->plug;
1389 if (plug) {
1390 blk_mq_bio_to_request(rq, bio);
1391 if (!request_count)
1392 trace_block_plug(q);
1393 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1394 blk_flush_plug_list(plug, false);
1395 trace_block_plug(q);
1396 }
1397 list_add_tail(&rq->queuelist, &plug->mq_list);
1398 blk_mq_put_ctx(data.ctx);
1399 return;
1400 }
1401
1402 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1403 /*
1404 * For a SYNC request, send it to the hardware immediately. For
1405 * an ASYNC request, just ensure that we run it later on. The
1406 * latter allows for merging opportunities and more efficient
1407 * dispatching.
1408 */
1409 run_queue:
1410 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1411 }
1412
1413 blk_mq_put_ctx(data.ctx);
1414 }
1415
1416 /*
1417 * Default mapping to a software queue, since we use one per CPU.
1418 */
1419 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1420 {
1421 return q->queue_hw_ctx[q->mq_map[cpu]];
1422 }
1423 EXPORT_SYMBOL(blk_mq_map_queue);
1424
1425 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1426 struct blk_mq_tags *tags, unsigned int hctx_idx)
1427 {
1428 struct page *page;
1429
1430 if (tags->rqs && set->ops->exit_request) {
1431 int i;
1432
1433 for (i = 0; i < tags->nr_tags; i++) {
1434 if (!tags->rqs[i])
1435 continue;
1436 set->ops->exit_request(set->driver_data, tags->rqs[i],
1437 hctx_idx, i);
1438 tags->rqs[i] = NULL;
1439 }
1440 }
1441
1442 while (!list_empty(&tags->page_list)) {
1443 page = list_first_entry(&tags->page_list, struct page, lru);
1444 list_del_init(&page->lru);
1445 /*
1446 * Remove kmemleak object previously allocated in
1447 * blk_mq_init_rq_map().
1448 */
1449 kmemleak_free(page_address(page));
1450 __free_pages(page, page->private);
1451 }
1452
1453 kfree(tags->rqs);
1454
1455 blk_mq_free_tags(tags);
1456 }
1457
1458 static size_t order_to_size(unsigned int order)
1459 {
1460 return (size_t)PAGE_SIZE << order;
1461 }
1462
1463 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1464 unsigned int hctx_idx)
1465 {
1466 struct blk_mq_tags *tags;
1467 unsigned int i, j, entries_per_page, max_order = 4;
1468 size_t rq_size, left;
1469
1470 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1471 set->numa_node,
1472 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1473 if (!tags)
1474 return NULL;
1475
1476 INIT_LIST_HEAD(&tags->page_list);
1477
1478 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1479 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1480 set->numa_node);
1481 if (!tags->rqs) {
1482 blk_mq_free_tags(tags);
1483 return NULL;
1484 }
1485
1486 /*
1487 * rq_size is the size of the request plus driver payload, rounded
1488 * to the cacheline size
1489 */
1490 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1491 cache_line_size());
1492 left = rq_size * set->queue_depth;
1493
1494 for (i = 0; i < set->queue_depth; ) {
1495 int this_order = max_order;
1496 struct page *page;
1497 int to_do;
1498 void *p;
1499
1500 while (left < order_to_size(this_order - 1) && this_order)
1501 this_order--;
1502
1503 do {
1504 page = alloc_pages_node(set->numa_node,
1505 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1506 this_order);
1507 if (page)
1508 break;
1509 if (!this_order--)
1510 break;
1511 if (order_to_size(this_order) < rq_size)
1512 break;
1513 } while (1);
1514
1515 if (!page)
1516 goto fail;
1517
1518 page->private = this_order;
1519 list_add_tail(&page->lru, &tags->page_list);
1520
1521 p = page_address(page);
1522 /*
1523 * Allow kmemleak to scan these pages as they contain pointers
1524 * to additional allocations like via ops->init_request().
1525 */
1526 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1527 entries_per_page = order_to_size(this_order) / rq_size;
1528 to_do = min(entries_per_page, set->queue_depth - i);
1529 left -= to_do * rq_size;
1530 for (j = 0; j < to_do; j++) {
1531 tags->rqs[i] = p;
1532 if (set->ops->init_request) {
1533 if (set->ops->init_request(set->driver_data,
1534 tags->rqs[i], hctx_idx, i,
1535 set->numa_node)) {
1536 tags->rqs[i] = NULL;
1537 goto fail;
1538 }
1539 }
1540
1541 p += rq_size;
1542 i++;
1543 }
1544 }
1545 return tags;
1546
1547 fail:
1548 blk_mq_free_rq_map(set, tags, hctx_idx);
1549 return NULL;
1550 }
1551
1552 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1553 {
1554 kfree(bitmap->map);
1555 }
1556
1557 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1558 {
1559 unsigned int bpw = 8, total, num_maps, i;
1560
1561 bitmap->bits_per_word = bpw;
1562
1563 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1564 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1565 GFP_KERNEL, node);
1566 if (!bitmap->map)
1567 return -ENOMEM;
1568
1569 total = nr_cpu_ids;
1570 for (i = 0; i < num_maps; i++) {
1571 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1572 total -= bitmap->map[i].depth;
1573 }
1574
1575 return 0;
1576 }
1577
1578 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1579 {
1580 struct request_queue *q = hctx->queue;
1581 struct blk_mq_ctx *ctx;
1582 LIST_HEAD(tmp);
1583
1584 /*
1585 * Move ctx entries to new CPU, if this one is going away.
1586 */
1587 ctx = __blk_mq_get_ctx(q, cpu);
1588
1589 spin_lock(&ctx->lock);
1590 if (!list_empty(&ctx->rq_list)) {
1591 list_splice_init(&ctx->rq_list, &tmp);
1592 blk_mq_hctx_clear_pending(hctx, ctx);
1593 }
1594 spin_unlock(&ctx->lock);
1595
1596 if (list_empty(&tmp))
1597 return NOTIFY_OK;
1598
1599 ctx = blk_mq_get_ctx(q);
1600 spin_lock(&ctx->lock);
1601
1602 while (!list_empty(&tmp)) {
1603 struct request *rq;
1604
1605 rq = list_first_entry(&tmp, struct request, queuelist);
1606 rq->mq_ctx = ctx;
1607 list_move_tail(&rq->queuelist, &ctx->rq_list);
1608 }
1609
1610 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1611 blk_mq_hctx_mark_pending(hctx, ctx);
1612
1613 spin_unlock(&ctx->lock);
1614
1615 blk_mq_run_hw_queue(hctx, true);
1616 blk_mq_put_ctx(ctx);
1617 return NOTIFY_OK;
1618 }
1619
1620 static int blk_mq_hctx_notify(void *data, unsigned long action,
1621 unsigned int cpu)
1622 {
1623 struct blk_mq_hw_ctx *hctx = data;
1624
1625 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1626 return blk_mq_hctx_cpu_offline(hctx, cpu);
1627
1628 /*
1629 * In case of CPU online, tags may be reallocated
1630 * in blk_mq_map_swqueue() after mapping is updated.
1631 */
1632
1633 return NOTIFY_OK;
1634 }
1635
1636 /* hctx->ctxs will be freed in queue's release handler */
1637 static void blk_mq_exit_hctx(struct request_queue *q,
1638 struct blk_mq_tag_set *set,
1639 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1640 {
1641 unsigned flush_start_tag = set->queue_depth;
1642
1643 blk_mq_tag_idle(hctx);
1644
1645 if (set->ops->exit_request)
1646 set->ops->exit_request(set->driver_data,
1647 hctx->fq->flush_rq, hctx_idx,
1648 flush_start_tag + hctx_idx);
1649
1650 if (set->ops->exit_hctx)
1651 set->ops->exit_hctx(hctx, hctx_idx);
1652
1653 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1654 blk_free_flush_queue(hctx->fq);
1655 blk_mq_free_bitmap(&hctx->ctx_map);
1656 }
1657
1658 static void blk_mq_exit_hw_queues(struct request_queue *q,
1659 struct blk_mq_tag_set *set, int nr_queue)
1660 {
1661 struct blk_mq_hw_ctx *hctx;
1662 unsigned int i;
1663
1664 queue_for_each_hw_ctx(q, hctx, i) {
1665 if (i == nr_queue)
1666 break;
1667 blk_mq_exit_hctx(q, set, hctx, i);
1668 }
1669 }
1670
1671 static void blk_mq_free_hw_queues(struct request_queue *q,
1672 struct blk_mq_tag_set *set)
1673 {
1674 struct blk_mq_hw_ctx *hctx;
1675 unsigned int i;
1676
1677 queue_for_each_hw_ctx(q, hctx, i)
1678 free_cpumask_var(hctx->cpumask);
1679 }
1680
1681 static int blk_mq_init_hctx(struct request_queue *q,
1682 struct blk_mq_tag_set *set,
1683 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1684 {
1685 int node;
1686 unsigned flush_start_tag = set->queue_depth;
1687
1688 node = hctx->numa_node;
1689 if (node == NUMA_NO_NODE)
1690 node = hctx->numa_node = set->numa_node;
1691
1692 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1693 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1694 spin_lock_init(&hctx->lock);
1695 INIT_LIST_HEAD(&hctx->dispatch);
1696 hctx->queue = q;
1697 hctx->queue_num = hctx_idx;
1698 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1699
1700 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1701 blk_mq_hctx_notify, hctx);
1702 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1703
1704 hctx->tags = set->tags[hctx_idx];
1705
1706 /*
1707 * Allocate space for all possible cpus to avoid allocation at
1708 * runtime
1709 */
1710 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1711 GFP_KERNEL, node);
1712 if (!hctx->ctxs)
1713 goto unregister_cpu_notifier;
1714
1715 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1716 goto free_ctxs;
1717
1718 hctx->nr_ctx = 0;
1719
1720 if (set->ops->init_hctx &&
1721 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1722 goto free_bitmap;
1723
1724 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1725 if (!hctx->fq)
1726 goto exit_hctx;
1727
1728 if (set->ops->init_request &&
1729 set->ops->init_request(set->driver_data,
1730 hctx->fq->flush_rq, hctx_idx,
1731 flush_start_tag + hctx_idx, node))
1732 goto free_fq;
1733
1734 return 0;
1735
1736 free_fq:
1737 kfree(hctx->fq);
1738 exit_hctx:
1739 if (set->ops->exit_hctx)
1740 set->ops->exit_hctx(hctx, hctx_idx);
1741 free_bitmap:
1742 blk_mq_free_bitmap(&hctx->ctx_map);
1743 free_ctxs:
1744 kfree(hctx->ctxs);
1745 unregister_cpu_notifier:
1746 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1747
1748 return -1;
1749 }
1750
1751 static int blk_mq_init_hw_queues(struct request_queue *q,
1752 struct blk_mq_tag_set *set)
1753 {
1754 struct blk_mq_hw_ctx *hctx;
1755 unsigned int i;
1756
1757 /*
1758 * Initialize hardware queues
1759 */
1760 queue_for_each_hw_ctx(q, hctx, i) {
1761 if (blk_mq_init_hctx(q, set, hctx, i))
1762 break;
1763 }
1764
1765 if (i == q->nr_hw_queues)
1766 return 0;
1767
1768 /*
1769 * Init failed
1770 */
1771 blk_mq_exit_hw_queues(q, set, i);
1772
1773 return 1;
1774 }
1775
1776 static void blk_mq_init_cpu_queues(struct request_queue *q,
1777 unsigned int nr_hw_queues)
1778 {
1779 unsigned int i;
1780
1781 for_each_possible_cpu(i) {
1782 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1783 struct blk_mq_hw_ctx *hctx;
1784
1785 memset(__ctx, 0, sizeof(*__ctx));
1786 __ctx->cpu = i;
1787 spin_lock_init(&__ctx->lock);
1788 INIT_LIST_HEAD(&__ctx->rq_list);
1789 __ctx->queue = q;
1790
1791 /* If the cpu isn't online, the cpu is mapped to first hctx */
1792 if (!cpu_online(i))
1793 continue;
1794
1795 hctx = q->mq_ops->map_queue(q, i);
1796
1797 /*
1798 * Set local node, IFF we have more than one hw queue. If
1799 * not, we remain on the home node of the device
1800 */
1801 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1802 hctx->numa_node = cpu_to_node(i);
1803 }
1804 }
1805
1806 static void blk_mq_map_swqueue(struct request_queue *q,
1807 const struct cpumask *online_mask)
1808 {
1809 unsigned int i;
1810 struct blk_mq_hw_ctx *hctx;
1811 struct blk_mq_ctx *ctx;
1812 struct blk_mq_tag_set *set = q->tag_set;
1813
1814 /*
1815 * Avoid others reading imcomplete hctx->cpumask through sysfs
1816 */
1817 mutex_lock(&q->sysfs_lock);
1818
1819 queue_for_each_hw_ctx(q, hctx, i) {
1820 cpumask_clear(hctx->cpumask);
1821 hctx->nr_ctx = 0;
1822 }
1823
1824 /*
1825 * Map software to hardware queues
1826 */
1827 queue_for_each_ctx(q, ctx, i) {
1828 /* If the cpu isn't online, the cpu is mapped to first hctx */
1829 if (!cpumask_test_cpu(i, online_mask))
1830 continue;
1831
1832 hctx = q->mq_ops->map_queue(q, i);
1833 cpumask_set_cpu(i, hctx->cpumask);
1834 ctx->index_hw = hctx->nr_ctx;
1835 hctx->ctxs[hctx->nr_ctx++] = ctx;
1836 }
1837
1838 mutex_unlock(&q->sysfs_lock);
1839
1840 queue_for_each_hw_ctx(q, hctx, i) {
1841 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1842
1843 /*
1844 * If no software queues are mapped to this hardware queue,
1845 * disable it and free the request entries.
1846 */
1847 if (!hctx->nr_ctx) {
1848 if (set->tags[i]) {
1849 blk_mq_free_rq_map(set, set->tags[i], i);
1850 set->tags[i] = NULL;
1851 }
1852 hctx->tags = NULL;
1853 continue;
1854 }
1855
1856 /* unmapped hw queue can be remapped after CPU topo changed */
1857 if (!set->tags[i])
1858 set->tags[i] = blk_mq_init_rq_map(set, i);
1859 hctx->tags = set->tags[i];
1860 WARN_ON(!hctx->tags);
1861
1862 /*
1863 * Set the map size to the number of mapped software queues.
1864 * This is more accurate and more efficient than looping
1865 * over all possibly mapped software queues.
1866 */
1867 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1868
1869 /*
1870 * Initialize batch roundrobin counts
1871 */
1872 hctx->next_cpu = cpumask_first(hctx->cpumask);
1873 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1874 }
1875
1876 queue_for_each_ctx(q, ctx, i) {
1877 if (!cpumask_test_cpu(i, online_mask))
1878 continue;
1879
1880 hctx = q->mq_ops->map_queue(q, i);
1881 cpumask_set_cpu(i, hctx->tags->cpumask);
1882 }
1883 }
1884
1885 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1886 {
1887 struct blk_mq_hw_ctx *hctx;
1888 int i;
1889
1890 queue_for_each_hw_ctx(q, hctx, i) {
1891 if (shared)
1892 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1893 else
1894 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1895 }
1896 }
1897
1898 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1899 {
1900 struct request_queue *q;
1901
1902 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1903 blk_mq_freeze_queue(q);
1904 queue_set_hctx_shared(q, shared);
1905 blk_mq_unfreeze_queue(q);
1906 }
1907 }
1908
1909 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1910 {
1911 struct blk_mq_tag_set *set = q->tag_set;
1912
1913 mutex_lock(&set->tag_list_lock);
1914 list_del_init(&q->tag_set_list);
1915 if (list_is_singular(&set->tag_list)) {
1916 /* just transitioned to unshared */
1917 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1918 /* update existing queue */
1919 blk_mq_update_tag_set_depth(set, false);
1920 }
1921 mutex_unlock(&set->tag_list_lock);
1922 }
1923
1924 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1925 struct request_queue *q)
1926 {
1927 q->tag_set = set;
1928
1929 mutex_lock(&set->tag_list_lock);
1930
1931 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1932 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1933 set->flags |= BLK_MQ_F_TAG_SHARED;
1934 /* update existing queue */
1935 blk_mq_update_tag_set_depth(set, true);
1936 }
1937 if (set->flags & BLK_MQ_F_TAG_SHARED)
1938 queue_set_hctx_shared(q, true);
1939 list_add_tail(&q->tag_set_list, &set->tag_list);
1940
1941 mutex_unlock(&set->tag_list_lock);
1942 }
1943
1944 /*
1945 * It is the actual release handler for mq, but we do it from
1946 * request queue's release handler for avoiding use-after-free
1947 * and headache because q->mq_kobj shouldn't have been introduced,
1948 * but we can't group ctx/kctx kobj without it.
1949 */
1950 void blk_mq_release(struct request_queue *q)
1951 {
1952 struct blk_mq_hw_ctx *hctx;
1953 unsigned int i;
1954
1955 /* hctx kobj stays in hctx */
1956 queue_for_each_hw_ctx(q, hctx, i) {
1957 if (!hctx)
1958 continue;
1959 kfree(hctx->ctxs);
1960 kfree(hctx);
1961 }
1962
1963 kfree(q->mq_map);
1964 q->mq_map = NULL;
1965
1966 kfree(q->queue_hw_ctx);
1967
1968 /* ctx kobj stays in queue_ctx */
1969 free_percpu(q->queue_ctx);
1970 }
1971
1972 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1973 {
1974 struct request_queue *uninit_q, *q;
1975
1976 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1977 if (!uninit_q)
1978 return ERR_PTR(-ENOMEM);
1979
1980 q = blk_mq_init_allocated_queue(set, uninit_q);
1981 if (IS_ERR(q))
1982 blk_cleanup_queue(uninit_q);
1983
1984 return q;
1985 }
1986 EXPORT_SYMBOL(blk_mq_init_queue);
1987
1988 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1989 struct request_queue *q)
1990 {
1991 struct blk_mq_hw_ctx **hctxs;
1992 struct blk_mq_ctx __percpu *ctx;
1993 unsigned int *map;
1994 int i;
1995
1996 ctx = alloc_percpu(struct blk_mq_ctx);
1997 if (!ctx)
1998 return ERR_PTR(-ENOMEM);
1999
2000 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
2001 set->numa_node);
2002
2003 if (!hctxs)
2004 goto err_percpu;
2005
2006 map = blk_mq_make_queue_map(set);
2007 if (!map)
2008 goto err_map;
2009
2010 for (i = 0; i < set->nr_hw_queues; i++) {
2011 int node = blk_mq_hw_queue_to_node(map, i);
2012
2013 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2014 GFP_KERNEL, node);
2015 if (!hctxs[i])
2016 goto err_hctxs;
2017
2018 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2019 node))
2020 goto err_hctxs;
2021
2022 atomic_set(&hctxs[i]->nr_active, 0);
2023 hctxs[i]->numa_node = node;
2024 hctxs[i]->queue_num = i;
2025 }
2026
2027 /*
2028 * Init percpu_ref in atomic mode so that it's faster to shutdown.
2029 * See blk_register_queue() for details.
2030 */
2031 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
2032 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
2033 goto err_hctxs;
2034
2035 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2036 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2037
2038 q->nr_queues = nr_cpu_ids;
2039 q->nr_hw_queues = set->nr_hw_queues;
2040 q->mq_map = map;
2041
2042 q->queue_ctx = ctx;
2043 q->queue_hw_ctx = hctxs;
2044
2045 q->mq_ops = set->ops;
2046 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2047
2048 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2049 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2050
2051 q->sg_reserved_size = INT_MAX;
2052
2053 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2054 INIT_LIST_HEAD(&q->requeue_list);
2055 spin_lock_init(&q->requeue_lock);
2056
2057 if (q->nr_hw_queues > 1)
2058 blk_queue_make_request(q, blk_mq_make_request);
2059 else
2060 blk_queue_make_request(q, blk_sq_make_request);
2061
2062 /*
2063 * Do this after blk_queue_make_request() overrides it...
2064 */
2065 q->nr_requests = set->queue_depth;
2066
2067 if (set->ops->complete)
2068 blk_queue_softirq_done(q, set->ops->complete);
2069
2070 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2071
2072 if (blk_mq_init_hw_queues(q, set))
2073 goto err_hctxs;
2074
2075 get_online_cpus();
2076 mutex_lock(&all_q_mutex);
2077
2078 list_add_tail(&q->all_q_node, &all_q_list);
2079 blk_mq_add_queue_tag_set(set, q);
2080 blk_mq_map_swqueue(q, cpu_online_mask);
2081
2082 mutex_unlock(&all_q_mutex);
2083 put_online_cpus();
2084
2085 return q;
2086
2087 err_hctxs:
2088 kfree(map);
2089 for (i = 0; i < set->nr_hw_queues; i++) {
2090 if (!hctxs[i])
2091 break;
2092 free_cpumask_var(hctxs[i]->cpumask);
2093 kfree(hctxs[i]);
2094 }
2095 err_map:
2096 kfree(hctxs);
2097 err_percpu:
2098 free_percpu(ctx);
2099 return ERR_PTR(-ENOMEM);
2100 }
2101 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2102
2103 void blk_mq_free_queue(struct request_queue *q)
2104 {
2105 struct blk_mq_tag_set *set = q->tag_set;
2106
2107 mutex_lock(&all_q_mutex);
2108 list_del_init(&q->all_q_node);
2109 mutex_unlock(&all_q_mutex);
2110
2111 blk_mq_del_queue_tag_set(q);
2112
2113 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2114 blk_mq_free_hw_queues(q, set);
2115
2116 percpu_ref_exit(&q->mq_usage_counter);
2117 }
2118
2119 /* Basically redo blk_mq_init_queue with queue frozen */
2120 static void blk_mq_queue_reinit(struct request_queue *q,
2121 const struct cpumask *online_mask)
2122 {
2123 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2124
2125 blk_mq_sysfs_unregister(q);
2126
2127 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2128
2129 /*
2130 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2131 * we should change hctx numa_node according to new topology (this
2132 * involves free and re-allocate memory, worthy doing?)
2133 */
2134
2135 blk_mq_map_swqueue(q, online_mask);
2136
2137 blk_mq_sysfs_register(q);
2138 }
2139
2140 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2141 unsigned long action, void *hcpu)
2142 {
2143 struct request_queue *q;
2144 int cpu = (unsigned long)hcpu;
2145 /*
2146 * New online cpumask which is going to be set in this hotplug event.
2147 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2148 * one-by-one and dynamically allocating this could result in a failure.
2149 */
2150 static struct cpumask online_new;
2151
2152 /*
2153 * Before hotadded cpu starts handling requests, new mappings must
2154 * be established. Otherwise, these requests in hw queue might
2155 * never be dispatched.
2156 *
2157 * For example, there is a single hw queue (hctx) and two CPU queues
2158 * (ctx0 for CPU0, and ctx1 for CPU1).
2159 *
2160 * Now CPU1 is just onlined and a request is inserted into
2161 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2162 * still zero.
2163 *
2164 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2165 * set in pending bitmap and tries to retrieve requests in
2166 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2167 * so the request in ctx1->rq_list is ignored.
2168 */
2169 switch (action & ~CPU_TASKS_FROZEN) {
2170 case CPU_DEAD:
2171 case CPU_UP_CANCELED:
2172 cpumask_copy(&online_new, cpu_online_mask);
2173 break;
2174 case CPU_UP_PREPARE:
2175 cpumask_copy(&online_new, cpu_online_mask);
2176 cpumask_set_cpu(cpu, &online_new);
2177 break;
2178 default:
2179 return NOTIFY_OK;
2180 }
2181
2182 mutex_lock(&all_q_mutex);
2183
2184 /*
2185 * We need to freeze and reinit all existing queues. Freezing
2186 * involves synchronous wait for an RCU grace period and doing it
2187 * one by one may take a long time. Start freezing all queues in
2188 * one swoop and then wait for the completions so that freezing can
2189 * take place in parallel.
2190 */
2191 list_for_each_entry(q, &all_q_list, all_q_node)
2192 blk_mq_freeze_queue_start(q);
2193 list_for_each_entry(q, &all_q_list, all_q_node) {
2194 blk_mq_freeze_queue_wait(q);
2195
2196 /*
2197 * timeout handler can't touch hw queue during the
2198 * reinitialization
2199 */
2200 del_timer_sync(&q->timeout);
2201 }
2202
2203 list_for_each_entry(q, &all_q_list, all_q_node)
2204 blk_mq_queue_reinit(q, &online_new);
2205
2206 list_for_each_entry(q, &all_q_list, all_q_node)
2207 blk_mq_unfreeze_queue(q);
2208
2209 mutex_unlock(&all_q_mutex);
2210 return NOTIFY_OK;
2211 }
2212
2213 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2214 {
2215 int i;
2216
2217 for (i = 0; i < set->nr_hw_queues; i++) {
2218 set->tags[i] = blk_mq_init_rq_map(set, i);
2219 if (!set->tags[i])
2220 goto out_unwind;
2221 }
2222
2223 return 0;
2224
2225 out_unwind:
2226 while (--i >= 0)
2227 blk_mq_free_rq_map(set, set->tags[i], i);
2228
2229 return -ENOMEM;
2230 }
2231
2232 /*
2233 * Allocate the request maps associated with this tag_set. Note that this
2234 * may reduce the depth asked for, if memory is tight. set->queue_depth
2235 * will be updated to reflect the allocated depth.
2236 */
2237 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2238 {
2239 unsigned int depth;
2240 int err;
2241
2242 depth = set->queue_depth;
2243 do {
2244 err = __blk_mq_alloc_rq_maps(set);
2245 if (!err)
2246 break;
2247
2248 set->queue_depth >>= 1;
2249 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2250 err = -ENOMEM;
2251 break;
2252 }
2253 } while (set->queue_depth);
2254
2255 if (!set->queue_depth || err) {
2256 pr_err("blk-mq: failed to allocate request map\n");
2257 return -ENOMEM;
2258 }
2259
2260 if (depth != set->queue_depth)
2261 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2262 depth, set->queue_depth);
2263
2264 return 0;
2265 }
2266
2267 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2268 {
2269 return tags->cpumask;
2270 }
2271 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2272
2273 /*
2274 * Alloc a tag set to be associated with one or more request queues.
2275 * May fail with EINVAL for various error conditions. May adjust the
2276 * requested depth down, if if it too large. In that case, the set
2277 * value will be stored in set->queue_depth.
2278 */
2279 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2280 {
2281 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2282
2283 if (!set->nr_hw_queues)
2284 return -EINVAL;
2285 if (!set->queue_depth)
2286 return -EINVAL;
2287 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2288 return -EINVAL;
2289
2290 if (!set->ops->queue_rq || !set->ops->map_queue)
2291 return -EINVAL;
2292
2293 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2294 pr_info("blk-mq: reduced tag depth to %u\n",
2295 BLK_MQ_MAX_DEPTH);
2296 set->queue_depth = BLK_MQ_MAX_DEPTH;
2297 }
2298
2299 /*
2300 * If a crashdump is active, then we are potentially in a very
2301 * memory constrained environment. Limit us to 1 queue and
2302 * 64 tags to prevent using too much memory.
2303 */
2304 if (is_kdump_kernel()) {
2305 set->nr_hw_queues = 1;
2306 set->queue_depth = min(64U, set->queue_depth);
2307 }
2308
2309 set->tags = kmalloc_node(set->nr_hw_queues *
2310 sizeof(struct blk_mq_tags *),
2311 GFP_KERNEL, set->numa_node);
2312 if (!set->tags)
2313 return -ENOMEM;
2314
2315 if (blk_mq_alloc_rq_maps(set))
2316 goto enomem;
2317
2318 mutex_init(&set->tag_list_lock);
2319 INIT_LIST_HEAD(&set->tag_list);
2320
2321 return 0;
2322 enomem:
2323 kfree(set->tags);
2324 set->tags = NULL;
2325 return -ENOMEM;
2326 }
2327 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2328
2329 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2330 {
2331 int i;
2332
2333 for (i = 0; i < set->nr_hw_queues; i++) {
2334 if (set->tags[i]) {
2335 blk_mq_free_rq_map(set, set->tags[i], i);
2336 free_cpumask_var(set->tags[i]->cpumask);
2337 }
2338 }
2339
2340 kfree(set->tags);
2341 set->tags = NULL;
2342 }
2343 EXPORT_SYMBOL(blk_mq_free_tag_set);
2344
2345 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2346 {
2347 struct blk_mq_tag_set *set = q->tag_set;
2348 struct blk_mq_hw_ctx *hctx;
2349 int i, ret;
2350
2351 if (!set || nr > set->queue_depth)
2352 return -EINVAL;
2353
2354 ret = 0;
2355 queue_for_each_hw_ctx(q, hctx, i) {
2356 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2357 if (ret)
2358 break;
2359 }
2360
2361 if (!ret)
2362 q->nr_requests = nr;
2363
2364 return ret;
2365 }
2366
2367 void blk_mq_disable_hotplug(void)
2368 {
2369 mutex_lock(&all_q_mutex);
2370 }
2371
2372 void blk_mq_enable_hotplug(void)
2373 {
2374 mutex_unlock(&all_q_mutex);
2375 }
2376
2377 static int __init blk_mq_init(void)
2378 {
2379 blk_mq_cpu_init();
2380
2381 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2382
2383 return 0;
2384 }
2385 subsys_initcall(blk_mq_init);