]> git.proxmox.com Git - mirror_qemu.git/blob - block/qed.c
Merge remote-tracking branch 'remotes/armbru/tags/pull-error-2020-07-07-v2' into...
[mirror_qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "trace.h"
24 #include "qed.h"
25 #include "sysemu/block-backend.h"
26 #include "qapi/qmp/qdict.h"
27 #include "qapi/qobject-input-visitor.h"
28 #include "qapi/qapi-visit-block-core.h"
29
30 static QemuOptsList qed_create_opts;
31
32 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
33 const char *filename)
34 {
35 const QEDHeader *header = (const QEDHeader *)buf;
36
37 if (buf_size < sizeof(*header)) {
38 return 0;
39 }
40 if (le32_to_cpu(header->magic) != QED_MAGIC) {
41 return 0;
42 }
43 return 100;
44 }
45
46 /**
47 * Check whether an image format is raw
48 *
49 * @fmt: Backing file format, may be NULL
50 */
51 static bool qed_fmt_is_raw(const char *fmt)
52 {
53 return fmt && strcmp(fmt, "raw") == 0;
54 }
55
56 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
57 {
58 cpu->magic = le32_to_cpu(le->magic);
59 cpu->cluster_size = le32_to_cpu(le->cluster_size);
60 cpu->table_size = le32_to_cpu(le->table_size);
61 cpu->header_size = le32_to_cpu(le->header_size);
62 cpu->features = le64_to_cpu(le->features);
63 cpu->compat_features = le64_to_cpu(le->compat_features);
64 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
65 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
66 cpu->image_size = le64_to_cpu(le->image_size);
67 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
68 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
69 }
70
71 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
72 {
73 le->magic = cpu_to_le32(cpu->magic);
74 le->cluster_size = cpu_to_le32(cpu->cluster_size);
75 le->table_size = cpu_to_le32(cpu->table_size);
76 le->header_size = cpu_to_le32(cpu->header_size);
77 le->features = cpu_to_le64(cpu->features);
78 le->compat_features = cpu_to_le64(cpu->compat_features);
79 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
80 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
81 le->image_size = cpu_to_le64(cpu->image_size);
82 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
83 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
84 }
85
86 int qed_write_header_sync(BDRVQEDState *s)
87 {
88 QEDHeader le;
89 int ret;
90
91 qed_header_cpu_to_le(&s->header, &le);
92 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
93 if (ret != sizeof(le)) {
94 return ret;
95 }
96 return 0;
97 }
98
99 /**
100 * Update header in-place (does not rewrite backing filename or other strings)
101 *
102 * This function only updates known header fields in-place and does not affect
103 * extra data after the QED header.
104 *
105 * No new allocating reqs can start while this function runs.
106 */
107 static int coroutine_fn qed_write_header(BDRVQEDState *s)
108 {
109 /* We must write full sectors for O_DIRECT but cannot necessarily generate
110 * the data following the header if an unrecognized compat feature is
111 * active. Therefore, first read the sectors containing the header, update
112 * them, and write back.
113 */
114
115 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
116 size_t len = nsectors * BDRV_SECTOR_SIZE;
117 uint8_t *buf;
118 int ret;
119
120 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
121
122 buf = qemu_blockalign(s->bs, len);
123
124 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
125 if (ret < 0) {
126 goto out;
127 }
128
129 /* Update header */
130 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
131
132 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0);
133 if (ret < 0) {
134 goto out;
135 }
136
137 ret = 0;
138 out:
139 qemu_vfree(buf);
140 return ret;
141 }
142
143 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
144 {
145 uint64_t table_entries;
146 uint64_t l2_size;
147
148 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
149 l2_size = table_entries * cluster_size;
150
151 return l2_size * table_entries;
152 }
153
154 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
155 {
156 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
157 cluster_size > QED_MAX_CLUSTER_SIZE) {
158 return false;
159 }
160 if (cluster_size & (cluster_size - 1)) {
161 return false; /* not power of 2 */
162 }
163 return true;
164 }
165
166 static bool qed_is_table_size_valid(uint32_t table_size)
167 {
168 if (table_size < QED_MIN_TABLE_SIZE ||
169 table_size > QED_MAX_TABLE_SIZE) {
170 return false;
171 }
172 if (table_size & (table_size - 1)) {
173 return false; /* not power of 2 */
174 }
175 return true;
176 }
177
178 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
179 uint32_t table_size)
180 {
181 if (image_size % BDRV_SECTOR_SIZE != 0) {
182 return false; /* not multiple of sector size */
183 }
184 if (image_size > qed_max_image_size(cluster_size, table_size)) {
185 return false; /* image is too large */
186 }
187 return true;
188 }
189
190 /**
191 * Read a string of known length from the image file
192 *
193 * @file: Image file
194 * @offset: File offset to start of string, in bytes
195 * @n: String length in bytes
196 * @buf: Destination buffer
197 * @buflen: Destination buffer length in bytes
198 * @ret: 0 on success, -errno on failure
199 *
200 * The string is NUL-terminated.
201 */
202 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
203 char *buf, size_t buflen)
204 {
205 int ret;
206 if (n >= buflen) {
207 return -EINVAL;
208 }
209 ret = bdrv_pread(file, offset, buf, n);
210 if (ret < 0) {
211 return ret;
212 }
213 buf[n] = '\0';
214 return 0;
215 }
216
217 /**
218 * Allocate new clusters
219 *
220 * @s: QED state
221 * @n: Number of contiguous clusters to allocate
222 * @ret: Offset of first allocated cluster
223 *
224 * This function only produces the offset where the new clusters should be
225 * written. It updates BDRVQEDState but does not make any changes to the image
226 * file.
227 *
228 * Called with table_lock held.
229 */
230 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
231 {
232 uint64_t offset = s->file_size;
233 s->file_size += n * s->header.cluster_size;
234 return offset;
235 }
236
237 QEDTable *qed_alloc_table(BDRVQEDState *s)
238 {
239 /* Honor O_DIRECT memory alignment requirements */
240 return qemu_blockalign(s->bs,
241 s->header.cluster_size * s->header.table_size);
242 }
243
244 /**
245 * Allocate a new zeroed L2 table
246 *
247 * Called with table_lock held.
248 */
249 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
250 {
251 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
252
253 l2_table->table = qed_alloc_table(s);
254 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
255
256 memset(l2_table->table->offsets, 0,
257 s->header.cluster_size * s->header.table_size);
258 return l2_table;
259 }
260
261 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
262 {
263 qemu_co_mutex_lock(&s->table_lock);
264
265 /* No reentrancy is allowed. */
266 assert(!s->allocating_write_reqs_plugged);
267 if (s->allocating_acb != NULL) {
268 /* Another allocating write came concurrently. This cannot happen
269 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
270 */
271 qemu_co_mutex_unlock(&s->table_lock);
272 return false;
273 }
274
275 s->allocating_write_reqs_plugged = true;
276 qemu_co_mutex_unlock(&s->table_lock);
277 return true;
278 }
279
280 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
281 {
282 qemu_co_mutex_lock(&s->table_lock);
283 assert(s->allocating_write_reqs_plugged);
284 s->allocating_write_reqs_plugged = false;
285 qemu_co_queue_next(&s->allocating_write_reqs);
286 qemu_co_mutex_unlock(&s->table_lock);
287 }
288
289 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
290 {
291 BDRVQEDState *s = opaque;
292 int ret;
293
294 trace_qed_need_check_timer_cb(s);
295
296 if (!qed_plug_allocating_write_reqs(s)) {
297 return;
298 }
299
300 /* Ensure writes are on disk before clearing flag */
301 ret = bdrv_co_flush(s->bs->file->bs);
302 if (ret < 0) {
303 qed_unplug_allocating_write_reqs(s);
304 return;
305 }
306
307 s->header.features &= ~QED_F_NEED_CHECK;
308 ret = qed_write_header(s);
309 (void) ret;
310
311 qed_unplug_allocating_write_reqs(s);
312
313 ret = bdrv_co_flush(s->bs);
314 (void) ret;
315 }
316
317 static void qed_need_check_timer_cb(void *opaque)
318 {
319 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
320 qemu_coroutine_enter(co);
321 }
322
323 static void qed_start_need_check_timer(BDRVQEDState *s)
324 {
325 trace_qed_start_need_check_timer(s);
326
327 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
328 * migration.
329 */
330 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
331 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
332 }
333
334 /* It's okay to call this multiple times or when no timer is started */
335 static void qed_cancel_need_check_timer(BDRVQEDState *s)
336 {
337 trace_qed_cancel_need_check_timer(s);
338 timer_del(s->need_check_timer);
339 }
340
341 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
342 {
343 BDRVQEDState *s = bs->opaque;
344
345 qed_cancel_need_check_timer(s);
346 timer_free(s->need_check_timer);
347 }
348
349 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
350 AioContext *new_context)
351 {
352 BDRVQEDState *s = bs->opaque;
353
354 s->need_check_timer = aio_timer_new(new_context,
355 QEMU_CLOCK_VIRTUAL, SCALE_NS,
356 qed_need_check_timer_cb, s);
357 if (s->header.features & QED_F_NEED_CHECK) {
358 qed_start_need_check_timer(s);
359 }
360 }
361
362 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
363 {
364 BDRVQEDState *s = bs->opaque;
365
366 /* Fire the timer immediately in order to start doing I/O as soon as the
367 * header is flushed.
368 */
369 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
370 qed_cancel_need_check_timer(s);
371 qed_need_check_timer_entry(s);
372 }
373 }
374
375 static void bdrv_qed_init_state(BlockDriverState *bs)
376 {
377 BDRVQEDState *s = bs->opaque;
378
379 memset(s, 0, sizeof(BDRVQEDState));
380 s->bs = bs;
381 qemu_co_mutex_init(&s->table_lock);
382 qemu_co_queue_init(&s->allocating_write_reqs);
383 }
384
385 /* Called with table_lock held. */
386 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
387 int flags, Error **errp)
388 {
389 BDRVQEDState *s = bs->opaque;
390 QEDHeader le_header;
391 int64_t file_size;
392 int ret;
393
394 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
395 if (ret < 0) {
396 return ret;
397 }
398 qed_header_le_to_cpu(&le_header, &s->header);
399
400 if (s->header.magic != QED_MAGIC) {
401 error_setg(errp, "Image not in QED format");
402 return -EINVAL;
403 }
404 if (s->header.features & ~QED_FEATURE_MASK) {
405 /* image uses unsupported feature bits */
406 error_setg(errp, "Unsupported QED features: %" PRIx64,
407 s->header.features & ~QED_FEATURE_MASK);
408 return -ENOTSUP;
409 }
410 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
411 return -EINVAL;
412 }
413
414 /* Round down file size to the last cluster */
415 file_size = bdrv_getlength(bs->file->bs);
416 if (file_size < 0) {
417 return file_size;
418 }
419 s->file_size = qed_start_of_cluster(s, file_size);
420
421 if (!qed_is_table_size_valid(s->header.table_size)) {
422 return -EINVAL;
423 }
424 if (!qed_is_image_size_valid(s->header.image_size,
425 s->header.cluster_size,
426 s->header.table_size)) {
427 return -EINVAL;
428 }
429 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
430 return -EINVAL;
431 }
432
433 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
434 sizeof(uint64_t);
435 s->l2_shift = ctz32(s->header.cluster_size);
436 s->l2_mask = s->table_nelems - 1;
437 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
438
439 /* Header size calculation must not overflow uint32_t */
440 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
441 return -EINVAL;
442 }
443
444 if ((s->header.features & QED_F_BACKING_FILE)) {
445 if ((uint64_t)s->header.backing_filename_offset +
446 s->header.backing_filename_size >
447 s->header.cluster_size * s->header.header_size) {
448 return -EINVAL;
449 }
450
451 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
452 s->header.backing_filename_size,
453 bs->auto_backing_file,
454 sizeof(bs->auto_backing_file));
455 if (ret < 0) {
456 return ret;
457 }
458 pstrcpy(bs->backing_file, sizeof(bs->backing_file),
459 bs->auto_backing_file);
460
461 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
462 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
463 }
464 }
465
466 /* Reset unknown autoclear feature bits. This is a backwards
467 * compatibility mechanism that allows images to be opened by older
468 * programs, which "knock out" unknown feature bits. When an image is
469 * opened by a newer program again it can detect that the autoclear
470 * feature is no longer valid.
471 */
472 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
473 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
474 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
475
476 ret = qed_write_header_sync(s);
477 if (ret) {
478 return ret;
479 }
480
481 /* From here on only known autoclear feature bits are valid */
482 bdrv_flush(bs->file->bs);
483 }
484
485 s->l1_table = qed_alloc_table(s);
486 qed_init_l2_cache(&s->l2_cache);
487
488 ret = qed_read_l1_table_sync(s);
489 if (ret) {
490 goto out;
491 }
492
493 /* If image was not closed cleanly, check consistency */
494 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
495 /* Read-only images cannot be fixed. There is no risk of corruption
496 * since write operations are not possible. Therefore, allow
497 * potentially inconsistent images to be opened read-only. This can
498 * aid data recovery from an otherwise inconsistent image.
499 */
500 if (!bdrv_is_read_only(bs->file->bs) &&
501 !(flags & BDRV_O_INACTIVE)) {
502 BdrvCheckResult result = {0};
503
504 ret = qed_check(s, &result, true);
505 if (ret) {
506 goto out;
507 }
508 }
509 }
510
511 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
512
513 out:
514 if (ret) {
515 qed_free_l2_cache(&s->l2_cache);
516 qemu_vfree(s->l1_table);
517 }
518 return ret;
519 }
520
521 typedef struct QEDOpenCo {
522 BlockDriverState *bs;
523 QDict *options;
524 int flags;
525 Error **errp;
526 int ret;
527 } QEDOpenCo;
528
529 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
530 {
531 QEDOpenCo *qoc = opaque;
532 BDRVQEDState *s = qoc->bs->opaque;
533
534 qemu_co_mutex_lock(&s->table_lock);
535 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
536 qemu_co_mutex_unlock(&s->table_lock);
537 }
538
539 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
540 Error **errp)
541 {
542 QEDOpenCo qoc = {
543 .bs = bs,
544 .options = options,
545 .flags = flags,
546 .errp = errp,
547 .ret = -EINPROGRESS
548 };
549
550 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds,
551 BDRV_CHILD_IMAGE, false, errp);
552 if (!bs->file) {
553 return -EINVAL;
554 }
555
556 bdrv_qed_init_state(bs);
557 if (qemu_in_coroutine()) {
558 bdrv_qed_open_entry(&qoc);
559 } else {
560 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
561 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
562 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
563 }
564 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
565 return qoc.ret;
566 }
567
568 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
569 {
570 BDRVQEDState *s = bs->opaque;
571
572 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
573 }
574
575 /* We have nothing to do for QED reopen, stubs just return
576 * success */
577 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
578 BlockReopenQueue *queue, Error **errp)
579 {
580 return 0;
581 }
582
583 static void bdrv_qed_close(BlockDriverState *bs)
584 {
585 BDRVQEDState *s = bs->opaque;
586
587 bdrv_qed_detach_aio_context(bs);
588
589 /* Ensure writes reach stable storage */
590 bdrv_flush(bs->file->bs);
591
592 /* Clean shutdown, no check required on next open */
593 if (s->header.features & QED_F_NEED_CHECK) {
594 s->header.features &= ~QED_F_NEED_CHECK;
595 qed_write_header_sync(s);
596 }
597
598 qed_free_l2_cache(&s->l2_cache);
599 qemu_vfree(s->l1_table);
600 }
601
602 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
603 Error **errp)
604 {
605 BlockdevCreateOptionsQed *qed_opts;
606 BlockBackend *blk = NULL;
607 BlockDriverState *bs = NULL;
608
609 QEDHeader header;
610 QEDHeader le_header;
611 uint8_t *l1_table = NULL;
612 size_t l1_size;
613 int ret = 0;
614
615 assert(opts->driver == BLOCKDEV_DRIVER_QED);
616 qed_opts = &opts->u.qed;
617
618 /* Validate options and set default values */
619 if (!qed_opts->has_cluster_size) {
620 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
621 }
622 if (!qed_opts->has_table_size) {
623 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
624 }
625
626 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
627 error_setg(errp, "QED cluster size must be within range [%u, %u] "
628 "and power of 2",
629 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
630 return -EINVAL;
631 }
632 if (!qed_is_table_size_valid(qed_opts->table_size)) {
633 error_setg(errp, "QED table size must be within range [%u, %u] "
634 "and power of 2",
635 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
636 return -EINVAL;
637 }
638 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
639 qed_opts->table_size))
640 {
641 error_setg(errp, "QED image size must be a non-zero multiple of "
642 "cluster size and less than %" PRIu64 " bytes",
643 qed_max_image_size(qed_opts->cluster_size,
644 qed_opts->table_size));
645 return -EINVAL;
646 }
647
648 /* Create BlockBackend to write to the image */
649 bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
650 if (bs == NULL) {
651 return -EIO;
652 }
653
654 blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
655 errp);
656 if (!blk) {
657 ret = -EPERM;
658 goto out;
659 }
660 blk_set_allow_write_beyond_eof(blk, true);
661
662 /* Prepare image format */
663 header = (QEDHeader) {
664 .magic = QED_MAGIC,
665 .cluster_size = qed_opts->cluster_size,
666 .table_size = qed_opts->table_size,
667 .header_size = 1,
668 .features = 0,
669 .compat_features = 0,
670 .l1_table_offset = qed_opts->cluster_size,
671 .image_size = qed_opts->size,
672 };
673
674 l1_size = header.cluster_size * header.table_size;
675
676 /*
677 * The QED format associates file length with allocation status,
678 * so a new file (which is empty) must have a length of 0.
679 */
680 ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
681 if (ret < 0) {
682 goto out;
683 }
684
685 if (qed_opts->has_backing_file) {
686 header.features |= QED_F_BACKING_FILE;
687 header.backing_filename_offset = sizeof(le_header);
688 header.backing_filename_size = strlen(qed_opts->backing_file);
689
690 if (qed_opts->has_backing_fmt) {
691 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
692 if (qed_fmt_is_raw(backing_fmt)) {
693 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
694 }
695 }
696 }
697
698 qed_header_cpu_to_le(&header, &le_header);
699 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
700 if (ret < 0) {
701 goto out;
702 }
703 ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
704 header.backing_filename_size, 0);
705 if (ret < 0) {
706 goto out;
707 }
708
709 l1_table = g_malloc0(l1_size);
710 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
711 if (ret < 0) {
712 goto out;
713 }
714
715 ret = 0; /* success */
716 out:
717 g_free(l1_table);
718 blk_unref(blk);
719 bdrv_unref(bs);
720 return ret;
721 }
722
723 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
724 const char *filename,
725 QemuOpts *opts,
726 Error **errp)
727 {
728 BlockdevCreateOptions *create_options = NULL;
729 QDict *qdict;
730 Visitor *v;
731 BlockDriverState *bs = NULL;
732 int ret;
733
734 static const QDictRenames opt_renames[] = {
735 { BLOCK_OPT_BACKING_FILE, "backing-file" },
736 { BLOCK_OPT_BACKING_FMT, "backing-fmt" },
737 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
738 { BLOCK_OPT_TABLE_SIZE, "table-size" },
739 { NULL, NULL },
740 };
741
742 /* Parse options and convert legacy syntax */
743 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
744
745 if (!qdict_rename_keys(qdict, opt_renames, errp)) {
746 ret = -EINVAL;
747 goto fail;
748 }
749
750 /* Create and open the file (protocol layer) */
751 ret = bdrv_create_file(filename, opts, errp);
752 if (ret < 0) {
753 goto fail;
754 }
755
756 bs = bdrv_open(filename, NULL, NULL,
757 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
758 if (bs == NULL) {
759 ret = -EIO;
760 goto fail;
761 }
762
763 /* Now get the QAPI type BlockdevCreateOptions */
764 qdict_put_str(qdict, "driver", "qed");
765 qdict_put_str(qdict, "file", bs->node_name);
766
767 v = qobject_input_visitor_new_flat_confused(qdict, errp);
768 if (!v) {
769 ret = -EINVAL;
770 goto fail;
771 }
772
773 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
774 visit_free(v);
775 if (!create_options) {
776 ret = -EINVAL;
777 goto fail;
778 }
779
780 /* Silently round up size */
781 assert(create_options->driver == BLOCKDEV_DRIVER_QED);
782 create_options->u.qed.size =
783 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
784
785 /* Create the qed image (format layer) */
786 ret = bdrv_qed_co_create(create_options, errp);
787
788 fail:
789 qobject_unref(qdict);
790 bdrv_unref(bs);
791 qapi_free_BlockdevCreateOptions(create_options);
792 return ret;
793 }
794
795 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
796 bool want_zero,
797 int64_t pos, int64_t bytes,
798 int64_t *pnum, int64_t *map,
799 BlockDriverState **file)
800 {
801 BDRVQEDState *s = bs->opaque;
802 size_t len = MIN(bytes, SIZE_MAX);
803 int status;
804 QEDRequest request = { .l2_table = NULL };
805 uint64_t offset;
806 int ret;
807
808 qemu_co_mutex_lock(&s->table_lock);
809 ret = qed_find_cluster(s, &request, pos, &len, &offset);
810
811 *pnum = len;
812 switch (ret) {
813 case QED_CLUSTER_FOUND:
814 *map = offset | qed_offset_into_cluster(s, pos);
815 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
816 *file = bs->file->bs;
817 break;
818 case QED_CLUSTER_ZERO:
819 status = BDRV_BLOCK_ZERO;
820 break;
821 case QED_CLUSTER_L2:
822 case QED_CLUSTER_L1:
823 status = 0;
824 break;
825 default:
826 assert(ret < 0);
827 status = ret;
828 break;
829 }
830
831 qed_unref_l2_cache_entry(request.l2_table);
832 qemu_co_mutex_unlock(&s->table_lock);
833
834 return status;
835 }
836
837 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
838 {
839 return acb->bs->opaque;
840 }
841
842 /**
843 * Read from the backing file or zero-fill if no backing file
844 *
845 * @s: QED state
846 * @pos: Byte position in device
847 * @qiov: Destination I/O vector
848 *
849 * This function reads qiov->size bytes starting at pos from the backing file.
850 * If there is no backing file then zeroes are read.
851 */
852 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
853 QEMUIOVector *qiov)
854 {
855 if (s->bs->backing) {
856 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
857 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
858 }
859 qemu_iovec_memset(qiov, 0, 0, qiov->size);
860 return 0;
861 }
862
863 /**
864 * Copy data from backing file into the image
865 *
866 * @s: QED state
867 * @pos: Byte position in device
868 * @len: Number of bytes
869 * @offset: Byte offset in image file
870 */
871 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
872 uint64_t pos, uint64_t len,
873 uint64_t offset)
874 {
875 QEMUIOVector qiov;
876 int ret;
877
878 /* Skip copy entirely if there is no work to do */
879 if (len == 0) {
880 return 0;
881 }
882
883 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
884
885 ret = qed_read_backing_file(s, pos, &qiov);
886
887 if (ret) {
888 goto out;
889 }
890
891 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
892 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
893 if (ret < 0) {
894 goto out;
895 }
896 ret = 0;
897 out:
898 qemu_vfree(qemu_iovec_buf(&qiov));
899 return ret;
900 }
901
902 /**
903 * Link one or more contiguous clusters into a table
904 *
905 * @s: QED state
906 * @table: L2 table
907 * @index: First cluster index
908 * @n: Number of contiguous clusters
909 * @cluster: First cluster offset
910 *
911 * The cluster offset may be an allocated byte offset in the image file, the
912 * zero cluster marker, or the unallocated cluster marker.
913 *
914 * Called with table_lock held.
915 */
916 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
917 int index, unsigned int n,
918 uint64_t cluster)
919 {
920 int i;
921 for (i = index; i < index + n; i++) {
922 table->offsets[i] = cluster;
923 if (!qed_offset_is_unalloc_cluster(cluster) &&
924 !qed_offset_is_zero_cluster(cluster)) {
925 cluster += s->header.cluster_size;
926 }
927 }
928 }
929
930 /* Called with table_lock held. */
931 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
932 {
933 BDRVQEDState *s = acb_to_s(acb);
934
935 /* Free resources */
936 qemu_iovec_destroy(&acb->cur_qiov);
937 qed_unref_l2_cache_entry(acb->request.l2_table);
938
939 /* Free the buffer we may have allocated for zero writes */
940 if (acb->flags & QED_AIOCB_ZERO) {
941 qemu_vfree(acb->qiov->iov[0].iov_base);
942 acb->qiov->iov[0].iov_base = NULL;
943 }
944
945 /* Start next allocating write request waiting behind this one. Note that
946 * requests enqueue themselves when they first hit an unallocated cluster
947 * but they wait until the entire request is finished before waking up the
948 * next request in the queue. This ensures that we don't cycle through
949 * requests multiple times but rather finish one at a time completely.
950 */
951 if (acb == s->allocating_acb) {
952 s->allocating_acb = NULL;
953 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
954 qemu_co_queue_next(&s->allocating_write_reqs);
955 } else if (s->header.features & QED_F_NEED_CHECK) {
956 qed_start_need_check_timer(s);
957 }
958 }
959 }
960
961 /**
962 * Update L1 table with new L2 table offset and write it out
963 *
964 * Called with table_lock held.
965 */
966 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
967 {
968 BDRVQEDState *s = acb_to_s(acb);
969 CachedL2Table *l2_table = acb->request.l2_table;
970 uint64_t l2_offset = l2_table->offset;
971 int index, ret;
972
973 index = qed_l1_index(s, acb->cur_pos);
974 s->l1_table->offsets[index] = l2_table->offset;
975
976 ret = qed_write_l1_table(s, index, 1);
977
978 /* Commit the current L2 table to the cache */
979 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
980
981 /* This is guaranteed to succeed because we just committed the entry to the
982 * cache.
983 */
984 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
985 assert(acb->request.l2_table != NULL);
986
987 return ret;
988 }
989
990
991 /**
992 * Update L2 table with new cluster offsets and write them out
993 *
994 * Called with table_lock held.
995 */
996 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
997 {
998 BDRVQEDState *s = acb_to_s(acb);
999 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1000 int index, ret;
1001
1002 if (need_alloc) {
1003 qed_unref_l2_cache_entry(acb->request.l2_table);
1004 acb->request.l2_table = qed_new_l2_table(s);
1005 }
1006
1007 index = qed_l2_index(s, acb->cur_pos);
1008 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1009 offset);
1010
1011 if (need_alloc) {
1012 /* Write out the whole new L2 table */
1013 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1014 if (ret) {
1015 return ret;
1016 }
1017 return qed_aio_write_l1_update(acb);
1018 } else {
1019 /* Write out only the updated part of the L2 table */
1020 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1021 false);
1022 if (ret) {
1023 return ret;
1024 }
1025 }
1026 return 0;
1027 }
1028
1029 /**
1030 * Write data to the image file
1031 *
1032 * Called with table_lock *not* held.
1033 */
1034 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1035 {
1036 BDRVQEDState *s = acb_to_s(acb);
1037 uint64_t offset = acb->cur_cluster +
1038 qed_offset_into_cluster(s, acb->cur_pos);
1039
1040 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1041
1042 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1043 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1044 &acb->cur_qiov, 0);
1045 }
1046
1047 /**
1048 * Populate untouched regions of new data cluster
1049 *
1050 * Called with table_lock held.
1051 */
1052 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1053 {
1054 BDRVQEDState *s = acb_to_s(acb);
1055 uint64_t start, len, offset;
1056 int ret;
1057
1058 qemu_co_mutex_unlock(&s->table_lock);
1059
1060 /* Populate front untouched region of new data cluster */
1061 start = qed_start_of_cluster(s, acb->cur_pos);
1062 len = qed_offset_into_cluster(s, acb->cur_pos);
1063
1064 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1065 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1066 if (ret < 0) {
1067 goto out;
1068 }
1069
1070 /* Populate back untouched region of new data cluster */
1071 start = acb->cur_pos + acb->cur_qiov.size;
1072 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1073 offset = acb->cur_cluster +
1074 qed_offset_into_cluster(s, acb->cur_pos) +
1075 acb->cur_qiov.size;
1076
1077 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1078 ret = qed_copy_from_backing_file(s, start, len, offset);
1079 if (ret < 0) {
1080 goto out;
1081 }
1082
1083 ret = qed_aio_write_main(acb);
1084 if (ret < 0) {
1085 goto out;
1086 }
1087
1088 if (s->bs->backing) {
1089 /*
1090 * Flush new data clusters before updating the L2 table
1091 *
1092 * This flush is necessary when a backing file is in use. A crash
1093 * during an allocating write could result in empty clusters in the
1094 * image. If the write only touched a subregion of the cluster,
1095 * then backing image sectors have been lost in the untouched
1096 * region. The solution is to flush after writing a new data
1097 * cluster and before updating the L2 table.
1098 */
1099 ret = bdrv_co_flush(s->bs->file->bs);
1100 }
1101
1102 out:
1103 qemu_co_mutex_lock(&s->table_lock);
1104 return ret;
1105 }
1106
1107 /**
1108 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1109 */
1110 static bool qed_should_set_need_check(BDRVQEDState *s)
1111 {
1112 /* The flush before L2 update path ensures consistency */
1113 if (s->bs->backing) {
1114 return false;
1115 }
1116
1117 return !(s->header.features & QED_F_NEED_CHECK);
1118 }
1119
1120 /**
1121 * Write new data cluster
1122 *
1123 * @acb: Write request
1124 * @len: Length in bytes
1125 *
1126 * This path is taken when writing to previously unallocated clusters.
1127 *
1128 * Called with table_lock held.
1129 */
1130 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1131 {
1132 BDRVQEDState *s = acb_to_s(acb);
1133 int ret;
1134
1135 /* Cancel timer when the first allocating request comes in */
1136 if (s->allocating_acb == NULL) {
1137 qed_cancel_need_check_timer(s);
1138 }
1139
1140 /* Freeze this request if another allocating write is in progress */
1141 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1142 if (s->allocating_acb != NULL) {
1143 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1144 assert(s->allocating_acb == NULL);
1145 }
1146 s->allocating_acb = acb;
1147 return -EAGAIN; /* start over with looking up table entries */
1148 }
1149
1150 acb->cur_nclusters = qed_bytes_to_clusters(s,
1151 qed_offset_into_cluster(s, acb->cur_pos) + len);
1152 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1153
1154 if (acb->flags & QED_AIOCB_ZERO) {
1155 /* Skip ahead if the clusters are already zero */
1156 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1157 return 0;
1158 }
1159 acb->cur_cluster = 1;
1160 } else {
1161 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1162 }
1163
1164 if (qed_should_set_need_check(s)) {
1165 s->header.features |= QED_F_NEED_CHECK;
1166 ret = qed_write_header(s);
1167 if (ret < 0) {
1168 return ret;
1169 }
1170 }
1171
1172 if (!(acb->flags & QED_AIOCB_ZERO)) {
1173 ret = qed_aio_write_cow(acb);
1174 if (ret < 0) {
1175 return ret;
1176 }
1177 }
1178
1179 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1180 }
1181
1182 /**
1183 * Write data cluster in place
1184 *
1185 * @acb: Write request
1186 * @offset: Cluster offset in bytes
1187 * @len: Length in bytes
1188 *
1189 * This path is taken when writing to already allocated clusters.
1190 *
1191 * Called with table_lock held.
1192 */
1193 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1194 size_t len)
1195 {
1196 BDRVQEDState *s = acb_to_s(acb);
1197 int r;
1198
1199 qemu_co_mutex_unlock(&s->table_lock);
1200
1201 /* Allocate buffer for zero writes */
1202 if (acb->flags & QED_AIOCB_ZERO) {
1203 struct iovec *iov = acb->qiov->iov;
1204
1205 if (!iov->iov_base) {
1206 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1207 if (iov->iov_base == NULL) {
1208 r = -ENOMEM;
1209 goto out;
1210 }
1211 memset(iov->iov_base, 0, iov->iov_len);
1212 }
1213 }
1214
1215 /* Calculate the I/O vector */
1216 acb->cur_cluster = offset;
1217 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1218
1219 /* Do the actual write. */
1220 r = qed_aio_write_main(acb);
1221 out:
1222 qemu_co_mutex_lock(&s->table_lock);
1223 return r;
1224 }
1225
1226 /**
1227 * Write data cluster
1228 *
1229 * @opaque: Write request
1230 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1231 * @offset: Cluster offset in bytes
1232 * @len: Length in bytes
1233 *
1234 * Called with table_lock held.
1235 */
1236 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1237 uint64_t offset, size_t len)
1238 {
1239 QEDAIOCB *acb = opaque;
1240
1241 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1242
1243 acb->find_cluster_ret = ret;
1244
1245 switch (ret) {
1246 case QED_CLUSTER_FOUND:
1247 return qed_aio_write_inplace(acb, offset, len);
1248
1249 case QED_CLUSTER_L2:
1250 case QED_CLUSTER_L1:
1251 case QED_CLUSTER_ZERO:
1252 return qed_aio_write_alloc(acb, len);
1253
1254 default:
1255 g_assert_not_reached();
1256 }
1257 }
1258
1259 /**
1260 * Read data cluster
1261 *
1262 * @opaque: Read request
1263 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1264 * @offset: Cluster offset in bytes
1265 * @len: Length in bytes
1266 *
1267 * Called with table_lock held.
1268 */
1269 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1270 uint64_t offset, size_t len)
1271 {
1272 QEDAIOCB *acb = opaque;
1273 BDRVQEDState *s = acb_to_s(acb);
1274 BlockDriverState *bs = acb->bs;
1275 int r;
1276
1277 qemu_co_mutex_unlock(&s->table_lock);
1278
1279 /* Adjust offset into cluster */
1280 offset += qed_offset_into_cluster(s, acb->cur_pos);
1281
1282 trace_qed_aio_read_data(s, acb, ret, offset, len);
1283
1284 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1285
1286 /* Handle zero cluster and backing file reads, otherwise read
1287 * data cluster directly.
1288 */
1289 if (ret == QED_CLUSTER_ZERO) {
1290 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1291 r = 0;
1292 } else if (ret != QED_CLUSTER_FOUND) {
1293 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1294 } else {
1295 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1296 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1297 &acb->cur_qiov, 0);
1298 }
1299
1300 qemu_co_mutex_lock(&s->table_lock);
1301 return r;
1302 }
1303
1304 /**
1305 * Begin next I/O or complete the request
1306 */
1307 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1308 {
1309 BDRVQEDState *s = acb_to_s(acb);
1310 uint64_t offset;
1311 size_t len;
1312 int ret;
1313
1314 qemu_co_mutex_lock(&s->table_lock);
1315 while (1) {
1316 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1317
1318 acb->qiov_offset += acb->cur_qiov.size;
1319 acb->cur_pos += acb->cur_qiov.size;
1320 qemu_iovec_reset(&acb->cur_qiov);
1321
1322 /* Complete request */
1323 if (acb->cur_pos >= acb->end_pos) {
1324 ret = 0;
1325 break;
1326 }
1327
1328 /* Find next cluster and start I/O */
1329 len = acb->end_pos - acb->cur_pos;
1330 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1331 if (ret < 0) {
1332 break;
1333 }
1334
1335 if (acb->flags & QED_AIOCB_WRITE) {
1336 ret = qed_aio_write_data(acb, ret, offset, len);
1337 } else {
1338 ret = qed_aio_read_data(acb, ret, offset, len);
1339 }
1340
1341 if (ret < 0 && ret != -EAGAIN) {
1342 break;
1343 }
1344 }
1345
1346 trace_qed_aio_complete(s, acb, ret);
1347 qed_aio_complete(acb);
1348 qemu_co_mutex_unlock(&s->table_lock);
1349 return ret;
1350 }
1351
1352 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1353 QEMUIOVector *qiov, int nb_sectors,
1354 int flags)
1355 {
1356 QEDAIOCB acb = {
1357 .bs = bs,
1358 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1359 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1360 .qiov = qiov,
1361 .flags = flags,
1362 };
1363 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1364
1365 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1366
1367 /* Start request */
1368 return qed_aio_next_io(&acb);
1369 }
1370
1371 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1372 int64_t sector_num, int nb_sectors,
1373 QEMUIOVector *qiov)
1374 {
1375 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1376 }
1377
1378 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1379 int64_t sector_num, int nb_sectors,
1380 QEMUIOVector *qiov, int flags)
1381 {
1382 assert(!flags);
1383 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1384 }
1385
1386 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1387 int64_t offset,
1388 int bytes,
1389 BdrvRequestFlags flags)
1390 {
1391 BDRVQEDState *s = bs->opaque;
1392
1393 /*
1394 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1395 * then it will be allocated during request processing.
1396 */
1397 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1398
1399 /* Fall back if the request is not aligned */
1400 if (qed_offset_into_cluster(s, offset) ||
1401 qed_offset_into_cluster(s, bytes)) {
1402 return -ENOTSUP;
1403 }
1404
1405 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1406 bytes >> BDRV_SECTOR_BITS,
1407 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1408 }
1409
1410 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1411 int64_t offset,
1412 bool exact,
1413 PreallocMode prealloc,
1414 BdrvRequestFlags flags,
1415 Error **errp)
1416 {
1417 BDRVQEDState *s = bs->opaque;
1418 uint64_t old_image_size;
1419 int ret;
1420
1421 if (prealloc != PREALLOC_MODE_OFF) {
1422 error_setg(errp, "Unsupported preallocation mode '%s'",
1423 PreallocMode_str(prealloc));
1424 return -ENOTSUP;
1425 }
1426
1427 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1428 s->header.table_size)) {
1429 error_setg(errp, "Invalid image size specified");
1430 return -EINVAL;
1431 }
1432
1433 if ((uint64_t)offset < s->header.image_size) {
1434 error_setg(errp, "Shrinking images is currently not supported");
1435 return -ENOTSUP;
1436 }
1437
1438 old_image_size = s->header.image_size;
1439 s->header.image_size = offset;
1440 ret = qed_write_header_sync(s);
1441 if (ret < 0) {
1442 s->header.image_size = old_image_size;
1443 error_setg_errno(errp, -ret, "Failed to update the image size");
1444 }
1445 return ret;
1446 }
1447
1448 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1449 {
1450 BDRVQEDState *s = bs->opaque;
1451 return s->header.image_size;
1452 }
1453
1454 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1455 {
1456 BDRVQEDState *s = bs->opaque;
1457
1458 memset(bdi, 0, sizeof(*bdi));
1459 bdi->cluster_size = s->header.cluster_size;
1460 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1461 return 0;
1462 }
1463
1464 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1465 const char *backing_file,
1466 const char *backing_fmt)
1467 {
1468 BDRVQEDState *s = bs->opaque;
1469 QEDHeader new_header, le_header;
1470 void *buffer;
1471 size_t buffer_len, backing_file_len;
1472 int ret;
1473
1474 /* Refuse to set backing filename if unknown compat feature bits are
1475 * active. If the image uses an unknown compat feature then we may not
1476 * know the layout of data following the header structure and cannot safely
1477 * add a new string.
1478 */
1479 if (backing_file && (s->header.compat_features &
1480 ~QED_COMPAT_FEATURE_MASK)) {
1481 return -ENOTSUP;
1482 }
1483
1484 memcpy(&new_header, &s->header, sizeof(new_header));
1485
1486 new_header.features &= ~(QED_F_BACKING_FILE |
1487 QED_F_BACKING_FORMAT_NO_PROBE);
1488
1489 /* Adjust feature flags */
1490 if (backing_file) {
1491 new_header.features |= QED_F_BACKING_FILE;
1492
1493 if (qed_fmt_is_raw(backing_fmt)) {
1494 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1495 }
1496 }
1497
1498 /* Calculate new header size */
1499 backing_file_len = 0;
1500
1501 if (backing_file) {
1502 backing_file_len = strlen(backing_file);
1503 }
1504
1505 buffer_len = sizeof(new_header);
1506 new_header.backing_filename_offset = buffer_len;
1507 new_header.backing_filename_size = backing_file_len;
1508 buffer_len += backing_file_len;
1509
1510 /* Make sure we can rewrite header without failing */
1511 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1512 return -ENOSPC;
1513 }
1514
1515 /* Prepare new header */
1516 buffer = g_malloc(buffer_len);
1517
1518 qed_header_cpu_to_le(&new_header, &le_header);
1519 memcpy(buffer, &le_header, sizeof(le_header));
1520 buffer_len = sizeof(le_header);
1521
1522 if (backing_file) {
1523 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1524 buffer_len += backing_file_len;
1525 }
1526
1527 /* Write new header */
1528 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1529 g_free(buffer);
1530 if (ret == 0) {
1531 memcpy(&s->header, &new_header, sizeof(new_header));
1532 }
1533 return ret;
1534 }
1535
1536 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1537 Error **errp)
1538 {
1539 BDRVQEDState *s = bs->opaque;
1540 Error *local_err = NULL;
1541 int ret;
1542
1543 bdrv_qed_close(bs);
1544
1545 bdrv_qed_init_state(bs);
1546 qemu_co_mutex_lock(&s->table_lock);
1547 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1548 qemu_co_mutex_unlock(&s->table_lock);
1549 if (local_err) {
1550 error_propagate_prepend(errp, local_err,
1551 "Could not reopen qed layer: ");
1552 return;
1553 } else if (ret < 0) {
1554 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1555 return;
1556 }
1557 }
1558
1559 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1560 BdrvCheckResult *result,
1561 BdrvCheckMode fix)
1562 {
1563 BDRVQEDState *s = bs->opaque;
1564 int ret;
1565
1566 qemu_co_mutex_lock(&s->table_lock);
1567 ret = qed_check(s, result, !!fix);
1568 qemu_co_mutex_unlock(&s->table_lock);
1569
1570 return ret;
1571 }
1572
1573 static QemuOptsList qed_create_opts = {
1574 .name = "qed-create-opts",
1575 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1576 .desc = {
1577 {
1578 .name = BLOCK_OPT_SIZE,
1579 .type = QEMU_OPT_SIZE,
1580 .help = "Virtual disk size"
1581 },
1582 {
1583 .name = BLOCK_OPT_BACKING_FILE,
1584 .type = QEMU_OPT_STRING,
1585 .help = "File name of a base image"
1586 },
1587 {
1588 .name = BLOCK_OPT_BACKING_FMT,
1589 .type = QEMU_OPT_STRING,
1590 .help = "Image format of the base image"
1591 },
1592 {
1593 .name = BLOCK_OPT_CLUSTER_SIZE,
1594 .type = QEMU_OPT_SIZE,
1595 .help = "Cluster size (in bytes)",
1596 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1597 },
1598 {
1599 .name = BLOCK_OPT_TABLE_SIZE,
1600 .type = QEMU_OPT_SIZE,
1601 .help = "L1/L2 table size (in clusters)"
1602 },
1603 { /* end of list */ }
1604 }
1605 };
1606
1607 static BlockDriver bdrv_qed = {
1608 .format_name = "qed",
1609 .instance_size = sizeof(BDRVQEDState),
1610 .create_opts = &qed_create_opts,
1611 .is_format = true,
1612 .supports_backing = true,
1613
1614 .bdrv_probe = bdrv_qed_probe,
1615 .bdrv_open = bdrv_qed_open,
1616 .bdrv_close = bdrv_qed_close,
1617 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1618 .bdrv_child_perm = bdrv_default_perms,
1619 .bdrv_co_create = bdrv_qed_co_create,
1620 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1621 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1622 .bdrv_co_block_status = bdrv_qed_co_block_status,
1623 .bdrv_co_readv = bdrv_qed_co_readv,
1624 .bdrv_co_writev = bdrv_qed_co_writev,
1625 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1626 .bdrv_co_truncate = bdrv_qed_co_truncate,
1627 .bdrv_getlength = bdrv_qed_getlength,
1628 .bdrv_get_info = bdrv_qed_get_info,
1629 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1630 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1631 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1632 .bdrv_co_check = bdrv_qed_co_check,
1633 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1634 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1635 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin,
1636 };
1637
1638 static void bdrv_qed_init(void)
1639 {
1640 bdrv_register(&bdrv_qed);
1641 }
1642
1643 block_init(bdrv_qed_init);