]> git.proxmox.com Git - mirror_qemu.git/blob - block/block-copy.c
block: intoduce reqlist
[mirror_qemu.git] / block / block-copy.c
1 /*
2 * block_copy API
3 *
4 * Copyright (C) 2013 Proxmox Server Solutions
5 * Copyright (c) 2019 Virtuozzo International GmbH.
6 *
7 * Authors:
8 * Dietmar Maurer (dietmar@proxmox.com)
9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 */
14
15 #include "qemu/osdep.h"
16
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "block/reqlist.h"
21 #include "sysemu/block-backend.h"
22 #include "qemu/units.h"
23 #include "qemu/coroutine.h"
24 #include "block/aio_task.h"
25 #include "qemu/error-report.h"
26
27 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
28 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
29 #define BLOCK_COPY_MAX_MEM (128 * MiB)
30 #define BLOCK_COPY_MAX_WORKERS 64
31 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
32 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
33
34 typedef enum {
35 COPY_READ_WRITE_CLUSTER,
36 COPY_READ_WRITE,
37 COPY_WRITE_ZEROES,
38 COPY_RANGE_SMALL,
39 COPY_RANGE_FULL
40 } BlockCopyMethod;
41
42 static coroutine_fn int block_copy_task_entry(AioTask *task);
43
44 typedef struct BlockCopyCallState {
45 /* Fields initialized in block_copy_async() and never changed. */
46 BlockCopyState *s;
47 int64_t offset;
48 int64_t bytes;
49 int max_workers;
50 int64_t max_chunk;
51 bool ignore_ratelimit;
52 BlockCopyAsyncCallbackFunc cb;
53 void *cb_opaque;
54 /* Coroutine where async block-copy is running */
55 Coroutine *co;
56
57 /* Fields whose state changes throughout the execution */
58 bool finished; /* atomic */
59 QemuCoSleep sleep; /* TODO: protect API with a lock */
60 bool cancelled; /* atomic */
61 /* To reference all call states from BlockCopyState */
62 QLIST_ENTRY(BlockCopyCallState) list;
63
64 /*
65 * Fields that report information about return values and erros.
66 * Protected by lock in BlockCopyState.
67 */
68 bool error_is_read;
69 /*
70 * @ret is set concurrently by tasks under mutex. Only set once by first
71 * failed task (and untouched if no task failed).
72 * After finishing (call_state->finished is true), it is not modified
73 * anymore and may be safely read without mutex.
74 */
75 int ret;
76 } BlockCopyCallState;
77
78 typedef struct BlockCopyTask {
79 AioTask task;
80
81 /*
82 * Fields initialized in block_copy_task_create()
83 * and never changed.
84 */
85 BlockCopyState *s;
86 BlockCopyCallState *call_state;
87 /*
88 * @method can also be set again in the while loop of
89 * block_copy_dirty_clusters(), but it is never accessed concurrently
90 * because the only other function that reads it is
91 * block_copy_task_entry() and it is invoked afterwards in the same
92 * iteration.
93 */
94 BlockCopyMethod method;
95
96 /*
97 * Generally, req is protected by lock in BlockCopyState, Still req.offset
98 * is only set on task creation, so may be read concurrently after creation.
99 * req.bytes is changed at most once, and need only protecting the case of
100 * parallel read while updating @bytes value in block_copy_task_shrink().
101 */
102 BlockReq req;
103 } BlockCopyTask;
104
105 static int64_t task_end(BlockCopyTask *task)
106 {
107 return task->req.offset + task->req.bytes;
108 }
109
110 typedef struct BlockCopyState {
111 /*
112 * BdrvChild objects are not owned or managed by block-copy. They are
113 * provided by block-copy user and user is responsible for appropriate
114 * permissions on these children.
115 */
116 BdrvChild *source;
117 BdrvChild *target;
118
119 /*
120 * Fields initialized in block_copy_state_new()
121 * and never changed.
122 */
123 int64_t cluster_size;
124 int64_t max_transfer;
125 uint64_t len;
126 BdrvRequestFlags write_flags;
127
128 /*
129 * Fields whose state changes throughout the execution
130 * Protected by lock.
131 */
132 CoMutex lock;
133 int64_t in_flight_bytes;
134 BlockCopyMethod method;
135 BlockReqList reqs;
136 QLIST_HEAD(, BlockCopyCallState) calls;
137 /*
138 * skip_unallocated:
139 *
140 * Used by sync=top jobs, which first scan the source node for unallocated
141 * areas and clear them in the copy_bitmap. During this process, the bitmap
142 * is thus not fully initialized: It may still have bits set for areas that
143 * are unallocated and should actually not be copied.
144 *
145 * This is indicated by skip_unallocated.
146 *
147 * In this case, block_copy() will query the source’s allocation status,
148 * skip unallocated regions, clear them in the copy_bitmap, and invoke
149 * block_copy_reset_unallocated() every time it does.
150 */
151 bool skip_unallocated; /* atomic */
152 /* State fields that use a thread-safe API */
153 BdrvDirtyBitmap *copy_bitmap;
154 ProgressMeter *progress;
155 SharedResource *mem;
156 RateLimit rate_limit;
157 } BlockCopyState;
158
159 /* Called with lock held */
160 static int64_t block_copy_chunk_size(BlockCopyState *s)
161 {
162 switch (s->method) {
163 case COPY_READ_WRITE_CLUSTER:
164 return s->cluster_size;
165 case COPY_READ_WRITE:
166 case COPY_RANGE_SMALL:
167 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER),
168 s->max_transfer);
169 case COPY_RANGE_FULL:
170 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
171 s->max_transfer);
172 default:
173 /* Cannot have COPY_WRITE_ZEROES here. */
174 abort();
175 }
176 }
177
178 /*
179 * Search for the first dirty area in offset/bytes range and create task at
180 * the beginning of it.
181 */
182 static coroutine_fn BlockCopyTask *
183 block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state,
184 int64_t offset, int64_t bytes)
185 {
186 BlockCopyTask *task;
187 int64_t max_chunk;
188
189 QEMU_LOCK_GUARD(&s->lock);
190 max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk);
191 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
192 offset, offset + bytes,
193 max_chunk, &offset, &bytes))
194 {
195 return NULL;
196 }
197
198 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
199 bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
200
201 /* region is dirty, so no existent tasks possible in it */
202 assert(!reqlist_find_conflict(&s->reqs, offset, bytes));
203
204 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
205 s->in_flight_bytes += bytes;
206
207 task = g_new(BlockCopyTask, 1);
208 *task = (BlockCopyTask) {
209 .task.func = block_copy_task_entry,
210 .s = s,
211 .call_state = call_state,
212 .method = s->method,
213 };
214 reqlist_init_req(&s->reqs, &task->req, offset, bytes);
215
216 return task;
217 }
218
219 /*
220 * block_copy_task_shrink
221 *
222 * Drop the tail of the task to be handled later. Set dirty bits back and
223 * wake up all tasks waiting for us (may be some of them are not intersecting
224 * with shrunk task)
225 */
226 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
227 int64_t new_bytes)
228 {
229 QEMU_LOCK_GUARD(&task->s->lock);
230 if (new_bytes == task->req.bytes) {
231 return;
232 }
233
234 assert(new_bytes > 0 && new_bytes < task->req.bytes);
235
236 task->s->in_flight_bytes -= task->req.bytes - new_bytes;
237 bdrv_set_dirty_bitmap(task->s->copy_bitmap,
238 task->req.offset + new_bytes,
239 task->req.bytes - new_bytes);
240
241 reqlist_shrink_req(&task->req, new_bytes);
242 }
243
244 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
245 {
246 QEMU_LOCK_GUARD(&task->s->lock);
247 task->s->in_flight_bytes -= task->req.bytes;
248 if (ret < 0) {
249 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->req.offset,
250 task->req.bytes);
251 }
252 if (task->s->progress) {
253 progress_set_remaining(task->s->progress,
254 bdrv_get_dirty_count(task->s->copy_bitmap) +
255 task->s->in_flight_bytes);
256 }
257 reqlist_remove_req(&task->req);
258 }
259
260 void block_copy_state_free(BlockCopyState *s)
261 {
262 if (!s) {
263 return;
264 }
265
266 ratelimit_destroy(&s->rate_limit);
267 bdrv_release_dirty_bitmap(s->copy_bitmap);
268 shres_destroy(s->mem);
269 g_free(s);
270 }
271
272 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
273 {
274 return MIN_NON_ZERO(INT_MAX,
275 MIN_NON_ZERO(source->bs->bl.max_transfer,
276 target->bs->bl.max_transfer));
277 }
278
279 void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range,
280 bool compress)
281 {
282 /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
283 s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) |
284 (compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
285
286 if (s->max_transfer < s->cluster_size) {
287 /*
288 * copy_range does not respect max_transfer. We don't want to bother
289 * with requests smaller than block-copy cluster size, so fallback to
290 * buffered copying (read and write respect max_transfer on their
291 * behalf).
292 */
293 s->method = COPY_READ_WRITE_CLUSTER;
294 } else if (compress) {
295 /* Compression supports only cluster-size writes and no copy-range. */
296 s->method = COPY_READ_WRITE_CLUSTER;
297 } else {
298 /*
299 * If copy range enabled, start with COPY_RANGE_SMALL, until first
300 * successful copy_range (look at block_copy_do_copy).
301 */
302 s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE;
303 }
304 }
305
306 static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
307 Error **errp)
308 {
309 int ret;
310 BlockDriverInfo bdi;
311 bool target_does_cow = bdrv_backing_chain_next(target);
312
313 /*
314 * If there is no backing file on the target, we cannot rely on COW if our
315 * backup cluster size is smaller than the target cluster size. Even for
316 * targets with a backing file, try to avoid COW if possible.
317 */
318 ret = bdrv_get_info(target, &bdi);
319 if (ret == -ENOTSUP && !target_does_cow) {
320 /* Cluster size is not defined */
321 warn_report("The target block device doesn't provide "
322 "information about the block size and it doesn't have a "
323 "backing file. The default block size of %u bytes is "
324 "used. If the actual block size of the target exceeds "
325 "this default, the backup may be unusable",
326 BLOCK_COPY_CLUSTER_SIZE_DEFAULT);
327 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
328 } else if (ret < 0 && !target_does_cow) {
329 error_setg_errno(errp, -ret,
330 "Couldn't determine the cluster size of the target image, "
331 "which has no backing file");
332 error_append_hint(errp,
333 "Aborting, since this may create an unusable destination image\n");
334 return ret;
335 } else if (ret < 0 && target_does_cow) {
336 /* Not fatal; just trudge on ahead. */
337 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
338 }
339
340 return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size);
341 }
342
343 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
344 const BdrvDirtyBitmap *bitmap,
345 Error **errp)
346 {
347 ERRP_GUARD();
348 BlockCopyState *s;
349 int64_t cluster_size;
350 BdrvDirtyBitmap *copy_bitmap;
351 bool is_fleecing;
352
353 cluster_size = block_copy_calculate_cluster_size(target->bs, errp);
354 if (cluster_size < 0) {
355 return NULL;
356 }
357
358 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
359 errp);
360 if (!copy_bitmap) {
361 return NULL;
362 }
363 bdrv_disable_dirty_bitmap(copy_bitmap);
364 if (bitmap) {
365 if (!bdrv_merge_dirty_bitmap(copy_bitmap, bitmap, NULL, errp)) {
366 error_prepend(errp, "Failed to merge bitmap '%s' to internal "
367 "copy-bitmap: ", bdrv_dirty_bitmap_name(bitmap));
368 bdrv_release_dirty_bitmap(copy_bitmap);
369 return NULL;
370 }
371 } else {
372 bdrv_set_dirty_bitmap(copy_bitmap, 0,
373 bdrv_dirty_bitmap_size(copy_bitmap));
374 }
375
376 /*
377 * If source is in backing chain of target assume that target is going to be
378 * used for "image fleecing", i.e. it should represent a kind of snapshot of
379 * source at backup-start point in time. And target is going to be read by
380 * somebody (for example, used as NBD export) during backup job.
381 *
382 * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
383 * intersection of backup writes and third party reads from target,
384 * otherwise reading from target we may occasionally read already updated by
385 * guest data.
386 *
387 * For more information see commit f8d59dfb40bb and test
388 * tests/qemu-iotests/222
389 */
390 is_fleecing = bdrv_chain_contains(target->bs, source->bs);
391
392 s = g_new(BlockCopyState, 1);
393 *s = (BlockCopyState) {
394 .source = source,
395 .target = target,
396 .copy_bitmap = copy_bitmap,
397 .cluster_size = cluster_size,
398 .len = bdrv_dirty_bitmap_size(copy_bitmap),
399 .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0),
400 .mem = shres_create(BLOCK_COPY_MAX_MEM),
401 .max_transfer = QEMU_ALIGN_DOWN(
402 block_copy_max_transfer(source, target),
403 cluster_size),
404 };
405
406 block_copy_set_copy_opts(s, false, false);
407
408 ratelimit_init(&s->rate_limit);
409 qemu_co_mutex_init(&s->lock);
410 QLIST_INIT(&s->reqs);
411 QLIST_INIT(&s->calls);
412
413 return s;
414 }
415
416 /* Only set before running the job, no need for locking. */
417 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
418 {
419 s->progress = pm;
420 }
421
422 /*
423 * Takes ownership of @task
424 *
425 * If pool is NULL directly run the task, otherwise schedule it into the pool.
426 *
427 * Returns: task.func return code if pool is NULL
428 * otherwise -ECANCELED if pool status is bad
429 * otherwise 0 (successfully scheduled)
430 */
431 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
432 BlockCopyTask *task)
433 {
434 if (!pool) {
435 int ret = task->task.func(&task->task);
436
437 g_free(task);
438 return ret;
439 }
440
441 aio_task_pool_wait_slot(pool);
442 if (aio_task_pool_status(pool) < 0) {
443 co_put_to_shres(task->s->mem, task->req.bytes);
444 block_copy_task_end(task, -ECANCELED);
445 g_free(task);
446 return -ECANCELED;
447 }
448
449 aio_task_pool_start_task(pool, &task->task);
450
451 return 0;
452 }
453
454 /*
455 * block_copy_do_copy
456 *
457 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
458 * s->len only to cover last cluster when s->len is not aligned to clusters.
459 *
460 * No sync here: nor bitmap neighter intersecting requests handling, only copy.
461 *
462 * @method is an in-out argument, so that copy_range can be either extended to
463 * a full-size buffer or disabled if the copy_range attempt fails. The output
464 * value of @method should be used for subsequent tasks.
465 * Returns 0 on success.
466 */
467 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
468 int64_t offset, int64_t bytes,
469 BlockCopyMethod *method,
470 bool *error_is_read)
471 {
472 int ret;
473 int64_t nbytes = MIN(offset + bytes, s->len) - offset;
474 void *bounce_buffer = NULL;
475
476 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
477 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
478 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
479 assert(offset < s->len);
480 assert(offset + bytes <= s->len ||
481 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
482 assert(nbytes < INT_MAX);
483
484 switch (*method) {
485 case COPY_WRITE_ZEROES:
486 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
487 ~BDRV_REQ_WRITE_COMPRESSED);
488 if (ret < 0) {
489 trace_block_copy_write_zeroes_fail(s, offset, ret);
490 *error_is_read = false;
491 }
492 return ret;
493
494 case COPY_RANGE_SMALL:
495 case COPY_RANGE_FULL:
496 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
497 0, s->write_flags);
498 if (ret >= 0) {
499 /* Successful copy-range, increase chunk size. */
500 *method = COPY_RANGE_FULL;
501 return 0;
502 }
503
504 trace_block_copy_copy_range_fail(s, offset, ret);
505 *method = COPY_READ_WRITE;
506 /* Fall through to read+write with allocated buffer */
507
508 case COPY_READ_WRITE_CLUSTER:
509 case COPY_READ_WRITE:
510 /*
511 * In case of failed copy_range request above, we may proceed with
512 * buffered request larger than BLOCK_COPY_MAX_BUFFER.
513 * Still, further requests will be properly limited, so don't care too
514 * much. Moreover the most likely case (copy_range is unsupported for
515 * the configuration, so the very first copy_range request fails)
516 * is handled by setting large copy_size only after first successful
517 * copy_range.
518 */
519
520 bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
521
522 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
523 if (ret < 0) {
524 trace_block_copy_read_fail(s, offset, ret);
525 *error_is_read = true;
526 goto out;
527 }
528
529 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
530 s->write_flags);
531 if (ret < 0) {
532 trace_block_copy_write_fail(s, offset, ret);
533 *error_is_read = false;
534 goto out;
535 }
536
537 out:
538 qemu_vfree(bounce_buffer);
539 break;
540
541 default:
542 abort();
543 }
544
545 return ret;
546 }
547
548 static coroutine_fn int block_copy_task_entry(AioTask *task)
549 {
550 BlockCopyTask *t = container_of(task, BlockCopyTask, task);
551 BlockCopyState *s = t->s;
552 bool error_is_read = false;
553 BlockCopyMethod method = t->method;
554 int ret;
555
556 ret = block_copy_do_copy(s, t->req.offset, t->req.bytes, &method,
557 &error_is_read);
558
559 WITH_QEMU_LOCK_GUARD(&s->lock) {
560 if (s->method == t->method) {
561 s->method = method;
562 }
563
564 if (ret < 0) {
565 if (!t->call_state->ret) {
566 t->call_state->ret = ret;
567 t->call_state->error_is_read = error_is_read;
568 }
569 } else if (s->progress) {
570 progress_work_done(s->progress, t->req.bytes);
571 }
572 }
573 co_put_to_shres(s->mem, t->req.bytes);
574 block_copy_task_end(t, ret);
575
576 return ret;
577 }
578
579 static int block_copy_block_status(BlockCopyState *s, int64_t offset,
580 int64_t bytes, int64_t *pnum)
581 {
582 int64_t num;
583 BlockDriverState *base;
584 int ret;
585
586 if (qatomic_read(&s->skip_unallocated)) {
587 base = bdrv_backing_chain_next(s->source->bs);
588 } else {
589 base = NULL;
590 }
591
592 ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
593 NULL, NULL);
594 if (ret < 0 || num < s->cluster_size) {
595 /*
596 * On error or if failed to obtain large enough chunk just fallback to
597 * copy one cluster.
598 */
599 num = s->cluster_size;
600 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
601 } else if (offset + num == s->len) {
602 num = QEMU_ALIGN_UP(num, s->cluster_size);
603 } else {
604 num = QEMU_ALIGN_DOWN(num, s->cluster_size);
605 }
606
607 *pnum = num;
608 return ret;
609 }
610
611 /*
612 * Check if the cluster starting at offset is allocated or not.
613 * return via pnum the number of contiguous clusters sharing this allocation.
614 */
615 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
616 int64_t *pnum)
617 {
618 BlockDriverState *bs = s->source->bs;
619 int64_t count, total_count = 0;
620 int64_t bytes = s->len - offset;
621 int ret;
622
623 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
624
625 while (true) {
626 ret = bdrv_is_allocated(bs, offset, bytes, &count);
627 if (ret < 0) {
628 return ret;
629 }
630
631 total_count += count;
632
633 if (ret || count == 0) {
634 /*
635 * ret: partial segment(s) are considered allocated.
636 * otherwise: unallocated tail is treated as an entire segment.
637 */
638 *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
639 return ret;
640 }
641
642 /* Unallocated segment(s) with uncertain following segment(s) */
643 if (total_count >= s->cluster_size) {
644 *pnum = total_count / s->cluster_size;
645 return 0;
646 }
647
648 offset += count;
649 bytes -= count;
650 }
651 }
652
653 void block_copy_reset(BlockCopyState *s, int64_t offset, int64_t bytes)
654 {
655 QEMU_LOCK_GUARD(&s->lock);
656
657 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
658 if (s->progress) {
659 progress_set_remaining(s->progress,
660 bdrv_get_dirty_count(s->copy_bitmap) +
661 s->in_flight_bytes);
662 }
663 }
664
665 /*
666 * Reset bits in copy_bitmap starting at offset if they represent unallocated
667 * data in the image. May reset subsequent contiguous bits.
668 * @return 0 when the cluster at @offset was unallocated,
669 * 1 otherwise, and -ret on error.
670 */
671 int64_t block_copy_reset_unallocated(BlockCopyState *s,
672 int64_t offset, int64_t *count)
673 {
674 int ret;
675 int64_t clusters, bytes;
676
677 ret = block_copy_is_cluster_allocated(s, offset, &clusters);
678 if (ret < 0) {
679 return ret;
680 }
681
682 bytes = clusters * s->cluster_size;
683
684 if (!ret) {
685 block_copy_reset(s, offset, bytes);
686 }
687
688 *count = bytes;
689 return ret;
690 }
691
692 /*
693 * block_copy_dirty_clusters
694 *
695 * Copy dirty clusters in @offset/@bytes range.
696 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
697 * clusters found and -errno on failure.
698 */
699 static int coroutine_fn
700 block_copy_dirty_clusters(BlockCopyCallState *call_state)
701 {
702 BlockCopyState *s = call_state->s;
703 int64_t offset = call_state->offset;
704 int64_t bytes = call_state->bytes;
705
706 int ret = 0;
707 bool found_dirty = false;
708 int64_t end = offset + bytes;
709 AioTaskPool *aio = NULL;
710
711 /*
712 * block_copy() user is responsible for keeping source and target in same
713 * aio context
714 */
715 assert(bdrv_get_aio_context(s->source->bs) ==
716 bdrv_get_aio_context(s->target->bs));
717
718 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
719 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
720
721 while (bytes && aio_task_pool_status(aio) == 0 &&
722 !qatomic_read(&call_state->cancelled)) {
723 BlockCopyTask *task;
724 int64_t status_bytes;
725
726 task = block_copy_task_create(s, call_state, offset, bytes);
727 if (!task) {
728 /* No more dirty bits in the bitmap */
729 trace_block_copy_skip_range(s, offset, bytes);
730 break;
731 }
732 if (task->req.offset > offset) {
733 trace_block_copy_skip_range(s, offset, task->req.offset - offset);
734 }
735
736 found_dirty = true;
737
738 ret = block_copy_block_status(s, task->req.offset, task->req.bytes,
739 &status_bytes);
740 assert(ret >= 0); /* never fail */
741 if (status_bytes < task->req.bytes) {
742 block_copy_task_shrink(task, status_bytes);
743 }
744 if (qatomic_read(&s->skip_unallocated) &&
745 !(ret & BDRV_BLOCK_ALLOCATED)) {
746 block_copy_task_end(task, 0);
747 trace_block_copy_skip_range(s, task->req.offset, task->req.bytes);
748 offset = task_end(task);
749 bytes = end - offset;
750 g_free(task);
751 continue;
752 }
753 if (ret & BDRV_BLOCK_ZERO) {
754 task->method = COPY_WRITE_ZEROES;
755 }
756
757 if (!call_state->ignore_ratelimit) {
758 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
759 if (ns > 0) {
760 block_copy_task_end(task, -EAGAIN);
761 g_free(task);
762 qemu_co_sleep_ns_wakeable(&call_state->sleep,
763 QEMU_CLOCK_REALTIME, ns);
764 continue;
765 }
766 }
767
768 ratelimit_calculate_delay(&s->rate_limit, task->req.bytes);
769
770 trace_block_copy_process(s, task->req.offset);
771
772 co_get_from_shres(s->mem, task->req.bytes);
773
774 offset = task_end(task);
775 bytes = end - offset;
776
777 if (!aio && bytes) {
778 aio = aio_task_pool_new(call_state->max_workers);
779 }
780
781 ret = block_copy_task_run(aio, task);
782 if (ret < 0) {
783 goto out;
784 }
785 }
786
787 out:
788 if (aio) {
789 aio_task_pool_wait_all(aio);
790
791 /*
792 * We are not really interested in -ECANCELED returned from
793 * block_copy_task_run. If it fails, it means some task already failed
794 * for real reason, let's return first failure.
795 * Still, assert that we don't rewrite failure by success.
796 *
797 * Note: ret may be positive here because of block-status result.
798 */
799 assert(ret >= 0 || aio_task_pool_status(aio) < 0);
800 ret = aio_task_pool_status(aio);
801
802 aio_task_pool_free(aio);
803 }
804
805 return ret < 0 ? ret : found_dirty;
806 }
807
808 void block_copy_kick(BlockCopyCallState *call_state)
809 {
810 qemu_co_sleep_wake(&call_state->sleep);
811 }
812
813 /*
814 * block_copy_common
815 *
816 * Copy requested region, accordingly to dirty bitmap.
817 * Collaborate with parallel block_copy requests: if they succeed it will help
818 * us. If they fail, we will retry not-copied regions. So, if we return error,
819 * it means that some I/O operation failed in context of _this_ block_copy call,
820 * not some parallel operation.
821 */
822 static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
823 {
824 int ret;
825 BlockCopyState *s = call_state->s;
826
827 qemu_co_mutex_lock(&s->lock);
828 QLIST_INSERT_HEAD(&s->calls, call_state, list);
829 qemu_co_mutex_unlock(&s->lock);
830
831 do {
832 ret = block_copy_dirty_clusters(call_state);
833
834 if (ret == 0 && !qatomic_read(&call_state->cancelled)) {
835 WITH_QEMU_LOCK_GUARD(&s->lock) {
836 /*
837 * Check that there is no task we still need to
838 * wait to complete
839 */
840 ret = reqlist_wait_one(&s->reqs, call_state->offset,
841 call_state->bytes, &s->lock);
842 if (ret == 0) {
843 /*
844 * No pending tasks, but check again the bitmap in this
845 * same critical section, since a task might have failed
846 * between this and the critical section in
847 * block_copy_dirty_clusters().
848 *
849 * reqlist_wait_one return value 0 also means that it
850 * didn't release the lock. So, we are still in the same
851 * critical section, not interrupted by any concurrent
852 * access to state.
853 */
854 ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap,
855 call_state->offset,
856 call_state->bytes) >= 0;
857 }
858 }
859 }
860
861 /*
862 * We retry in two cases:
863 * 1. Some progress done
864 * Something was copied, which means that there were yield points
865 * and some new dirty bits may have appeared (due to failed parallel
866 * block-copy requests).
867 * 2. We have waited for some intersecting block-copy request
868 * It may have failed and produced new dirty bits.
869 */
870 } while (ret > 0 && !qatomic_read(&call_state->cancelled));
871
872 qatomic_store_release(&call_state->finished, true);
873
874 if (call_state->cb) {
875 call_state->cb(call_state->cb_opaque);
876 }
877
878 qemu_co_mutex_lock(&s->lock);
879 QLIST_REMOVE(call_state, list);
880 qemu_co_mutex_unlock(&s->lock);
881
882 return ret;
883 }
884
885 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
886 bool ignore_ratelimit)
887 {
888 BlockCopyCallState call_state = {
889 .s = s,
890 .offset = start,
891 .bytes = bytes,
892 .ignore_ratelimit = ignore_ratelimit,
893 .max_workers = BLOCK_COPY_MAX_WORKERS,
894 };
895
896 return block_copy_common(&call_state);
897 }
898
899 static void coroutine_fn block_copy_async_co_entry(void *opaque)
900 {
901 block_copy_common(opaque);
902 }
903
904 BlockCopyCallState *block_copy_async(BlockCopyState *s,
905 int64_t offset, int64_t bytes,
906 int max_workers, int64_t max_chunk,
907 BlockCopyAsyncCallbackFunc cb,
908 void *cb_opaque)
909 {
910 BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
911
912 *call_state = (BlockCopyCallState) {
913 .s = s,
914 .offset = offset,
915 .bytes = bytes,
916 .max_workers = max_workers,
917 .max_chunk = max_chunk,
918 .cb = cb,
919 .cb_opaque = cb_opaque,
920
921 .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
922 };
923
924 qemu_coroutine_enter(call_state->co);
925
926 return call_state;
927 }
928
929 void block_copy_call_free(BlockCopyCallState *call_state)
930 {
931 if (!call_state) {
932 return;
933 }
934
935 assert(qatomic_read(&call_state->finished));
936 g_free(call_state);
937 }
938
939 bool block_copy_call_finished(BlockCopyCallState *call_state)
940 {
941 return qatomic_read(&call_state->finished);
942 }
943
944 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
945 {
946 return qatomic_load_acquire(&call_state->finished) &&
947 !qatomic_read(&call_state->cancelled) &&
948 call_state->ret == 0;
949 }
950
951 bool block_copy_call_failed(BlockCopyCallState *call_state)
952 {
953 return qatomic_load_acquire(&call_state->finished) &&
954 !qatomic_read(&call_state->cancelled) &&
955 call_state->ret < 0;
956 }
957
958 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
959 {
960 return qatomic_read(&call_state->cancelled);
961 }
962
963 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
964 {
965 assert(qatomic_load_acquire(&call_state->finished));
966 if (error_is_read) {
967 *error_is_read = call_state->error_is_read;
968 }
969 return call_state->ret;
970 }
971
972 /*
973 * Note that cancelling and finishing are racy.
974 * User can cancel a block-copy that is already finished.
975 */
976 void block_copy_call_cancel(BlockCopyCallState *call_state)
977 {
978 qatomic_set(&call_state->cancelled, true);
979 block_copy_kick(call_state);
980 }
981
982 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
983 {
984 return s->copy_bitmap;
985 }
986
987 int64_t block_copy_cluster_size(BlockCopyState *s)
988 {
989 return s->cluster_size;
990 }
991
992 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
993 {
994 qatomic_set(&s->skip_unallocated, skip);
995 }
996
997 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
998 {
999 ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
1000
1001 /*
1002 * Note: it's good to kick all call states from here, but it should be done
1003 * only from a coroutine, to not crash if s->calls list changed while
1004 * entering one call. So for now, the only user of this function kicks its
1005 * only one call_state by hand.
1006 */
1007 }