]> git.proxmox.com Git - qemu.git/blob - block/qcow2-cluster.c
qcow2: Ignore reserved bits in get_cluster_offset
[qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <zlib.h>
26
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31
32 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
33 {
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
37 int64_t new_l1_table_offset;
38 uint8_t data[12];
39
40 if (min_size <= s->l1_size)
41 return 0;
42
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
50 }
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
53 }
54 }
55
56 #ifdef DEBUG_ALLOC2
57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
58 #endif
59
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63
64 /* write new table (align to cluster) */
65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
67 if (new_l1_table_offset < 0) {
68 g_free(new_l1_table);
69 return new_l1_table_offset;
70 }
71
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
74 goto fail;
75 }
76
77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85
86 /* set new table */
87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
88 cpu_to_be32w((uint32_t*)data, new_l1_size);
89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
92 goto fail;
93 }
94 g_free(s->l1_table);
95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
101 g_free(new_l1_table);
102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
103 return ret;
104 }
105
106 /*
107 * l2_load
108 *
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
111 *
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
114 */
115
116 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
118 {
119 BDRVQcowState *s = bs->opaque;
120 int ret;
121
122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
123
124 return ret;
125 }
126
127 /*
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
130 */
131 #define L1_ENTRIES_PER_SECTOR (512 / 8)
132 static int write_l1_entry(BlockDriverState *bs, int l1_index)
133 {
134 BDRVQcowState *s = bs->opaque;
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
137 int i, ret;
138
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142 }
143
144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
149 }
150
151 return 0;
152 }
153
154 /*
155 * l2_allocate
156 *
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
161 *
162 */
163
164 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
165 {
166 BDRVQcowState *s = bs->opaque;
167 uint64_t old_l2_offset;
168 uint64_t *l2_table;
169 int64_t l2_offset;
170 int ret;
171
172 old_l2_offset = s->l1_table[l1_index];
173
174 trace_qcow2_l2_allocate(bs, l1_index);
175
176 /* allocate a new l2 entry */
177
178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
179 if (l2_offset < 0) {
180 return l2_offset;
181 }
182
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
186 }
187
188 /* allocate a new entry in the l2 cache */
189
190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
194 }
195
196 l2_table = *table;
197
198 if (old_l2_offset == 0) {
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
202 uint64_t* old_table;
203
204 /* if there was an old l2 table, read it from the disk */
205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
206 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_offset,
207 (void**) &old_table);
208 if (ret < 0) {
209 goto fail;
210 }
211
212 memcpy(l2_table, old_table, s->cluster_size);
213
214 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
215 if (ret < 0) {
216 goto fail;
217 }
218 }
219
220 /* write the l2 table to the file */
221 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
222
223 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
224 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
225 ret = qcow2_cache_flush(bs, s->l2_table_cache);
226 if (ret < 0) {
227 goto fail;
228 }
229
230 /* update the L1 entry */
231 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
232 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
233 ret = write_l1_entry(bs, l1_index);
234 if (ret < 0) {
235 goto fail;
236 }
237
238 *table = l2_table;
239 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
240 return 0;
241
242 fail:
243 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
244 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
245 s->l1_table[l1_index] = old_l2_offset;
246 return ret;
247 }
248
249 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
250 uint64_t *l2_table, uint64_t start, uint64_t mask)
251 {
252 int i;
253 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
254
255 if (!offset)
256 return 0;
257
258 for (i = start; i < start + nb_clusters; i++)
259 if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
260 break;
261
262 return (i - start);
263 }
264
265 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
266 {
267 int i = 0;
268
269 while(nb_clusters-- && l2_table[i] == 0)
270 i++;
271
272 return i;
273 }
274
275 /* The crypt function is compatible with the linux cryptoloop
276 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
277 supported */
278 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
279 uint8_t *out_buf, const uint8_t *in_buf,
280 int nb_sectors, int enc,
281 const AES_KEY *key)
282 {
283 union {
284 uint64_t ll[2];
285 uint8_t b[16];
286 } ivec;
287 int i;
288
289 for(i = 0; i < nb_sectors; i++) {
290 ivec.ll[0] = cpu_to_le64(sector_num);
291 ivec.ll[1] = 0;
292 AES_cbc_encrypt(in_buf, out_buf, 512, key,
293 ivec.b, enc);
294 sector_num++;
295 in_buf += 512;
296 out_buf += 512;
297 }
298 }
299
300 static int coroutine_fn copy_sectors(BlockDriverState *bs,
301 uint64_t start_sect,
302 uint64_t cluster_offset,
303 int n_start, int n_end)
304 {
305 BDRVQcowState *s = bs->opaque;
306 QEMUIOVector qiov;
307 struct iovec iov;
308 int n, ret;
309
310 /*
311 * If this is the last cluster and it is only partially used, we must only
312 * copy until the end of the image, or bdrv_check_request will fail for the
313 * bdrv_read/write calls below.
314 */
315 if (start_sect + n_end > bs->total_sectors) {
316 n_end = bs->total_sectors - start_sect;
317 }
318
319 n = n_end - n_start;
320 if (n <= 0) {
321 return 0;
322 }
323
324 iov.iov_len = n * BDRV_SECTOR_SIZE;
325 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
326
327 qemu_iovec_init_external(&qiov, &iov, 1);
328
329 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
330
331 /* Call .bdrv_co_readv() directly instead of using the public block-layer
332 * interface. This avoids double I/O throttling and request tracking,
333 * which can lead to deadlock when block layer copy-on-read is enabled.
334 */
335 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
336 if (ret < 0) {
337 goto out;
338 }
339
340 if (s->crypt_method) {
341 qcow2_encrypt_sectors(s, start_sect + n_start,
342 iov.iov_base, iov.iov_base, n, 1,
343 &s->aes_encrypt_key);
344 }
345
346 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
347 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
348 if (ret < 0) {
349 goto out;
350 }
351
352 ret = 0;
353 out:
354 qemu_vfree(iov.iov_base);
355 return ret;
356 }
357
358
359 /*
360 * get_cluster_offset
361 *
362 * For a given offset of the disk image, find the cluster offset in
363 * qcow2 file. The offset is stored in *cluster_offset.
364 *
365 * on entry, *num is the number of contiguous sectors we'd like to
366 * access following offset.
367 *
368 * on exit, *num is the number of contiguous sectors we can read.
369 *
370 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
371 * cases.
372 */
373 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
374 int *num, uint64_t *cluster_offset)
375 {
376 BDRVQcowState *s = bs->opaque;
377 unsigned int l1_index, l2_index;
378 uint64_t l2_offset, *l2_table;
379 int l1_bits, c;
380 unsigned int index_in_cluster, nb_clusters;
381 uint64_t nb_available, nb_needed;
382 int ret;
383
384 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
385 nb_needed = *num + index_in_cluster;
386
387 l1_bits = s->l2_bits + s->cluster_bits;
388
389 /* compute how many bytes there are between the offset and
390 * the end of the l1 entry
391 */
392
393 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
394
395 /* compute the number of available sectors */
396
397 nb_available = (nb_available >> 9) + index_in_cluster;
398
399 if (nb_needed > nb_available) {
400 nb_needed = nb_available;
401 }
402
403 *cluster_offset = 0;
404
405 /* seek the the l2 offset in the l1 table */
406
407 l1_index = offset >> l1_bits;
408 if (l1_index >= s->l1_size) {
409 ret = QCOW2_CLUSTER_UNALLOCATED;
410 goto out;
411 }
412
413 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
414 if (!l2_offset) {
415 ret = QCOW2_CLUSTER_UNALLOCATED;
416 goto out;
417 }
418
419 /* load the l2 table in memory */
420
421 ret = l2_load(bs, l2_offset, &l2_table);
422 if (ret < 0) {
423 return ret;
424 }
425
426 /* find the cluster offset for the given disk offset */
427
428 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
429 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
430 nb_clusters = size_to_clusters(s, nb_needed << 9);
431
432 ret = qcow2_get_cluster_type(*cluster_offset);
433 switch (ret) {
434 case QCOW2_CLUSTER_COMPRESSED:
435 /* Compressed clusters can only be processed one by one */
436 c = 1;
437 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
438 break;
439 case QCOW2_CLUSTER_UNALLOCATED:
440 /* how many empty clusters ? */
441 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
442 *cluster_offset = 0;
443 break;
444 case QCOW2_CLUSTER_NORMAL:
445 /* how many allocated clusters ? */
446 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
447 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
448 *cluster_offset &= L2E_OFFSET_MASK;
449 break;
450 }
451
452 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
453
454 nb_available = (c * s->cluster_sectors);
455
456 out:
457 if (nb_available > nb_needed)
458 nb_available = nb_needed;
459
460 *num = nb_available - index_in_cluster;
461
462 return ret;
463 }
464
465 /*
466 * get_cluster_table
467 *
468 * for a given disk offset, load (and allocate if needed)
469 * the l2 table.
470 *
471 * the l2 table offset in the qcow2 file and the cluster index
472 * in the l2 table are given to the caller.
473 *
474 * Returns 0 on success, -errno in failure case
475 */
476 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
477 uint64_t **new_l2_table,
478 int *new_l2_index)
479 {
480 BDRVQcowState *s = bs->opaque;
481 unsigned int l1_index, l2_index;
482 uint64_t l2_offset;
483 uint64_t *l2_table = NULL;
484 int ret;
485
486 /* seek the the l2 offset in the l1 table */
487
488 l1_index = offset >> (s->l2_bits + s->cluster_bits);
489 if (l1_index >= s->l1_size) {
490 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
491 if (ret < 0) {
492 return ret;
493 }
494 }
495 l2_offset = s->l1_table[l1_index];
496
497 /* seek the l2 table of the given l2 offset */
498
499 if (l2_offset & QCOW_OFLAG_COPIED) {
500 /* load the l2 table in memory */
501 l2_offset &= ~QCOW_OFLAG_COPIED;
502 ret = l2_load(bs, l2_offset, &l2_table);
503 if (ret < 0) {
504 return ret;
505 }
506 } else {
507 /* First allocate a new L2 table (and do COW if needed) */
508 ret = l2_allocate(bs, l1_index, &l2_table);
509 if (ret < 0) {
510 return ret;
511 }
512
513 /* Then decrease the refcount of the old table */
514 if (l2_offset) {
515 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
516 }
517 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
518 }
519
520 /* find the cluster offset for the given disk offset */
521
522 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
523
524 *new_l2_table = l2_table;
525 *new_l2_index = l2_index;
526
527 return 0;
528 }
529
530 /*
531 * alloc_compressed_cluster_offset
532 *
533 * For a given offset of the disk image, return cluster offset in
534 * qcow2 file.
535 *
536 * If the offset is not found, allocate a new compressed cluster.
537 *
538 * Return the cluster offset if successful,
539 * Return 0, otherwise.
540 *
541 */
542
543 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
544 uint64_t offset,
545 int compressed_size)
546 {
547 BDRVQcowState *s = bs->opaque;
548 int l2_index, ret;
549 uint64_t *l2_table;
550 int64_t cluster_offset;
551 int nb_csectors;
552
553 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
554 if (ret < 0) {
555 return 0;
556 }
557
558 cluster_offset = be64_to_cpu(l2_table[l2_index]);
559 if (cluster_offset & QCOW_OFLAG_COPIED) {
560 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
561 return 0;
562 }
563
564 if (cluster_offset)
565 qcow2_free_any_clusters(bs, cluster_offset, 1);
566
567 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
568 if (cluster_offset < 0) {
569 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
570 return 0;
571 }
572
573 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
574 (cluster_offset >> 9);
575
576 cluster_offset |= QCOW_OFLAG_COMPRESSED |
577 ((uint64_t)nb_csectors << s->csize_shift);
578
579 /* update L2 table */
580
581 /* compressed clusters never have the copied flag */
582
583 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
584 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
585 l2_table[l2_index] = cpu_to_be64(cluster_offset);
586 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
587 if (ret < 0) {
588 return 0;
589 }
590
591 return cluster_offset;
592 }
593
594 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
595 {
596 BDRVQcowState *s = bs->opaque;
597 int i, j = 0, l2_index, ret;
598 uint64_t *old_cluster, start_sect, *l2_table;
599 uint64_t cluster_offset = m->alloc_offset;
600 bool cow = false;
601
602 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
603
604 if (m->nb_clusters == 0)
605 return 0;
606
607 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
608
609 /* copy content of unmodified sectors */
610 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
611 if (m->n_start) {
612 cow = true;
613 qemu_co_mutex_unlock(&s->lock);
614 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
615 qemu_co_mutex_lock(&s->lock);
616 if (ret < 0)
617 goto err;
618 }
619
620 if (m->nb_available & (s->cluster_sectors - 1)) {
621 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
622 cow = true;
623 qemu_co_mutex_unlock(&s->lock);
624 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
625 m->nb_available - end, s->cluster_sectors);
626 qemu_co_mutex_lock(&s->lock);
627 if (ret < 0)
628 goto err;
629 }
630
631 /*
632 * Update L2 table.
633 *
634 * Before we update the L2 table to actually point to the new cluster, we
635 * need to be sure that the refcounts have been increased and COW was
636 * handled.
637 */
638 if (cow) {
639 qcow2_cache_depends_on_flush(s->l2_table_cache);
640 }
641
642 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
643 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
644 if (ret < 0) {
645 goto err;
646 }
647 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
648
649 for (i = 0; i < m->nb_clusters; i++) {
650 /* if two concurrent writes happen to the same unallocated cluster
651 * each write allocates separate cluster and writes data concurrently.
652 * The first one to complete updates l2 table with pointer to its
653 * cluster the second one has to do RMW (which is done above by
654 * copy_sectors()), update l2 table with its cluster pointer and free
655 * old cluster. This is what this loop does */
656 if(l2_table[l2_index + i] != 0)
657 old_cluster[j++] = l2_table[l2_index + i];
658
659 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
660 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
661 }
662
663
664 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
665 if (ret < 0) {
666 goto err;
667 }
668
669 /*
670 * If this was a COW, we need to decrease the refcount of the old cluster.
671 * Also flush bs->file to get the right order for L2 and refcount update.
672 */
673 if (j != 0) {
674 for (i = 0; i < j; i++) {
675 qcow2_free_any_clusters(bs,
676 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
677 }
678 }
679
680 ret = 0;
681 err:
682 g_free(old_cluster);
683 return ret;
684 }
685
686 /*
687 * Returns the number of contiguous clusters that can be used for an allocating
688 * write, but require COW to be performed (this includes yet unallocated space,
689 * which must copy from the backing file)
690 */
691 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
692 uint64_t *l2_table, int l2_index)
693 {
694 int i = 0;
695 uint64_t cluster_offset;
696
697 while (i < nb_clusters) {
698 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
699 &l2_table[l2_index], i, 0);
700 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
701 break;
702 }
703
704 i += count_contiguous_free_clusters(nb_clusters - i,
705 &l2_table[l2_index + i]);
706 if (i >= nb_clusters) {
707 break;
708 }
709
710 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
711
712 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
713 (cluster_offset & QCOW_OFLAG_COMPRESSED))
714 break;
715 }
716
717 assert(i <= nb_clusters);
718 return i;
719 }
720
721 /*
722 * Allocates new clusters for the given guest_offset.
723 *
724 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
725 * contain the number of clusters that have been allocated and are contiguous
726 * in the image file.
727 *
728 * If *host_offset is non-zero, it specifies the offset in the image file at
729 * which the new clusters must start. *nb_clusters can be 0 on return in this
730 * case if the cluster at host_offset is already in use. If *host_offset is
731 * zero, the clusters can be allocated anywhere in the image file.
732 *
733 * *host_offset is updated to contain the offset into the image file at which
734 * the first allocated cluster starts.
735 *
736 * Return 0 on success and -errno in error cases. -EAGAIN means that the
737 * function has been waiting for another request and the allocation must be
738 * restarted, but the whole request should not be failed.
739 */
740 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
741 uint64_t *host_offset, unsigned int *nb_clusters, uint64_t *l2_table)
742 {
743 BDRVQcowState *s = bs->opaque;
744 int64_t cluster_offset;
745 QCowL2Meta *old_alloc;
746
747 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
748 *host_offset, *nb_clusters);
749
750 /*
751 * Check if there already is an AIO write request in flight which allocates
752 * the same cluster. In this case we need to wait until the previous
753 * request has completed and updated the L2 table accordingly.
754 */
755 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
756
757 uint64_t start = guest_offset >> s->cluster_bits;
758 uint64_t end = start + *nb_clusters;
759 uint64_t old_start = old_alloc->offset >> s->cluster_bits;
760 uint64_t old_end = old_start + old_alloc->nb_clusters;
761
762 if (end < old_start || start > old_end) {
763 /* No intersection */
764 } else {
765 if (start < old_start) {
766 /* Stop at the start of a running allocation */
767 *nb_clusters = old_start - start;
768 } else {
769 *nb_clusters = 0;
770 }
771
772 if (*nb_clusters == 0) {
773 /* Wait for the dependency to complete. We need to recheck
774 * the free/allocated clusters when we continue. */
775 qemu_co_mutex_unlock(&s->lock);
776 qemu_co_queue_wait(&old_alloc->dependent_requests);
777 qemu_co_mutex_lock(&s->lock);
778 return -EAGAIN;
779 }
780 }
781 }
782
783 if (!*nb_clusters) {
784 abort();
785 }
786
787 /* Allocate new clusters */
788 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
789 if (*host_offset == 0) {
790 cluster_offset = qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
791 } else {
792 cluster_offset = *host_offset;
793 *nb_clusters = qcow2_alloc_clusters_at(bs, cluster_offset, *nb_clusters);
794 }
795
796 if (cluster_offset < 0) {
797 return cluster_offset;
798 }
799 *host_offset = cluster_offset;
800 return 0;
801 }
802
803 /*
804 * alloc_cluster_offset
805 *
806 * For a given offset on the virtual disk, find the cluster offset in qcow2
807 * file. If the offset is not found, allocate a new cluster.
808 *
809 * If the cluster was already allocated, m->nb_clusters is set to 0 and
810 * other fields in m are meaningless.
811 *
812 * If the cluster is newly allocated, m->nb_clusters is set to the number of
813 * contiguous clusters that have been allocated. In this case, the other
814 * fields of m are valid and contain information about the first allocated
815 * cluster.
816 *
817 * If the request conflicts with another write request in flight, the coroutine
818 * is queued and will be reentered when the dependency has completed.
819 *
820 * Return 0 on success and -errno in error cases
821 */
822 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
823 int n_start, int n_end, int *num, QCowL2Meta *m)
824 {
825 BDRVQcowState *s = bs->opaque;
826 int l2_index, ret, sectors;
827 uint64_t *l2_table;
828 unsigned int nb_clusters, keep_clusters;
829 uint64_t cluster_offset;
830
831 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
832 n_start, n_end);
833
834 /* Find L2 entry for the first involved cluster */
835 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
836 if (ret < 0) {
837 return ret;
838 }
839
840 /*
841 * Calculate the number of clusters to look for. We stop at L2 table
842 * boundaries to keep things simple.
843 */
844 again:
845 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
846 s->l2_size - l2_index);
847
848 cluster_offset = be64_to_cpu(l2_table[l2_index]);
849
850 /*
851 * Check how many clusters are already allocated and don't need COW, and how
852 * many need a new allocation.
853 */
854 if (cluster_offset & QCOW_OFLAG_COPIED) {
855 /* We keep all QCOW_OFLAG_COPIED clusters */
856 keep_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
857 &l2_table[l2_index], 0, 0);
858 assert(keep_clusters <= nb_clusters);
859 nb_clusters -= keep_clusters;
860 } else {
861 /* For the moment, overwrite compressed clusters one by one */
862 if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
863 nb_clusters = 1;
864 } else {
865 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
866 }
867
868 keep_clusters = 0;
869 cluster_offset = 0;
870 }
871
872 cluster_offset &= ~QCOW_OFLAG_COPIED;
873
874 /* If there is something left to allocate, do that now */
875 *m = (QCowL2Meta) {
876 .cluster_offset = cluster_offset,
877 .nb_clusters = 0,
878 };
879 qemu_co_queue_init(&m->dependent_requests);
880
881 if (nb_clusters > 0) {
882 uint64_t alloc_offset;
883 uint64_t alloc_cluster_offset;
884 uint64_t keep_bytes = keep_clusters * s->cluster_size;
885
886 /* Calculate start and size of allocation */
887 alloc_offset = offset + keep_bytes;
888
889 if (keep_clusters == 0) {
890 alloc_cluster_offset = 0;
891 } else {
892 alloc_cluster_offset = cluster_offset + keep_bytes;
893 }
894
895 /* Allocate, if necessary at a given offset in the image file */
896 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
897 &nb_clusters, l2_table);
898 if (ret == -EAGAIN) {
899 goto again;
900 } else if (ret < 0) {
901 goto fail;
902 }
903
904 /* save info needed for meta data update */
905 if (nb_clusters > 0) {
906 int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
907 int avail_sectors = (keep_clusters + nb_clusters)
908 << (s->cluster_bits - BDRV_SECTOR_BITS);
909
910 *m = (QCowL2Meta) {
911 .cluster_offset = keep_clusters == 0 ?
912 alloc_cluster_offset : cluster_offset,
913 .alloc_offset = alloc_cluster_offset,
914 .offset = alloc_offset,
915 .n_start = keep_clusters == 0 ? n_start : 0,
916 .nb_clusters = nb_clusters,
917 .nb_available = MIN(requested_sectors, avail_sectors),
918 };
919 qemu_co_queue_init(&m->dependent_requests);
920 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
921 }
922 }
923
924 /* Some cleanup work */
925 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
926 if (ret < 0) {
927 goto fail_put;
928 }
929
930 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
931 if (sectors > n_end) {
932 sectors = n_end;
933 }
934
935 assert(sectors > n_start);
936 *num = sectors - n_start;
937
938 return 0;
939
940 fail:
941 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
942 fail_put:
943 if (m->nb_clusters > 0) {
944 QLIST_REMOVE(m, next_in_flight);
945 }
946 return ret;
947 }
948
949 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
950 const uint8_t *buf, int buf_size)
951 {
952 z_stream strm1, *strm = &strm1;
953 int ret, out_len;
954
955 memset(strm, 0, sizeof(*strm));
956
957 strm->next_in = (uint8_t *)buf;
958 strm->avail_in = buf_size;
959 strm->next_out = out_buf;
960 strm->avail_out = out_buf_size;
961
962 ret = inflateInit2(strm, -12);
963 if (ret != Z_OK)
964 return -1;
965 ret = inflate(strm, Z_FINISH);
966 out_len = strm->next_out - out_buf;
967 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
968 out_len != out_buf_size) {
969 inflateEnd(strm);
970 return -1;
971 }
972 inflateEnd(strm);
973 return 0;
974 }
975
976 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
977 {
978 BDRVQcowState *s = bs->opaque;
979 int ret, csize, nb_csectors, sector_offset;
980 uint64_t coffset;
981
982 coffset = cluster_offset & s->cluster_offset_mask;
983 if (s->cluster_cache_offset != coffset) {
984 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
985 sector_offset = coffset & 511;
986 csize = nb_csectors * 512 - sector_offset;
987 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
988 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
989 if (ret < 0) {
990 return ret;
991 }
992 if (decompress_buffer(s->cluster_cache, s->cluster_size,
993 s->cluster_data + sector_offset, csize) < 0) {
994 return -EIO;
995 }
996 s->cluster_cache_offset = coffset;
997 }
998 return 0;
999 }
1000
1001 /*
1002 * This discards as many clusters of nb_clusters as possible at once (i.e.
1003 * all clusters in the same L2 table) and returns the number of discarded
1004 * clusters.
1005 */
1006 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1007 unsigned int nb_clusters)
1008 {
1009 BDRVQcowState *s = bs->opaque;
1010 uint64_t *l2_table;
1011 int l2_index;
1012 int ret;
1013 int i;
1014
1015 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1016 if (ret < 0) {
1017 return ret;
1018 }
1019
1020 /* Limit nb_clusters to one L2 table */
1021 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1022
1023 for (i = 0; i < nb_clusters; i++) {
1024 uint64_t old_offset;
1025
1026 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1027 old_offset &= ~QCOW_OFLAG_COPIED;
1028
1029 if (old_offset == 0) {
1030 continue;
1031 }
1032
1033 /* First remove L2 entries */
1034 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1035 l2_table[l2_index + i] = cpu_to_be64(0);
1036
1037 /* Then decrease the refcount */
1038 qcow2_free_any_clusters(bs, old_offset, 1);
1039 }
1040
1041 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1042 if (ret < 0) {
1043 return ret;
1044 }
1045
1046 return nb_clusters;
1047 }
1048
1049 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1050 int nb_sectors)
1051 {
1052 BDRVQcowState *s = bs->opaque;
1053 uint64_t end_offset;
1054 unsigned int nb_clusters;
1055 int ret;
1056
1057 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1058
1059 /* Round start up and end down */
1060 offset = align_offset(offset, s->cluster_size);
1061 end_offset &= ~(s->cluster_size - 1);
1062
1063 if (offset > end_offset) {
1064 return 0;
1065 }
1066
1067 nb_clusters = size_to_clusters(s, end_offset - offset);
1068
1069 /* Each L2 table is handled by its own loop iteration */
1070 while (nb_clusters > 0) {
1071 ret = discard_single_l2(bs, offset, nb_clusters);
1072 if (ret < 0) {
1073 return ret;
1074 }
1075
1076 nb_clusters -= ret;
1077 offset += (ret * s->cluster_size);
1078 }
1079
1080 return 0;
1081 }