]> git.proxmox.com Git - mirror_qemu.git/blob - block/nvme.c
block/nvme: Use definitions instead of magic values in add_io_queue()
[mirror_qemu.git] / block / nvme.c
1 /*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
27 #include "trace.h"
28
29 #include "block/nvme.h"
30
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_DOORBELL_SIZE 4096
35
36 /*
37 * We have to leave one slot empty as that is the full queue case where
38 * head == tail + 1.
39 */
40 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
41
42 typedef struct BDRVNVMeState BDRVNVMeState;
43
44 /* Same index is used for queues and IRQs */
45 #define INDEX_ADMIN 0
46 #define INDEX_IO(n) (1 + n)
47
48 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
49 enum {
50 MSIX_SHARED_IRQ_IDX = 0,
51 MSIX_IRQ_COUNT = 1
52 };
53
54 typedef struct {
55 int32_t head, tail;
56 uint8_t *queue;
57 uint64_t iova;
58 /* Hardware MMIO register */
59 volatile uint32_t *doorbell;
60 } NVMeQueue;
61
62 typedef struct {
63 BlockCompletionFunc *cb;
64 void *opaque;
65 int cid;
66 void *prp_list_page;
67 uint64_t prp_list_iova;
68 int free_req_next; /* q->reqs[] index of next free req */
69 } NVMeRequest;
70
71 typedef struct {
72 QemuMutex lock;
73
74 /* Read from I/O code path, initialized under BQL */
75 BDRVNVMeState *s;
76 int index;
77
78 /* Fields protected by BQL */
79 uint8_t *prp_list_pages;
80
81 /* Fields protected by @lock */
82 CoQueue free_req_queue;
83 NVMeQueue sq, cq;
84 int cq_phase;
85 int free_req_head;
86 NVMeRequest reqs[NVME_NUM_REQS];
87 int need_kick;
88 int inflight;
89
90 /* Thread-safe, no lock necessary */
91 QEMUBH *completion_bh;
92 } NVMeQueuePair;
93
94 struct BDRVNVMeState {
95 AioContext *aio_context;
96 QEMUVFIOState *vfio;
97 /* Memory mapped registers */
98 volatile struct {
99 uint32_t sq_tail;
100 uint32_t cq_head;
101 } *doorbells;
102 /* The submission/completion queue pairs.
103 * [0]: admin queue.
104 * [1..]: io queues.
105 */
106 NVMeQueuePair **queues;
107 unsigned queue_count;
108 size_t page_size;
109 /* How many uint32_t elements does each doorbell entry take. */
110 size_t doorbell_scale;
111 bool write_cache_supported;
112 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
113
114 uint64_t nsze; /* Namespace size reported by identify command */
115 int nsid; /* The namespace id to read/write data. */
116 int blkshift;
117
118 uint64_t max_transfer;
119 bool plugged;
120
121 bool supports_write_zeroes;
122 bool supports_discard;
123
124 CoMutex dma_map_lock;
125 CoQueue dma_flush_queue;
126
127 /* Total size of mapped qiov, accessed under dma_map_lock */
128 int dma_map_count;
129
130 /* PCI address (required for nvme_refresh_filename()) */
131 char *device;
132
133 struct {
134 uint64_t completion_errors;
135 uint64_t aligned_accesses;
136 uint64_t unaligned_accesses;
137 } stats;
138 };
139
140 #define NVME_BLOCK_OPT_DEVICE "device"
141 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
142
143 static void nvme_process_completion_bh(void *opaque);
144
145 static QemuOptsList runtime_opts = {
146 .name = "nvme",
147 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
148 .desc = {
149 {
150 .name = NVME_BLOCK_OPT_DEVICE,
151 .type = QEMU_OPT_STRING,
152 .help = "NVMe PCI device address",
153 },
154 {
155 .name = NVME_BLOCK_OPT_NAMESPACE,
156 .type = QEMU_OPT_NUMBER,
157 .help = "NVMe namespace",
158 },
159 { /* end of list */ }
160 },
161 };
162
163 /* Returns true on success, false on failure. */
164 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
165 unsigned nentries, size_t entry_bytes, Error **errp)
166 {
167 size_t bytes;
168 int r;
169
170 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
171 q->head = q->tail = 0;
172 q->queue = qemu_try_memalign(s->page_size, bytes);
173 if (!q->queue) {
174 error_setg(errp, "Cannot allocate queue");
175 return false;
176 }
177 memset(q->queue, 0, bytes);
178 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
179 if (r) {
180 error_setg(errp, "Cannot map queue");
181 return false;
182 }
183 return true;
184 }
185
186 static void nvme_free_queue_pair(NVMeQueuePair *q)
187 {
188 trace_nvme_free_queue_pair(q->index, q);
189 if (q->completion_bh) {
190 qemu_bh_delete(q->completion_bh);
191 }
192 qemu_vfree(q->prp_list_pages);
193 qemu_vfree(q->sq.queue);
194 qemu_vfree(q->cq.queue);
195 qemu_mutex_destroy(&q->lock);
196 g_free(q);
197 }
198
199 static void nvme_free_req_queue_cb(void *opaque)
200 {
201 NVMeQueuePair *q = opaque;
202
203 qemu_mutex_lock(&q->lock);
204 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
205 /* Retry all pending requests */
206 }
207 qemu_mutex_unlock(&q->lock);
208 }
209
210 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
211 AioContext *aio_context,
212 unsigned idx, size_t size,
213 Error **errp)
214 {
215 int i, r;
216 NVMeQueuePair *q;
217 uint64_t prp_list_iova;
218
219 q = g_try_new0(NVMeQueuePair, 1);
220 if (!q) {
221 return NULL;
222 }
223 trace_nvme_create_queue_pair(idx, q, size, aio_context,
224 event_notifier_get_fd(s->irq_notifier));
225 q->prp_list_pages = qemu_try_memalign(s->page_size,
226 s->page_size * NVME_NUM_REQS);
227 if (!q->prp_list_pages) {
228 goto fail;
229 }
230 memset(q->prp_list_pages, 0, s->page_size * NVME_NUM_REQS);
231 qemu_mutex_init(&q->lock);
232 q->s = s;
233 q->index = idx;
234 qemu_co_queue_init(&q->free_req_queue);
235 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
236 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
237 s->page_size * NVME_NUM_REQS,
238 false, &prp_list_iova);
239 if (r) {
240 goto fail;
241 }
242 q->free_req_head = -1;
243 for (i = 0; i < NVME_NUM_REQS; i++) {
244 NVMeRequest *req = &q->reqs[i];
245 req->cid = i + 1;
246 req->free_req_next = q->free_req_head;
247 q->free_req_head = i;
248 req->prp_list_page = q->prp_list_pages + i * s->page_size;
249 req->prp_list_iova = prp_list_iova + i * s->page_size;
250 }
251
252 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
253 goto fail;
254 }
255 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
256
257 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
258 goto fail;
259 }
260 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
261
262 return q;
263 fail:
264 nvme_free_queue_pair(q);
265 return NULL;
266 }
267
268 /* With q->lock */
269 static void nvme_kick(NVMeQueuePair *q)
270 {
271 BDRVNVMeState *s = q->s;
272
273 if (s->plugged || !q->need_kick) {
274 return;
275 }
276 trace_nvme_kick(s, q->index);
277 assert(!(q->sq.tail & 0xFF00));
278 /* Fence the write to submission queue entry before notifying the device. */
279 smp_wmb();
280 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
281 q->inflight += q->need_kick;
282 q->need_kick = 0;
283 }
284
285 /* Find a free request element if any, otherwise:
286 * a) if in coroutine context, try to wait for one to become available;
287 * b) if not in coroutine, return NULL;
288 */
289 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
290 {
291 NVMeRequest *req;
292
293 qemu_mutex_lock(&q->lock);
294
295 while (q->free_req_head == -1) {
296 if (qemu_in_coroutine()) {
297 trace_nvme_free_req_queue_wait(q->s, q->index);
298 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
299 } else {
300 qemu_mutex_unlock(&q->lock);
301 return NULL;
302 }
303 }
304
305 req = &q->reqs[q->free_req_head];
306 q->free_req_head = req->free_req_next;
307 req->free_req_next = -1;
308
309 qemu_mutex_unlock(&q->lock);
310 return req;
311 }
312
313 /* With q->lock */
314 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
315 {
316 req->free_req_next = q->free_req_head;
317 q->free_req_head = req - q->reqs;
318 }
319
320 /* With q->lock */
321 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
322 {
323 if (!qemu_co_queue_empty(&q->free_req_queue)) {
324 replay_bh_schedule_oneshot_event(q->s->aio_context,
325 nvme_free_req_queue_cb, q);
326 }
327 }
328
329 /* Insert a request in the freelist and wake waiters */
330 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
331 {
332 qemu_mutex_lock(&q->lock);
333 nvme_put_free_req_locked(q, req);
334 nvme_wake_free_req_locked(q);
335 qemu_mutex_unlock(&q->lock);
336 }
337
338 static inline int nvme_translate_error(const NvmeCqe *c)
339 {
340 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
341 if (status) {
342 trace_nvme_error(le32_to_cpu(c->result),
343 le16_to_cpu(c->sq_head),
344 le16_to_cpu(c->sq_id),
345 le16_to_cpu(c->cid),
346 le16_to_cpu(status));
347 }
348 switch (status) {
349 case 0:
350 return 0;
351 case 1:
352 return -ENOSYS;
353 case 2:
354 return -EINVAL;
355 default:
356 return -EIO;
357 }
358 }
359
360 /* With q->lock */
361 static bool nvme_process_completion(NVMeQueuePair *q)
362 {
363 BDRVNVMeState *s = q->s;
364 bool progress = false;
365 NVMeRequest *preq;
366 NVMeRequest req;
367 NvmeCqe *c;
368
369 trace_nvme_process_completion(s, q->index, q->inflight);
370 if (s->plugged) {
371 trace_nvme_process_completion_queue_plugged(s, q->index);
372 return false;
373 }
374
375 /*
376 * Support re-entrancy when a request cb() function invokes aio_poll().
377 * Pending completions must be visible to aio_poll() so that a cb()
378 * function can wait for the completion of another request.
379 *
380 * The aio_poll() loop will execute our BH and we'll resume completion
381 * processing there.
382 */
383 qemu_bh_schedule(q->completion_bh);
384
385 assert(q->inflight >= 0);
386 while (q->inflight) {
387 int ret;
388 int16_t cid;
389
390 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
391 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
392 break;
393 }
394 ret = nvme_translate_error(c);
395 if (ret) {
396 s->stats.completion_errors++;
397 }
398 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
399 if (!q->cq.head) {
400 q->cq_phase = !q->cq_phase;
401 }
402 cid = le16_to_cpu(c->cid);
403 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
404 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
405 "queue size: %u", cid, NVME_QUEUE_SIZE);
406 continue;
407 }
408 trace_nvme_complete_command(s, q->index, cid);
409 preq = &q->reqs[cid - 1];
410 req = *preq;
411 assert(req.cid == cid);
412 assert(req.cb);
413 nvme_put_free_req_locked(q, preq);
414 preq->cb = preq->opaque = NULL;
415 q->inflight--;
416 qemu_mutex_unlock(&q->lock);
417 req.cb(req.opaque, ret);
418 qemu_mutex_lock(&q->lock);
419 progress = true;
420 }
421 if (progress) {
422 /* Notify the device so it can post more completions. */
423 smp_mb_release();
424 *q->cq.doorbell = cpu_to_le32(q->cq.head);
425 nvme_wake_free_req_locked(q);
426 }
427
428 qemu_bh_cancel(q->completion_bh);
429
430 return progress;
431 }
432
433 static void nvme_process_completion_bh(void *opaque)
434 {
435 NVMeQueuePair *q = opaque;
436
437 /*
438 * We're being invoked because a nvme_process_completion() cb() function
439 * called aio_poll(). The callback may be waiting for further completions
440 * so notify the device that it has space to fill in more completions now.
441 */
442 smp_mb_release();
443 *q->cq.doorbell = cpu_to_le32(q->cq.head);
444 nvme_wake_free_req_locked(q);
445
446 nvme_process_completion(q);
447 }
448
449 static void nvme_trace_command(const NvmeCmd *cmd)
450 {
451 int i;
452
453 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
454 return;
455 }
456 for (i = 0; i < 8; ++i) {
457 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
458 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
459 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
460 }
461 }
462
463 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
464 NvmeCmd *cmd, BlockCompletionFunc cb,
465 void *opaque)
466 {
467 assert(!req->cb);
468 req->cb = cb;
469 req->opaque = opaque;
470 cmd->cid = cpu_to_le32(req->cid);
471
472 trace_nvme_submit_command(q->s, q->index, req->cid);
473 nvme_trace_command(cmd);
474 qemu_mutex_lock(&q->lock);
475 memcpy((uint8_t *)q->sq.queue +
476 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
477 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
478 q->need_kick++;
479 nvme_kick(q);
480 nvme_process_completion(q);
481 qemu_mutex_unlock(&q->lock);
482 }
483
484 static void nvme_cmd_sync_cb(void *opaque, int ret)
485 {
486 int *pret = opaque;
487 *pret = ret;
488 aio_wait_kick();
489 }
490
491 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
492 NvmeCmd *cmd)
493 {
494 AioContext *aio_context = bdrv_get_aio_context(bs);
495 NVMeRequest *req;
496 int ret = -EINPROGRESS;
497 req = nvme_get_free_req(q);
498 if (!req) {
499 return -EBUSY;
500 }
501 nvme_submit_command(q, req, cmd, nvme_cmd_sync_cb, &ret);
502
503 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
504 return ret;
505 }
506
507 /* Returns true on success, false on failure. */
508 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
509 {
510 BDRVNVMeState *s = bs->opaque;
511 bool ret = false;
512 union {
513 NvmeIdCtrl ctrl;
514 NvmeIdNs ns;
515 } *id;
516 NvmeLBAF *lbaf;
517 uint16_t oncs;
518 int r;
519 uint64_t iova;
520 NvmeCmd cmd = {
521 .opcode = NVME_ADM_CMD_IDENTIFY,
522 .cdw10 = cpu_to_le32(0x1),
523 };
524
525 id = qemu_try_memalign(s->page_size, sizeof(*id));
526 if (!id) {
527 error_setg(errp, "Cannot allocate buffer for identify response");
528 goto out;
529 }
530 r = qemu_vfio_dma_map(s->vfio, id, sizeof(*id), true, &iova);
531 if (r) {
532 error_setg(errp, "Cannot map buffer for DMA");
533 goto out;
534 }
535
536 memset(id, 0, sizeof(*id));
537 cmd.dptr.prp1 = cpu_to_le64(iova);
538 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
539 error_setg(errp, "Failed to identify controller");
540 goto out;
541 }
542
543 if (le32_to_cpu(id->ctrl.nn) < namespace) {
544 error_setg(errp, "Invalid namespace");
545 goto out;
546 }
547 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
548 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
549 /* For now the page list buffer per command is one page, to hold at most
550 * s->page_size / sizeof(uint64_t) entries. */
551 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
552 s->page_size / sizeof(uint64_t) * s->page_size);
553
554 oncs = le16_to_cpu(id->ctrl.oncs);
555 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
556 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
557
558 memset(id, 0, sizeof(*id));
559 cmd.cdw10 = 0;
560 cmd.nsid = cpu_to_le32(namespace);
561 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
562 error_setg(errp, "Failed to identify namespace");
563 goto out;
564 }
565
566 s->nsze = le64_to_cpu(id->ns.nsze);
567 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
568
569 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
570 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
571 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
572 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
573 }
574
575 if (lbaf->ms) {
576 error_setg(errp, "Namespaces with metadata are not yet supported");
577 goto out;
578 }
579
580 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
581 (1 << lbaf->ds) > s->page_size)
582 {
583 error_setg(errp, "Namespace has unsupported block size (2^%d)",
584 lbaf->ds);
585 goto out;
586 }
587
588 ret = true;
589 s->blkshift = lbaf->ds;
590 out:
591 qemu_vfio_dma_unmap(s->vfio, id);
592 qemu_vfree(id);
593
594 return ret;
595 }
596
597 static bool nvme_poll_queue(NVMeQueuePair *q)
598 {
599 bool progress = false;
600
601 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
602 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
603
604 trace_nvme_poll_queue(q->s, q->index);
605 /*
606 * Do an early check for completions. q->lock isn't needed because
607 * nvme_process_completion() only runs in the event loop thread and
608 * cannot race with itself.
609 */
610 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
611 return false;
612 }
613
614 qemu_mutex_lock(&q->lock);
615 while (nvme_process_completion(q)) {
616 /* Keep polling */
617 progress = true;
618 }
619 qemu_mutex_unlock(&q->lock);
620
621 return progress;
622 }
623
624 static bool nvme_poll_queues(BDRVNVMeState *s)
625 {
626 bool progress = false;
627 int i;
628
629 for (i = 0; i < s->queue_count; i++) {
630 if (nvme_poll_queue(s->queues[i])) {
631 progress = true;
632 }
633 }
634 return progress;
635 }
636
637 static void nvme_handle_event(EventNotifier *n)
638 {
639 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
640 irq_notifier[MSIX_SHARED_IRQ_IDX]);
641
642 trace_nvme_handle_event(s);
643 event_notifier_test_and_clear(n);
644 nvme_poll_queues(s);
645 }
646
647 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
648 {
649 BDRVNVMeState *s = bs->opaque;
650 unsigned n = s->queue_count;
651 NVMeQueuePair *q;
652 NvmeCmd cmd;
653 unsigned queue_size = NVME_QUEUE_SIZE;
654
655 assert(n <= UINT16_MAX);
656 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
657 n, queue_size, errp);
658 if (!q) {
659 return false;
660 }
661 cmd = (NvmeCmd) {
662 .opcode = NVME_ADM_CMD_CREATE_CQ,
663 .dptr.prp1 = cpu_to_le64(q->cq.iova),
664 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
665 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
666 };
667 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
668 error_setg(errp, "Failed to create CQ io queue [%u]", n);
669 goto out_error;
670 }
671 cmd = (NvmeCmd) {
672 .opcode = NVME_ADM_CMD_CREATE_SQ,
673 .dptr.prp1 = cpu_to_le64(q->sq.iova),
674 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
675 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
676 };
677 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
678 error_setg(errp, "Failed to create SQ io queue [%u]", n);
679 goto out_error;
680 }
681 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
682 s->queues[n] = q;
683 s->queue_count++;
684 return true;
685 out_error:
686 nvme_free_queue_pair(q);
687 return false;
688 }
689
690 static bool nvme_poll_cb(void *opaque)
691 {
692 EventNotifier *e = opaque;
693 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
694 irq_notifier[MSIX_SHARED_IRQ_IDX]);
695
696 return nvme_poll_queues(s);
697 }
698
699 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
700 Error **errp)
701 {
702 BDRVNVMeState *s = bs->opaque;
703 AioContext *aio_context = bdrv_get_aio_context(bs);
704 int ret;
705 uint64_t cap;
706 uint64_t timeout_ms;
707 uint64_t deadline, now;
708 volatile NvmeBar *regs = NULL;
709
710 qemu_co_mutex_init(&s->dma_map_lock);
711 qemu_co_queue_init(&s->dma_flush_queue);
712 s->device = g_strdup(device);
713 s->nsid = namespace;
714 s->aio_context = bdrv_get_aio_context(bs);
715 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
716 if (ret) {
717 error_setg(errp, "Failed to init event notifier");
718 return ret;
719 }
720
721 s->vfio = qemu_vfio_open_pci(device, errp);
722 if (!s->vfio) {
723 ret = -EINVAL;
724 goto out;
725 }
726
727 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
728 PROT_READ | PROT_WRITE, errp);
729 if (!regs) {
730 ret = -EINVAL;
731 goto out;
732 }
733 /* Perform initialize sequence as described in NVMe spec "7.6.1
734 * Initialization". */
735
736 cap = le64_to_cpu(regs->cap);
737 trace_nvme_controller_capability_raw(cap);
738 trace_nvme_controller_capability("Maximum Queue Entries Supported",
739 1 + NVME_CAP_MQES(cap));
740 trace_nvme_controller_capability("Contiguous Queues Required",
741 NVME_CAP_CQR(cap));
742 trace_nvme_controller_capability("Doorbell Stride",
743 2 << (2 + NVME_CAP_DSTRD(cap)));
744 trace_nvme_controller_capability("Subsystem Reset Supported",
745 NVME_CAP_NSSRS(cap));
746 trace_nvme_controller_capability("Memory Page Size Minimum",
747 1 << (12 + NVME_CAP_MPSMIN(cap)));
748 trace_nvme_controller_capability("Memory Page Size Maximum",
749 1 << (12 + NVME_CAP_MPSMAX(cap)));
750 if (!NVME_CAP_CSS(cap)) {
751 error_setg(errp, "Device doesn't support NVMe command set");
752 ret = -EINVAL;
753 goto out;
754 }
755
756 s->page_size = MAX(4096, 1 << NVME_CAP_MPSMIN(cap));
757 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
758 bs->bl.opt_mem_alignment = s->page_size;
759 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
760
761 /* Reset device to get a clean state. */
762 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
763 /* Wait for CSTS.RDY = 0. */
764 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
765 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
766 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
767 error_setg(errp, "Timeout while waiting for device to reset (%"
768 PRId64 " ms)",
769 timeout_ms);
770 ret = -ETIMEDOUT;
771 goto out;
772 }
773 }
774
775 s->doorbells = qemu_vfio_pci_map_bar(s->vfio, 0, sizeof(NvmeBar),
776 NVME_DOORBELL_SIZE, PROT_WRITE, errp);
777 if (!s->doorbells) {
778 ret = -EINVAL;
779 goto out;
780 }
781
782 /* Set up admin queue. */
783 s->queues = g_new(NVMeQueuePair *, 1);
784 s->queues[INDEX_ADMIN] = nvme_create_queue_pair(s, aio_context, 0,
785 NVME_QUEUE_SIZE,
786 errp);
787 if (!s->queues[INDEX_ADMIN]) {
788 ret = -EINVAL;
789 goto out;
790 }
791 s->queue_count = 1;
792 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
793 regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << AQA_ACQS_SHIFT) |
794 (NVME_QUEUE_SIZE << AQA_ASQS_SHIFT));
795 regs->asq = cpu_to_le64(s->queues[INDEX_ADMIN]->sq.iova);
796 regs->acq = cpu_to_le64(s->queues[INDEX_ADMIN]->cq.iova);
797
798 /* After setting up all control registers we can enable device now. */
799 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
800 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
801 CC_EN_MASK);
802 /* Wait for CSTS.RDY = 1. */
803 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
804 deadline = now + timeout_ms * SCALE_MS;
805 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
806 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
807 error_setg(errp, "Timeout while waiting for device to start (%"
808 PRId64 " ms)",
809 timeout_ms);
810 ret = -ETIMEDOUT;
811 goto out;
812 }
813 }
814
815 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
816 VFIO_PCI_MSIX_IRQ_INDEX, errp);
817 if (ret) {
818 goto out;
819 }
820 aio_set_event_notifier(bdrv_get_aio_context(bs),
821 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
822 false, nvme_handle_event, nvme_poll_cb);
823
824 if (!nvme_identify(bs, namespace, errp)) {
825 ret = -EIO;
826 goto out;
827 }
828
829 /* Set up command queues. */
830 if (!nvme_add_io_queue(bs, errp)) {
831 ret = -EIO;
832 }
833 out:
834 if (regs) {
835 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
836 }
837
838 /* Cleaning up is done in nvme_file_open() upon error. */
839 return ret;
840 }
841
842 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
843 *
844 * nvme://0000:44:00.0/1
845 *
846 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
847 * is the PCI address, and the last part is the namespace number starting from
848 * 1 according to the NVMe spec. */
849 static void nvme_parse_filename(const char *filename, QDict *options,
850 Error **errp)
851 {
852 int pref = strlen("nvme://");
853
854 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
855 const char *tmp = filename + pref;
856 char *device;
857 const char *namespace;
858 unsigned long ns;
859 const char *slash = strchr(tmp, '/');
860 if (!slash) {
861 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
862 return;
863 }
864 device = g_strndup(tmp, slash - tmp);
865 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
866 g_free(device);
867 namespace = slash + 1;
868 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
869 error_setg(errp, "Invalid namespace '%s', positive number expected",
870 namespace);
871 return;
872 }
873 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
874 *namespace ? namespace : "1");
875 }
876 }
877
878 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
879 Error **errp)
880 {
881 int ret;
882 BDRVNVMeState *s = bs->opaque;
883 NvmeCmd cmd = {
884 .opcode = NVME_ADM_CMD_SET_FEATURES,
885 .nsid = cpu_to_le32(s->nsid),
886 .cdw10 = cpu_to_le32(0x06),
887 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
888 };
889
890 ret = nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd);
891 if (ret) {
892 error_setg(errp, "Failed to configure NVMe write cache");
893 }
894 return ret;
895 }
896
897 static void nvme_close(BlockDriverState *bs)
898 {
899 BDRVNVMeState *s = bs->opaque;
900
901 for (unsigned i = 0; i < s->queue_count; ++i) {
902 nvme_free_queue_pair(s->queues[i]);
903 }
904 g_free(s->queues);
905 aio_set_event_notifier(bdrv_get_aio_context(bs),
906 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
907 false, NULL, NULL);
908 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
909 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->doorbells,
910 sizeof(NvmeBar), NVME_DOORBELL_SIZE);
911 qemu_vfio_close(s->vfio);
912
913 g_free(s->device);
914 }
915
916 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
917 Error **errp)
918 {
919 const char *device;
920 QemuOpts *opts;
921 int namespace;
922 int ret;
923 BDRVNVMeState *s = bs->opaque;
924
925 bs->supported_write_flags = BDRV_REQ_FUA;
926
927 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
928 qemu_opts_absorb_qdict(opts, options, &error_abort);
929 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
930 if (!device) {
931 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
932 qemu_opts_del(opts);
933 return -EINVAL;
934 }
935
936 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
937 ret = nvme_init(bs, device, namespace, errp);
938 qemu_opts_del(opts);
939 if (ret) {
940 goto fail;
941 }
942 if (flags & BDRV_O_NOCACHE) {
943 if (!s->write_cache_supported) {
944 error_setg(errp,
945 "NVMe controller doesn't support write cache configuration");
946 ret = -EINVAL;
947 } else {
948 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
949 errp);
950 }
951 if (ret) {
952 goto fail;
953 }
954 }
955 return 0;
956 fail:
957 nvme_close(bs);
958 return ret;
959 }
960
961 static int64_t nvme_getlength(BlockDriverState *bs)
962 {
963 BDRVNVMeState *s = bs->opaque;
964 return s->nsze << s->blkshift;
965 }
966
967 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
968 {
969 BDRVNVMeState *s = bs->opaque;
970 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
971 return UINT32_C(1) << s->blkshift;
972 }
973
974 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
975 {
976 uint32_t blocksize = nvme_get_blocksize(bs);
977 bsz->phys = blocksize;
978 bsz->log = blocksize;
979 return 0;
980 }
981
982 /* Called with s->dma_map_lock */
983 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
984 QEMUIOVector *qiov)
985 {
986 int r = 0;
987 BDRVNVMeState *s = bs->opaque;
988
989 s->dma_map_count -= qiov->size;
990 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
991 r = qemu_vfio_dma_reset_temporary(s->vfio);
992 if (!r) {
993 qemu_co_queue_restart_all(&s->dma_flush_queue);
994 }
995 }
996 return r;
997 }
998
999 /* Called with s->dma_map_lock */
1000 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1001 NVMeRequest *req, QEMUIOVector *qiov)
1002 {
1003 BDRVNVMeState *s = bs->opaque;
1004 uint64_t *pagelist = req->prp_list_page;
1005 int i, j, r;
1006 int entries = 0;
1007
1008 assert(qiov->size);
1009 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1010 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1011 for (i = 0; i < qiov->niov; ++i) {
1012 bool retry = true;
1013 uint64_t iova;
1014 try_map:
1015 r = qemu_vfio_dma_map(s->vfio,
1016 qiov->iov[i].iov_base,
1017 qiov->iov[i].iov_len,
1018 true, &iova);
1019 if (r == -ENOMEM && retry) {
1020 retry = false;
1021 trace_nvme_dma_flush_queue_wait(s);
1022 if (s->dma_map_count) {
1023 trace_nvme_dma_map_flush(s);
1024 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1025 } else {
1026 r = qemu_vfio_dma_reset_temporary(s->vfio);
1027 if (r) {
1028 goto fail;
1029 }
1030 }
1031 goto try_map;
1032 }
1033 if (r) {
1034 goto fail;
1035 }
1036
1037 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1038 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1039 }
1040 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1041 qiov->iov[i].iov_len / s->page_size);
1042 }
1043
1044 s->dma_map_count += qiov->size;
1045
1046 assert(entries <= s->page_size / sizeof(uint64_t));
1047 switch (entries) {
1048 case 0:
1049 abort();
1050 case 1:
1051 cmd->dptr.prp1 = pagelist[0];
1052 cmd->dptr.prp2 = 0;
1053 break;
1054 case 2:
1055 cmd->dptr.prp1 = pagelist[0];
1056 cmd->dptr.prp2 = pagelist[1];
1057 break;
1058 default:
1059 cmd->dptr.prp1 = pagelist[0];
1060 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1061 break;
1062 }
1063 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1064 for (i = 0; i < entries; ++i) {
1065 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1066 }
1067 return 0;
1068 fail:
1069 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1070 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1071 * because they are already mapped before calling this function; for
1072 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1073 * calling qemu_vfio_dma_reset_temporary when necessary. */
1074 return r;
1075 }
1076
1077 typedef struct {
1078 Coroutine *co;
1079 int ret;
1080 AioContext *ctx;
1081 } NVMeCoData;
1082
1083 static void nvme_rw_cb_bh(void *opaque)
1084 {
1085 NVMeCoData *data = opaque;
1086 qemu_coroutine_enter(data->co);
1087 }
1088
1089 static void nvme_rw_cb(void *opaque, int ret)
1090 {
1091 NVMeCoData *data = opaque;
1092 data->ret = ret;
1093 if (!data->co) {
1094 /* The rw coroutine hasn't yielded, don't try to enter. */
1095 return;
1096 }
1097 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1098 }
1099
1100 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1101 uint64_t offset, uint64_t bytes,
1102 QEMUIOVector *qiov,
1103 bool is_write,
1104 int flags)
1105 {
1106 int r;
1107 BDRVNVMeState *s = bs->opaque;
1108 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1109 NVMeRequest *req;
1110
1111 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1112 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1113 NvmeCmd cmd = {
1114 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1115 .nsid = cpu_to_le32(s->nsid),
1116 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1117 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1118 .cdw12 = cpu_to_le32(cdw12),
1119 };
1120 NVMeCoData data = {
1121 .ctx = bdrv_get_aio_context(bs),
1122 .ret = -EINPROGRESS,
1123 };
1124
1125 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1126 assert(s->queue_count > 1);
1127 req = nvme_get_free_req(ioq);
1128 assert(req);
1129
1130 qemu_co_mutex_lock(&s->dma_map_lock);
1131 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1132 qemu_co_mutex_unlock(&s->dma_map_lock);
1133 if (r) {
1134 nvme_put_free_req_and_wake(ioq, req);
1135 return r;
1136 }
1137 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1138
1139 data.co = qemu_coroutine_self();
1140 while (data.ret == -EINPROGRESS) {
1141 qemu_coroutine_yield();
1142 }
1143
1144 qemu_co_mutex_lock(&s->dma_map_lock);
1145 r = nvme_cmd_unmap_qiov(bs, qiov);
1146 qemu_co_mutex_unlock(&s->dma_map_lock);
1147 if (r) {
1148 return r;
1149 }
1150
1151 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1152 return data.ret;
1153 }
1154
1155 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1156 const QEMUIOVector *qiov)
1157 {
1158 int i;
1159 BDRVNVMeState *s = bs->opaque;
1160
1161 for (i = 0; i < qiov->niov; ++i) {
1162 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1163 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1164 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1165 qiov->iov[i].iov_len, s->page_size);
1166 return false;
1167 }
1168 }
1169 return true;
1170 }
1171
1172 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1173 QEMUIOVector *qiov, bool is_write, int flags)
1174 {
1175 BDRVNVMeState *s = bs->opaque;
1176 int r;
1177 uint8_t *buf = NULL;
1178 QEMUIOVector local_qiov;
1179
1180 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1181 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1182 assert(bytes <= s->max_transfer);
1183 if (nvme_qiov_aligned(bs, qiov)) {
1184 s->stats.aligned_accesses++;
1185 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1186 }
1187 s->stats.unaligned_accesses++;
1188 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1189 buf = qemu_try_memalign(s->page_size, bytes);
1190
1191 if (!buf) {
1192 return -ENOMEM;
1193 }
1194 qemu_iovec_init(&local_qiov, 1);
1195 if (is_write) {
1196 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1197 }
1198 qemu_iovec_add(&local_qiov, buf, bytes);
1199 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1200 qemu_iovec_destroy(&local_qiov);
1201 if (!r && !is_write) {
1202 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1203 }
1204 qemu_vfree(buf);
1205 return r;
1206 }
1207
1208 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1209 uint64_t offset, uint64_t bytes,
1210 QEMUIOVector *qiov, int flags)
1211 {
1212 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1213 }
1214
1215 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1216 uint64_t offset, uint64_t bytes,
1217 QEMUIOVector *qiov, int flags)
1218 {
1219 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1220 }
1221
1222 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1223 {
1224 BDRVNVMeState *s = bs->opaque;
1225 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1226 NVMeRequest *req;
1227 NvmeCmd cmd = {
1228 .opcode = NVME_CMD_FLUSH,
1229 .nsid = cpu_to_le32(s->nsid),
1230 };
1231 NVMeCoData data = {
1232 .ctx = bdrv_get_aio_context(bs),
1233 .ret = -EINPROGRESS,
1234 };
1235
1236 assert(s->queue_count > 1);
1237 req = nvme_get_free_req(ioq);
1238 assert(req);
1239 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1240
1241 data.co = qemu_coroutine_self();
1242 if (data.ret == -EINPROGRESS) {
1243 qemu_coroutine_yield();
1244 }
1245
1246 return data.ret;
1247 }
1248
1249
1250 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1251 int64_t offset,
1252 int bytes,
1253 BdrvRequestFlags flags)
1254 {
1255 BDRVNVMeState *s = bs->opaque;
1256 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1257 NVMeRequest *req;
1258
1259 uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1260
1261 if (!s->supports_write_zeroes) {
1262 return -ENOTSUP;
1263 }
1264
1265 NvmeCmd cmd = {
1266 .opcode = NVME_CMD_WRITE_ZEROES,
1267 .nsid = cpu_to_le32(s->nsid),
1268 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1269 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1270 };
1271
1272 NVMeCoData data = {
1273 .ctx = bdrv_get_aio_context(bs),
1274 .ret = -EINPROGRESS,
1275 };
1276
1277 if (flags & BDRV_REQ_MAY_UNMAP) {
1278 cdw12 |= (1 << 25);
1279 }
1280
1281 if (flags & BDRV_REQ_FUA) {
1282 cdw12 |= (1 << 30);
1283 }
1284
1285 cmd.cdw12 = cpu_to_le32(cdw12);
1286
1287 trace_nvme_write_zeroes(s, offset, bytes, flags);
1288 assert(s->queue_count > 1);
1289 req = nvme_get_free_req(ioq);
1290 assert(req);
1291
1292 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1293
1294 data.co = qemu_coroutine_self();
1295 while (data.ret == -EINPROGRESS) {
1296 qemu_coroutine_yield();
1297 }
1298
1299 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1300 return data.ret;
1301 }
1302
1303
1304 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1305 int64_t offset,
1306 int bytes)
1307 {
1308 BDRVNVMeState *s = bs->opaque;
1309 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1310 NVMeRequest *req;
1311 NvmeDsmRange *buf;
1312 QEMUIOVector local_qiov;
1313 int ret;
1314
1315 NvmeCmd cmd = {
1316 .opcode = NVME_CMD_DSM,
1317 .nsid = cpu_to_le32(s->nsid),
1318 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1319 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1320 };
1321
1322 NVMeCoData data = {
1323 .ctx = bdrv_get_aio_context(bs),
1324 .ret = -EINPROGRESS,
1325 };
1326
1327 if (!s->supports_discard) {
1328 return -ENOTSUP;
1329 }
1330
1331 assert(s->queue_count > 1);
1332
1333 buf = qemu_try_memalign(s->page_size, s->page_size);
1334 if (!buf) {
1335 return -ENOMEM;
1336 }
1337 memset(buf, 0, s->page_size);
1338 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1339 buf->slba = cpu_to_le64(offset >> s->blkshift);
1340 buf->cattr = 0;
1341
1342 qemu_iovec_init(&local_qiov, 1);
1343 qemu_iovec_add(&local_qiov, buf, 4096);
1344
1345 req = nvme_get_free_req(ioq);
1346 assert(req);
1347
1348 qemu_co_mutex_lock(&s->dma_map_lock);
1349 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1350 qemu_co_mutex_unlock(&s->dma_map_lock);
1351
1352 if (ret) {
1353 nvme_put_free_req_and_wake(ioq, req);
1354 goto out;
1355 }
1356
1357 trace_nvme_dsm(s, offset, bytes);
1358
1359 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1360
1361 data.co = qemu_coroutine_self();
1362 while (data.ret == -EINPROGRESS) {
1363 qemu_coroutine_yield();
1364 }
1365
1366 qemu_co_mutex_lock(&s->dma_map_lock);
1367 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1368 qemu_co_mutex_unlock(&s->dma_map_lock);
1369
1370 if (ret) {
1371 goto out;
1372 }
1373
1374 ret = data.ret;
1375 trace_nvme_dsm_done(s, offset, bytes, ret);
1376 out:
1377 qemu_iovec_destroy(&local_qiov);
1378 qemu_vfree(buf);
1379 return ret;
1380
1381 }
1382
1383
1384 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1385 BlockReopenQueue *queue, Error **errp)
1386 {
1387 return 0;
1388 }
1389
1390 static void nvme_refresh_filename(BlockDriverState *bs)
1391 {
1392 BDRVNVMeState *s = bs->opaque;
1393
1394 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1395 s->device, s->nsid);
1396 }
1397
1398 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1399 {
1400 BDRVNVMeState *s = bs->opaque;
1401
1402 bs->bl.opt_mem_alignment = s->page_size;
1403 bs->bl.request_alignment = s->page_size;
1404 bs->bl.max_transfer = s->max_transfer;
1405 }
1406
1407 static void nvme_detach_aio_context(BlockDriverState *bs)
1408 {
1409 BDRVNVMeState *s = bs->opaque;
1410
1411 for (unsigned i = 0; i < s->queue_count; i++) {
1412 NVMeQueuePair *q = s->queues[i];
1413
1414 qemu_bh_delete(q->completion_bh);
1415 q->completion_bh = NULL;
1416 }
1417
1418 aio_set_event_notifier(bdrv_get_aio_context(bs),
1419 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1420 false, NULL, NULL);
1421 }
1422
1423 static void nvme_attach_aio_context(BlockDriverState *bs,
1424 AioContext *new_context)
1425 {
1426 BDRVNVMeState *s = bs->opaque;
1427
1428 s->aio_context = new_context;
1429 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1430 false, nvme_handle_event, nvme_poll_cb);
1431
1432 for (unsigned i = 0; i < s->queue_count; i++) {
1433 NVMeQueuePair *q = s->queues[i];
1434
1435 q->completion_bh =
1436 aio_bh_new(new_context, nvme_process_completion_bh, q);
1437 }
1438 }
1439
1440 static void nvme_aio_plug(BlockDriverState *bs)
1441 {
1442 BDRVNVMeState *s = bs->opaque;
1443 assert(!s->plugged);
1444 s->plugged = true;
1445 }
1446
1447 static void nvme_aio_unplug(BlockDriverState *bs)
1448 {
1449 BDRVNVMeState *s = bs->opaque;
1450 assert(s->plugged);
1451 s->plugged = false;
1452 for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1453 NVMeQueuePair *q = s->queues[i];
1454 qemu_mutex_lock(&q->lock);
1455 nvme_kick(q);
1456 nvme_process_completion(q);
1457 qemu_mutex_unlock(&q->lock);
1458 }
1459 }
1460
1461 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1462 {
1463 int ret;
1464 BDRVNVMeState *s = bs->opaque;
1465
1466 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1467 if (ret) {
1468 /* FIXME: we may run out of IOVA addresses after repeated
1469 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1470 * doesn't reclaim addresses for fixed mappings. */
1471 error_report("nvme_register_buf failed: %s", strerror(-ret));
1472 }
1473 }
1474
1475 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1476 {
1477 BDRVNVMeState *s = bs->opaque;
1478
1479 qemu_vfio_dma_unmap(s->vfio, host);
1480 }
1481
1482 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1483 {
1484 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1485 BDRVNVMeState *s = bs->opaque;
1486
1487 stats->driver = BLOCKDEV_DRIVER_NVME;
1488 stats->u.nvme = (BlockStatsSpecificNvme) {
1489 .completion_errors = s->stats.completion_errors,
1490 .aligned_accesses = s->stats.aligned_accesses,
1491 .unaligned_accesses = s->stats.unaligned_accesses,
1492 };
1493
1494 return stats;
1495 }
1496
1497 static const char *const nvme_strong_runtime_opts[] = {
1498 NVME_BLOCK_OPT_DEVICE,
1499 NVME_BLOCK_OPT_NAMESPACE,
1500
1501 NULL
1502 };
1503
1504 static BlockDriver bdrv_nvme = {
1505 .format_name = "nvme",
1506 .protocol_name = "nvme",
1507 .instance_size = sizeof(BDRVNVMeState),
1508
1509 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1510 .create_opts = &bdrv_create_opts_simple,
1511
1512 .bdrv_parse_filename = nvme_parse_filename,
1513 .bdrv_file_open = nvme_file_open,
1514 .bdrv_close = nvme_close,
1515 .bdrv_getlength = nvme_getlength,
1516 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1517
1518 .bdrv_co_preadv = nvme_co_preadv,
1519 .bdrv_co_pwritev = nvme_co_pwritev,
1520
1521 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1522 .bdrv_co_pdiscard = nvme_co_pdiscard,
1523
1524 .bdrv_co_flush_to_disk = nvme_co_flush,
1525 .bdrv_reopen_prepare = nvme_reopen_prepare,
1526
1527 .bdrv_refresh_filename = nvme_refresh_filename,
1528 .bdrv_refresh_limits = nvme_refresh_limits,
1529 .strong_runtime_opts = nvme_strong_runtime_opts,
1530 .bdrv_get_specific_stats = nvme_get_specific_stats,
1531
1532 .bdrv_detach_aio_context = nvme_detach_aio_context,
1533 .bdrv_attach_aio_context = nvme_attach_aio_context,
1534
1535 .bdrv_io_plug = nvme_aio_plug,
1536 .bdrv_io_unplug = nvme_aio_unplug,
1537
1538 .bdrv_register_buf = nvme_register_buf,
1539 .bdrv_unregister_buf = nvme_unregister_buf,
1540 };
1541
1542 static void bdrv_nvme_init(void)
1543 {
1544 bdrv_register(&bdrv_nvme);
1545 }
1546
1547 block_init(bdrv_nvme_init);