]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
cfda7148d83031e3ef07ea57abc0b3ba2a1e5fd7
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "qemu/cutils.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33
34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
35
36 static BlockAIOCB *bdrv_co_aio_rw_vector(BdrvChild *child,
37 int64_t sector_num,
38 QEMUIOVector *qiov,
39 int nb_sectors,
40 BdrvRequestFlags flags,
41 BlockCompletionFunc *cb,
42 void *opaque,
43 bool is_write);
44 static void coroutine_fn bdrv_co_do_rw(void *opaque);
45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
46 int64_t offset, int count, BdrvRequestFlags flags);
47
48 static void bdrv_parent_drained_begin(BlockDriverState *bs)
49 {
50 BdrvChild *c;
51
52 QLIST_FOREACH(c, &bs->parents, next_parent) {
53 if (c->role->drained_begin) {
54 c->role->drained_begin(c);
55 }
56 }
57 }
58
59 static void bdrv_parent_drained_end(BlockDriverState *bs)
60 {
61 BdrvChild *c;
62
63 QLIST_FOREACH(c, &bs->parents, next_parent) {
64 if (c->role->drained_end) {
65 c->role->drained_end(c);
66 }
67 }
68 }
69
70 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
71 {
72 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
73 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
74 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
75 src->opt_mem_alignment);
76 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
77 src->min_mem_alignment);
78 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
79 }
80
81 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
82 {
83 BlockDriver *drv = bs->drv;
84 Error *local_err = NULL;
85
86 memset(&bs->bl, 0, sizeof(bs->bl));
87
88 if (!drv) {
89 return;
90 }
91
92 /* Default alignment based on whether driver has byte interface */
93 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
94
95 /* Take some limits from the children as a default */
96 if (bs->file) {
97 bdrv_refresh_limits(bs->file->bs, &local_err);
98 if (local_err) {
99 error_propagate(errp, local_err);
100 return;
101 }
102 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
103 } else {
104 bs->bl.min_mem_alignment = 512;
105 bs->bl.opt_mem_alignment = getpagesize();
106
107 /* Safe default since most protocols use readv()/writev()/etc */
108 bs->bl.max_iov = IOV_MAX;
109 }
110
111 if (bs->backing) {
112 bdrv_refresh_limits(bs->backing->bs, &local_err);
113 if (local_err) {
114 error_propagate(errp, local_err);
115 return;
116 }
117 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
118 }
119
120 /* Then let the driver override it */
121 if (drv->bdrv_refresh_limits) {
122 drv->bdrv_refresh_limits(bs, errp);
123 }
124 }
125
126 /**
127 * The copy-on-read flag is actually a reference count so multiple users may
128 * use the feature without worrying about clobbering its previous state.
129 * Copy-on-read stays enabled until all users have called to disable it.
130 */
131 void bdrv_enable_copy_on_read(BlockDriverState *bs)
132 {
133 bs->copy_on_read++;
134 }
135
136 void bdrv_disable_copy_on_read(BlockDriverState *bs)
137 {
138 assert(bs->copy_on_read > 0);
139 bs->copy_on_read--;
140 }
141
142 /* Check if any requests are in-flight (including throttled requests) */
143 bool bdrv_requests_pending(BlockDriverState *bs)
144 {
145 BdrvChild *child;
146
147 if (!QLIST_EMPTY(&bs->tracked_requests)) {
148 return true;
149 }
150
151 QLIST_FOREACH(child, &bs->children, next) {
152 if (bdrv_requests_pending(child->bs)) {
153 return true;
154 }
155 }
156
157 return false;
158 }
159
160 static void bdrv_drain_recurse(BlockDriverState *bs)
161 {
162 BdrvChild *child;
163
164 if (bs->drv && bs->drv->bdrv_drain) {
165 bs->drv->bdrv_drain(bs);
166 }
167 QLIST_FOREACH(child, &bs->children, next) {
168 bdrv_drain_recurse(child->bs);
169 }
170 }
171
172 typedef struct {
173 Coroutine *co;
174 BlockDriverState *bs;
175 QEMUBH *bh;
176 bool done;
177 } BdrvCoDrainData;
178
179 static void bdrv_drain_poll(BlockDriverState *bs)
180 {
181 bool busy = true;
182
183 while (busy) {
184 /* Keep iterating */
185 busy = bdrv_requests_pending(bs);
186 busy |= aio_poll(bdrv_get_aio_context(bs), busy);
187 }
188 }
189
190 static void bdrv_co_drain_bh_cb(void *opaque)
191 {
192 BdrvCoDrainData *data = opaque;
193 Coroutine *co = data->co;
194
195 qemu_bh_delete(data->bh);
196 bdrv_drain_poll(data->bs);
197 data->done = true;
198 qemu_coroutine_enter(co);
199 }
200
201 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
202 {
203 BdrvCoDrainData data;
204
205 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
206 * other coroutines run if they were queued from
207 * qemu_co_queue_run_restart(). */
208
209 assert(qemu_in_coroutine());
210 data = (BdrvCoDrainData) {
211 .co = qemu_coroutine_self(),
212 .bs = bs,
213 .done = false,
214 .bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_drain_bh_cb, &data),
215 };
216 qemu_bh_schedule(data.bh);
217
218 qemu_coroutine_yield();
219 /* If we are resumed from some other event (such as an aio completion or a
220 * timer callback), it is a bug in the caller that should be fixed. */
221 assert(data.done);
222 }
223
224 void bdrv_drained_begin(BlockDriverState *bs)
225 {
226 if (!bs->quiesce_counter++) {
227 aio_disable_external(bdrv_get_aio_context(bs));
228 bdrv_parent_drained_begin(bs);
229 }
230
231 bdrv_io_unplugged_begin(bs);
232 bdrv_drain_recurse(bs);
233 if (qemu_in_coroutine()) {
234 bdrv_co_yield_to_drain(bs);
235 } else {
236 bdrv_drain_poll(bs);
237 }
238 bdrv_io_unplugged_end(bs);
239 }
240
241 void bdrv_drained_end(BlockDriverState *bs)
242 {
243 assert(bs->quiesce_counter > 0);
244 if (--bs->quiesce_counter > 0) {
245 return;
246 }
247
248 bdrv_parent_drained_end(bs);
249 aio_enable_external(bdrv_get_aio_context(bs));
250 }
251
252 /*
253 * Wait for pending requests to complete on a single BlockDriverState subtree,
254 * and suspend block driver's internal I/O until next request arrives.
255 *
256 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
257 * AioContext.
258 *
259 * Only this BlockDriverState's AioContext is run, so in-flight requests must
260 * not depend on events in other AioContexts. In that case, use
261 * bdrv_drain_all() instead.
262 */
263 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
264 {
265 assert(qemu_in_coroutine());
266 bdrv_drained_begin(bs);
267 bdrv_drained_end(bs);
268 }
269
270 void bdrv_drain(BlockDriverState *bs)
271 {
272 bdrv_drained_begin(bs);
273 bdrv_drained_end(bs);
274 }
275
276 /*
277 * Wait for pending requests to complete across all BlockDriverStates
278 *
279 * This function does not flush data to disk, use bdrv_flush_all() for that
280 * after calling this function.
281 */
282 void bdrv_drain_all(void)
283 {
284 /* Always run first iteration so any pending completion BHs run */
285 bool busy = true;
286 BlockDriverState *bs;
287 BdrvNextIterator it;
288 BlockJob *job = NULL;
289 GSList *aio_ctxs = NULL, *ctx;
290
291 while ((job = block_job_next(job))) {
292 AioContext *aio_context = blk_get_aio_context(job->blk);
293
294 aio_context_acquire(aio_context);
295 block_job_pause(job);
296 aio_context_release(aio_context);
297 }
298
299 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
300 AioContext *aio_context = bdrv_get_aio_context(bs);
301
302 aio_context_acquire(aio_context);
303 bdrv_parent_drained_begin(bs);
304 bdrv_io_unplugged_begin(bs);
305 bdrv_drain_recurse(bs);
306 aio_context_release(aio_context);
307
308 if (!g_slist_find(aio_ctxs, aio_context)) {
309 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
310 }
311 }
312
313 /* Note that completion of an asynchronous I/O operation can trigger any
314 * number of other I/O operations on other devices---for example a
315 * coroutine can submit an I/O request to another device in response to
316 * request completion. Therefore we must keep looping until there was no
317 * more activity rather than simply draining each device independently.
318 */
319 while (busy) {
320 busy = false;
321
322 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
323 AioContext *aio_context = ctx->data;
324
325 aio_context_acquire(aio_context);
326 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
327 if (aio_context == bdrv_get_aio_context(bs)) {
328 if (bdrv_requests_pending(bs)) {
329 busy = true;
330 aio_poll(aio_context, busy);
331 }
332 }
333 }
334 busy |= aio_poll(aio_context, false);
335 aio_context_release(aio_context);
336 }
337 }
338
339 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
340 AioContext *aio_context = bdrv_get_aio_context(bs);
341
342 aio_context_acquire(aio_context);
343 bdrv_io_unplugged_end(bs);
344 bdrv_parent_drained_end(bs);
345 aio_context_release(aio_context);
346 }
347 g_slist_free(aio_ctxs);
348
349 job = NULL;
350 while ((job = block_job_next(job))) {
351 AioContext *aio_context = blk_get_aio_context(job->blk);
352
353 aio_context_acquire(aio_context);
354 block_job_resume(job);
355 aio_context_release(aio_context);
356 }
357 }
358
359 /**
360 * Remove an active request from the tracked requests list
361 *
362 * This function should be called when a tracked request is completing.
363 */
364 static void tracked_request_end(BdrvTrackedRequest *req)
365 {
366 if (req->serialising) {
367 req->bs->serialising_in_flight--;
368 }
369
370 QLIST_REMOVE(req, list);
371 qemu_co_queue_restart_all(&req->wait_queue);
372 }
373
374 /**
375 * Add an active request to the tracked requests list
376 */
377 static void tracked_request_begin(BdrvTrackedRequest *req,
378 BlockDriverState *bs,
379 int64_t offset,
380 unsigned int bytes,
381 enum BdrvTrackedRequestType type)
382 {
383 *req = (BdrvTrackedRequest){
384 .bs = bs,
385 .offset = offset,
386 .bytes = bytes,
387 .type = type,
388 .co = qemu_coroutine_self(),
389 .serialising = false,
390 .overlap_offset = offset,
391 .overlap_bytes = bytes,
392 };
393
394 qemu_co_queue_init(&req->wait_queue);
395
396 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
397 }
398
399 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
400 {
401 int64_t overlap_offset = req->offset & ~(align - 1);
402 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
403 - overlap_offset;
404
405 if (!req->serialising) {
406 req->bs->serialising_in_flight++;
407 req->serialising = true;
408 }
409
410 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
411 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
412 }
413
414 /**
415 * Round a region to cluster boundaries (sector-based)
416 */
417 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
418 int64_t sector_num, int nb_sectors,
419 int64_t *cluster_sector_num,
420 int *cluster_nb_sectors)
421 {
422 BlockDriverInfo bdi;
423
424 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
425 *cluster_sector_num = sector_num;
426 *cluster_nb_sectors = nb_sectors;
427 } else {
428 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
429 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
430 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
431 nb_sectors, c);
432 }
433 }
434
435 /**
436 * Round a region to cluster boundaries
437 */
438 void bdrv_round_to_clusters(BlockDriverState *bs,
439 int64_t offset, unsigned int bytes,
440 int64_t *cluster_offset,
441 unsigned int *cluster_bytes)
442 {
443 BlockDriverInfo bdi;
444
445 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
446 *cluster_offset = offset;
447 *cluster_bytes = bytes;
448 } else {
449 int64_t c = bdi.cluster_size;
450 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
451 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
452 }
453 }
454
455 static int bdrv_get_cluster_size(BlockDriverState *bs)
456 {
457 BlockDriverInfo bdi;
458 int ret;
459
460 ret = bdrv_get_info(bs, &bdi);
461 if (ret < 0 || bdi.cluster_size == 0) {
462 return bs->bl.request_alignment;
463 } else {
464 return bdi.cluster_size;
465 }
466 }
467
468 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
469 int64_t offset, unsigned int bytes)
470 {
471 /* aaaa bbbb */
472 if (offset >= req->overlap_offset + req->overlap_bytes) {
473 return false;
474 }
475 /* bbbb aaaa */
476 if (req->overlap_offset >= offset + bytes) {
477 return false;
478 }
479 return true;
480 }
481
482 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
483 {
484 BlockDriverState *bs = self->bs;
485 BdrvTrackedRequest *req;
486 bool retry;
487 bool waited = false;
488
489 if (!bs->serialising_in_flight) {
490 return false;
491 }
492
493 do {
494 retry = false;
495 QLIST_FOREACH(req, &bs->tracked_requests, list) {
496 if (req == self || (!req->serialising && !self->serialising)) {
497 continue;
498 }
499 if (tracked_request_overlaps(req, self->overlap_offset,
500 self->overlap_bytes))
501 {
502 /* Hitting this means there was a reentrant request, for
503 * example, a block driver issuing nested requests. This must
504 * never happen since it means deadlock.
505 */
506 assert(qemu_coroutine_self() != req->co);
507
508 /* If the request is already (indirectly) waiting for us, or
509 * will wait for us as soon as it wakes up, then just go on
510 * (instead of producing a deadlock in the former case). */
511 if (!req->waiting_for) {
512 self->waiting_for = req;
513 qemu_co_queue_wait(&req->wait_queue);
514 self->waiting_for = NULL;
515 retry = true;
516 waited = true;
517 break;
518 }
519 }
520 }
521 } while (retry);
522
523 return waited;
524 }
525
526 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
527 size_t size)
528 {
529 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
530 return -EIO;
531 }
532
533 if (!bdrv_is_inserted(bs)) {
534 return -ENOMEDIUM;
535 }
536
537 if (offset < 0) {
538 return -EIO;
539 }
540
541 return 0;
542 }
543
544 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
545 int nb_sectors)
546 {
547 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
548 return -EIO;
549 }
550
551 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
552 nb_sectors * BDRV_SECTOR_SIZE);
553 }
554
555 typedef struct RwCo {
556 BdrvChild *child;
557 int64_t offset;
558 QEMUIOVector *qiov;
559 bool is_write;
560 int ret;
561 BdrvRequestFlags flags;
562 } RwCo;
563
564 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
565 {
566 RwCo *rwco = opaque;
567
568 if (!rwco->is_write) {
569 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
570 rwco->qiov->size, rwco->qiov,
571 rwco->flags);
572 } else {
573 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
574 rwco->qiov->size, rwco->qiov,
575 rwco->flags);
576 }
577 }
578
579 /*
580 * Process a vectored synchronous request using coroutines
581 */
582 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
583 QEMUIOVector *qiov, bool is_write,
584 BdrvRequestFlags flags)
585 {
586 Coroutine *co;
587 RwCo rwco = {
588 .child = child,
589 .offset = offset,
590 .qiov = qiov,
591 .is_write = is_write,
592 .ret = NOT_DONE,
593 .flags = flags,
594 };
595
596 if (qemu_in_coroutine()) {
597 /* Fast-path if already in coroutine context */
598 bdrv_rw_co_entry(&rwco);
599 } else {
600 AioContext *aio_context = bdrv_get_aio_context(child->bs);
601
602 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
603 qemu_coroutine_enter(co);
604 while (rwco.ret == NOT_DONE) {
605 aio_poll(aio_context, true);
606 }
607 }
608 return rwco.ret;
609 }
610
611 /*
612 * Process a synchronous request using coroutines
613 */
614 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
615 int nb_sectors, bool is_write, BdrvRequestFlags flags)
616 {
617 QEMUIOVector qiov;
618 struct iovec iov = {
619 .iov_base = (void *)buf,
620 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
621 };
622
623 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
624 return -EINVAL;
625 }
626
627 qemu_iovec_init_external(&qiov, &iov, 1);
628 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
629 &qiov, is_write, flags);
630 }
631
632 /* return < 0 if error. See bdrv_write() for the return codes */
633 int bdrv_read(BdrvChild *child, int64_t sector_num,
634 uint8_t *buf, int nb_sectors)
635 {
636 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
637 }
638
639 /* Return < 0 if error. Important errors are:
640 -EIO generic I/O error (may happen for all errors)
641 -ENOMEDIUM No media inserted.
642 -EINVAL Invalid sector number or nb_sectors
643 -EACCES Trying to write a read-only device
644 */
645 int bdrv_write(BdrvChild *child, int64_t sector_num,
646 const uint8_t *buf, int nb_sectors)
647 {
648 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
649 }
650
651 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
652 int count, BdrvRequestFlags flags)
653 {
654 QEMUIOVector qiov;
655 struct iovec iov = {
656 .iov_base = NULL,
657 .iov_len = count,
658 };
659
660 qemu_iovec_init_external(&qiov, &iov, 1);
661 return bdrv_prwv_co(child, offset, &qiov, true,
662 BDRV_REQ_ZERO_WRITE | flags);
663 }
664
665 /*
666 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
667 * The operation is sped up by checking the block status and only writing
668 * zeroes to the device if they currently do not return zeroes. Optional
669 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
670 * BDRV_REQ_FUA).
671 *
672 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
673 */
674 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
675 {
676 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
677 BlockDriverState *bs = child->bs;
678 BlockDriverState *file;
679 int n;
680
681 target_sectors = bdrv_nb_sectors(bs);
682 if (target_sectors < 0) {
683 return target_sectors;
684 }
685
686 for (;;) {
687 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
688 if (nb_sectors <= 0) {
689 return 0;
690 }
691 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
692 if (ret < 0) {
693 error_report("error getting block status at sector %" PRId64 ": %s",
694 sector_num, strerror(-ret));
695 return ret;
696 }
697 if (ret & BDRV_BLOCK_ZERO) {
698 sector_num += n;
699 continue;
700 }
701 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
702 n << BDRV_SECTOR_BITS, flags);
703 if (ret < 0) {
704 error_report("error writing zeroes at sector %" PRId64 ": %s",
705 sector_num, strerror(-ret));
706 return ret;
707 }
708 sector_num += n;
709 }
710 }
711
712 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
713 {
714 int ret;
715
716 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
717 if (ret < 0) {
718 return ret;
719 }
720
721 return qiov->size;
722 }
723
724 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
725 {
726 QEMUIOVector qiov;
727 struct iovec iov = {
728 .iov_base = (void *)buf,
729 .iov_len = bytes,
730 };
731
732 if (bytes < 0) {
733 return -EINVAL;
734 }
735
736 qemu_iovec_init_external(&qiov, &iov, 1);
737 return bdrv_preadv(child, offset, &qiov);
738 }
739
740 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
741 {
742 int ret;
743
744 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
745 if (ret < 0) {
746 return ret;
747 }
748
749 return qiov->size;
750 }
751
752 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
753 {
754 QEMUIOVector qiov;
755 struct iovec iov = {
756 .iov_base = (void *) buf,
757 .iov_len = bytes,
758 };
759
760 if (bytes < 0) {
761 return -EINVAL;
762 }
763
764 qemu_iovec_init_external(&qiov, &iov, 1);
765 return bdrv_pwritev(child, offset, &qiov);
766 }
767
768 /*
769 * Writes to the file and ensures that no writes are reordered across this
770 * request (acts as a barrier)
771 *
772 * Returns 0 on success, -errno in error cases.
773 */
774 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
775 const void *buf, int count)
776 {
777 int ret;
778
779 ret = bdrv_pwrite(child, offset, buf, count);
780 if (ret < 0) {
781 return ret;
782 }
783
784 ret = bdrv_flush(child->bs);
785 if (ret < 0) {
786 return ret;
787 }
788
789 return 0;
790 }
791
792 typedef struct CoroutineIOCompletion {
793 Coroutine *coroutine;
794 int ret;
795 } CoroutineIOCompletion;
796
797 static void bdrv_co_io_em_complete(void *opaque, int ret)
798 {
799 CoroutineIOCompletion *co = opaque;
800
801 co->ret = ret;
802 qemu_coroutine_enter(co->coroutine);
803 }
804
805 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
806 uint64_t offset, uint64_t bytes,
807 QEMUIOVector *qiov, int flags)
808 {
809 BlockDriver *drv = bs->drv;
810 int64_t sector_num;
811 unsigned int nb_sectors;
812
813 assert(!(flags & ~BDRV_REQ_MASK));
814
815 if (drv->bdrv_co_preadv) {
816 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
817 }
818
819 sector_num = offset >> BDRV_SECTOR_BITS;
820 nb_sectors = bytes >> BDRV_SECTOR_BITS;
821
822 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
823 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
824 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
825
826 if (drv->bdrv_co_readv) {
827 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
828 } else {
829 BlockAIOCB *acb;
830 CoroutineIOCompletion co = {
831 .coroutine = qemu_coroutine_self(),
832 };
833
834 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
835 bdrv_co_io_em_complete, &co);
836 if (acb == NULL) {
837 return -EIO;
838 } else {
839 qemu_coroutine_yield();
840 return co.ret;
841 }
842 }
843 }
844
845 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
846 uint64_t offset, uint64_t bytes,
847 QEMUIOVector *qiov, int flags)
848 {
849 BlockDriver *drv = bs->drv;
850 int64_t sector_num;
851 unsigned int nb_sectors;
852 int ret;
853
854 assert(!(flags & ~BDRV_REQ_MASK));
855
856 if (drv->bdrv_co_pwritev) {
857 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
858 flags & bs->supported_write_flags);
859 flags &= ~bs->supported_write_flags;
860 goto emulate_flags;
861 }
862
863 sector_num = offset >> BDRV_SECTOR_BITS;
864 nb_sectors = bytes >> BDRV_SECTOR_BITS;
865
866 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
867 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
868 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
869
870 if (drv->bdrv_co_writev_flags) {
871 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
872 flags & bs->supported_write_flags);
873 flags &= ~bs->supported_write_flags;
874 } else if (drv->bdrv_co_writev) {
875 assert(!bs->supported_write_flags);
876 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
877 } else {
878 BlockAIOCB *acb;
879 CoroutineIOCompletion co = {
880 .coroutine = qemu_coroutine_self(),
881 };
882
883 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
884 bdrv_co_io_em_complete, &co);
885 if (acb == NULL) {
886 ret = -EIO;
887 } else {
888 qemu_coroutine_yield();
889 ret = co.ret;
890 }
891 }
892
893 emulate_flags:
894 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
895 ret = bdrv_co_flush(bs);
896 }
897
898 return ret;
899 }
900
901 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
902 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
903 {
904 /* Perform I/O through a temporary buffer so that users who scribble over
905 * their read buffer while the operation is in progress do not end up
906 * modifying the image file. This is critical for zero-copy guest I/O
907 * where anything might happen inside guest memory.
908 */
909 void *bounce_buffer;
910
911 BlockDriver *drv = bs->drv;
912 struct iovec iov;
913 QEMUIOVector bounce_qiov;
914 int64_t cluster_offset;
915 unsigned int cluster_bytes;
916 size_t skip_bytes;
917 int ret;
918
919 /* Cover entire cluster so no additional backing file I/O is required when
920 * allocating cluster in the image file.
921 */
922 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
923
924 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
925 cluster_offset, cluster_bytes);
926
927 iov.iov_len = cluster_bytes;
928 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
929 if (bounce_buffer == NULL) {
930 ret = -ENOMEM;
931 goto err;
932 }
933
934 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
935
936 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
937 &bounce_qiov, 0);
938 if (ret < 0) {
939 goto err;
940 }
941
942 if (drv->bdrv_co_pwrite_zeroes &&
943 buffer_is_zero(bounce_buffer, iov.iov_len)) {
944 /* FIXME: Should we (perhaps conditionally) be setting
945 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
946 * that still correctly reads as zero? */
947 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
948 } else {
949 /* This does not change the data on the disk, it is not necessary
950 * to flush even in cache=writethrough mode.
951 */
952 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
953 &bounce_qiov, 0);
954 }
955
956 if (ret < 0) {
957 /* It might be okay to ignore write errors for guest requests. If this
958 * is a deliberate copy-on-read then we don't want to ignore the error.
959 * Simply report it in all cases.
960 */
961 goto err;
962 }
963
964 skip_bytes = offset - cluster_offset;
965 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
966
967 err:
968 qemu_vfree(bounce_buffer);
969 return ret;
970 }
971
972 /*
973 * Forwards an already correctly aligned request to the BlockDriver. This
974 * handles copy on read and zeroing after EOF; any other features must be
975 * implemented by the caller.
976 */
977 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
978 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
979 int64_t align, QEMUIOVector *qiov, int flags)
980 {
981 int64_t total_bytes, max_bytes;
982 int ret;
983
984 assert(is_power_of_2(align));
985 assert((offset & (align - 1)) == 0);
986 assert((bytes & (align - 1)) == 0);
987 assert(!qiov || bytes == qiov->size);
988 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
989
990 /* TODO: We would need a per-BDS .supported_read_flags and
991 * potential fallback support, if we ever implement any read flags
992 * to pass through to drivers. For now, there aren't any
993 * passthrough flags. */
994 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
995
996 /* Handle Copy on Read and associated serialisation */
997 if (flags & BDRV_REQ_COPY_ON_READ) {
998 /* If we touch the same cluster it counts as an overlap. This
999 * guarantees that allocating writes will be serialized and not race
1000 * with each other for the same cluster. For example, in copy-on-read
1001 * it ensures that the CoR read and write operations are atomic and
1002 * guest writes cannot interleave between them. */
1003 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1004 }
1005
1006 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1007 wait_serialising_requests(req);
1008 }
1009
1010 if (flags & BDRV_REQ_COPY_ON_READ) {
1011 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1012 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1013 unsigned int nb_sectors = end_sector - start_sector;
1014 int pnum;
1015
1016 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1017 if (ret < 0) {
1018 goto out;
1019 }
1020
1021 if (!ret || pnum != nb_sectors) {
1022 ret = bdrv_co_do_copy_on_readv(bs, offset, bytes, qiov);
1023 goto out;
1024 }
1025 }
1026
1027 /* Forward the request to the BlockDriver */
1028 total_bytes = bdrv_getlength(bs);
1029 if (total_bytes < 0) {
1030 ret = total_bytes;
1031 goto out;
1032 }
1033
1034 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1035 if (bytes <= max_bytes) {
1036 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1037 } else if (max_bytes > 0) {
1038 QEMUIOVector local_qiov;
1039
1040 qemu_iovec_init(&local_qiov, qiov->niov);
1041 qemu_iovec_concat(&local_qiov, qiov, 0, max_bytes);
1042
1043 ret = bdrv_driver_preadv(bs, offset, max_bytes, &local_qiov, 0);
1044
1045 qemu_iovec_destroy(&local_qiov);
1046 } else {
1047 ret = 0;
1048 }
1049
1050 /* Reading beyond end of file is supposed to produce zeroes */
1051 if (ret == 0 && total_bytes < offset + bytes) {
1052 uint64_t zero_offset = MAX(0, total_bytes - offset);
1053 uint64_t zero_bytes = offset + bytes - zero_offset;
1054 qemu_iovec_memset(qiov, zero_offset, 0, zero_bytes);
1055 }
1056
1057 out:
1058 return ret;
1059 }
1060
1061 /*
1062 * Handle a read request in coroutine context
1063 */
1064 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1065 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1066 BdrvRequestFlags flags)
1067 {
1068 BlockDriverState *bs = child->bs;
1069 BlockDriver *drv = bs->drv;
1070 BdrvTrackedRequest req;
1071
1072 uint64_t align = bs->bl.request_alignment;
1073 uint8_t *head_buf = NULL;
1074 uint8_t *tail_buf = NULL;
1075 QEMUIOVector local_qiov;
1076 bool use_local_qiov = false;
1077 int ret;
1078
1079 if (!drv) {
1080 return -ENOMEDIUM;
1081 }
1082
1083 ret = bdrv_check_byte_request(bs, offset, bytes);
1084 if (ret < 0) {
1085 return ret;
1086 }
1087
1088 /* Don't do copy-on-read if we read data before write operation */
1089 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1090 flags |= BDRV_REQ_COPY_ON_READ;
1091 }
1092
1093 /* Align read if necessary by padding qiov */
1094 if (offset & (align - 1)) {
1095 head_buf = qemu_blockalign(bs, align);
1096 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1097 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1098 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1099 use_local_qiov = true;
1100
1101 bytes += offset & (align - 1);
1102 offset = offset & ~(align - 1);
1103 }
1104
1105 if ((offset + bytes) & (align - 1)) {
1106 if (!use_local_qiov) {
1107 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1108 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1109 use_local_qiov = true;
1110 }
1111 tail_buf = qemu_blockalign(bs, align);
1112 qemu_iovec_add(&local_qiov, tail_buf,
1113 align - ((offset + bytes) & (align - 1)));
1114
1115 bytes = ROUND_UP(bytes, align);
1116 }
1117
1118 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1119 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1120 use_local_qiov ? &local_qiov : qiov,
1121 flags);
1122 tracked_request_end(&req);
1123
1124 if (use_local_qiov) {
1125 qemu_iovec_destroy(&local_qiov);
1126 qemu_vfree(head_buf);
1127 qemu_vfree(tail_buf);
1128 }
1129
1130 return ret;
1131 }
1132
1133 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1134 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1135 BdrvRequestFlags flags)
1136 {
1137 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1138 return -EINVAL;
1139 }
1140
1141 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1142 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1143 }
1144
1145 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1146 int nb_sectors, QEMUIOVector *qiov)
1147 {
1148 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1149
1150 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1151 }
1152
1153 /* Maximum buffer for write zeroes fallback, in bytes */
1154 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1155
1156 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1157 int64_t offset, int count, BdrvRequestFlags flags)
1158 {
1159 BlockDriver *drv = bs->drv;
1160 QEMUIOVector qiov;
1161 struct iovec iov = {0};
1162 int ret = 0;
1163 bool need_flush = false;
1164 int head = 0;
1165 int tail = 0;
1166
1167 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1168 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1169 bs->bl.request_alignment);
1170
1171 assert(is_power_of_2(alignment));
1172 head = offset & (alignment - 1);
1173 tail = (offset + count) & (alignment - 1);
1174 max_write_zeroes &= ~(alignment - 1);
1175
1176 while (count > 0 && !ret) {
1177 int num = count;
1178
1179 /* Align request. Block drivers can expect the "bulk" of the request
1180 * to be aligned, and that unaligned requests do not cross cluster
1181 * boundaries.
1182 */
1183 if (head) {
1184 /* Make a small request up to the first aligned sector. */
1185 num = MIN(count, alignment - head);
1186 head = 0;
1187 } else if (tail && num > alignment) {
1188 /* Shorten the request to the last aligned sector. */
1189 num -= tail;
1190 }
1191
1192 /* limit request size */
1193 if (num > max_write_zeroes) {
1194 num = max_write_zeroes;
1195 }
1196
1197 ret = -ENOTSUP;
1198 /* First try the efficient write zeroes operation */
1199 if (drv->bdrv_co_pwrite_zeroes) {
1200 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1201 flags & bs->supported_zero_flags);
1202 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1203 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1204 need_flush = true;
1205 }
1206 } else {
1207 assert(!bs->supported_zero_flags);
1208 }
1209
1210 if (ret == -ENOTSUP) {
1211 /* Fall back to bounce buffer if write zeroes is unsupported */
1212 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1213 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1214 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1215
1216 if ((flags & BDRV_REQ_FUA) &&
1217 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1218 /* No need for bdrv_driver_pwrite() to do a fallback
1219 * flush on each chunk; use just one at the end */
1220 write_flags &= ~BDRV_REQ_FUA;
1221 need_flush = true;
1222 }
1223 num = MIN(num, max_transfer);
1224 iov.iov_len = num;
1225 if (iov.iov_base == NULL) {
1226 iov.iov_base = qemu_try_blockalign(bs, num);
1227 if (iov.iov_base == NULL) {
1228 ret = -ENOMEM;
1229 goto fail;
1230 }
1231 memset(iov.iov_base, 0, num);
1232 }
1233 qemu_iovec_init_external(&qiov, &iov, 1);
1234
1235 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1236
1237 /* Keep bounce buffer around if it is big enough for all
1238 * all future requests.
1239 */
1240 if (num < max_transfer) {
1241 qemu_vfree(iov.iov_base);
1242 iov.iov_base = NULL;
1243 }
1244 }
1245
1246 offset += num;
1247 count -= num;
1248 }
1249
1250 fail:
1251 if (ret == 0 && need_flush) {
1252 ret = bdrv_co_flush(bs);
1253 }
1254 qemu_vfree(iov.iov_base);
1255 return ret;
1256 }
1257
1258 /*
1259 * Forwards an already correctly aligned write request to the BlockDriver.
1260 */
1261 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1262 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1263 int64_t align, QEMUIOVector *qiov, int flags)
1264 {
1265 BlockDriver *drv = bs->drv;
1266 bool waited;
1267 int ret;
1268
1269 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1270 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1271
1272 assert(is_power_of_2(align));
1273 assert((offset & (align - 1)) == 0);
1274 assert((bytes & (align - 1)) == 0);
1275 assert(!qiov || bytes == qiov->size);
1276 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1277 assert(!(flags & ~BDRV_REQ_MASK));
1278
1279 waited = wait_serialising_requests(req);
1280 assert(!waited || !req->serialising);
1281 assert(req->overlap_offset <= offset);
1282 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1283
1284 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1285
1286 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1287 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1288 qemu_iovec_is_zero(qiov)) {
1289 flags |= BDRV_REQ_ZERO_WRITE;
1290 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1291 flags |= BDRV_REQ_MAY_UNMAP;
1292 }
1293 }
1294
1295 if (ret < 0) {
1296 /* Do nothing, write notifier decided to fail this request */
1297 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1298 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1299 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1300 } else {
1301 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1302 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1303 }
1304 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1305
1306 ++bs->write_gen;
1307 bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1308
1309 if (bs->wr_highest_offset < offset + bytes) {
1310 bs->wr_highest_offset = offset + bytes;
1311 }
1312
1313 if (ret >= 0) {
1314 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1315 }
1316
1317 return ret;
1318 }
1319
1320 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1321 int64_t offset,
1322 unsigned int bytes,
1323 BdrvRequestFlags flags,
1324 BdrvTrackedRequest *req)
1325 {
1326 uint8_t *buf = NULL;
1327 QEMUIOVector local_qiov;
1328 struct iovec iov;
1329 uint64_t align = bs->bl.request_alignment;
1330 unsigned int head_padding_bytes, tail_padding_bytes;
1331 int ret = 0;
1332
1333 head_padding_bytes = offset & (align - 1);
1334 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1335
1336
1337 assert(flags & BDRV_REQ_ZERO_WRITE);
1338 if (head_padding_bytes || tail_padding_bytes) {
1339 buf = qemu_blockalign(bs, align);
1340 iov = (struct iovec) {
1341 .iov_base = buf,
1342 .iov_len = align,
1343 };
1344 qemu_iovec_init_external(&local_qiov, &iov, 1);
1345 }
1346 if (head_padding_bytes) {
1347 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1348
1349 /* RMW the unaligned part before head. */
1350 mark_request_serialising(req, align);
1351 wait_serialising_requests(req);
1352 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1353 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1354 align, &local_qiov, 0);
1355 if (ret < 0) {
1356 goto fail;
1357 }
1358 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1359
1360 memset(buf + head_padding_bytes, 0, zero_bytes);
1361 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1362 align, &local_qiov,
1363 flags & ~BDRV_REQ_ZERO_WRITE);
1364 if (ret < 0) {
1365 goto fail;
1366 }
1367 offset += zero_bytes;
1368 bytes -= zero_bytes;
1369 }
1370
1371 assert(!bytes || (offset & (align - 1)) == 0);
1372 if (bytes >= align) {
1373 /* Write the aligned part in the middle. */
1374 uint64_t aligned_bytes = bytes & ~(align - 1);
1375 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, align,
1376 NULL, flags);
1377 if (ret < 0) {
1378 goto fail;
1379 }
1380 bytes -= aligned_bytes;
1381 offset += aligned_bytes;
1382 }
1383
1384 assert(!bytes || (offset & (align - 1)) == 0);
1385 if (bytes) {
1386 assert(align == tail_padding_bytes + bytes);
1387 /* RMW the unaligned part after tail. */
1388 mark_request_serialising(req, align);
1389 wait_serialising_requests(req);
1390 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1391 ret = bdrv_aligned_preadv(bs, req, offset, align,
1392 align, &local_qiov, 0);
1393 if (ret < 0) {
1394 goto fail;
1395 }
1396 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1397
1398 memset(buf, 0, bytes);
1399 ret = bdrv_aligned_pwritev(bs, req, offset, align, align,
1400 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1401 }
1402 fail:
1403 qemu_vfree(buf);
1404 return ret;
1405
1406 }
1407
1408 /*
1409 * Handle a write request in coroutine context
1410 */
1411 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1412 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1413 BdrvRequestFlags flags)
1414 {
1415 BlockDriverState *bs = child->bs;
1416 BdrvTrackedRequest req;
1417 uint64_t align = bs->bl.request_alignment;
1418 uint8_t *head_buf = NULL;
1419 uint8_t *tail_buf = NULL;
1420 QEMUIOVector local_qiov;
1421 bool use_local_qiov = false;
1422 int ret;
1423
1424 if (!bs->drv) {
1425 return -ENOMEDIUM;
1426 }
1427 if (bs->read_only) {
1428 return -EPERM;
1429 }
1430 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1431
1432 ret = bdrv_check_byte_request(bs, offset, bytes);
1433 if (ret < 0) {
1434 return ret;
1435 }
1436
1437 /*
1438 * Align write if necessary by performing a read-modify-write cycle.
1439 * Pad qiov with the read parts and be sure to have a tracked request not
1440 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1441 */
1442 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1443
1444 if (!qiov) {
1445 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1446 goto out;
1447 }
1448
1449 if (offset & (align - 1)) {
1450 QEMUIOVector head_qiov;
1451 struct iovec head_iov;
1452
1453 mark_request_serialising(&req, align);
1454 wait_serialising_requests(&req);
1455
1456 head_buf = qemu_blockalign(bs, align);
1457 head_iov = (struct iovec) {
1458 .iov_base = head_buf,
1459 .iov_len = align,
1460 };
1461 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1462
1463 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1464 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1465 align, &head_qiov, 0);
1466 if (ret < 0) {
1467 goto fail;
1468 }
1469 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1470
1471 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1472 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1473 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1474 use_local_qiov = true;
1475
1476 bytes += offset & (align - 1);
1477 offset = offset & ~(align - 1);
1478
1479 /* We have read the tail already if the request is smaller
1480 * than one aligned block.
1481 */
1482 if (bytes < align) {
1483 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1484 bytes = align;
1485 }
1486 }
1487
1488 if ((offset + bytes) & (align - 1)) {
1489 QEMUIOVector tail_qiov;
1490 struct iovec tail_iov;
1491 size_t tail_bytes;
1492 bool waited;
1493
1494 mark_request_serialising(&req, align);
1495 waited = wait_serialising_requests(&req);
1496 assert(!waited || !use_local_qiov);
1497
1498 tail_buf = qemu_blockalign(bs, align);
1499 tail_iov = (struct iovec) {
1500 .iov_base = tail_buf,
1501 .iov_len = align,
1502 };
1503 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1504
1505 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1506 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1507 align, &tail_qiov, 0);
1508 if (ret < 0) {
1509 goto fail;
1510 }
1511 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1512
1513 if (!use_local_qiov) {
1514 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1515 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1516 use_local_qiov = true;
1517 }
1518
1519 tail_bytes = (offset + bytes) & (align - 1);
1520 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1521
1522 bytes = ROUND_UP(bytes, align);
1523 }
1524
1525 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, align,
1526 use_local_qiov ? &local_qiov : qiov,
1527 flags);
1528
1529 fail:
1530
1531 if (use_local_qiov) {
1532 qemu_iovec_destroy(&local_qiov);
1533 }
1534 qemu_vfree(head_buf);
1535 qemu_vfree(tail_buf);
1536 out:
1537 tracked_request_end(&req);
1538 return ret;
1539 }
1540
1541 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1542 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1543 BdrvRequestFlags flags)
1544 {
1545 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1546 return -EINVAL;
1547 }
1548
1549 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1550 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1551 }
1552
1553 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1554 int nb_sectors, QEMUIOVector *qiov)
1555 {
1556 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1557
1558 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1559 }
1560
1561 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1562 int count, BdrvRequestFlags flags)
1563 {
1564 trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags);
1565
1566 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1567 flags &= ~BDRV_REQ_MAY_UNMAP;
1568 }
1569
1570 return bdrv_co_pwritev(child, offset, count, NULL,
1571 BDRV_REQ_ZERO_WRITE | flags);
1572 }
1573
1574 typedef struct BdrvCoGetBlockStatusData {
1575 BlockDriverState *bs;
1576 BlockDriverState *base;
1577 BlockDriverState **file;
1578 int64_t sector_num;
1579 int nb_sectors;
1580 int *pnum;
1581 int64_t ret;
1582 bool done;
1583 } BdrvCoGetBlockStatusData;
1584
1585 /*
1586 * Returns the allocation status of the specified sectors.
1587 * Drivers not implementing the functionality are assumed to not support
1588 * backing files, hence all their sectors are reported as allocated.
1589 *
1590 * If 'sector_num' is beyond the end of the disk image the return value is 0
1591 * and 'pnum' is set to 0.
1592 *
1593 * 'pnum' is set to the number of sectors (including and immediately following
1594 * the specified sector) that are known to be in the same
1595 * allocated/unallocated state.
1596 *
1597 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1598 * beyond the end of the disk image it will be clamped.
1599 *
1600 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1601 * points to the BDS which the sector range is allocated in.
1602 */
1603 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1604 int64_t sector_num,
1605 int nb_sectors, int *pnum,
1606 BlockDriverState **file)
1607 {
1608 int64_t total_sectors;
1609 int64_t n;
1610 int64_t ret, ret2;
1611
1612 total_sectors = bdrv_nb_sectors(bs);
1613 if (total_sectors < 0) {
1614 return total_sectors;
1615 }
1616
1617 if (sector_num >= total_sectors) {
1618 *pnum = 0;
1619 return 0;
1620 }
1621
1622 n = total_sectors - sector_num;
1623 if (n < nb_sectors) {
1624 nb_sectors = n;
1625 }
1626
1627 if (!bs->drv->bdrv_co_get_block_status) {
1628 *pnum = nb_sectors;
1629 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1630 if (bs->drv->protocol_name) {
1631 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1632 }
1633 return ret;
1634 }
1635
1636 *file = NULL;
1637 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1638 file);
1639 if (ret < 0) {
1640 *pnum = 0;
1641 return ret;
1642 }
1643
1644 if (ret & BDRV_BLOCK_RAW) {
1645 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1646 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1647 *pnum, pnum, file);
1648 }
1649
1650 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1651 ret |= BDRV_BLOCK_ALLOCATED;
1652 } else {
1653 if (bdrv_unallocated_blocks_are_zero(bs)) {
1654 ret |= BDRV_BLOCK_ZERO;
1655 } else if (bs->backing) {
1656 BlockDriverState *bs2 = bs->backing->bs;
1657 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1658 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1659 ret |= BDRV_BLOCK_ZERO;
1660 }
1661 }
1662 }
1663
1664 if (*file && *file != bs &&
1665 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1666 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1667 BlockDriverState *file2;
1668 int file_pnum;
1669
1670 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1671 *pnum, &file_pnum, &file2);
1672 if (ret2 >= 0) {
1673 /* Ignore errors. This is just providing extra information, it
1674 * is useful but not necessary.
1675 */
1676 if (!file_pnum) {
1677 /* !file_pnum indicates an offset at or beyond the EOF; it is
1678 * perfectly valid for the format block driver to point to such
1679 * offsets, so catch it and mark everything as zero */
1680 ret |= BDRV_BLOCK_ZERO;
1681 } else {
1682 /* Limit request to the range reported by the protocol driver */
1683 *pnum = file_pnum;
1684 ret |= (ret2 & BDRV_BLOCK_ZERO);
1685 }
1686 }
1687 }
1688
1689 return ret;
1690 }
1691
1692 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1693 BlockDriverState *base,
1694 int64_t sector_num,
1695 int nb_sectors,
1696 int *pnum,
1697 BlockDriverState **file)
1698 {
1699 BlockDriverState *p;
1700 int64_t ret = 0;
1701
1702 assert(bs != base);
1703 for (p = bs; p != base; p = backing_bs(p)) {
1704 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1705 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1706 break;
1707 }
1708 /* [sector_num, pnum] unallocated on this layer, which could be only
1709 * the first part of [sector_num, nb_sectors]. */
1710 nb_sectors = MIN(nb_sectors, *pnum);
1711 }
1712 return ret;
1713 }
1714
1715 /* Coroutine wrapper for bdrv_get_block_status_above() */
1716 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1717 {
1718 BdrvCoGetBlockStatusData *data = opaque;
1719
1720 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1721 data->sector_num,
1722 data->nb_sectors,
1723 data->pnum,
1724 data->file);
1725 data->done = true;
1726 }
1727
1728 /*
1729 * Synchronous wrapper around bdrv_co_get_block_status_above().
1730 *
1731 * See bdrv_co_get_block_status_above() for details.
1732 */
1733 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1734 BlockDriverState *base,
1735 int64_t sector_num,
1736 int nb_sectors, int *pnum,
1737 BlockDriverState **file)
1738 {
1739 Coroutine *co;
1740 BdrvCoGetBlockStatusData data = {
1741 .bs = bs,
1742 .base = base,
1743 .file = file,
1744 .sector_num = sector_num,
1745 .nb_sectors = nb_sectors,
1746 .pnum = pnum,
1747 .done = false,
1748 };
1749
1750 if (qemu_in_coroutine()) {
1751 /* Fast-path if already in coroutine context */
1752 bdrv_get_block_status_above_co_entry(&data);
1753 } else {
1754 AioContext *aio_context = bdrv_get_aio_context(bs);
1755
1756 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1757 &data);
1758 qemu_coroutine_enter(co);
1759 while (!data.done) {
1760 aio_poll(aio_context, true);
1761 }
1762 }
1763 return data.ret;
1764 }
1765
1766 int64_t bdrv_get_block_status(BlockDriverState *bs,
1767 int64_t sector_num,
1768 int nb_sectors, int *pnum,
1769 BlockDriverState **file)
1770 {
1771 return bdrv_get_block_status_above(bs, backing_bs(bs),
1772 sector_num, nb_sectors, pnum, file);
1773 }
1774
1775 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1776 int nb_sectors, int *pnum)
1777 {
1778 BlockDriverState *file;
1779 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1780 &file);
1781 if (ret < 0) {
1782 return ret;
1783 }
1784 return !!(ret & BDRV_BLOCK_ALLOCATED);
1785 }
1786
1787 /*
1788 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1789 *
1790 * Return true if the given sector is allocated in any image between
1791 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1792 * sector is allocated in any image of the chain. Return false otherwise.
1793 *
1794 * 'pnum' is set to the number of sectors (including and immediately following
1795 * the specified sector) that are known to be in the same
1796 * allocated/unallocated state.
1797 *
1798 */
1799 int bdrv_is_allocated_above(BlockDriverState *top,
1800 BlockDriverState *base,
1801 int64_t sector_num,
1802 int nb_sectors, int *pnum)
1803 {
1804 BlockDriverState *intermediate;
1805 int ret, n = nb_sectors;
1806
1807 intermediate = top;
1808 while (intermediate && intermediate != base) {
1809 int pnum_inter;
1810 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1811 &pnum_inter);
1812 if (ret < 0) {
1813 return ret;
1814 } else if (ret) {
1815 *pnum = pnum_inter;
1816 return 1;
1817 }
1818
1819 /*
1820 * [sector_num, nb_sectors] is unallocated on top but intermediate
1821 * might have
1822 *
1823 * [sector_num+x, nr_sectors] allocated.
1824 */
1825 if (n > pnum_inter &&
1826 (intermediate == top ||
1827 sector_num + pnum_inter < intermediate->total_sectors)) {
1828 n = pnum_inter;
1829 }
1830
1831 intermediate = backing_bs(intermediate);
1832 }
1833
1834 *pnum = n;
1835 return 0;
1836 }
1837
1838 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1839 const uint8_t *buf, int nb_sectors)
1840 {
1841 BlockDriver *drv = bs->drv;
1842 int ret;
1843
1844 if (!drv) {
1845 return -ENOMEDIUM;
1846 }
1847 if (!drv->bdrv_write_compressed) {
1848 return -ENOTSUP;
1849 }
1850 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1851 if (ret < 0) {
1852 return ret;
1853 }
1854
1855 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1856
1857 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1858 }
1859
1860 typedef struct BdrvVmstateCo {
1861 BlockDriverState *bs;
1862 QEMUIOVector *qiov;
1863 int64_t pos;
1864 bool is_read;
1865 int ret;
1866 } BdrvVmstateCo;
1867
1868 static int coroutine_fn
1869 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1870 bool is_read)
1871 {
1872 BlockDriver *drv = bs->drv;
1873
1874 if (!drv) {
1875 return -ENOMEDIUM;
1876 } else if (drv->bdrv_load_vmstate) {
1877 return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos)
1878 : drv->bdrv_save_vmstate(bs, qiov, pos);
1879 } else if (bs->file) {
1880 return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1881 }
1882
1883 return -ENOTSUP;
1884 }
1885
1886 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
1887 {
1888 BdrvVmstateCo *co = opaque;
1889 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
1890 }
1891
1892 static inline int
1893 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1894 bool is_read)
1895 {
1896 if (qemu_in_coroutine()) {
1897 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
1898 } else {
1899 BdrvVmstateCo data = {
1900 .bs = bs,
1901 .qiov = qiov,
1902 .pos = pos,
1903 .is_read = is_read,
1904 .ret = -EINPROGRESS,
1905 };
1906 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
1907
1908 qemu_coroutine_enter(co);
1909 while (data.ret == -EINPROGRESS) {
1910 aio_poll(bdrv_get_aio_context(bs), true);
1911 }
1912 return data.ret;
1913 }
1914 }
1915
1916 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1917 int64_t pos, int size)
1918 {
1919 QEMUIOVector qiov;
1920 struct iovec iov = {
1921 .iov_base = (void *) buf,
1922 .iov_len = size,
1923 };
1924 int ret;
1925
1926 qemu_iovec_init_external(&qiov, &iov, 1);
1927
1928 ret = bdrv_writev_vmstate(bs, &qiov, pos);
1929 if (ret < 0) {
1930 return ret;
1931 }
1932
1933 return size;
1934 }
1935
1936 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1937 {
1938 return bdrv_rw_vmstate(bs, qiov, pos, false);
1939 }
1940
1941 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1942 int64_t pos, int size)
1943 {
1944 QEMUIOVector qiov;
1945 struct iovec iov = {
1946 .iov_base = buf,
1947 .iov_len = size,
1948 };
1949 int ret;
1950
1951 qemu_iovec_init_external(&qiov, &iov, 1);
1952 ret = bdrv_readv_vmstate(bs, &qiov, pos);
1953 if (ret < 0) {
1954 return ret;
1955 }
1956
1957 return size;
1958 }
1959
1960 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1961 {
1962 return bdrv_rw_vmstate(bs, qiov, pos, true);
1963 }
1964
1965 /**************************************************************/
1966 /* async I/Os */
1967
1968 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num,
1969 QEMUIOVector *qiov, int nb_sectors,
1970 BlockCompletionFunc *cb, void *opaque)
1971 {
1972 trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque);
1973
1974 return bdrv_co_aio_rw_vector(child, sector_num, qiov, nb_sectors, 0,
1975 cb, opaque, false);
1976 }
1977
1978 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num,
1979 QEMUIOVector *qiov, int nb_sectors,
1980 BlockCompletionFunc *cb, void *opaque)
1981 {
1982 trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque);
1983
1984 return bdrv_co_aio_rw_vector(child, sector_num, qiov, nb_sectors, 0,
1985 cb, opaque, true);
1986 }
1987
1988 void bdrv_aio_cancel(BlockAIOCB *acb)
1989 {
1990 qemu_aio_ref(acb);
1991 bdrv_aio_cancel_async(acb);
1992 while (acb->refcnt > 1) {
1993 if (acb->aiocb_info->get_aio_context) {
1994 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1995 } else if (acb->bs) {
1996 aio_poll(bdrv_get_aio_context(acb->bs), true);
1997 } else {
1998 abort();
1999 }
2000 }
2001 qemu_aio_unref(acb);
2002 }
2003
2004 /* Async version of aio cancel. The caller is not blocked if the acb implements
2005 * cancel_async, otherwise we do nothing and let the request normally complete.
2006 * In either case the completion callback must be called. */
2007 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2008 {
2009 if (acb->aiocb_info->cancel_async) {
2010 acb->aiocb_info->cancel_async(acb);
2011 }
2012 }
2013
2014 /**************************************************************/
2015 /* async block device emulation */
2016
2017 typedef struct BlockRequest {
2018 union {
2019 /* Used during read, write, trim */
2020 struct {
2021 int64_t sector;
2022 int nb_sectors;
2023 int flags;
2024 QEMUIOVector *qiov;
2025 };
2026 /* Used during ioctl */
2027 struct {
2028 int req;
2029 void *buf;
2030 };
2031 };
2032 BlockCompletionFunc *cb;
2033 void *opaque;
2034
2035 int error;
2036 } BlockRequest;
2037
2038 typedef struct BlockAIOCBCoroutine {
2039 BlockAIOCB common;
2040 BdrvChild *child;
2041 BlockRequest req;
2042 bool is_write;
2043 bool need_bh;
2044 bool *done;
2045 QEMUBH* bh;
2046 } BlockAIOCBCoroutine;
2047
2048 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2049 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2050 };
2051
2052 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2053 {
2054 if (!acb->need_bh) {
2055 acb->common.cb(acb->common.opaque, acb->req.error);
2056 qemu_aio_unref(acb);
2057 }
2058 }
2059
2060 static void bdrv_co_em_bh(void *opaque)
2061 {
2062 BlockAIOCBCoroutine *acb = opaque;
2063
2064 assert(!acb->need_bh);
2065 qemu_bh_delete(acb->bh);
2066 bdrv_co_complete(acb);
2067 }
2068
2069 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2070 {
2071 acb->need_bh = false;
2072 if (acb->req.error != -EINPROGRESS) {
2073 BlockDriverState *bs = acb->common.bs;
2074
2075 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2076 qemu_bh_schedule(acb->bh);
2077 }
2078 }
2079
2080 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2081 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2082 {
2083 BlockAIOCBCoroutine *acb = opaque;
2084
2085 if (!acb->is_write) {
2086 acb->req.error = bdrv_co_do_readv(acb->child, acb->req.sector,
2087 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2088 } else {
2089 acb->req.error = bdrv_co_do_writev(acb->child, acb->req.sector,
2090 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2091 }
2092
2093 bdrv_co_complete(acb);
2094 }
2095
2096 static BlockAIOCB *bdrv_co_aio_rw_vector(BdrvChild *child,
2097 int64_t sector_num,
2098 QEMUIOVector *qiov,
2099 int nb_sectors,
2100 BdrvRequestFlags flags,
2101 BlockCompletionFunc *cb,
2102 void *opaque,
2103 bool is_write)
2104 {
2105 Coroutine *co;
2106 BlockAIOCBCoroutine *acb;
2107
2108 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque);
2109 acb->child = child;
2110 acb->need_bh = true;
2111 acb->req.error = -EINPROGRESS;
2112 acb->req.sector = sector_num;
2113 acb->req.nb_sectors = nb_sectors;
2114 acb->req.qiov = qiov;
2115 acb->req.flags = flags;
2116 acb->is_write = is_write;
2117
2118 co = qemu_coroutine_create(bdrv_co_do_rw, acb);
2119 qemu_coroutine_enter(co);
2120
2121 bdrv_co_maybe_schedule_bh(acb);
2122 return &acb->common;
2123 }
2124
2125 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2126 {
2127 BlockAIOCBCoroutine *acb = opaque;
2128 BlockDriverState *bs = acb->common.bs;
2129
2130 acb->req.error = bdrv_co_flush(bs);
2131 bdrv_co_complete(acb);
2132 }
2133
2134 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2135 BlockCompletionFunc *cb, void *opaque)
2136 {
2137 trace_bdrv_aio_flush(bs, opaque);
2138
2139 Coroutine *co;
2140 BlockAIOCBCoroutine *acb;
2141
2142 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2143 acb->need_bh = true;
2144 acb->req.error = -EINPROGRESS;
2145
2146 co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb);
2147 qemu_coroutine_enter(co);
2148
2149 bdrv_co_maybe_schedule_bh(acb);
2150 return &acb->common;
2151 }
2152
2153 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2154 {
2155 BlockAIOCBCoroutine *acb = opaque;
2156 BlockDriverState *bs = acb->common.bs;
2157
2158 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2159 bdrv_co_complete(acb);
2160 }
2161
2162 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2163 int64_t sector_num, int nb_sectors,
2164 BlockCompletionFunc *cb, void *opaque)
2165 {
2166 Coroutine *co;
2167 BlockAIOCBCoroutine *acb;
2168
2169 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2170
2171 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2172 acb->need_bh = true;
2173 acb->req.error = -EINPROGRESS;
2174 acb->req.sector = sector_num;
2175 acb->req.nb_sectors = nb_sectors;
2176 co = qemu_coroutine_create(bdrv_aio_discard_co_entry, acb);
2177 qemu_coroutine_enter(co);
2178
2179 bdrv_co_maybe_schedule_bh(acb);
2180 return &acb->common;
2181 }
2182
2183 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2184 BlockCompletionFunc *cb, void *opaque)
2185 {
2186 BlockAIOCB *acb;
2187
2188 acb = g_malloc(aiocb_info->aiocb_size);
2189 acb->aiocb_info = aiocb_info;
2190 acb->bs = bs;
2191 acb->cb = cb;
2192 acb->opaque = opaque;
2193 acb->refcnt = 1;
2194 return acb;
2195 }
2196
2197 void qemu_aio_ref(void *p)
2198 {
2199 BlockAIOCB *acb = p;
2200 acb->refcnt++;
2201 }
2202
2203 void qemu_aio_unref(void *p)
2204 {
2205 BlockAIOCB *acb = p;
2206 assert(acb->refcnt > 0);
2207 if (--acb->refcnt == 0) {
2208 g_free(acb);
2209 }
2210 }
2211
2212 /**************************************************************/
2213 /* Coroutine block device emulation */
2214
2215 typedef struct FlushCo {
2216 BlockDriverState *bs;
2217 int ret;
2218 } FlushCo;
2219
2220
2221 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2222 {
2223 FlushCo *rwco = opaque;
2224
2225 rwco->ret = bdrv_co_flush(rwco->bs);
2226 }
2227
2228 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2229 {
2230 int ret;
2231 BdrvTrackedRequest req;
2232
2233 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2234 bdrv_is_sg(bs)) {
2235 return 0;
2236 }
2237
2238 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2239
2240 int current_gen = bs->write_gen;
2241
2242 /* Wait until any previous flushes are completed */
2243 while (bs->flush_started_gen != bs->flushed_gen) {
2244 qemu_co_queue_wait(&bs->flush_queue);
2245 }
2246
2247 bs->flush_started_gen = current_gen;
2248
2249 /* Write back all layers by calling one driver function */
2250 if (bs->drv->bdrv_co_flush) {
2251 ret = bs->drv->bdrv_co_flush(bs);
2252 goto out;
2253 }
2254
2255 /* Write back cached data to the OS even with cache=unsafe */
2256 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2257 if (bs->drv->bdrv_co_flush_to_os) {
2258 ret = bs->drv->bdrv_co_flush_to_os(bs);
2259 if (ret < 0) {
2260 goto out;
2261 }
2262 }
2263
2264 /* But don't actually force it to the disk with cache=unsafe */
2265 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2266 goto flush_parent;
2267 }
2268
2269 /* Check if we really need to flush anything */
2270 if (bs->flushed_gen == current_gen) {
2271 goto flush_parent;
2272 }
2273
2274 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2275 if (bs->drv->bdrv_co_flush_to_disk) {
2276 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2277 } else if (bs->drv->bdrv_aio_flush) {
2278 BlockAIOCB *acb;
2279 CoroutineIOCompletion co = {
2280 .coroutine = qemu_coroutine_self(),
2281 };
2282
2283 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2284 if (acb == NULL) {
2285 ret = -EIO;
2286 } else {
2287 qemu_coroutine_yield();
2288 ret = co.ret;
2289 }
2290 } else {
2291 /*
2292 * Some block drivers always operate in either writethrough or unsafe
2293 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2294 * know how the server works (because the behaviour is hardcoded or
2295 * depends on server-side configuration), so we can't ensure that
2296 * everything is safe on disk. Returning an error doesn't work because
2297 * that would break guests even if the server operates in writethrough
2298 * mode.
2299 *
2300 * Let's hope the user knows what he's doing.
2301 */
2302 ret = 0;
2303 }
2304
2305 if (ret < 0) {
2306 goto out;
2307 }
2308
2309 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2310 * in the case of cache=unsafe, so there are no useless flushes.
2311 */
2312 flush_parent:
2313 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2314 out:
2315 /* Notify any pending flushes that we have completed */
2316 bs->flushed_gen = current_gen;
2317 qemu_co_queue_restart_all(&bs->flush_queue);
2318
2319 tracked_request_end(&req);
2320 return ret;
2321 }
2322
2323 int bdrv_flush(BlockDriverState *bs)
2324 {
2325 Coroutine *co;
2326 FlushCo flush_co = {
2327 .bs = bs,
2328 .ret = NOT_DONE,
2329 };
2330
2331 if (qemu_in_coroutine()) {
2332 /* Fast-path if already in coroutine context */
2333 bdrv_flush_co_entry(&flush_co);
2334 } else {
2335 AioContext *aio_context = bdrv_get_aio_context(bs);
2336
2337 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2338 qemu_coroutine_enter(co);
2339 while (flush_co.ret == NOT_DONE) {
2340 aio_poll(aio_context, true);
2341 }
2342 }
2343
2344 return flush_co.ret;
2345 }
2346
2347 typedef struct DiscardCo {
2348 BlockDriverState *bs;
2349 int64_t sector_num;
2350 int nb_sectors;
2351 int ret;
2352 } DiscardCo;
2353 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2354 {
2355 DiscardCo *rwco = opaque;
2356
2357 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2358 }
2359
2360 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2361 int nb_sectors)
2362 {
2363 BdrvTrackedRequest req;
2364 int max_discard, ret;
2365
2366 if (!bs->drv) {
2367 return -ENOMEDIUM;
2368 }
2369
2370 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2371 if (ret < 0) {
2372 return ret;
2373 } else if (bs->read_only) {
2374 return -EPERM;
2375 }
2376 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2377
2378 /* Do nothing if disabled. */
2379 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2380 return 0;
2381 }
2382
2383 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2384 return 0;
2385 }
2386
2387 tracked_request_begin(&req, bs, sector_num << BDRV_SECTOR_BITS,
2388 nb_sectors << BDRV_SECTOR_BITS, BDRV_TRACKED_DISCARD);
2389
2390 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2391 if (ret < 0) {
2392 goto out;
2393 }
2394
2395 max_discard = MIN_NON_ZERO(bs->bl.max_pdiscard >> BDRV_SECTOR_BITS,
2396 BDRV_REQUEST_MAX_SECTORS);
2397 while (nb_sectors > 0) {
2398 int ret;
2399 int num = nb_sectors;
2400 int discard_alignment = bs->bl.pdiscard_alignment >> BDRV_SECTOR_BITS;
2401
2402 /* align request */
2403 if (discard_alignment &&
2404 num >= discard_alignment &&
2405 sector_num % discard_alignment) {
2406 if (num > discard_alignment) {
2407 num = discard_alignment;
2408 }
2409 num -= sector_num % discard_alignment;
2410 }
2411
2412 /* limit request size */
2413 if (num > max_discard) {
2414 num = max_discard;
2415 }
2416
2417 if (bs->drv->bdrv_co_discard) {
2418 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2419 } else {
2420 BlockAIOCB *acb;
2421 CoroutineIOCompletion co = {
2422 .coroutine = qemu_coroutine_self(),
2423 };
2424
2425 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2426 bdrv_co_io_em_complete, &co);
2427 if (acb == NULL) {
2428 ret = -EIO;
2429 goto out;
2430 } else {
2431 qemu_coroutine_yield();
2432 ret = co.ret;
2433 }
2434 }
2435 if (ret && ret != -ENOTSUP) {
2436 goto out;
2437 }
2438
2439 sector_num += num;
2440 nb_sectors -= num;
2441 }
2442 ret = 0;
2443 out:
2444 ++bs->write_gen;
2445 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2446 req.bytes >> BDRV_SECTOR_BITS);
2447 tracked_request_end(&req);
2448 return ret;
2449 }
2450
2451 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2452 {
2453 Coroutine *co;
2454 DiscardCo rwco = {
2455 .bs = bs,
2456 .sector_num = sector_num,
2457 .nb_sectors = nb_sectors,
2458 .ret = NOT_DONE,
2459 };
2460
2461 if (qemu_in_coroutine()) {
2462 /* Fast-path if already in coroutine context */
2463 bdrv_discard_co_entry(&rwco);
2464 } else {
2465 AioContext *aio_context = bdrv_get_aio_context(bs);
2466
2467 co = qemu_coroutine_create(bdrv_discard_co_entry, &rwco);
2468 qemu_coroutine_enter(co);
2469 while (rwco.ret == NOT_DONE) {
2470 aio_poll(aio_context, true);
2471 }
2472 }
2473
2474 return rwco.ret;
2475 }
2476
2477 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2478 {
2479 BlockDriver *drv = bs->drv;
2480 BdrvTrackedRequest tracked_req;
2481 CoroutineIOCompletion co = {
2482 .coroutine = qemu_coroutine_self(),
2483 };
2484 BlockAIOCB *acb;
2485
2486 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2487 if (!drv || !drv->bdrv_aio_ioctl) {
2488 co.ret = -ENOTSUP;
2489 goto out;
2490 }
2491
2492 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2493 if (!acb) {
2494 co.ret = -ENOTSUP;
2495 goto out;
2496 }
2497 qemu_coroutine_yield();
2498 out:
2499 tracked_request_end(&tracked_req);
2500 return co.ret;
2501 }
2502
2503 typedef struct {
2504 BlockDriverState *bs;
2505 int req;
2506 void *buf;
2507 int ret;
2508 } BdrvIoctlCoData;
2509
2510 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2511 {
2512 BdrvIoctlCoData *data = opaque;
2513 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2514 }
2515
2516 /* needed for generic scsi interface */
2517 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2518 {
2519 BdrvIoctlCoData data = {
2520 .bs = bs,
2521 .req = req,
2522 .buf = buf,
2523 .ret = -EINPROGRESS,
2524 };
2525
2526 if (qemu_in_coroutine()) {
2527 /* Fast-path if already in coroutine context */
2528 bdrv_co_ioctl_entry(&data);
2529 } else {
2530 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry, &data);
2531
2532 qemu_coroutine_enter(co);
2533 while (data.ret == -EINPROGRESS) {
2534 aio_poll(bdrv_get_aio_context(bs), true);
2535 }
2536 }
2537 return data.ret;
2538 }
2539
2540 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2541 {
2542 BlockAIOCBCoroutine *acb = opaque;
2543 acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2544 acb->req.req, acb->req.buf);
2545 bdrv_co_complete(acb);
2546 }
2547
2548 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2549 unsigned long int req, void *buf,
2550 BlockCompletionFunc *cb, void *opaque)
2551 {
2552 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2553 bs, cb, opaque);
2554 Coroutine *co;
2555
2556 acb->need_bh = true;
2557 acb->req.error = -EINPROGRESS;
2558 acb->req.req = req;
2559 acb->req.buf = buf;
2560 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry, acb);
2561 qemu_coroutine_enter(co);
2562
2563 bdrv_co_maybe_schedule_bh(acb);
2564 return &acb->common;
2565 }
2566
2567 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2568 {
2569 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2570 }
2571
2572 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2573 {
2574 return memset(qemu_blockalign(bs, size), 0, size);
2575 }
2576
2577 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2578 {
2579 size_t align = bdrv_opt_mem_align(bs);
2580
2581 /* Ensure that NULL is never returned on success */
2582 assert(align > 0);
2583 if (size == 0) {
2584 size = align;
2585 }
2586
2587 return qemu_try_memalign(align, size);
2588 }
2589
2590 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2591 {
2592 void *mem = qemu_try_blockalign(bs, size);
2593
2594 if (mem) {
2595 memset(mem, 0, size);
2596 }
2597
2598 return mem;
2599 }
2600
2601 /*
2602 * Check if all memory in this vector is sector aligned.
2603 */
2604 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2605 {
2606 int i;
2607 size_t alignment = bdrv_min_mem_align(bs);
2608
2609 for (i = 0; i < qiov->niov; i++) {
2610 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2611 return false;
2612 }
2613 if (qiov->iov[i].iov_len % alignment) {
2614 return false;
2615 }
2616 }
2617
2618 return true;
2619 }
2620
2621 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2622 NotifierWithReturn *notifier)
2623 {
2624 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2625 }
2626
2627 void bdrv_io_plug(BlockDriverState *bs)
2628 {
2629 BdrvChild *child;
2630
2631 QLIST_FOREACH(child, &bs->children, next) {
2632 bdrv_io_plug(child->bs);
2633 }
2634
2635 if (bs->io_plugged++ == 0 && bs->io_plug_disabled == 0) {
2636 BlockDriver *drv = bs->drv;
2637 if (drv && drv->bdrv_io_plug) {
2638 drv->bdrv_io_plug(bs);
2639 }
2640 }
2641 }
2642
2643 void bdrv_io_unplug(BlockDriverState *bs)
2644 {
2645 BdrvChild *child;
2646
2647 assert(bs->io_plugged);
2648 if (--bs->io_plugged == 0 && bs->io_plug_disabled == 0) {
2649 BlockDriver *drv = bs->drv;
2650 if (drv && drv->bdrv_io_unplug) {
2651 drv->bdrv_io_unplug(bs);
2652 }
2653 }
2654
2655 QLIST_FOREACH(child, &bs->children, next) {
2656 bdrv_io_unplug(child->bs);
2657 }
2658 }
2659
2660 void bdrv_io_unplugged_begin(BlockDriverState *bs)
2661 {
2662 BdrvChild *child;
2663
2664 if (bs->io_plug_disabled++ == 0 && bs->io_plugged > 0) {
2665 BlockDriver *drv = bs->drv;
2666 if (drv && drv->bdrv_io_unplug) {
2667 drv->bdrv_io_unplug(bs);
2668 }
2669 }
2670
2671 QLIST_FOREACH(child, &bs->children, next) {
2672 bdrv_io_unplugged_begin(child->bs);
2673 }
2674 }
2675
2676 void bdrv_io_unplugged_end(BlockDriverState *bs)
2677 {
2678 BdrvChild *child;
2679
2680 assert(bs->io_plug_disabled);
2681 QLIST_FOREACH(child, &bs->children, next) {
2682 bdrv_io_unplugged_end(child->bs);
2683 }
2684
2685 if (--bs->io_plug_disabled == 0 && bs->io_plugged > 0) {
2686 BlockDriver *drv = bs->drv;
2687 if (drv && drv->bdrv_io_plug) {
2688 drv->bdrv_io_plug(bs);
2689 }
2690 }
2691 }