]> git.proxmox.com Git - qemu.git/blob - block/qcow2-cluster.c
qcow2: Simplify count_cow_clusters
[qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <zlib.h>
26
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31
32 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
33 {
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
37 int64_t new_l1_table_offset;
38 uint8_t data[12];
39
40 if (min_size <= s->l1_size)
41 return 0;
42
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
50 }
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
53 }
54 }
55
56 #ifdef DEBUG_ALLOC2
57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
58 #endif
59
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63
64 /* write new table (align to cluster) */
65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
67 if (new_l1_table_offset < 0) {
68 g_free(new_l1_table);
69 return new_l1_table_offset;
70 }
71
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
74 goto fail;
75 }
76
77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85
86 /* set new table */
87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
88 cpu_to_be32w((uint32_t*)data, new_l1_size);
89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
92 goto fail;
93 }
94 g_free(s->l1_table);
95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
101 g_free(new_l1_table);
102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
103 return ret;
104 }
105
106 /*
107 * l2_load
108 *
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
111 *
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
114 */
115
116 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
118 {
119 BDRVQcowState *s = bs->opaque;
120 int ret;
121
122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
123
124 return ret;
125 }
126
127 /*
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
130 */
131 #define L1_ENTRIES_PER_SECTOR (512 / 8)
132 static int write_l1_entry(BlockDriverState *bs, int l1_index)
133 {
134 BDRVQcowState *s = bs->opaque;
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
137 int i, ret;
138
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142 }
143
144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
149 }
150
151 return 0;
152 }
153
154 /*
155 * l2_allocate
156 *
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
161 *
162 */
163
164 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
165 {
166 BDRVQcowState *s = bs->opaque;
167 uint64_t old_l2_offset;
168 uint64_t *l2_table;
169 int64_t l2_offset;
170 int ret;
171
172 old_l2_offset = s->l1_table[l1_index];
173
174 trace_qcow2_l2_allocate(bs, l1_index);
175
176 /* allocate a new l2 entry */
177
178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
179 if (l2_offset < 0) {
180 return l2_offset;
181 }
182
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
186 }
187
188 /* allocate a new entry in the l2 cache */
189
190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
194 }
195
196 l2_table = *table;
197
198 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
202 uint64_t* old_table;
203
204 /* if there was an old l2 table, read it from the disk */
205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
206 ret = qcow2_cache_get(bs, s->l2_table_cache,
207 old_l2_offset & L1E_OFFSET_MASK,
208 (void**) &old_table);
209 if (ret < 0) {
210 goto fail;
211 }
212
213 memcpy(l2_table, old_table, s->cluster_size);
214
215 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
216 if (ret < 0) {
217 goto fail;
218 }
219 }
220
221 /* write the l2 table to the file */
222 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
223
224 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
225 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
226 ret = qcow2_cache_flush(bs, s->l2_table_cache);
227 if (ret < 0) {
228 goto fail;
229 }
230
231 /* update the L1 entry */
232 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
233 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
234 ret = write_l1_entry(bs, l1_index);
235 if (ret < 0) {
236 goto fail;
237 }
238
239 *table = l2_table;
240 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
241 return 0;
242
243 fail:
244 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
245 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
246 s->l1_table[l1_index] = old_l2_offset;
247 return ret;
248 }
249
250 /*
251 * Checks how many clusters in a given L2 table are contiguous in the image
252 * file. As soon as one of the flags in the bitmask stop_flags changes compared
253 * to the first cluster, the search is stopped and the cluster is not counted
254 * as contiguous. (This allows it, for example, to stop at the first compressed
255 * cluster which may require a different handling)
256 */
257 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
258 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
259 {
260 int i;
261 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
262 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
263
264 if (!offset)
265 return 0;
266
267 for (i = start; i < start + nb_clusters; i++) {
268 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
269 if (offset + (uint64_t) i * cluster_size != l2_entry) {
270 break;
271 }
272 }
273
274 return (i - start);
275 }
276
277 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
278 {
279 int i;
280
281 for (i = 0; i < nb_clusters; i++) {
282 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
283
284 if (type != QCOW2_CLUSTER_UNALLOCATED) {
285 break;
286 }
287 }
288
289 return i;
290 }
291
292 /* The crypt function is compatible with the linux cryptoloop
293 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
294 supported */
295 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
296 uint8_t *out_buf, const uint8_t *in_buf,
297 int nb_sectors, int enc,
298 const AES_KEY *key)
299 {
300 union {
301 uint64_t ll[2];
302 uint8_t b[16];
303 } ivec;
304 int i;
305
306 for(i = 0; i < nb_sectors; i++) {
307 ivec.ll[0] = cpu_to_le64(sector_num);
308 ivec.ll[1] = 0;
309 AES_cbc_encrypt(in_buf, out_buf, 512, key,
310 ivec.b, enc);
311 sector_num++;
312 in_buf += 512;
313 out_buf += 512;
314 }
315 }
316
317 static int coroutine_fn copy_sectors(BlockDriverState *bs,
318 uint64_t start_sect,
319 uint64_t cluster_offset,
320 int n_start, int n_end)
321 {
322 BDRVQcowState *s = bs->opaque;
323 QEMUIOVector qiov;
324 struct iovec iov;
325 int n, ret;
326
327 /*
328 * If this is the last cluster and it is only partially used, we must only
329 * copy until the end of the image, or bdrv_check_request will fail for the
330 * bdrv_read/write calls below.
331 */
332 if (start_sect + n_end > bs->total_sectors) {
333 n_end = bs->total_sectors - start_sect;
334 }
335
336 n = n_end - n_start;
337 if (n <= 0) {
338 return 0;
339 }
340
341 iov.iov_len = n * BDRV_SECTOR_SIZE;
342 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
343
344 qemu_iovec_init_external(&qiov, &iov, 1);
345
346 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
347
348 /* Call .bdrv_co_readv() directly instead of using the public block-layer
349 * interface. This avoids double I/O throttling and request tracking,
350 * which can lead to deadlock when block layer copy-on-read is enabled.
351 */
352 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
353 if (ret < 0) {
354 goto out;
355 }
356
357 if (s->crypt_method) {
358 qcow2_encrypt_sectors(s, start_sect + n_start,
359 iov.iov_base, iov.iov_base, n, 1,
360 &s->aes_encrypt_key);
361 }
362
363 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
364 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
365 if (ret < 0) {
366 goto out;
367 }
368
369 ret = 0;
370 out:
371 qemu_vfree(iov.iov_base);
372 return ret;
373 }
374
375
376 /*
377 * get_cluster_offset
378 *
379 * For a given offset of the disk image, find the cluster offset in
380 * qcow2 file. The offset is stored in *cluster_offset.
381 *
382 * on entry, *num is the number of contiguous sectors we'd like to
383 * access following offset.
384 *
385 * on exit, *num is the number of contiguous sectors we can read.
386 *
387 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
388 * cases.
389 */
390 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
391 int *num, uint64_t *cluster_offset)
392 {
393 BDRVQcowState *s = bs->opaque;
394 unsigned int l1_index, l2_index;
395 uint64_t l2_offset, *l2_table;
396 int l1_bits, c;
397 unsigned int index_in_cluster, nb_clusters;
398 uint64_t nb_available, nb_needed;
399 int ret;
400
401 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
402 nb_needed = *num + index_in_cluster;
403
404 l1_bits = s->l2_bits + s->cluster_bits;
405
406 /* compute how many bytes there are between the offset and
407 * the end of the l1 entry
408 */
409
410 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
411
412 /* compute the number of available sectors */
413
414 nb_available = (nb_available >> 9) + index_in_cluster;
415
416 if (nb_needed > nb_available) {
417 nb_needed = nb_available;
418 }
419
420 *cluster_offset = 0;
421
422 /* seek the the l2 offset in the l1 table */
423
424 l1_index = offset >> l1_bits;
425 if (l1_index >= s->l1_size) {
426 ret = QCOW2_CLUSTER_UNALLOCATED;
427 goto out;
428 }
429
430 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
431 if (!l2_offset) {
432 ret = QCOW2_CLUSTER_UNALLOCATED;
433 goto out;
434 }
435
436 /* load the l2 table in memory */
437
438 ret = l2_load(bs, l2_offset, &l2_table);
439 if (ret < 0) {
440 return ret;
441 }
442
443 /* find the cluster offset for the given disk offset */
444
445 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
446 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
447 nb_clusters = size_to_clusters(s, nb_needed << 9);
448
449 ret = qcow2_get_cluster_type(*cluster_offset);
450 switch (ret) {
451 case QCOW2_CLUSTER_COMPRESSED:
452 /* Compressed clusters can only be processed one by one */
453 c = 1;
454 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
455 break;
456 case QCOW2_CLUSTER_UNALLOCATED:
457 /* how many empty clusters ? */
458 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
459 *cluster_offset = 0;
460 break;
461 case QCOW2_CLUSTER_NORMAL:
462 /* how many allocated clusters ? */
463 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
464 &l2_table[l2_index], 0, QCOW_OFLAG_COMPRESSED);
465 *cluster_offset &= L2E_OFFSET_MASK;
466 break;
467 }
468
469 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
470
471 nb_available = (c * s->cluster_sectors);
472
473 out:
474 if (nb_available > nb_needed)
475 nb_available = nb_needed;
476
477 *num = nb_available - index_in_cluster;
478
479 return ret;
480 }
481
482 /*
483 * get_cluster_table
484 *
485 * for a given disk offset, load (and allocate if needed)
486 * the l2 table.
487 *
488 * the l2 table offset in the qcow2 file and the cluster index
489 * in the l2 table are given to the caller.
490 *
491 * Returns 0 on success, -errno in failure case
492 */
493 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
494 uint64_t **new_l2_table,
495 int *new_l2_index)
496 {
497 BDRVQcowState *s = bs->opaque;
498 unsigned int l1_index, l2_index;
499 uint64_t l2_offset;
500 uint64_t *l2_table = NULL;
501 int ret;
502
503 /* seek the the l2 offset in the l1 table */
504
505 l1_index = offset >> (s->l2_bits + s->cluster_bits);
506 if (l1_index >= s->l1_size) {
507 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
508 if (ret < 0) {
509 return ret;
510 }
511 }
512
513 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
514
515 /* seek the l2 table of the given l2 offset */
516
517 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
518 /* load the l2 table in memory */
519 ret = l2_load(bs, l2_offset, &l2_table);
520 if (ret < 0) {
521 return ret;
522 }
523 } else {
524 /* First allocate a new L2 table (and do COW if needed) */
525 ret = l2_allocate(bs, l1_index, &l2_table);
526 if (ret < 0) {
527 return ret;
528 }
529
530 /* Then decrease the refcount of the old table */
531 if (l2_offset) {
532 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
533 }
534 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
535 }
536
537 /* find the cluster offset for the given disk offset */
538
539 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
540
541 *new_l2_table = l2_table;
542 *new_l2_index = l2_index;
543
544 return 0;
545 }
546
547 /*
548 * alloc_compressed_cluster_offset
549 *
550 * For a given offset of the disk image, return cluster offset in
551 * qcow2 file.
552 *
553 * If the offset is not found, allocate a new compressed cluster.
554 *
555 * Return the cluster offset if successful,
556 * Return 0, otherwise.
557 *
558 */
559
560 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
561 uint64_t offset,
562 int compressed_size)
563 {
564 BDRVQcowState *s = bs->opaque;
565 int l2_index, ret;
566 uint64_t *l2_table;
567 int64_t cluster_offset;
568 int nb_csectors;
569
570 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
571 if (ret < 0) {
572 return 0;
573 }
574
575 /* Compression can't overwrite anything. Fail if the cluster was already
576 * allocated. */
577 cluster_offset = be64_to_cpu(l2_table[l2_index]);
578 if (cluster_offset & L2E_OFFSET_MASK) {
579 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
580 return 0;
581 }
582
583 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
584 if (cluster_offset < 0) {
585 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
586 return 0;
587 }
588
589 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
590 (cluster_offset >> 9);
591
592 cluster_offset |= QCOW_OFLAG_COMPRESSED |
593 ((uint64_t)nb_csectors << s->csize_shift);
594
595 /* update L2 table */
596
597 /* compressed clusters never have the copied flag */
598
599 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
600 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
601 l2_table[l2_index] = cpu_to_be64(cluster_offset);
602 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
603 if (ret < 0) {
604 return 0;
605 }
606
607 return cluster_offset;
608 }
609
610 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
611 {
612 BDRVQcowState *s = bs->opaque;
613 int i, j = 0, l2_index, ret;
614 uint64_t *old_cluster, start_sect, *l2_table;
615 uint64_t cluster_offset = m->alloc_offset;
616 bool cow = false;
617
618 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
619
620 if (m->nb_clusters == 0)
621 return 0;
622
623 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
624
625 /* copy content of unmodified sectors */
626 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
627 if (m->n_start) {
628 cow = true;
629 qemu_co_mutex_unlock(&s->lock);
630 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
631 qemu_co_mutex_lock(&s->lock);
632 if (ret < 0)
633 goto err;
634 }
635
636 if (m->nb_available & (s->cluster_sectors - 1)) {
637 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
638 cow = true;
639 qemu_co_mutex_unlock(&s->lock);
640 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
641 m->nb_available - end, s->cluster_sectors);
642 qemu_co_mutex_lock(&s->lock);
643 if (ret < 0)
644 goto err;
645 }
646
647 /*
648 * Update L2 table.
649 *
650 * Before we update the L2 table to actually point to the new cluster, we
651 * need to be sure that the refcounts have been increased and COW was
652 * handled.
653 */
654 if (cow) {
655 qcow2_cache_depends_on_flush(s->l2_table_cache);
656 }
657
658 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
659 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
660 if (ret < 0) {
661 goto err;
662 }
663 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
664
665 for (i = 0; i < m->nb_clusters; i++) {
666 /* if two concurrent writes happen to the same unallocated cluster
667 * each write allocates separate cluster and writes data concurrently.
668 * The first one to complete updates l2 table with pointer to its
669 * cluster the second one has to do RMW (which is done above by
670 * copy_sectors()), update l2 table with its cluster pointer and free
671 * old cluster. This is what this loop does */
672 if(l2_table[l2_index + i] != 0)
673 old_cluster[j++] = l2_table[l2_index + i];
674
675 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
676 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
677 }
678
679
680 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
681 if (ret < 0) {
682 goto err;
683 }
684
685 /*
686 * If this was a COW, we need to decrease the refcount of the old cluster.
687 * Also flush bs->file to get the right order for L2 and refcount update.
688 */
689 if (j != 0) {
690 for (i = 0; i < j; i++) {
691 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1);
692 }
693 }
694
695 ret = 0;
696 err:
697 g_free(old_cluster);
698 return ret;
699 }
700
701 /*
702 * Returns the number of contiguous clusters that can be used for an allocating
703 * write, but require COW to be performed (this includes yet unallocated space,
704 * which must copy from the backing file)
705 */
706 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
707 uint64_t *l2_table, int l2_index)
708 {
709 int i;
710
711 for (i = 0; i < nb_clusters; i++) {
712 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
713 int cluster_type = qcow2_get_cluster_type(l2_entry);
714
715 switch(cluster_type) {
716 case QCOW2_CLUSTER_NORMAL:
717 if (l2_entry & QCOW_OFLAG_COPIED) {
718 goto out;
719 }
720 break;
721 case QCOW2_CLUSTER_UNALLOCATED:
722 case QCOW2_CLUSTER_COMPRESSED:
723 break;
724 default:
725 abort();
726 }
727 }
728
729 out:
730 assert(i <= nb_clusters);
731 return i;
732 }
733
734 /*
735 * Allocates new clusters for the given guest_offset.
736 *
737 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
738 * contain the number of clusters that have been allocated and are contiguous
739 * in the image file.
740 *
741 * If *host_offset is non-zero, it specifies the offset in the image file at
742 * which the new clusters must start. *nb_clusters can be 0 on return in this
743 * case if the cluster at host_offset is already in use. If *host_offset is
744 * zero, the clusters can be allocated anywhere in the image file.
745 *
746 * *host_offset is updated to contain the offset into the image file at which
747 * the first allocated cluster starts.
748 *
749 * Return 0 on success and -errno in error cases. -EAGAIN means that the
750 * function has been waiting for another request and the allocation must be
751 * restarted, but the whole request should not be failed.
752 */
753 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
754 uint64_t *host_offset, unsigned int *nb_clusters, uint64_t *l2_table)
755 {
756 BDRVQcowState *s = bs->opaque;
757 int64_t cluster_offset;
758 QCowL2Meta *old_alloc;
759
760 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
761 *host_offset, *nb_clusters);
762
763 /*
764 * Check if there already is an AIO write request in flight which allocates
765 * the same cluster. In this case we need to wait until the previous
766 * request has completed and updated the L2 table accordingly.
767 */
768 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
769
770 uint64_t start = guest_offset >> s->cluster_bits;
771 uint64_t end = start + *nb_clusters;
772 uint64_t old_start = old_alloc->offset >> s->cluster_bits;
773 uint64_t old_end = old_start + old_alloc->nb_clusters;
774
775 if (end < old_start || start > old_end) {
776 /* No intersection */
777 } else {
778 if (start < old_start) {
779 /* Stop at the start of a running allocation */
780 *nb_clusters = old_start - start;
781 } else {
782 *nb_clusters = 0;
783 }
784
785 if (*nb_clusters == 0) {
786 /* Wait for the dependency to complete. We need to recheck
787 * the free/allocated clusters when we continue. */
788 qemu_co_mutex_unlock(&s->lock);
789 qemu_co_queue_wait(&old_alloc->dependent_requests);
790 qemu_co_mutex_lock(&s->lock);
791 return -EAGAIN;
792 }
793 }
794 }
795
796 if (!*nb_clusters) {
797 abort();
798 }
799
800 /* Allocate new clusters */
801 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
802 if (*host_offset == 0) {
803 cluster_offset = qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
804 } else {
805 cluster_offset = *host_offset;
806 *nb_clusters = qcow2_alloc_clusters_at(bs, cluster_offset, *nb_clusters);
807 }
808
809 if (cluster_offset < 0) {
810 return cluster_offset;
811 }
812 *host_offset = cluster_offset;
813 return 0;
814 }
815
816 /*
817 * alloc_cluster_offset
818 *
819 * For a given offset on the virtual disk, find the cluster offset in qcow2
820 * file. If the offset is not found, allocate a new cluster.
821 *
822 * If the cluster was already allocated, m->nb_clusters is set to 0 and
823 * other fields in m are meaningless.
824 *
825 * If the cluster is newly allocated, m->nb_clusters is set to the number of
826 * contiguous clusters that have been allocated. In this case, the other
827 * fields of m are valid and contain information about the first allocated
828 * cluster.
829 *
830 * If the request conflicts with another write request in flight, the coroutine
831 * is queued and will be reentered when the dependency has completed.
832 *
833 * Return 0 on success and -errno in error cases
834 */
835 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
836 int n_start, int n_end, int *num, QCowL2Meta *m)
837 {
838 BDRVQcowState *s = bs->opaque;
839 int l2_index, ret, sectors;
840 uint64_t *l2_table;
841 unsigned int nb_clusters, keep_clusters;
842 uint64_t cluster_offset;
843
844 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
845 n_start, n_end);
846
847 /* Find L2 entry for the first involved cluster */
848 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
849 if (ret < 0) {
850 return ret;
851 }
852
853 /*
854 * Calculate the number of clusters to look for. We stop at L2 table
855 * boundaries to keep things simple.
856 */
857 again:
858 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
859 s->l2_size - l2_index);
860
861 cluster_offset = be64_to_cpu(l2_table[l2_index]);
862
863 /*
864 * Check how many clusters are already allocated and don't need COW, and how
865 * many need a new allocation.
866 */
867 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
868 && (cluster_offset & QCOW_OFLAG_COPIED))
869 {
870 /* We keep all QCOW_OFLAG_COPIED clusters */
871 keep_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
872 &l2_table[l2_index], 0,
873 QCOW_OFLAG_COPIED);
874 assert(keep_clusters <= nb_clusters);
875 nb_clusters -= keep_clusters;
876 } else {
877 /* For the moment, overwrite compressed clusters one by one */
878 if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
879 nb_clusters = 1;
880 } else {
881 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
882 }
883
884 keep_clusters = 0;
885 cluster_offset = 0;
886 }
887
888 cluster_offset &= L2E_OFFSET_MASK;
889
890 /* If there is something left to allocate, do that now */
891 *m = (QCowL2Meta) {
892 .cluster_offset = cluster_offset,
893 .nb_clusters = 0,
894 };
895 qemu_co_queue_init(&m->dependent_requests);
896
897 if (nb_clusters > 0) {
898 uint64_t alloc_offset;
899 uint64_t alloc_cluster_offset;
900 uint64_t keep_bytes = keep_clusters * s->cluster_size;
901
902 /* Calculate start and size of allocation */
903 alloc_offset = offset + keep_bytes;
904
905 if (keep_clusters == 0) {
906 alloc_cluster_offset = 0;
907 } else {
908 alloc_cluster_offset = cluster_offset + keep_bytes;
909 }
910
911 /* Allocate, if necessary at a given offset in the image file */
912 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
913 &nb_clusters, l2_table);
914 if (ret == -EAGAIN) {
915 goto again;
916 } else if (ret < 0) {
917 goto fail;
918 }
919
920 /* save info needed for meta data update */
921 if (nb_clusters > 0) {
922 int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
923 int avail_sectors = (keep_clusters + nb_clusters)
924 << (s->cluster_bits - BDRV_SECTOR_BITS);
925
926 *m = (QCowL2Meta) {
927 .cluster_offset = keep_clusters == 0 ?
928 alloc_cluster_offset : cluster_offset,
929 .alloc_offset = alloc_cluster_offset,
930 .offset = alloc_offset,
931 .n_start = keep_clusters == 0 ? n_start : 0,
932 .nb_clusters = nb_clusters,
933 .nb_available = MIN(requested_sectors, avail_sectors),
934 };
935 qemu_co_queue_init(&m->dependent_requests);
936 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
937 }
938 }
939
940 /* Some cleanup work */
941 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
942 if (ret < 0) {
943 goto fail_put;
944 }
945
946 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
947 if (sectors > n_end) {
948 sectors = n_end;
949 }
950
951 assert(sectors > n_start);
952 *num = sectors - n_start;
953
954 return 0;
955
956 fail:
957 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
958 fail_put:
959 if (m->nb_clusters > 0) {
960 QLIST_REMOVE(m, next_in_flight);
961 }
962 return ret;
963 }
964
965 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
966 const uint8_t *buf, int buf_size)
967 {
968 z_stream strm1, *strm = &strm1;
969 int ret, out_len;
970
971 memset(strm, 0, sizeof(*strm));
972
973 strm->next_in = (uint8_t *)buf;
974 strm->avail_in = buf_size;
975 strm->next_out = out_buf;
976 strm->avail_out = out_buf_size;
977
978 ret = inflateInit2(strm, -12);
979 if (ret != Z_OK)
980 return -1;
981 ret = inflate(strm, Z_FINISH);
982 out_len = strm->next_out - out_buf;
983 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
984 out_len != out_buf_size) {
985 inflateEnd(strm);
986 return -1;
987 }
988 inflateEnd(strm);
989 return 0;
990 }
991
992 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
993 {
994 BDRVQcowState *s = bs->opaque;
995 int ret, csize, nb_csectors, sector_offset;
996 uint64_t coffset;
997
998 coffset = cluster_offset & s->cluster_offset_mask;
999 if (s->cluster_cache_offset != coffset) {
1000 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1001 sector_offset = coffset & 511;
1002 csize = nb_csectors * 512 - sector_offset;
1003 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1004 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1005 if (ret < 0) {
1006 return ret;
1007 }
1008 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1009 s->cluster_data + sector_offset, csize) < 0) {
1010 return -EIO;
1011 }
1012 s->cluster_cache_offset = coffset;
1013 }
1014 return 0;
1015 }
1016
1017 /*
1018 * This discards as many clusters of nb_clusters as possible at once (i.e.
1019 * all clusters in the same L2 table) and returns the number of discarded
1020 * clusters.
1021 */
1022 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1023 unsigned int nb_clusters)
1024 {
1025 BDRVQcowState *s = bs->opaque;
1026 uint64_t *l2_table;
1027 int l2_index;
1028 int ret;
1029 int i;
1030
1031 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1032 if (ret < 0) {
1033 return ret;
1034 }
1035
1036 /* Limit nb_clusters to one L2 table */
1037 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1038
1039 for (i = 0; i < nb_clusters; i++) {
1040 uint64_t old_offset;
1041
1042 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1043 if ((old_offset & L2E_OFFSET_MASK) == 0) {
1044 continue;
1045 }
1046
1047 /* First remove L2 entries */
1048 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1049 l2_table[l2_index + i] = cpu_to_be64(0);
1050
1051 /* Then decrease the refcount */
1052 qcow2_free_any_clusters(bs, old_offset, 1);
1053 }
1054
1055 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1056 if (ret < 0) {
1057 return ret;
1058 }
1059
1060 return nb_clusters;
1061 }
1062
1063 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1064 int nb_sectors)
1065 {
1066 BDRVQcowState *s = bs->opaque;
1067 uint64_t end_offset;
1068 unsigned int nb_clusters;
1069 int ret;
1070
1071 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1072
1073 /* Round start up and end down */
1074 offset = align_offset(offset, s->cluster_size);
1075 end_offset &= ~(s->cluster_size - 1);
1076
1077 if (offset > end_offset) {
1078 return 0;
1079 }
1080
1081 nb_clusters = size_to_clusters(s, end_offset - offset);
1082
1083 /* Each L2 table is handled by its own loop iteration */
1084 while (nb_clusters > 0) {
1085 ret = discard_single_l2(bs, offset, nb_clusters);
1086 if (ret < 0) {
1087 return ret;
1088 }
1089
1090 nb_clusters -= ret;
1091 offset += (ret * s->cluster_size);
1092 }
1093
1094 return 0;
1095 }