]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/blk-mq.c
blk-mq: Avoid that requeueing starts stopped queues
[mirror_ubuntu-zesty-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33
34 static DEFINE_MUTEX(all_q_mutex);
35 static LIST_HEAD(all_q_list);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 return sbitmap_any_bit_set(&hctx->ctx_map);
43 }
44
45 /*
46 * Mark this ctx as having pending work in this hardware queue
47 */
48 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *ctx)
50 {
51 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
52 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 }
54
55 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57 {
58 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 }
60
61 void blk_mq_freeze_queue_start(struct request_queue *q)
62 {
63 int freeze_depth;
64
65 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
66 if (freeze_depth == 1) {
67 percpu_ref_kill(&q->q_usage_counter);
68 blk_mq_run_hw_queues(q, false);
69 }
70 }
71 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72
73 static void blk_mq_freeze_queue_wait(struct request_queue *q)
74 {
75 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 }
77
78 /*
79 * Guarantee no request is in use, so we can change any data structure of
80 * the queue afterward.
81 */
82 void blk_freeze_queue(struct request_queue *q)
83 {
84 /*
85 * In the !blk_mq case we are only calling this to kill the
86 * q_usage_counter, otherwise this increases the freeze depth
87 * and waits for it to return to zero. For this reason there is
88 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
89 * exported to drivers as the only user for unfreeze is blk_mq.
90 */
91 blk_mq_freeze_queue_start(q);
92 blk_mq_freeze_queue_wait(q);
93 }
94
95 void blk_mq_freeze_queue(struct request_queue *q)
96 {
97 /*
98 * ...just an alias to keep freeze and unfreeze actions balanced
99 * in the blk_mq_* namespace
100 */
101 blk_freeze_queue(q);
102 }
103 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104
105 void blk_mq_unfreeze_queue(struct request_queue *q)
106 {
107 int freeze_depth;
108
109 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
110 WARN_ON_ONCE(freeze_depth < 0);
111 if (!freeze_depth) {
112 percpu_ref_reinit(&q->q_usage_counter);
113 wake_up_all(&q->mq_freeze_wq);
114 }
115 }
116 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117
118 void blk_mq_wake_waiters(struct request_queue *q)
119 {
120 struct blk_mq_hw_ctx *hctx;
121 unsigned int i;
122
123 queue_for_each_hw_ctx(q, hctx, i)
124 if (blk_mq_hw_queue_mapped(hctx))
125 blk_mq_tag_wakeup_all(hctx->tags, true);
126
127 /*
128 * If we are called because the queue has now been marked as
129 * dying, we need to ensure that processes currently waiting on
130 * the queue are notified as well.
131 */
132 wake_up_all(&q->mq_freeze_wq);
133 }
134
135 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
136 {
137 return blk_mq_has_free_tags(hctx->tags);
138 }
139 EXPORT_SYMBOL(blk_mq_can_queue);
140
141 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142 struct request *rq, unsigned int op)
143 {
144 INIT_LIST_HEAD(&rq->queuelist);
145 /* csd/requeue_work/fifo_time is initialized before use */
146 rq->q = q;
147 rq->mq_ctx = ctx;
148 rq->cmd_flags = op;
149 if (blk_queue_io_stat(q))
150 rq->rq_flags |= RQF_IO_STAT;
151 /* do not touch atomic flags, it needs atomic ops against the timer */
152 rq->cpu = -1;
153 INIT_HLIST_NODE(&rq->hash);
154 RB_CLEAR_NODE(&rq->rb_node);
155 rq->rq_disk = NULL;
156 rq->part = NULL;
157 rq->start_time = jiffies;
158 #ifdef CONFIG_BLK_CGROUP
159 rq->rl = NULL;
160 set_start_time_ns(rq);
161 rq->io_start_time_ns = 0;
162 #endif
163 rq->nr_phys_segments = 0;
164 #if defined(CONFIG_BLK_DEV_INTEGRITY)
165 rq->nr_integrity_segments = 0;
166 #endif
167 rq->special = NULL;
168 /* tag was already set */
169 rq->errors = 0;
170
171 rq->cmd = rq->__cmd;
172
173 rq->extra_len = 0;
174 rq->sense_len = 0;
175 rq->resid_len = 0;
176 rq->sense = NULL;
177
178 INIT_LIST_HEAD(&rq->timeout_list);
179 rq->timeout = 0;
180
181 rq->end_io = NULL;
182 rq->end_io_data = NULL;
183 rq->next_rq = NULL;
184
185 ctx->rq_dispatched[op_is_sync(op)]++;
186 }
187
188 static struct request *
189 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
190 {
191 struct request *rq;
192 unsigned int tag;
193
194 tag = blk_mq_get_tag(data);
195 if (tag != BLK_MQ_TAG_FAIL) {
196 rq = data->hctx->tags->rqs[tag];
197
198 if (blk_mq_tag_busy(data->hctx)) {
199 rq->rq_flags = RQF_MQ_INFLIGHT;
200 atomic_inc(&data->hctx->nr_active);
201 }
202
203 rq->tag = tag;
204 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
205 return rq;
206 }
207
208 return NULL;
209 }
210
211 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
212 unsigned int flags)
213 {
214 struct blk_mq_ctx *ctx;
215 struct blk_mq_hw_ctx *hctx;
216 struct request *rq;
217 struct blk_mq_alloc_data alloc_data;
218 int ret;
219
220 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
221 if (ret)
222 return ERR_PTR(ret);
223
224 ctx = blk_mq_get_ctx(q);
225 hctx = blk_mq_map_queue(q, ctx->cpu);
226 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
227 rq = __blk_mq_alloc_request(&alloc_data, rw);
228 blk_mq_put_ctx(ctx);
229
230 if (!rq) {
231 blk_queue_exit(q);
232 return ERR_PTR(-EWOULDBLOCK);
233 }
234
235 rq->__data_len = 0;
236 rq->__sector = (sector_t) -1;
237 rq->bio = rq->biotail = NULL;
238 return rq;
239 }
240 EXPORT_SYMBOL(blk_mq_alloc_request);
241
242 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
243 unsigned int flags, unsigned int hctx_idx)
244 {
245 struct blk_mq_hw_ctx *hctx;
246 struct blk_mq_ctx *ctx;
247 struct request *rq;
248 struct blk_mq_alloc_data alloc_data;
249 int ret;
250
251 /*
252 * If the tag allocator sleeps we could get an allocation for a
253 * different hardware context. No need to complicate the low level
254 * allocator for this for the rare use case of a command tied to
255 * a specific queue.
256 */
257 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
258 return ERR_PTR(-EINVAL);
259
260 if (hctx_idx >= q->nr_hw_queues)
261 return ERR_PTR(-EIO);
262
263 ret = blk_queue_enter(q, true);
264 if (ret)
265 return ERR_PTR(ret);
266
267 /*
268 * Check if the hardware context is actually mapped to anything.
269 * If not tell the caller that it should skip this queue.
270 */
271 hctx = q->queue_hw_ctx[hctx_idx];
272 if (!blk_mq_hw_queue_mapped(hctx)) {
273 ret = -EXDEV;
274 goto out_queue_exit;
275 }
276 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
277
278 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
279 rq = __blk_mq_alloc_request(&alloc_data, rw);
280 if (!rq) {
281 ret = -EWOULDBLOCK;
282 goto out_queue_exit;
283 }
284
285 return rq;
286
287 out_queue_exit:
288 blk_queue_exit(q);
289 return ERR_PTR(ret);
290 }
291 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
292
293 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
294 struct blk_mq_ctx *ctx, struct request *rq)
295 {
296 const int tag = rq->tag;
297 struct request_queue *q = rq->q;
298
299 if (rq->rq_flags & RQF_MQ_INFLIGHT)
300 atomic_dec(&hctx->nr_active);
301 rq->rq_flags = 0;
302
303 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
304 blk_mq_put_tag(hctx, ctx, tag);
305 blk_queue_exit(q);
306 }
307
308 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
309 {
310 struct blk_mq_ctx *ctx = rq->mq_ctx;
311
312 ctx->rq_completed[rq_is_sync(rq)]++;
313 __blk_mq_free_request(hctx, ctx, rq);
314
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
317
318 void blk_mq_free_request(struct request *rq)
319 {
320 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
321 }
322 EXPORT_SYMBOL_GPL(blk_mq_free_request);
323
324 inline void __blk_mq_end_request(struct request *rq, int error)
325 {
326 blk_account_io_done(rq);
327
328 if (rq->end_io) {
329 rq->end_io(rq, error);
330 } else {
331 if (unlikely(blk_bidi_rq(rq)))
332 blk_mq_free_request(rq->next_rq);
333 blk_mq_free_request(rq);
334 }
335 }
336 EXPORT_SYMBOL(__blk_mq_end_request);
337
338 void blk_mq_end_request(struct request *rq, int error)
339 {
340 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
341 BUG();
342 __blk_mq_end_request(rq, error);
343 }
344 EXPORT_SYMBOL(blk_mq_end_request);
345
346 static void __blk_mq_complete_request_remote(void *data)
347 {
348 struct request *rq = data;
349
350 rq->q->softirq_done_fn(rq);
351 }
352
353 static void blk_mq_ipi_complete_request(struct request *rq)
354 {
355 struct blk_mq_ctx *ctx = rq->mq_ctx;
356 bool shared = false;
357 int cpu;
358
359 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
360 rq->q->softirq_done_fn(rq);
361 return;
362 }
363
364 cpu = get_cpu();
365 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
366 shared = cpus_share_cache(cpu, ctx->cpu);
367
368 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
369 rq->csd.func = __blk_mq_complete_request_remote;
370 rq->csd.info = rq;
371 rq->csd.flags = 0;
372 smp_call_function_single_async(ctx->cpu, &rq->csd);
373 } else {
374 rq->q->softirq_done_fn(rq);
375 }
376 put_cpu();
377 }
378
379 static void __blk_mq_complete_request(struct request *rq)
380 {
381 struct request_queue *q = rq->q;
382
383 if (!q->softirq_done_fn)
384 blk_mq_end_request(rq, rq->errors);
385 else
386 blk_mq_ipi_complete_request(rq);
387 }
388
389 /**
390 * blk_mq_complete_request - end I/O on a request
391 * @rq: the request being processed
392 *
393 * Description:
394 * Ends all I/O on a request. It does not handle partial completions.
395 * The actual completion happens out-of-order, through a IPI handler.
396 **/
397 void blk_mq_complete_request(struct request *rq, int error)
398 {
399 struct request_queue *q = rq->q;
400
401 if (unlikely(blk_should_fake_timeout(q)))
402 return;
403 if (!blk_mark_rq_complete(rq)) {
404 rq->errors = error;
405 __blk_mq_complete_request(rq);
406 }
407 }
408 EXPORT_SYMBOL(blk_mq_complete_request);
409
410 int blk_mq_request_started(struct request *rq)
411 {
412 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 }
414 EXPORT_SYMBOL_GPL(blk_mq_request_started);
415
416 void blk_mq_start_request(struct request *rq)
417 {
418 struct request_queue *q = rq->q;
419
420 trace_block_rq_issue(q, rq);
421
422 rq->resid_len = blk_rq_bytes(rq);
423 if (unlikely(blk_bidi_rq(rq)))
424 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
425
426 blk_add_timer(rq);
427
428 /*
429 * Ensure that ->deadline is visible before set the started
430 * flag and clear the completed flag.
431 */
432 smp_mb__before_atomic();
433
434 /*
435 * Mark us as started and clear complete. Complete might have been
436 * set if requeue raced with timeout, which then marked it as
437 * complete. So be sure to clear complete again when we start
438 * the request, otherwise we'll ignore the completion event.
439 */
440 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
441 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
442 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
443 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
444
445 if (q->dma_drain_size && blk_rq_bytes(rq)) {
446 /*
447 * Make sure space for the drain appears. We know we can do
448 * this because max_hw_segments has been adjusted to be one
449 * fewer than the device can handle.
450 */
451 rq->nr_phys_segments++;
452 }
453 }
454 EXPORT_SYMBOL(blk_mq_start_request);
455
456 static void __blk_mq_requeue_request(struct request *rq)
457 {
458 struct request_queue *q = rq->q;
459
460 trace_block_rq_requeue(q, rq);
461
462 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
463 if (q->dma_drain_size && blk_rq_bytes(rq))
464 rq->nr_phys_segments--;
465 }
466 }
467
468 void blk_mq_requeue_request(struct request *rq)
469 {
470 __blk_mq_requeue_request(rq);
471
472 BUG_ON(blk_queued_rq(rq));
473 blk_mq_add_to_requeue_list(rq, true);
474 }
475 EXPORT_SYMBOL(blk_mq_requeue_request);
476
477 static void blk_mq_requeue_work(struct work_struct *work)
478 {
479 struct request_queue *q =
480 container_of(work, struct request_queue, requeue_work.work);
481 LIST_HEAD(rq_list);
482 struct request *rq, *next;
483 unsigned long flags;
484
485 spin_lock_irqsave(&q->requeue_lock, flags);
486 list_splice_init(&q->requeue_list, &rq_list);
487 spin_unlock_irqrestore(&q->requeue_lock, flags);
488
489 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
490 if (!(rq->rq_flags & RQF_SOFTBARRIER))
491 continue;
492
493 rq->rq_flags &= ~RQF_SOFTBARRIER;
494 list_del_init(&rq->queuelist);
495 blk_mq_insert_request(rq, true, false, false);
496 }
497
498 while (!list_empty(&rq_list)) {
499 rq = list_entry(rq_list.next, struct request, queuelist);
500 list_del_init(&rq->queuelist);
501 blk_mq_insert_request(rq, false, false, false);
502 }
503
504 blk_mq_run_hw_queues(q, false);
505 }
506
507 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
508 {
509 struct request_queue *q = rq->q;
510 unsigned long flags;
511
512 /*
513 * We abuse this flag that is otherwise used by the I/O scheduler to
514 * request head insertation from the workqueue.
515 */
516 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
517
518 spin_lock_irqsave(&q->requeue_lock, flags);
519 if (at_head) {
520 rq->rq_flags |= RQF_SOFTBARRIER;
521 list_add(&rq->queuelist, &q->requeue_list);
522 } else {
523 list_add_tail(&rq->queuelist, &q->requeue_list);
524 }
525 spin_unlock_irqrestore(&q->requeue_lock, flags);
526 }
527 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
528
529 void blk_mq_cancel_requeue_work(struct request_queue *q)
530 {
531 cancel_delayed_work_sync(&q->requeue_work);
532 }
533 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
534
535 void blk_mq_kick_requeue_list(struct request_queue *q)
536 {
537 kblockd_schedule_delayed_work(&q->requeue_work, 0);
538 }
539 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
540
541 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
542 unsigned long msecs)
543 {
544 kblockd_schedule_delayed_work(&q->requeue_work,
545 msecs_to_jiffies(msecs));
546 }
547 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
548
549 void blk_mq_abort_requeue_list(struct request_queue *q)
550 {
551 unsigned long flags;
552 LIST_HEAD(rq_list);
553
554 spin_lock_irqsave(&q->requeue_lock, flags);
555 list_splice_init(&q->requeue_list, &rq_list);
556 spin_unlock_irqrestore(&q->requeue_lock, flags);
557
558 while (!list_empty(&rq_list)) {
559 struct request *rq;
560
561 rq = list_first_entry(&rq_list, struct request, queuelist);
562 list_del_init(&rq->queuelist);
563 rq->errors = -EIO;
564 blk_mq_end_request(rq, rq->errors);
565 }
566 }
567 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
568
569 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
570 {
571 if (tag < tags->nr_tags) {
572 prefetch(tags->rqs[tag]);
573 return tags->rqs[tag];
574 }
575
576 return NULL;
577 }
578 EXPORT_SYMBOL(blk_mq_tag_to_rq);
579
580 struct blk_mq_timeout_data {
581 unsigned long next;
582 unsigned int next_set;
583 };
584
585 void blk_mq_rq_timed_out(struct request *req, bool reserved)
586 {
587 struct blk_mq_ops *ops = req->q->mq_ops;
588 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
589
590 /*
591 * We know that complete is set at this point. If STARTED isn't set
592 * anymore, then the request isn't active and the "timeout" should
593 * just be ignored. This can happen due to the bitflag ordering.
594 * Timeout first checks if STARTED is set, and if it is, assumes
595 * the request is active. But if we race with completion, then
596 * we both flags will get cleared. So check here again, and ignore
597 * a timeout event with a request that isn't active.
598 */
599 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
600 return;
601
602 if (ops->timeout)
603 ret = ops->timeout(req, reserved);
604
605 switch (ret) {
606 case BLK_EH_HANDLED:
607 __blk_mq_complete_request(req);
608 break;
609 case BLK_EH_RESET_TIMER:
610 blk_add_timer(req);
611 blk_clear_rq_complete(req);
612 break;
613 case BLK_EH_NOT_HANDLED:
614 break;
615 default:
616 printk(KERN_ERR "block: bad eh return: %d\n", ret);
617 break;
618 }
619 }
620
621 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
622 struct request *rq, void *priv, bool reserved)
623 {
624 struct blk_mq_timeout_data *data = priv;
625
626 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
627 /*
628 * If a request wasn't started before the queue was
629 * marked dying, kill it here or it'll go unnoticed.
630 */
631 if (unlikely(blk_queue_dying(rq->q))) {
632 rq->errors = -EIO;
633 blk_mq_end_request(rq, rq->errors);
634 }
635 return;
636 }
637
638 if (time_after_eq(jiffies, rq->deadline)) {
639 if (!blk_mark_rq_complete(rq))
640 blk_mq_rq_timed_out(rq, reserved);
641 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
642 data->next = rq->deadline;
643 data->next_set = 1;
644 }
645 }
646
647 static void blk_mq_timeout_work(struct work_struct *work)
648 {
649 struct request_queue *q =
650 container_of(work, struct request_queue, timeout_work);
651 struct blk_mq_timeout_data data = {
652 .next = 0,
653 .next_set = 0,
654 };
655 int i;
656
657 /* A deadlock might occur if a request is stuck requiring a
658 * timeout at the same time a queue freeze is waiting
659 * completion, since the timeout code would not be able to
660 * acquire the queue reference here.
661 *
662 * That's why we don't use blk_queue_enter here; instead, we use
663 * percpu_ref_tryget directly, because we need to be able to
664 * obtain a reference even in the short window between the queue
665 * starting to freeze, by dropping the first reference in
666 * blk_mq_freeze_queue_start, and the moment the last request is
667 * consumed, marked by the instant q_usage_counter reaches
668 * zero.
669 */
670 if (!percpu_ref_tryget(&q->q_usage_counter))
671 return;
672
673 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
674
675 if (data.next_set) {
676 data.next = blk_rq_timeout(round_jiffies_up(data.next));
677 mod_timer(&q->timeout, data.next);
678 } else {
679 struct blk_mq_hw_ctx *hctx;
680
681 queue_for_each_hw_ctx(q, hctx, i) {
682 /* the hctx may be unmapped, so check it here */
683 if (blk_mq_hw_queue_mapped(hctx))
684 blk_mq_tag_idle(hctx);
685 }
686 }
687 blk_queue_exit(q);
688 }
689
690 /*
691 * Reverse check our software queue for entries that we could potentially
692 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
693 * too much time checking for merges.
694 */
695 static bool blk_mq_attempt_merge(struct request_queue *q,
696 struct blk_mq_ctx *ctx, struct bio *bio)
697 {
698 struct request *rq;
699 int checked = 8;
700
701 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
702 int el_ret;
703
704 if (!checked--)
705 break;
706
707 if (!blk_rq_merge_ok(rq, bio))
708 continue;
709
710 el_ret = blk_try_merge(rq, bio);
711 if (el_ret == ELEVATOR_BACK_MERGE) {
712 if (bio_attempt_back_merge(q, rq, bio)) {
713 ctx->rq_merged++;
714 return true;
715 }
716 break;
717 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
718 if (bio_attempt_front_merge(q, rq, bio)) {
719 ctx->rq_merged++;
720 return true;
721 }
722 break;
723 }
724 }
725
726 return false;
727 }
728
729 struct flush_busy_ctx_data {
730 struct blk_mq_hw_ctx *hctx;
731 struct list_head *list;
732 };
733
734 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
735 {
736 struct flush_busy_ctx_data *flush_data = data;
737 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
738 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
739
740 sbitmap_clear_bit(sb, bitnr);
741 spin_lock(&ctx->lock);
742 list_splice_tail_init(&ctx->rq_list, flush_data->list);
743 spin_unlock(&ctx->lock);
744 return true;
745 }
746
747 /*
748 * Process software queues that have been marked busy, splicing them
749 * to the for-dispatch
750 */
751 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
752 {
753 struct flush_busy_ctx_data data = {
754 .hctx = hctx,
755 .list = list,
756 };
757
758 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
759 }
760
761 static inline unsigned int queued_to_index(unsigned int queued)
762 {
763 if (!queued)
764 return 0;
765
766 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
767 }
768
769 /*
770 * Run this hardware queue, pulling any software queues mapped to it in.
771 * Note that this function currently has various problems around ordering
772 * of IO. In particular, we'd like FIFO behaviour on handling existing
773 * items on the hctx->dispatch list. Ignore that for now.
774 */
775 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
776 {
777 struct request_queue *q = hctx->queue;
778 struct request *rq;
779 LIST_HEAD(rq_list);
780 LIST_HEAD(driver_list);
781 struct list_head *dptr;
782 int queued;
783
784 if (unlikely(blk_mq_hctx_stopped(hctx)))
785 return;
786
787 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
788 cpu_online(hctx->next_cpu));
789
790 hctx->run++;
791
792 /*
793 * Touch any software queue that has pending entries.
794 */
795 flush_busy_ctxs(hctx, &rq_list);
796
797 /*
798 * If we have previous entries on our dispatch list, grab them
799 * and stuff them at the front for more fair dispatch.
800 */
801 if (!list_empty_careful(&hctx->dispatch)) {
802 spin_lock(&hctx->lock);
803 if (!list_empty(&hctx->dispatch))
804 list_splice_init(&hctx->dispatch, &rq_list);
805 spin_unlock(&hctx->lock);
806 }
807
808 /*
809 * Start off with dptr being NULL, so we start the first request
810 * immediately, even if we have more pending.
811 */
812 dptr = NULL;
813
814 /*
815 * Now process all the entries, sending them to the driver.
816 */
817 queued = 0;
818 while (!list_empty(&rq_list)) {
819 struct blk_mq_queue_data bd;
820 int ret;
821
822 rq = list_first_entry(&rq_list, struct request, queuelist);
823 list_del_init(&rq->queuelist);
824
825 bd.rq = rq;
826 bd.list = dptr;
827 bd.last = list_empty(&rq_list);
828
829 ret = q->mq_ops->queue_rq(hctx, &bd);
830 switch (ret) {
831 case BLK_MQ_RQ_QUEUE_OK:
832 queued++;
833 break;
834 case BLK_MQ_RQ_QUEUE_BUSY:
835 list_add(&rq->queuelist, &rq_list);
836 __blk_mq_requeue_request(rq);
837 break;
838 default:
839 pr_err("blk-mq: bad return on queue: %d\n", ret);
840 case BLK_MQ_RQ_QUEUE_ERROR:
841 rq->errors = -EIO;
842 blk_mq_end_request(rq, rq->errors);
843 break;
844 }
845
846 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
847 break;
848
849 /*
850 * We've done the first request. If we have more than 1
851 * left in the list, set dptr to defer issue.
852 */
853 if (!dptr && rq_list.next != rq_list.prev)
854 dptr = &driver_list;
855 }
856
857 hctx->dispatched[queued_to_index(queued)]++;
858
859 /*
860 * Any items that need requeuing? Stuff them into hctx->dispatch,
861 * that is where we will continue on next queue run.
862 */
863 if (!list_empty(&rq_list)) {
864 spin_lock(&hctx->lock);
865 list_splice(&rq_list, &hctx->dispatch);
866 spin_unlock(&hctx->lock);
867 /*
868 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
869 * it's possible the queue is stopped and restarted again
870 * before this. Queue restart will dispatch requests. And since
871 * requests in rq_list aren't added into hctx->dispatch yet,
872 * the requests in rq_list might get lost.
873 *
874 * blk_mq_run_hw_queue() already checks the STOPPED bit
875 **/
876 blk_mq_run_hw_queue(hctx, true);
877 }
878 }
879
880 /*
881 * It'd be great if the workqueue API had a way to pass
882 * in a mask and had some smarts for more clever placement.
883 * For now we just round-robin here, switching for every
884 * BLK_MQ_CPU_WORK_BATCH queued items.
885 */
886 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
887 {
888 if (hctx->queue->nr_hw_queues == 1)
889 return WORK_CPU_UNBOUND;
890
891 if (--hctx->next_cpu_batch <= 0) {
892 int cpu = hctx->next_cpu, next_cpu;
893
894 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
895 if (next_cpu >= nr_cpu_ids)
896 next_cpu = cpumask_first(hctx->cpumask);
897
898 hctx->next_cpu = next_cpu;
899 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
900
901 return cpu;
902 }
903
904 return hctx->next_cpu;
905 }
906
907 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
908 {
909 if (unlikely(blk_mq_hctx_stopped(hctx) ||
910 !blk_mq_hw_queue_mapped(hctx)))
911 return;
912
913 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
914 int cpu = get_cpu();
915 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
916 __blk_mq_run_hw_queue(hctx);
917 put_cpu();
918 return;
919 }
920
921 put_cpu();
922 }
923
924 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
925 }
926
927 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
928 {
929 struct blk_mq_hw_ctx *hctx;
930 int i;
931
932 queue_for_each_hw_ctx(q, hctx, i) {
933 if ((!blk_mq_hctx_has_pending(hctx) &&
934 list_empty_careful(&hctx->dispatch)) ||
935 blk_mq_hctx_stopped(hctx))
936 continue;
937
938 blk_mq_run_hw_queue(hctx, async);
939 }
940 }
941 EXPORT_SYMBOL(blk_mq_run_hw_queues);
942
943 /**
944 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
945 * @q: request queue.
946 *
947 * The caller is responsible for serializing this function against
948 * blk_mq_{start,stop}_hw_queue().
949 */
950 bool blk_mq_queue_stopped(struct request_queue *q)
951 {
952 struct blk_mq_hw_ctx *hctx;
953 int i;
954
955 queue_for_each_hw_ctx(q, hctx, i)
956 if (blk_mq_hctx_stopped(hctx))
957 return true;
958
959 return false;
960 }
961 EXPORT_SYMBOL(blk_mq_queue_stopped);
962
963 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
964 {
965 cancel_work(&hctx->run_work);
966 cancel_delayed_work(&hctx->delay_work);
967 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
968 }
969 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
970
971 void blk_mq_stop_hw_queues(struct request_queue *q)
972 {
973 struct blk_mq_hw_ctx *hctx;
974 int i;
975
976 queue_for_each_hw_ctx(q, hctx, i)
977 blk_mq_stop_hw_queue(hctx);
978 }
979 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
980
981 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
982 {
983 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
984
985 blk_mq_run_hw_queue(hctx, false);
986 }
987 EXPORT_SYMBOL(blk_mq_start_hw_queue);
988
989 void blk_mq_start_hw_queues(struct request_queue *q)
990 {
991 struct blk_mq_hw_ctx *hctx;
992 int i;
993
994 queue_for_each_hw_ctx(q, hctx, i)
995 blk_mq_start_hw_queue(hctx);
996 }
997 EXPORT_SYMBOL(blk_mq_start_hw_queues);
998
999 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1000 {
1001 struct blk_mq_hw_ctx *hctx;
1002 int i;
1003
1004 queue_for_each_hw_ctx(q, hctx, i) {
1005 if (!blk_mq_hctx_stopped(hctx))
1006 continue;
1007
1008 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1009 blk_mq_run_hw_queue(hctx, async);
1010 }
1011 }
1012 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1013
1014 static void blk_mq_run_work_fn(struct work_struct *work)
1015 {
1016 struct blk_mq_hw_ctx *hctx;
1017
1018 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1019
1020 __blk_mq_run_hw_queue(hctx);
1021 }
1022
1023 static void blk_mq_delay_work_fn(struct work_struct *work)
1024 {
1025 struct blk_mq_hw_ctx *hctx;
1026
1027 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1028
1029 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1030 __blk_mq_run_hw_queue(hctx);
1031 }
1032
1033 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1034 {
1035 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1036 return;
1037
1038 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1039 &hctx->delay_work, msecs_to_jiffies(msecs));
1040 }
1041 EXPORT_SYMBOL(blk_mq_delay_queue);
1042
1043 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1044 struct request *rq,
1045 bool at_head)
1046 {
1047 struct blk_mq_ctx *ctx = rq->mq_ctx;
1048
1049 trace_block_rq_insert(hctx->queue, rq);
1050
1051 if (at_head)
1052 list_add(&rq->queuelist, &ctx->rq_list);
1053 else
1054 list_add_tail(&rq->queuelist, &ctx->rq_list);
1055 }
1056
1057 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1058 struct request *rq, bool at_head)
1059 {
1060 struct blk_mq_ctx *ctx = rq->mq_ctx;
1061
1062 __blk_mq_insert_req_list(hctx, rq, at_head);
1063 blk_mq_hctx_mark_pending(hctx, ctx);
1064 }
1065
1066 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1067 bool async)
1068 {
1069 struct blk_mq_ctx *ctx = rq->mq_ctx;
1070 struct request_queue *q = rq->q;
1071 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1072
1073 spin_lock(&ctx->lock);
1074 __blk_mq_insert_request(hctx, rq, at_head);
1075 spin_unlock(&ctx->lock);
1076
1077 if (run_queue)
1078 blk_mq_run_hw_queue(hctx, async);
1079 }
1080
1081 static void blk_mq_insert_requests(struct request_queue *q,
1082 struct blk_mq_ctx *ctx,
1083 struct list_head *list,
1084 int depth,
1085 bool from_schedule)
1086
1087 {
1088 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1089
1090 trace_block_unplug(q, depth, !from_schedule);
1091
1092 /*
1093 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1094 * offline now
1095 */
1096 spin_lock(&ctx->lock);
1097 while (!list_empty(list)) {
1098 struct request *rq;
1099
1100 rq = list_first_entry(list, struct request, queuelist);
1101 BUG_ON(rq->mq_ctx != ctx);
1102 list_del_init(&rq->queuelist);
1103 __blk_mq_insert_req_list(hctx, rq, false);
1104 }
1105 blk_mq_hctx_mark_pending(hctx, ctx);
1106 spin_unlock(&ctx->lock);
1107
1108 blk_mq_run_hw_queue(hctx, from_schedule);
1109 }
1110
1111 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1112 {
1113 struct request *rqa = container_of(a, struct request, queuelist);
1114 struct request *rqb = container_of(b, struct request, queuelist);
1115
1116 return !(rqa->mq_ctx < rqb->mq_ctx ||
1117 (rqa->mq_ctx == rqb->mq_ctx &&
1118 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1119 }
1120
1121 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1122 {
1123 struct blk_mq_ctx *this_ctx;
1124 struct request_queue *this_q;
1125 struct request *rq;
1126 LIST_HEAD(list);
1127 LIST_HEAD(ctx_list);
1128 unsigned int depth;
1129
1130 list_splice_init(&plug->mq_list, &list);
1131
1132 list_sort(NULL, &list, plug_ctx_cmp);
1133
1134 this_q = NULL;
1135 this_ctx = NULL;
1136 depth = 0;
1137
1138 while (!list_empty(&list)) {
1139 rq = list_entry_rq(list.next);
1140 list_del_init(&rq->queuelist);
1141 BUG_ON(!rq->q);
1142 if (rq->mq_ctx != this_ctx) {
1143 if (this_ctx) {
1144 blk_mq_insert_requests(this_q, this_ctx,
1145 &ctx_list, depth,
1146 from_schedule);
1147 }
1148
1149 this_ctx = rq->mq_ctx;
1150 this_q = rq->q;
1151 depth = 0;
1152 }
1153
1154 depth++;
1155 list_add_tail(&rq->queuelist, &ctx_list);
1156 }
1157
1158 /*
1159 * If 'this_ctx' is set, we know we have entries to complete
1160 * on 'ctx_list'. Do those.
1161 */
1162 if (this_ctx) {
1163 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1164 from_schedule);
1165 }
1166 }
1167
1168 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1169 {
1170 init_request_from_bio(rq, bio);
1171
1172 blk_account_io_start(rq, 1);
1173 }
1174
1175 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1176 {
1177 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1178 !blk_queue_nomerges(hctx->queue);
1179 }
1180
1181 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1182 struct blk_mq_ctx *ctx,
1183 struct request *rq, struct bio *bio)
1184 {
1185 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1186 blk_mq_bio_to_request(rq, bio);
1187 spin_lock(&ctx->lock);
1188 insert_rq:
1189 __blk_mq_insert_request(hctx, rq, false);
1190 spin_unlock(&ctx->lock);
1191 return false;
1192 } else {
1193 struct request_queue *q = hctx->queue;
1194
1195 spin_lock(&ctx->lock);
1196 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1197 blk_mq_bio_to_request(rq, bio);
1198 goto insert_rq;
1199 }
1200
1201 spin_unlock(&ctx->lock);
1202 __blk_mq_free_request(hctx, ctx, rq);
1203 return true;
1204 }
1205 }
1206
1207 static struct request *blk_mq_map_request(struct request_queue *q,
1208 struct bio *bio,
1209 struct blk_mq_alloc_data *data)
1210 {
1211 struct blk_mq_hw_ctx *hctx;
1212 struct blk_mq_ctx *ctx;
1213 struct request *rq;
1214
1215 blk_queue_enter_live(q);
1216 ctx = blk_mq_get_ctx(q);
1217 hctx = blk_mq_map_queue(q, ctx->cpu);
1218
1219 trace_block_getrq(q, bio, bio->bi_opf);
1220 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1221 rq = __blk_mq_alloc_request(data, bio->bi_opf);
1222
1223 data->hctx->queued++;
1224 return rq;
1225 }
1226
1227 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1228 struct request *rq, blk_qc_t *cookie)
1229 {
1230 int ret;
1231 struct request_queue *q = rq->q;
1232 struct blk_mq_queue_data bd = {
1233 .rq = rq,
1234 .list = NULL,
1235 .last = 1
1236 };
1237 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1238
1239 if (blk_mq_hctx_stopped(hctx))
1240 goto insert;
1241
1242 /*
1243 * For OK queue, we are done. For error, kill it. Any other
1244 * error (busy), just add it to our list as we previously
1245 * would have done
1246 */
1247 ret = q->mq_ops->queue_rq(hctx, &bd);
1248 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1249 *cookie = new_cookie;
1250 return;
1251 }
1252
1253 __blk_mq_requeue_request(rq);
1254
1255 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1256 *cookie = BLK_QC_T_NONE;
1257 rq->errors = -EIO;
1258 blk_mq_end_request(rq, rq->errors);
1259 return;
1260 }
1261
1262 insert:
1263 blk_mq_insert_request(rq, false, true, true);
1264 }
1265
1266 /*
1267 * Multiple hardware queue variant. This will not use per-process plugs,
1268 * but will attempt to bypass the hctx queueing if we can go straight to
1269 * hardware for SYNC IO.
1270 */
1271 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1272 {
1273 const int is_sync = op_is_sync(bio->bi_opf);
1274 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1275 struct blk_mq_alloc_data data;
1276 struct request *rq;
1277 unsigned int request_count = 0;
1278 struct blk_plug *plug;
1279 struct request *same_queue_rq = NULL;
1280 blk_qc_t cookie;
1281
1282 blk_queue_bounce(q, &bio);
1283
1284 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1285 bio_io_error(bio);
1286 return BLK_QC_T_NONE;
1287 }
1288
1289 blk_queue_split(q, &bio, q->bio_split);
1290
1291 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1292 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1293 return BLK_QC_T_NONE;
1294
1295 rq = blk_mq_map_request(q, bio, &data);
1296 if (unlikely(!rq))
1297 return BLK_QC_T_NONE;
1298
1299 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1300
1301 if (unlikely(is_flush_fua)) {
1302 blk_mq_bio_to_request(rq, bio);
1303 blk_insert_flush(rq);
1304 goto run_queue;
1305 }
1306
1307 plug = current->plug;
1308 /*
1309 * If the driver supports defer issued based on 'last', then
1310 * queue it up like normal since we can potentially save some
1311 * CPU this way.
1312 */
1313 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1314 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1315 struct request *old_rq = NULL;
1316
1317 blk_mq_bio_to_request(rq, bio);
1318
1319 /*
1320 * We do limited pluging. If the bio can be merged, do that.
1321 * Otherwise the existing request in the plug list will be
1322 * issued. So the plug list will have one request at most
1323 */
1324 if (plug) {
1325 /*
1326 * The plug list might get flushed before this. If that
1327 * happens, same_queue_rq is invalid and plug list is
1328 * empty
1329 */
1330 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1331 old_rq = same_queue_rq;
1332 list_del_init(&old_rq->queuelist);
1333 }
1334 list_add_tail(&rq->queuelist, &plug->mq_list);
1335 } else /* is_sync */
1336 old_rq = rq;
1337 blk_mq_put_ctx(data.ctx);
1338 if (!old_rq)
1339 goto done;
1340 blk_mq_try_issue_directly(data.hctx, old_rq, &cookie);
1341 goto done;
1342 }
1343
1344 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1345 /*
1346 * For a SYNC request, send it to the hardware immediately. For
1347 * an ASYNC request, just ensure that we run it later on. The
1348 * latter allows for merging opportunities and more efficient
1349 * dispatching.
1350 */
1351 run_queue:
1352 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1353 }
1354 blk_mq_put_ctx(data.ctx);
1355 done:
1356 return cookie;
1357 }
1358
1359 /*
1360 * Single hardware queue variant. This will attempt to use any per-process
1361 * plug for merging and IO deferral.
1362 */
1363 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1364 {
1365 const int is_sync = op_is_sync(bio->bi_opf);
1366 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1367 struct blk_plug *plug;
1368 unsigned int request_count = 0;
1369 struct blk_mq_alloc_data data;
1370 struct request *rq;
1371 blk_qc_t cookie;
1372
1373 blk_queue_bounce(q, &bio);
1374
1375 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1376 bio_io_error(bio);
1377 return BLK_QC_T_NONE;
1378 }
1379
1380 blk_queue_split(q, &bio, q->bio_split);
1381
1382 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1383 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1384 return BLK_QC_T_NONE;
1385 } else
1386 request_count = blk_plug_queued_count(q);
1387
1388 rq = blk_mq_map_request(q, bio, &data);
1389 if (unlikely(!rq))
1390 return BLK_QC_T_NONE;
1391
1392 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1393
1394 if (unlikely(is_flush_fua)) {
1395 blk_mq_bio_to_request(rq, bio);
1396 blk_insert_flush(rq);
1397 goto run_queue;
1398 }
1399
1400 /*
1401 * A task plug currently exists. Since this is completely lockless,
1402 * utilize that to temporarily store requests until the task is
1403 * either done or scheduled away.
1404 */
1405 plug = current->plug;
1406 if (plug) {
1407 blk_mq_bio_to_request(rq, bio);
1408 if (!request_count)
1409 trace_block_plug(q);
1410
1411 blk_mq_put_ctx(data.ctx);
1412
1413 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1414 blk_flush_plug_list(plug, false);
1415 trace_block_plug(q);
1416 }
1417
1418 list_add_tail(&rq->queuelist, &plug->mq_list);
1419 return cookie;
1420 }
1421
1422 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1423 /*
1424 * For a SYNC request, send it to the hardware immediately. For
1425 * an ASYNC request, just ensure that we run it later on. The
1426 * latter allows for merging opportunities and more efficient
1427 * dispatching.
1428 */
1429 run_queue:
1430 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1431 }
1432
1433 blk_mq_put_ctx(data.ctx);
1434 return cookie;
1435 }
1436
1437 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1438 struct blk_mq_tags *tags, unsigned int hctx_idx)
1439 {
1440 struct page *page;
1441
1442 if (tags->rqs && set->ops->exit_request) {
1443 int i;
1444
1445 for (i = 0; i < tags->nr_tags; i++) {
1446 if (!tags->rqs[i])
1447 continue;
1448 set->ops->exit_request(set->driver_data, tags->rqs[i],
1449 hctx_idx, i);
1450 tags->rqs[i] = NULL;
1451 }
1452 }
1453
1454 while (!list_empty(&tags->page_list)) {
1455 page = list_first_entry(&tags->page_list, struct page, lru);
1456 list_del_init(&page->lru);
1457 /*
1458 * Remove kmemleak object previously allocated in
1459 * blk_mq_init_rq_map().
1460 */
1461 kmemleak_free(page_address(page));
1462 __free_pages(page, page->private);
1463 }
1464
1465 kfree(tags->rqs);
1466
1467 blk_mq_free_tags(tags);
1468 }
1469
1470 static size_t order_to_size(unsigned int order)
1471 {
1472 return (size_t)PAGE_SIZE << order;
1473 }
1474
1475 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1476 unsigned int hctx_idx)
1477 {
1478 struct blk_mq_tags *tags;
1479 unsigned int i, j, entries_per_page, max_order = 4;
1480 size_t rq_size, left;
1481
1482 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1483 set->numa_node,
1484 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1485 if (!tags)
1486 return NULL;
1487
1488 INIT_LIST_HEAD(&tags->page_list);
1489
1490 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1491 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1492 set->numa_node);
1493 if (!tags->rqs) {
1494 blk_mq_free_tags(tags);
1495 return NULL;
1496 }
1497
1498 /*
1499 * rq_size is the size of the request plus driver payload, rounded
1500 * to the cacheline size
1501 */
1502 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1503 cache_line_size());
1504 left = rq_size * set->queue_depth;
1505
1506 for (i = 0; i < set->queue_depth; ) {
1507 int this_order = max_order;
1508 struct page *page;
1509 int to_do;
1510 void *p;
1511
1512 while (this_order && left < order_to_size(this_order - 1))
1513 this_order--;
1514
1515 do {
1516 page = alloc_pages_node(set->numa_node,
1517 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1518 this_order);
1519 if (page)
1520 break;
1521 if (!this_order--)
1522 break;
1523 if (order_to_size(this_order) < rq_size)
1524 break;
1525 } while (1);
1526
1527 if (!page)
1528 goto fail;
1529
1530 page->private = this_order;
1531 list_add_tail(&page->lru, &tags->page_list);
1532
1533 p = page_address(page);
1534 /*
1535 * Allow kmemleak to scan these pages as they contain pointers
1536 * to additional allocations like via ops->init_request().
1537 */
1538 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1539 entries_per_page = order_to_size(this_order) / rq_size;
1540 to_do = min(entries_per_page, set->queue_depth - i);
1541 left -= to_do * rq_size;
1542 for (j = 0; j < to_do; j++) {
1543 tags->rqs[i] = p;
1544 if (set->ops->init_request) {
1545 if (set->ops->init_request(set->driver_data,
1546 tags->rqs[i], hctx_idx, i,
1547 set->numa_node)) {
1548 tags->rqs[i] = NULL;
1549 goto fail;
1550 }
1551 }
1552
1553 p += rq_size;
1554 i++;
1555 }
1556 }
1557 return tags;
1558
1559 fail:
1560 blk_mq_free_rq_map(set, tags, hctx_idx);
1561 return NULL;
1562 }
1563
1564 /*
1565 * 'cpu' is going away. splice any existing rq_list entries from this
1566 * software queue to the hw queue dispatch list, and ensure that it
1567 * gets run.
1568 */
1569 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1570 {
1571 struct blk_mq_hw_ctx *hctx;
1572 struct blk_mq_ctx *ctx;
1573 LIST_HEAD(tmp);
1574
1575 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1576 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1577
1578 spin_lock(&ctx->lock);
1579 if (!list_empty(&ctx->rq_list)) {
1580 list_splice_init(&ctx->rq_list, &tmp);
1581 blk_mq_hctx_clear_pending(hctx, ctx);
1582 }
1583 spin_unlock(&ctx->lock);
1584
1585 if (list_empty(&tmp))
1586 return 0;
1587
1588 spin_lock(&hctx->lock);
1589 list_splice_tail_init(&tmp, &hctx->dispatch);
1590 spin_unlock(&hctx->lock);
1591
1592 blk_mq_run_hw_queue(hctx, true);
1593 return 0;
1594 }
1595
1596 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1597 {
1598 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1599 &hctx->cpuhp_dead);
1600 }
1601
1602 /* hctx->ctxs will be freed in queue's release handler */
1603 static void blk_mq_exit_hctx(struct request_queue *q,
1604 struct blk_mq_tag_set *set,
1605 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1606 {
1607 unsigned flush_start_tag = set->queue_depth;
1608
1609 blk_mq_tag_idle(hctx);
1610
1611 if (set->ops->exit_request)
1612 set->ops->exit_request(set->driver_data,
1613 hctx->fq->flush_rq, hctx_idx,
1614 flush_start_tag + hctx_idx);
1615
1616 if (set->ops->exit_hctx)
1617 set->ops->exit_hctx(hctx, hctx_idx);
1618
1619 blk_mq_remove_cpuhp(hctx);
1620 blk_free_flush_queue(hctx->fq);
1621 sbitmap_free(&hctx->ctx_map);
1622 }
1623
1624 static void blk_mq_exit_hw_queues(struct request_queue *q,
1625 struct blk_mq_tag_set *set, int nr_queue)
1626 {
1627 struct blk_mq_hw_ctx *hctx;
1628 unsigned int i;
1629
1630 queue_for_each_hw_ctx(q, hctx, i) {
1631 if (i == nr_queue)
1632 break;
1633 blk_mq_exit_hctx(q, set, hctx, i);
1634 }
1635 }
1636
1637 static void blk_mq_free_hw_queues(struct request_queue *q,
1638 struct blk_mq_tag_set *set)
1639 {
1640 struct blk_mq_hw_ctx *hctx;
1641 unsigned int i;
1642
1643 queue_for_each_hw_ctx(q, hctx, i)
1644 free_cpumask_var(hctx->cpumask);
1645 }
1646
1647 static int blk_mq_init_hctx(struct request_queue *q,
1648 struct blk_mq_tag_set *set,
1649 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1650 {
1651 int node;
1652 unsigned flush_start_tag = set->queue_depth;
1653
1654 node = hctx->numa_node;
1655 if (node == NUMA_NO_NODE)
1656 node = hctx->numa_node = set->numa_node;
1657
1658 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1659 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1660 spin_lock_init(&hctx->lock);
1661 INIT_LIST_HEAD(&hctx->dispatch);
1662 hctx->queue = q;
1663 hctx->queue_num = hctx_idx;
1664 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1665
1666 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1667
1668 hctx->tags = set->tags[hctx_idx];
1669
1670 /*
1671 * Allocate space for all possible cpus to avoid allocation at
1672 * runtime
1673 */
1674 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1675 GFP_KERNEL, node);
1676 if (!hctx->ctxs)
1677 goto unregister_cpu_notifier;
1678
1679 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1680 node))
1681 goto free_ctxs;
1682
1683 hctx->nr_ctx = 0;
1684
1685 if (set->ops->init_hctx &&
1686 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1687 goto free_bitmap;
1688
1689 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1690 if (!hctx->fq)
1691 goto exit_hctx;
1692
1693 if (set->ops->init_request &&
1694 set->ops->init_request(set->driver_data,
1695 hctx->fq->flush_rq, hctx_idx,
1696 flush_start_tag + hctx_idx, node))
1697 goto free_fq;
1698
1699 return 0;
1700
1701 free_fq:
1702 kfree(hctx->fq);
1703 exit_hctx:
1704 if (set->ops->exit_hctx)
1705 set->ops->exit_hctx(hctx, hctx_idx);
1706 free_bitmap:
1707 sbitmap_free(&hctx->ctx_map);
1708 free_ctxs:
1709 kfree(hctx->ctxs);
1710 unregister_cpu_notifier:
1711 blk_mq_remove_cpuhp(hctx);
1712 return -1;
1713 }
1714
1715 static void blk_mq_init_cpu_queues(struct request_queue *q,
1716 unsigned int nr_hw_queues)
1717 {
1718 unsigned int i;
1719
1720 for_each_possible_cpu(i) {
1721 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1722 struct blk_mq_hw_ctx *hctx;
1723
1724 memset(__ctx, 0, sizeof(*__ctx));
1725 __ctx->cpu = i;
1726 spin_lock_init(&__ctx->lock);
1727 INIT_LIST_HEAD(&__ctx->rq_list);
1728 __ctx->queue = q;
1729
1730 /* If the cpu isn't online, the cpu is mapped to first hctx */
1731 if (!cpu_online(i))
1732 continue;
1733
1734 hctx = blk_mq_map_queue(q, i);
1735
1736 /*
1737 * Set local node, IFF we have more than one hw queue. If
1738 * not, we remain on the home node of the device
1739 */
1740 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1741 hctx->numa_node = local_memory_node(cpu_to_node(i));
1742 }
1743 }
1744
1745 static void blk_mq_map_swqueue(struct request_queue *q,
1746 const struct cpumask *online_mask)
1747 {
1748 unsigned int i;
1749 struct blk_mq_hw_ctx *hctx;
1750 struct blk_mq_ctx *ctx;
1751 struct blk_mq_tag_set *set = q->tag_set;
1752
1753 /*
1754 * Avoid others reading imcomplete hctx->cpumask through sysfs
1755 */
1756 mutex_lock(&q->sysfs_lock);
1757
1758 queue_for_each_hw_ctx(q, hctx, i) {
1759 cpumask_clear(hctx->cpumask);
1760 hctx->nr_ctx = 0;
1761 }
1762
1763 /*
1764 * Map software to hardware queues
1765 */
1766 for_each_possible_cpu(i) {
1767 /* If the cpu isn't online, the cpu is mapped to first hctx */
1768 if (!cpumask_test_cpu(i, online_mask))
1769 continue;
1770
1771 ctx = per_cpu_ptr(q->queue_ctx, i);
1772 hctx = blk_mq_map_queue(q, i);
1773
1774 cpumask_set_cpu(i, hctx->cpumask);
1775 ctx->index_hw = hctx->nr_ctx;
1776 hctx->ctxs[hctx->nr_ctx++] = ctx;
1777 }
1778
1779 mutex_unlock(&q->sysfs_lock);
1780
1781 queue_for_each_hw_ctx(q, hctx, i) {
1782 /*
1783 * If no software queues are mapped to this hardware queue,
1784 * disable it and free the request entries.
1785 */
1786 if (!hctx->nr_ctx) {
1787 if (set->tags[i]) {
1788 blk_mq_free_rq_map(set, set->tags[i], i);
1789 set->tags[i] = NULL;
1790 }
1791 hctx->tags = NULL;
1792 continue;
1793 }
1794
1795 /* unmapped hw queue can be remapped after CPU topo changed */
1796 if (!set->tags[i])
1797 set->tags[i] = blk_mq_init_rq_map(set, i);
1798 hctx->tags = set->tags[i];
1799 WARN_ON(!hctx->tags);
1800
1801 /*
1802 * Set the map size to the number of mapped software queues.
1803 * This is more accurate and more efficient than looping
1804 * over all possibly mapped software queues.
1805 */
1806 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1807
1808 /*
1809 * Initialize batch roundrobin counts
1810 */
1811 hctx->next_cpu = cpumask_first(hctx->cpumask);
1812 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1813 }
1814 }
1815
1816 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1817 {
1818 struct blk_mq_hw_ctx *hctx;
1819 int i;
1820
1821 queue_for_each_hw_ctx(q, hctx, i) {
1822 if (shared)
1823 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1824 else
1825 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1826 }
1827 }
1828
1829 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1830 {
1831 struct request_queue *q;
1832
1833 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1834 blk_mq_freeze_queue(q);
1835 queue_set_hctx_shared(q, shared);
1836 blk_mq_unfreeze_queue(q);
1837 }
1838 }
1839
1840 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1841 {
1842 struct blk_mq_tag_set *set = q->tag_set;
1843
1844 mutex_lock(&set->tag_list_lock);
1845 list_del_init(&q->tag_set_list);
1846 if (list_is_singular(&set->tag_list)) {
1847 /* just transitioned to unshared */
1848 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1849 /* update existing queue */
1850 blk_mq_update_tag_set_depth(set, false);
1851 }
1852 mutex_unlock(&set->tag_list_lock);
1853 }
1854
1855 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1856 struct request_queue *q)
1857 {
1858 q->tag_set = set;
1859
1860 mutex_lock(&set->tag_list_lock);
1861
1862 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1863 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1864 set->flags |= BLK_MQ_F_TAG_SHARED;
1865 /* update existing queue */
1866 blk_mq_update_tag_set_depth(set, true);
1867 }
1868 if (set->flags & BLK_MQ_F_TAG_SHARED)
1869 queue_set_hctx_shared(q, true);
1870 list_add_tail(&q->tag_set_list, &set->tag_list);
1871
1872 mutex_unlock(&set->tag_list_lock);
1873 }
1874
1875 /*
1876 * It is the actual release handler for mq, but we do it from
1877 * request queue's release handler for avoiding use-after-free
1878 * and headache because q->mq_kobj shouldn't have been introduced,
1879 * but we can't group ctx/kctx kobj without it.
1880 */
1881 void blk_mq_release(struct request_queue *q)
1882 {
1883 struct blk_mq_hw_ctx *hctx;
1884 unsigned int i;
1885
1886 /* hctx kobj stays in hctx */
1887 queue_for_each_hw_ctx(q, hctx, i) {
1888 if (!hctx)
1889 continue;
1890 kfree(hctx->ctxs);
1891 kfree(hctx);
1892 }
1893
1894 q->mq_map = NULL;
1895
1896 kfree(q->queue_hw_ctx);
1897
1898 /* ctx kobj stays in queue_ctx */
1899 free_percpu(q->queue_ctx);
1900 }
1901
1902 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1903 {
1904 struct request_queue *uninit_q, *q;
1905
1906 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1907 if (!uninit_q)
1908 return ERR_PTR(-ENOMEM);
1909
1910 q = blk_mq_init_allocated_queue(set, uninit_q);
1911 if (IS_ERR(q))
1912 blk_cleanup_queue(uninit_q);
1913
1914 return q;
1915 }
1916 EXPORT_SYMBOL(blk_mq_init_queue);
1917
1918 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1919 struct request_queue *q)
1920 {
1921 int i, j;
1922 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1923
1924 blk_mq_sysfs_unregister(q);
1925 for (i = 0; i < set->nr_hw_queues; i++) {
1926 int node;
1927
1928 if (hctxs[i])
1929 continue;
1930
1931 node = blk_mq_hw_queue_to_node(q->mq_map, i);
1932 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1933 GFP_KERNEL, node);
1934 if (!hctxs[i])
1935 break;
1936
1937 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1938 node)) {
1939 kfree(hctxs[i]);
1940 hctxs[i] = NULL;
1941 break;
1942 }
1943
1944 atomic_set(&hctxs[i]->nr_active, 0);
1945 hctxs[i]->numa_node = node;
1946 hctxs[i]->queue_num = i;
1947
1948 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1949 free_cpumask_var(hctxs[i]->cpumask);
1950 kfree(hctxs[i]);
1951 hctxs[i] = NULL;
1952 break;
1953 }
1954 blk_mq_hctx_kobj_init(hctxs[i]);
1955 }
1956 for (j = i; j < q->nr_hw_queues; j++) {
1957 struct blk_mq_hw_ctx *hctx = hctxs[j];
1958
1959 if (hctx) {
1960 if (hctx->tags) {
1961 blk_mq_free_rq_map(set, hctx->tags, j);
1962 set->tags[j] = NULL;
1963 }
1964 blk_mq_exit_hctx(q, set, hctx, j);
1965 free_cpumask_var(hctx->cpumask);
1966 kobject_put(&hctx->kobj);
1967 kfree(hctx->ctxs);
1968 kfree(hctx);
1969 hctxs[j] = NULL;
1970
1971 }
1972 }
1973 q->nr_hw_queues = i;
1974 blk_mq_sysfs_register(q);
1975 }
1976
1977 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1978 struct request_queue *q)
1979 {
1980 /* mark the queue as mq asap */
1981 q->mq_ops = set->ops;
1982
1983 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
1984 if (!q->queue_ctx)
1985 goto err_exit;
1986
1987 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
1988 GFP_KERNEL, set->numa_node);
1989 if (!q->queue_hw_ctx)
1990 goto err_percpu;
1991
1992 q->mq_map = set->mq_map;
1993
1994 blk_mq_realloc_hw_ctxs(set, q);
1995 if (!q->nr_hw_queues)
1996 goto err_hctxs;
1997
1998 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
1999 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2000
2001 q->nr_queues = nr_cpu_ids;
2002
2003 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2004
2005 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2006 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2007
2008 q->sg_reserved_size = INT_MAX;
2009
2010 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2011 INIT_LIST_HEAD(&q->requeue_list);
2012 spin_lock_init(&q->requeue_lock);
2013
2014 if (q->nr_hw_queues > 1)
2015 blk_queue_make_request(q, blk_mq_make_request);
2016 else
2017 blk_queue_make_request(q, blk_sq_make_request);
2018
2019 /*
2020 * Do this after blk_queue_make_request() overrides it...
2021 */
2022 q->nr_requests = set->queue_depth;
2023
2024 if (set->ops->complete)
2025 blk_queue_softirq_done(q, set->ops->complete);
2026
2027 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2028
2029 get_online_cpus();
2030 mutex_lock(&all_q_mutex);
2031
2032 list_add_tail(&q->all_q_node, &all_q_list);
2033 blk_mq_add_queue_tag_set(set, q);
2034 blk_mq_map_swqueue(q, cpu_online_mask);
2035
2036 mutex_unlock(&all_q_mutex);
2037 put_online_cpus();
2038
2039 return q;
2040
2041 err_hctxs:
2042 kfree(q->queue_hw_ctx);
2043 err_percpu:
2044 free_percpu(q->queue_ctx);
2045 err_exit:
2046 q->mq_ops = NULL;
2047 return ERR_PTR(-ENOMEM);
2048 }
2049 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2050
2051 void blk_mq_free_queue(struct request_queue *q)
2052 {
2053 struct blk_mq_tag_set *set = q->tag_set;
2054
2055 mutex_lock(&all_q_mutex);
2056 list_del_init(&q->all_q_node);
2057 mutex_unlock(&all_q_mutex);
2058
2059 blk_mq_del_queue_tag_set(q);
2060
2061 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2062 blk_mq_free_hw_queues(q, set);
2063 }
2064
2065 /* Basically redo blk_mq_init_queue with queue frozen */
2066 static void blk_mq_queue_reinit(struct request_queue *q,
2067 const struct cpumask *online_mask)
2068 {
2069 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2070
2071 blk_mq_sysfs_unregister(q);
2072
2073 /*
2074 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2075 * we should change hctx numa_node according to new topology (this
2076 * involves free and re-allocate memory, worthy doing?)
2077 */
2078
2079 blk_mq_map_swqueue(q, online_mask);
2080
2081 blk_mq_sysfs_register(q);
2082 }
2083
2084 /*
2085 * New online cpumask which is going to be set in this hotplug event.
2086 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2087 * one-by-one and dynamically allocating this could result in a failure.
2088 */
2089 static struct cpumask cpuhp_online_new;
2090
2091 static void blk_mq_queue_reinit_work(void)
2092 {
2093 struct request_queue *q;
2094
2095 mutex_lock(&all_q_mutex);
2096 /*
2097 * We need to freeze and reinit all existing queues. Freezing
2098 * involves synchronous wait for an RCU grace period and doing it
2099 * one by one may take a long time. Start freezing all queues in
2100 * one swoop and then wait for the completions so that freezing can
2101 * take place in parallel.
2102 */
2103 list_for_each_entry(q, &all_q_list, all_q_node)
2104 blk_mq_freeze_queue_start(q);
2105 list_for_each_entry(q, &all_q_list, all_q_node) {
2106 blk_mq_freeze_queue_wait(q);
2107
2108 /*
2109 * timeout handler can't touch hw queue during the
2110 * reinitialization
2111 */
2112 del_timer_sync(&q->timeout);
2113 }
2114
2115 list_for_each_entry(q, &all_q_list, all_q_node)
2116 blk_mq_queue_reinit(q, &cpuhp_online_new);
2117
2118 list_for_each_entry(q, &all_q_list, all_q_node)
2119 blk_mq_unfreeze_queue(q);
2120
2121 mutex_unlock(&all_q_mutex);
2122 }
2123
2124 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2125 {
2126 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2127 blk_mq_queue_reinit_work();
2128 return 0;
2129 }
2130
2131 /*
2132 * Before hotadded cpu starts handling requests, new mappings must be
2133 * established. Otherwise, these requests in hw queue might never be
2134 * dispatched.
2135 *
2136 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2137 * for CPU0, and ctx1 for CPU1).
2138 *
2139 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2140 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2141 *
2142 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2143 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2144 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2145 * is ignored.
2146 */
2147 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2148 {
2149 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2150 cpumask_set_cpu(cpu, &cpuhp_online_new);
2151 blk_mq_queue_reinit_work();
2152 return 0;
2153 }
2154
2155 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2156 {
2157 int i;
2158
2159 for (i = 0; i < set->nr_hw_queues; i++) {
2160 set->tags[i] = blk_mq_init_rq_map(set, i);
2161 if (!set->tags[i])
2162 goto out_unwind;
2163 }
2164
2165 return 0;
2166
2167 out_unwind:
2168 while (--i >= 0)
2169 blk_mq_free_rq_map(set, set->tags[i], i);
2170
2171 return -ENOMEM;
2172 }
2173
2174 /*
2175 * Allocate the request maps associated with this tag_set. Note that this
2176 * may reduce the depth asked for, if memory is tight. set->queue_depth
2177 * will be updated to reflect the allocated depth.
2178 */
2179 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2180 {
2181 unsigned int depth;
2182 int err;
2183
2184 depth = set->queue_depth;
2185 do {
2186 err = __blk_mq_alloc_rq_maps(set);
2187 if (!err)
2188 break;
2189
2190 set->queue_depth >>= 1;
2191 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2192 err = -ENOMEM;
2193 break;
2194 }
2195 } while (set->queue_depth);
2196
2197 if (!set->queue_depth || err) {
2198 pr_err("blk-mq: failed to allocate request map\n");
2199 return -ENOMEM;
2200 }
2201
2202 if (depth != set->queue_depth)
2203 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2204 depth, set->queue_depth);
2205
2206 return 0;
2207 }
2208
2209 /*
2210 * Alloc a tag set to be associated with one or more request queues.
2211 * May fail with EINVAL for various error conditions. May adjust the
2212 * requested depth down, if if it too large. In that case, the set
2213 * value will be stored in set->queue_depth.
2214 */
2215 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2216 {
2217 int ret;
2218
2219 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2220
2221 if (!set->nr_hw_queues)
2222 return -EINVAL;
2223 if (!set->queue_depth)
2224 return -EINVAL;
2225 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2226 return -EINVAL;
2227
2228 if (!set->ops->queue_rq)
2229 return -EINVAL;
2230
2231 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2232 pr_info("blk-mq: reduced tag depth to %u\n",
2233 BLK_MQ_MAX_DEPTH);
2234 set->queue_depth = BLK_MQ_MAX_DEPTH;
2235 }
2236
2237 /*
2238 * If a crashdump is active, then we are potentially in a very
2239 * memory constrained environment. Limit us to 1 queue and
2240 * 64 tags to prevent using too much memory.
2241 */
2242 if (is_kdump_kernel()) {
2243 set->nr_hw_queues = 1;
2244 set->queue_depth = min(64U, set->queue_depth);
2245 }
2246 /*
2247 * There is no use for more h/w queues than cpus.
2248 */
2249 if (set->nr_hw_queues > nr_cpu_ids)
2250 set->nr_hw_queues = nr_cpu_ids;
2251
2252 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2253 GFP_KERNEL, set->numa_node);
2254 if (!set->tags)
2255 return -ENOMEM;
2256
2257 ret = -ENOMEM;
2258 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2259 GFP_KERNEL, set->numa_node);
2260 if (!set->mq_map)
2261 goto out_free_tags;
2262
2263 if (set->ops->map_queues)
2264 ret = set->ops->map_queues(set);
2265 else
2266 ret = blk_mq_map_queues(set);
2267 if (ret)
2268 goto out_free_mq_map;
2269
2270 ret = blk_mq_alloc_rq_maps(set);
2271 if (ret)
2272 goto out_free_mq_map;
2273
2274 mutex_init(&set->tag_list_lock);
2275 INIT_LIST_HEAD(&set->tag_list);
2276
2277 return 0;
2278
2279 out_free_mq_map:
2280 kfree(set->mq_map);
2281 set->mq_map = NULL;
2282 out_free_tags:
2283 kfree(set->tags);
2284 set->tags = NULL;
2285 return ret;
2286 }
2287 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2288
2289 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2290 {
2291 int i;
2292
2293 for (i = 0; i < nr_cpu_ids; i++) {
2294 if (set->tags[i])
2295 blk_mq_free_rq_map(set, set->tags[i], i);
2296 }
2297
2298 kfree(set->mq_map);
2299 set->mq_map = NULL;
2300
2301 kfree(set->tags);
2302 set->tags = NULL;
2303 }
2304 EXPORT_SYMBOL(blk_mq_free_tag_set);
2305
2306 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2307 {
2308 struct blk_mq_tag_set *set = q->tag_set;
2309 struct blk_mq_hw_ctx *hctx;
2310 int i, ret;
2311
2312 if (!set || nr > set->queue_depth)
2313 return -EINVAL;
2314
2315 ret = 0;
2316 queue_for_each_hw_ctx(q, hctx, i) {
2317 if (!hctx->tags)
2318 continue;
2319 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2320 if (ret)
2321 break;
2322 }
2323
2324 if (!ret)
2325 q->nr_requests = nr;
2326
2327 return ret;
2328 }
2329
2330 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2331 {
2332 struct request_queue *q;
2333
2334 if (nr_hw_queues > nr_cpu_ids)
2335 nr_hw_queues = nr_cpu_ids;
2336 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2337 return;
2338
2339 list_for_each_entry(q, &set->tag_list, tag_set_list)
2340 blk_mq_freeze_queue(q);
2341
2342 set->nr_hw_queues = nr_hw_queues;
2343 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2344 blk_mq_realloc_hw_ctxs(set, q);
2345
2346 if (q->nr_hw_queues > 1)
2347 blk_queue_make_request(q, blk_mq_make_request);
2348 else
2349 blk_queue_make_request(q, blk_sq_make_request);
2350
2351 blk_mq_queue_reinit(q, cpu_online_mask);
2352 }
2353
2354 list_for_each_entry(q, &set->tag_list, tag_set_list)
2355 blk_mq_unfreeze_queue(q);
2356 }
2357 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2358
2359 void blk_mq_disable_hotplug(void)
2360 {
2361 mutex_lock(&all_q_mutex);
2362 }
2363
2364 void blk_mq_enable_hotplug(void)
2365 {
2366 mutex_unlock(&all_q_mutex);
2367 }
2368
2369 static int __init blk_mq_init(void)
2370 {
2371 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2372 blk_mq_hctx_notify_dead);
2373
2374 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2375 blk_mq_queue_reinit_prepare,
2376 blk_mq_queue_reinit_dead);
2377 return 0;
2378 }
2379 subsys_initcall(blk_mq_init);