]> git.proxmox.com Git - mirror_qemu.git/blob - block.c
block: helper function, to find the base image of a chain
[mirror_qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52 BDRV_REQ_COPY_ON_READ = 0x1,
53 BDRV_REQ_ZERO_WRITE = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59 BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64 int64_t sector_num, int nb_sectors,
65 QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71 BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76 int64_t sector_num,
77 QEMUIOVector *qiov,
78 int nb_sectors,
79 BlockDriverCompletionFunc *cb,
80 void *opaque,
81 bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
84 int64_t sector_num, int nb_sectors);
85
86 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
87 bool is_write, double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
89 double elapsed_time, uint64_t *wait);
90 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
91 bool is_write, int64_t *wait);
92
93 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
94 QTAILQ_HEAD_INITIALIZER(bdrv_states);
95
96 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
97 QLIST_HEAD_INITIALIZER(bdrv_drivers);
98
99 /* The device to use for VM snapshots */
100 static BlockDriverState *bs_snapshots;
101
102 /* If non-zero, use only whitelisted block drivers */
103 static int use_bdrv_whitelist;
104
105 #ifdef _WIN32
106 static int is_windows_drive_prefix(const char *filename)
107 {
108 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
109 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
110 filename[1] == ':');
111 }
112
113 int is_windows_drive(const char *filename)
114 {
115 if (is_windows_drive_prefix(filename) &&
116 filename[2] == '\0')
117 return 1;
118 if (strstart(filename, "\\\\.\\", NULL) ||
119 strstart(filename, "//./", NULL))
120 return 1;
121 return 0;
122 }
123 #endif
124
125 /* throttling disk I/O limits */
126 void bdrv_io_limits_disable(BlockDriverState *bs)
127 {
128 bs->io_limits_enabled = false;
129
130 while (qemu_co_queue_next(&bs->throttled_reqs));
131
132 if (bs->block_timer) {
133 qemu_del_timer(bs->block_timer);
134 qemu_free_timer(bs->block_timer);
135 bs->block_timer = NULL;
136 }
137
138 bs->slice_start = 0;
139 bs->slice_end = 0;
140 bs->slice_time = 0;
141 memset(&bs->io_base, 0, sizeof(bs->io_base));
142 }
143
144 static void bdrv_block_timer(void *opaque)
145 {
146 BlockDriverState *bs = opaque;
147
148 qemu_co_queue_next(&bs->throttled_reqs);
149 }
150
151 void bdrv_io_limits_enable(BlockDriverState *bs)
152 {
153 qemu_co_queue_init(&bs->throttled_reqs);
154 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
155 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
156 bs->slice_start = qemu_get_clock_ns(vm_clock);
157 bs->slice_end = bs->slice_start + bs->slice_time;
158 memset(&bs->io_base, 0, sizeof(bs->io_base));
159 bs->io_limits_enabled = true;
160 }
161
162 bool bdrv_io_limits_enabled(BlockDriverState *bs)
163 {
164 BlockIOLimit *io_limits = &bs->io_limits;
165 return io_limits->bps[BLOCK_IO_LIMIT_READ]
166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
168 || io_limits->iops[BLOCK_IO_LIMIT_READ]
169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
171 }
172
173 static void bdrv_io_limits_intercept(BlockDriverState *bs,
174 bool is_write, int nb_sectors)
175 {
176 int64_t wait_time = -1;
177
178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
179 qemu_co_queue_wait(&bs->throttled_reqs);
180 }
181
182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
183 * throttled requests will not be dequeued until the current request is
184 * allowed to be serviced. So if the current request still exceeds the
185 * limits, it will be inserted to the head. All requests followed it will
186 * be still in throttled_reqs queue.
187 */
188
189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
190 qemu_mod_timer(bs->block_timer,
191 wait_time + qemu_get_clock_ns(vm_clock));
192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
193 }
194
195 qemu_co_queue_next(&bs->throttled_reqs);
196 }
197
198 /* check if the path starts with "<protocol>:" */
199 static int path_has_protocol(const char *path)
200 {
201 const char *p;
202
203 #ifdef _WIN32
204 if (is_windows_drive(path) ||
205 is_windows_drive_prefix(path)) {
206 return 0;
207 }
208 p = path + strcspn(path, ":/\\");
209 #else
210 p = path + strcspn(path, ":/");
211 #endif
212
213 return *p == ':';
214 }
215
216 int path_is_absolute(const char *path)
217 {
218 #ifdef _WIN32
219 /* specific case for names like: "\\.\d:" */
220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
221 return 1;
222 }
223 return (*path == '/' || *path == '\\');
224 #else
225 return (*path == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
274 {
275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
276 pstrcpy(dest, sz, bs->backing_file);
277 } else {
278 path_combine(dest, sz, bs->filename, bs->backing_file);
279 }
280 }
281
282 void bdrv_register(BlockDriver *bdrv)
283 {
284 /* Block drivers without coroutine functions need emulation */
285 if (!bdrv->bdrv_co_readv) {
286 bdrv->bdrv_co_readv = bdrv_co_readv_em;
287 bdrv->bdrv_co_writev = bdrv_co_writev_em;
288
289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
290 * the block driver lacks aio we need to emulate that too.
291 */
292 if (!bdrv->bdrv_aio_readv) {
293 /* add AIO emulation layer */
294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
296 }
297 }
298
299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
300 }
301
302 /* create a new block device (by default it is empty) */
303 BlockDriverState *bdrv_new(const char *device_name)
304 {
305 BlockDriverState *bs;
306
307 bs = g_malloc0(sizeof(BlockDriverState));
308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
309 if (device_name[0] != '\0') {
310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
311 }
312 bdrv_iostatus_disable(bs);
313 return bs;
314 }
315
316 BlockDriver *bdrv_find_format(const char *format_name)
317 {
318 BlockDriver *drv1;
319 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
320 if (!strcmp(drv1->format_name, format_name)) {
321 return drv1;
322 }
323 }
324 return NULL;
325 }
326
327 static int bdrv_is_whitelisted(BlockDriver *drv)
328 {
329 static const char *whitelist[] = {
330 CONFIG_BDRV_WHITELIST
331 };
332 const char **p;
333
334 if (!whitelist[0])
335 return 1; /* no whitelist, anything goes */
336
337 for (p = whitelist; *p; p++) {
338 if (!strcmp(drv->format_name, *p)) {
339 return 1;
340 }
341 }
342 return 0;
343 }
344
345 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
346 {
347 BlockDriver *drv = bdrv_find_format(format_name);
348 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
349 }
350
351 typedef struct CreateCo {
352 BlockDriver *drv;
353 char *filename;
354 QEMUOptionParameter *options;
355 int ret;
356 } CreateCo;
357
358 static void coroutine_fn bdrv_create_co_entry(void *opaque)
359 {
360 CreateCo *cco = opaque;
361 assert(cco->drv);
362
363 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
364 }
365
366 int bdrv_create(BlockDriver *drv, const char* filename,
367 QEMUOptionParameter *options)
368 {
369 int ret;
370
371 Coroutine *co;
372 CreateCo cco = {
373 .drv = drv,
374 .filename = g_strdup(filename),
375 .options = options,
376 .ret = NOT_DONE,
377 };
378
379 if (!drv->bdrv_create) {
380 return -ENOTSUP;
381 }
382
383 if (qemu_in_coroutine()) {
384 /* Fast-path if already in coroutine context */
385 bdrv_create_co_entry(&cco);
386 } else {
387 co = qemu_coroutine_create(bdrv_create_co_entry);
388 qemu_coroutine_enter(co, &cco);
389 while (cco.ret == NOT_DONE) {
390 qemu_aio_wait();
391 }
392 }
393
394 ret = cco.ret;
395 g_free(cco.filename);
396
397 return ret;
398 }
399
400 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
401 {
402 BlockDriver *drv;
403
404 drv = bdrv_find_protocol(filename);
405 if (drv == NULL) {
406 return -ENOENT;
407 }
408
409 return bdrv_create(drv, filename, options);
410 }
411
412 /*
413 * Create a uniquely-named empty temporary file.
414 * Return 0 upon success, otherwise a negative errno value.
415 */
416 int get_tmp_filename(char *filename, int size)
417 {
418 #ifdef _WIN32
419 char temp_dir[MAX_PATH];
420 /* GetTempFileName requires that its output buffer (4th param)
421 have length MAX_PATH or greater. */
422 assert(size >= MAX_PATH);
423 return (GetTempPath(MAX_PATH, temp_dir)
424 && GetTempFileName(temp_dir, "qem", 0, filename)
425 ? 0 : -GetLastError());
426 #else
427 int fd;
428 const char *tmpdir;
429 tmpdir = getenv("TMPDIR");
430 if (!tmpdir)
431 tmpdir = "/tmp";
432 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
433 return -EOVERFLOW;
434 }
435 fd = mkstemp(filename);
436 if (fd < 0) {
437 return -errno;
438 }
439 if (close(fd) != 0) {
440 unlink(filename);
441 return -errno;
442 }
443 return 0;
444 #endif
445 }
446
447 /*
448 * Detect host devices. By convention, /dev/cdrom[N] is always
449 * recognized as a host CDROM.
450 */
451 static BlockDriver *find_hdev_driver(const char *filename)
452 {
453 int score_max = 0, score;
454 BlockDriver *drv = NULL, *d;
455
456 QLIST_FOREACH(d, &bdrv_drivers, list) {
457 if (d->bdrv_probe_device) {
458 score = d->bdrv_probe_device(filename);
459 if (score > score_max) {
460 score_max = score;
461 drv = d;
462 }
463 }
464 }
465
466 return drv;
467 }
468
469 BlockDriver *bdrv_find_protocol(const char *filename)
470 {
471 BlockDriver *drv1;
472 char protocol[128];
473 int len;
474 const char *p;
475
476 /* TODO Drivers without bdrv_file_open must be specified explicitly */
477
478 /*
479 * XXX(hch): we really should not let host device detection
480 * override an explicit protocol specification, but moving this
481 * later breaks access to device names with colons in them.
482 * Thanks to the brain-dead persistent naming schemes on udev-
483 * based Linux systems those actually are quite common.
484 */
485 drv1 = find_hdev_driver(filename);
486 if (drv1) {
487 return drv1;
488 }
489
490 if (!path_has_protocol(filename)) {
491 return bdrv_find_format("file");
492 }
493 p = strchr(filename, ':');
494 assert(p != NULL);
495 len = p - filename;
496 if (len > sizeof(protocol) - 1)
497 len = sizeof(protocol) - 1;
498 memcpy(protocol, filename, len);
499 protocol[len] = '\0';
500 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
501 if (drv1->protocol_name &&
502 !strcmp(drv1->protocol_name, protocol)) {
503 return drv1;
504 }
505 }
506 return NULL;
507 }
508
509 static int find_image_format(const char *filename, BlockDriver **pdrv)
510 {
511 int ret, score, score_max;
512 BlockDriver *drv1, *drv;
513 uint8_t buf[2048];
514 BlockDriverState *bs;
515
516 ret = bdrv_file_open(&bs, filename, 0);
517 if (ret < 0) {
518 *pdrv = NULL;
519 return ret;
520 }
521
522 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
523 if (bs->sg || !bdrv_is_inserted(bs)) {
524 bdrv_delete(bs);
525 drv = bdrv_find_format("raw");
526 if (!drv) {
527 ret = -ENOENT;
528 }
529 *pdrv = drv;
530 return ret;
531 }
532
533 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
534 bdrv_delete(bs);
535 if (ret < 0) {
536 *pdrv = NULL;
537 return ret;
538 }
539
540 score_max = 0;
541 drv = NULL;
542 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
543 if (drv1->bdrv_probe) {
544 score = drv1->bdrv_probe(buf, ret, filename);
545 if (score > score_max) {
546 score_max = score;
547 drv = drv1;
548 }
549 }
550 }
551 if (!drv) {
552 ret = -ENOENT;
553 }
554 *pdrv = drv;
555 return ret;
556 }
557
558 /**
559 * Set the current 'total_sectors' value
560 */
561 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
562 {
563 BlockDriver *drv = bs->drv;
564
565 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
566 if (bs->sg)
567 return 0;
568
569 /* query actual device if possible, otherwise just trust the hint */
570 if (drv->bdrv_getlength) {
571 int64_t length = drv->bdrv_getlength(bs);
572 if (length < 0) {
573 return length;
574 }
575 hint = length >> BDRV_SECTOR_BITS;
576 }
577
578 bs->total_sectors = hint;
579 return 0;
580 }
581
582 /**
583 * Set open flags for a given cache mode
584 *
585 * Return 0 on success, -1 if the cache mode was invalid.
586 */
587 int bdrv_parse_cache_flags(const char *mode, int *flags)
588 {
589 *flags &= ~BDRV_O_CACHE_MASK;
590
591 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
592 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
593 } else if (!strcmp(mode, "directsync")) {
594 *flags |= BDRV_O_NOCACHE;
595 } else if (!strcmp(mode, "writeback")) {
596 *flags |= BDRV_O_CACHE_WB;
597 } else if (!strcmp(mode, "unsafe")) {
598 *flags |= BDRV_O_CACHE_WB;
599 *flags |= BDRV_O_NO_FLUSH;
600 } else if (!strcmp(mode, "writethrough")) {
601 /* this is the default */
602 } else {
603 return -1;
604 }
605
606 return 0;
607 }
608
609 /**
610 * The copy-on-read flag is actually a reference count so multiple users may
611 * use the feature without worrying about clobbering its previous state.
612 * Copy-on-read stays enabled until all users have called to disable it.
613 */
614 void bdrv_enable_copy_on_read(BlockDriverState *bs)
615 {
616 bs->copy_on_read++;
617 }
618
619 void bdrv_disable_copy_on_read(BlockDriverState *bs)
620 {
621 assert(bs->copy_on_read > 0);
622 bs->copy_on_read--;
623 }
624
625 /*
626 * Common part for opening disk images and files
627 */
628 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
629 int flags, BlockDriver *drv)
630 {
631 int ret, open_flags;
632
633 assert(drv != NULL);
634 assert(bs->file == NULL);
635
636 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
637
638 bs->open_flags = flags;
639 bs->buffer_alignment = 512;
640
641 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
642 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
643 bdrv_enable_copy_on_read(bs);
644 }
645
646 pstrcpy(bs->filename, sizeof(bs->filename), filename);
647
648 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
649 return -ENOTSUP;
650 }
651
652 bs->drv = drv;
653 bs->opaque = g_malloc0(drv->instance_size);
654
655 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
656 open_flags = flags | BDRV_O_CACHE_WB;
657
658 /*
659 * Clear flags that are internal to the block layer before opening the
660 * image.
661 */
662 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
663
664 /*
665 * Snapshots should be writable.
666 */
667 if (bs->is_temporary) {
668 open_flags |= BDRV_O_RDWR;
669 }
670
671 bs->read_only = !(open_flags & BDRV_O_RDWR);
672
673 /* Open the image, either directly or using a protocol */
674 if (drv->bdrv_file_open) {
675 ret = drv->bdrv_file_open(bs, filename, open_flags);
676 } else {
677 ret = bdrv_file_open(&bs->file, filename, open_flags);
678 if (ret >= 0) {
679 ret = drv->bdrv_open(bs, open_flags);
680 }
681 }
682
683 if (ret < 0) {
684 goto free_and_fail;
685 }
686
687 ret = refresh_total_sectors(bs, bs->total_sectors);
688 if (ret < 0) {
689 goto free_and_fail;
690 }
691
692 #ifndef _WIN32
693 if (bs->is_temporary) {
694 unlink(filename);
695 }
696 #endif
697 return 0;
698
699 free_and_fail:
700 if (bs->file) {
701 bdrv_delete(bs->file);
702 bs->file = NULL;
703 }
704 g_free(bs->opaque);
705 bs->opaque = NULL;
706 bs->drv = NULL;
707 return ret;
708 }
709
710 /*
711 * Opens a file using a protocol (file, host_device, nbd, ...)
712 */
713 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
714 {
715 BlockDriverState *bs;
716 BlockDriver *drv;
717 int ret;
718
719 drv = bdrv_find_protocol(filename);
720 if (!drv) {
721 return -ENOENT;
722 }
723
724 bs = bdrv_new("");
725 ret = bdrv_open_common(bs, filename, flags, drv);
726 if (ret < 0) {
727 bdrv_delete(bs);
728 return ret;
729 }
730 bs->growable = 1;
731 *pbs = bs;
732 return 0;
733 }
734
735 /*
736 * Opens a disk image (raw, qcow2, vmdk, ...)
737 */
738 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
739 BlockDriver *drv)
740 {
741 int ret;
742 char tmp_filename[PATH_MAX];
743
744 if (flags & BDRV_O_SNAPSHOT) {
745 BlockDriverState *bs1;
746 int64_t total_size;
747 int is_protocol = 0;
748 BlockDriver *bdrv_qcow2;
749 QEMUOptionParameter *options;
750 char backing_filename[PATH_MAX];
751
752 /* if snapshot, we create a temporary backing file and open it
753 instead of opening 'filename' directly */
754
755 /* if there is a backing file, use it */
756 bs1 = bdrv_new("");
757 ret = bdrv_open(bs1, filename, 0, drv);
758 if (ret < 0) {
759 bdrv_delete(bs1);
760 return ret;
761 }
762 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
763
764 if (bs1->drv && bs1->drv->protocol_name)
765 is_protocol = 1;
766
767 bdrv_delete(bs1);
768
769 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
770 if (ret < 0) {
771 return ret;
772 }
773
774 /* Real path is meaningless for protocols */
775 if (is_protocol)
776 snprintf(backing_filename, sizeof(backing_filename),
777 "%s", filename);
778 else if (!realpath(filename, backing_filename))
779 return -errno;
780
781 bdrv_qcow2 = bdrv_find_format("qcow2");
782 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
783
784 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
785 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
786 if (drv) {
787 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
788 drv->format_name);
789 }
790
791 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
792 free_option_parameters(options);
793 if (ret < 0) {
794 return ret;
795 }
796
797 filename = tmp_filename;
798 drv = bdrv_qcow2;
799 bs->is_temporary = 1;
800 }
801
802 /* Find the right image format driver */
803 if (!drv) {
804 ret = find_image_format(filename, &drv);
805 }
806
807 if (!drv) {
808 goto unlink_and_fail;
809 }
810
811 if (flags & BDRV_O_RDWR) {
812 flags |= BDRV_O_ALLOW_RDWR;
813 }
814
815 /* Open the image */
816 ret = bdrv_open_common(bs, filename, flags, drv);
817 if (ret < 0) {
818 goto unlink_and_fail;
819 }
820
821 /* If there is a backing file, use it */
822 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
823 char backing_filename[PATH_MAX];
824 int back_flags;
825 BlockDriver *back_drv = NULL;
826
827 bs->backing_hd = bdrv_new("");
828 bdrv_get_full_backing_filename(bs, backing_filename,
829 sizeof(backing_filename));
830
831 if (bs->backing_format[0] != '\0') {
832 back_drv = bdrv_find_format(bs->backing_format);
833 }
834
835 /* backing files always opened read-only */
836 back_flags =
837 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
838
839 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
840 if (ret < 0) {
841 bdrv_close(bs);
842 return ret;
843 }
844 }
845
846 if (!bdrv_key_required(bs)) {
847 bdrv_dev_change_media_cb(bs, true);
848 }
849
850 /* throttling disk I/O limits */
851 if (bs->io_limits_enabled) {
852 bdrv_io_limits_enable(bs);
853 }
854
855 return 0;
856
857 unlink_and_fail:
858 if (bs->is_temporary) {
859 unlink(filename);
860 }
861 return ret;
862 }
863
864 typedef struct BlockReopenQueueEntry {
865 bool prepared;
866 BDRVReopenState state;
867 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
868 } BlockReopenQueueEntry;
869
870 /*
871 * Adds a BlockDriverState to a simple queue for an atomic, transactional
872 * reopen of multiple devices.
873 *
874 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
875 * already performed, or alternatively may be NULL a new BlockReopenQueue will
876 * be created and initialized. This newly created BlockReopenQueue should be
877 * passed back in for subsequent calls that are intended to be of the same
878 * atomic 'set'.
879 *
880 * bs is the BlockDriverState to add to the reopen queue.
881 *
882 * flags contains the open flags for the associated bs
883 *
884 * returns a pointer to bs_queue, which is either the newly allocated
885 * bs_queue, or the existing bs_queue being used.
886 *
887 */
888 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
889 BlockDriverState *bs, int flags)
890 {
891 assert(bs != NULL);
892
893 BlockReopenQueueEntry *bs_entry;
894 if (bs_queue == NULL) {
895 bs_queue = g_new0(BlockReopenQueue, 1);
896 QSIMPLEQ_INIT(bs_queue);
897 }
898
899 if (bs->file) {
900 bdrv_reopen_queue(bs_queue, bs->file, flags);
901 }
902
903 bs_entry = g_new0(BlockReopenQueueEntry, 1);
904 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
905
906 bs_entry->state.bs = bs;
907 bs_entry->state.flags = flags;
908
909 return bs_queue;
910 }
911
912 /*
913 * Reopen multiple BlockDriverStates atomically & transactionally.
914 *
915 * The queue passed in (bs_queue) must have been built up previous
916 * via bdrv_reopen_queue().
917 *
918 * Reopens all BDS specified in the queue, with the appropriate
919 * flags. All devices are prepared for reopen, and failure of any
920 * device will cause all device changes to be abandonded, and intermediate
921 * data cleaned up.
922 *
923 * If all devices prepare successfully, then the changes are committed
924 * to all devices.
925 *
926 */
927 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
928 {
929 int ret = -1;
930 BlockReopenQueueEntry *bs_entry, *next;
931 Error *local_err = NULL;
932
933 assert(bs_queue != NULL);
934
935 bdrv_drain_all();
936
937 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
938 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
939 error_propagate(errp, local_err);
940 goto cleanup;
941 }
942 bs_entry->prepared = true;
943 }
944
945 /* If we reach this point, we have success and just need to apply the
946 * changes
947 */
948 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
949 bdrv_reopen_commit(&bs_entry->state);
950 }
951
952 ret = 0;
953
954 cleanup:
955 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
956 if (ret && bs_entry->prepared) {
957 bdrv_reopen_abort(&bs_entry->state);
958 }
959 g_free(bs_entry);
960 }
961 g_free(bs_queue);
962 return ret;
963 }
964
965
966 /* Reopen a single BlockDriverState with the specified flags. */
967 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
968 {
969 int ret = -1;
970 Error *local_err = NULL;
971 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
972
973 ret = bdrv_reopen_multiple(queue, &local_err);
974 if (local_err != NULL) {
975 error_propagate(errp, local_err);
976 }
977 return ret;
978 }
979
980
981 /*
982 * Prepares a BlockDriverState for reopen. All changes are staged in the
983 * 'opaque' field of the BDRVReopenState, which is used and allocated by
984 * the block driver layer .bdrv_reopen_prepare()
985 *
986 * bs is the BlockDriverState to reopen
987 * flags are the new open flags
988 * queue is the reopen queue
989 *
990 * Returns 0 on success, non-zero on error. On error errp will be set
991 * as well.
992 *
993 * On failure, bdrv_reopen_abort() will be called to clean up any data.
994 * It is the responsibility of the caller to then call the abort() or
995 * commit() for any other BDS that have been left in a prepare() state
996 *
997 */
998 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
999 Error **errp)
1000 {
1001 int ret = -1;
1002 Error *local_err = NULL;
1003 BlockDriver *drv;
1004
1005 assert(reopen_state != NULL);
1006 assert(reopen_state->bs->drv != NULL);
1007 drv = reopen_state->bs->drv;
1008
1009 /* if we are to stay read-only, do not allow permission change
1010 * to r/w */
1011 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1012 reopen_state->flags & BDRV_O_RDWR) {
1013 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1014 reopen_state->bs->device_name);
1015 goto error;
1016 }
1017
1018
1019 ret = bdrv_flush(reopen_state->bs);
1020 if (ret) {
1021 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1022 strerror(-ret));
1023 goto error;
1024 }
1025
1026 if (drv->bdrv_reopen_prepare) {
1027 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1028 if (ret) {
1029 if (local_err != NULL) {
1030 error_propagate(errp, local_err);
1031 } else {
1032 error_set(errp, QERR_OPEN_FILE_FAILED,
1033 reopen_state->bs->filename);
1034 }
1035 goto error;
1036 }
1037 } else {
1038 /* It is currently mandatory to have a bdrv_reopen_prepare()
1039 * handler for each supported drv. */
1040 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1041 drv->format_name, reopen_state->bs->device_name,
1042 "reopening of file");
1043 ret = -1;
1044 goto error;
1045 }
1046
1047 ret = 0;
1048
1049 error:
1050 return ret;
1051 }
1052
1053 /*
1054 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1055 * makes them final by swapping the staging BlockDriverState contents into
1056 * the active BlockDriverState contents.
1057 */
1058 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1059 {
1060 BlockDriver *drv;
1061
1062 assert(reopen_state != NULL);
1063 drv = reopen_state->bs->drv;
1064 assert(drv != NULL);
1065
1066 /* If there are any driver level actions to take */
1067 if (drv->bdrv_reopen_commit) {
1068 drv->bdrv_reopen_commit(reopen_state);
1069 }
1070
1071 /* set BDS specific flags now */
1072 reopen_state->bs->open_flags = reopen_state->flags;
1073 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1074 BDRV_O_CACHE_WB);
1075 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1076 }
1077
1078 /*
1079 * Abort the reopen, and delete and free the staged changes in
1080 * reopen_state
1081 */
1082 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1083 {
1084 BlockDriver *drv;
1085
1086 assert(reopen_state != NULL);
1087 drv = reopen_state->bs->drv;
1088 assert(drv != NULL);
1089
1090 if (drv->bdrv_reopen_abort) {
1091 drv->bdrv_reopen_abort(reopen_state);
1092 }
1093 }
1094
1095
1096 void bdrv_close(BlockDriverState *bs)
1097 {
1098 bdrv_flush(bs);
1099 if (bs->drv) {
1100 if (bs->job) {
1101 block_job_cancel_sync(bs->job);
1102 }
1103 bdrv_drain_all();
1104
1105 if (bs == bs_snapshots) {
1106 bs_snapshots = NULL;
1107 }
1108 if (bs->backing_hd) {
1109 bdrv_delete(bs->backing_hd);
1110 bs->backing_hd = NULL;
1111 }
1112 bs->drv->bdrv_close(bs);
1113 g_free(bs->opaque);
1114 #ifdef _WIN32
1115 if (bs->is_temporary) {
1116 unlink(bs->filename);
1117 }
1118 #endif
1119 bs->opaque = NULL;
1120 bs->drv = NULL;
1121 bs->copy_on_read = 0;
1122 bs->backing_file[0] = '\0';
1123 bs->backing_format[0] = '\0';
1124 bs->total_sectors = 0;
1125 bs->encrypted = 0;
1126 bs->valid_key = 0;
1127 bs->sg = 0;
1128 bs->growable = 0;
1129
1130 if (bs->file != NULL) {
1131 bdrv_delete(bs->file);
1132 bs->file = NULL;
1133 }
1134 }
1135
1136 bdrv_dev_change_media_cb(bs, false);
1137
1138 /*throttling disk I/O limits*/
1139 if (bs->io_limits_enabled) {
1140 bdrv_io_limits_disable(bs);
1141 }
1142 }
1143
1144 void bdrv_close_all(void)
1145 {
1146 BlockDriverState *bs;
1147
1148 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1149 bdrv_close(bs);
1150 }
1151 }
1152
1153 /*
1154 * Wait for pending requests to complete across all BlockDriverStates
1155 *
1156 * This function does not flush data to disk, use bdrv_flush_all() for that
1157 * after calling this function.
1158 *
1159 * Note that completion of an asynchronous I/O operation can trigger any
1160 * number of other I/O operations on other devices---for example a coroutine
1161 * can be arbitrarily complex and a constant flow of I/O can come until the
1162 * coroutine is complete. Because of this, it is not possible to have a
1163 * function to drain a single device's I/O queue.
1164 */
1165 void bdrv_drain_all(void)
1166 {
1167 BlockDriverState *bs;
1168 bool busy;
1169
1170 do {
1171 busy = qemu_aio_wait();
1172
1173 /* FIXME: We do not have timer support here, so this is effectively
1174 * a busy wait.
1175 */
1176 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1177 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1178 qemu_co_queue_restart_all(&bs->throttled_reqs);
1179 busy = true;
1180 }
1181 }
1182 } while (busy);
1183
1184 /* If requests are still pending there is a bug somewhere */
1185 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1186 assert(QLIST_EMPTY(&bs->tracked_requests));
1187 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1188 }
1189 }
1190
1191 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1192 Also, NULL terminate the device_name to prevent double remove */
1193 void bdrv_make_anon(BlockDriverState *bs)
1194 {
1195 if (bs->device_name[0] != '\0') {
1196 QTAILQ_REMOVE(&bdrv_states, bs, list);
1197 }
1198 bs->device_name[0] = '\0';
1199 }
1200
1201 static void bdrv_rebind(BlockDriverState *bs)
1202 {
1203 if (bs->drv && bs->drv->bdrv_rebind) {
1204 bs->drv->bdrv_rebind(bs);
1205 }
1206 }
1207
1208 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1209 BlockDriverState *bs_src)
1210 {
1211 /* move some fields that need to stay attached to the device */
1212 bs_dest->open_flags = bs_src->open_flags;
1213
1214 /* dev info */
1215 bs_dest->dev_ops = bs_src->dev_ops;
1216 bs_dest->dev_opaque = bs_src->dev_opaque;
1217 bs_dest->dev = bs_src->dev;
1218 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1219 bs_dest->copy_on_read = bs_src->copy_on_read;
1220
1221 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1222
1223 /* i/o timing parameters */
1224 bs_dest->slice_time = bs_src->slice_time;
1225 bs_dest->slice_start = bs_src->slice_start;
1226 bs_dest->slice_end = bs_src->slice_end;
1227 bs_dest->io_limits = bs_src->io_limits;
1228 bs_dest->io_base = bs_src->io_base;
1229 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1230 bs_dest->block_timer = bs_src->block_timer;
1231 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1232
1233 /* r/w error */
1234 bs_dest->on_read_error = bs_src->on_read_error;
1235 bs_dest->on_write_error = bs_src->on_write_error;
1236
1237 /* i/o status */
1238 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1239 bs_dest->iostatus = bs_src->iostatus;
1240
1241 /* dirty bitmap */
1242 bs_dest->dirty_count = bs_src->dirty_count;
1243 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1244
1245 /* job */
1246 bs_dest->in_use = bs_src->in_use;
1247 bs_dest->job = bs_src->job;
1248
1249 /* keep the same entry in bdrv_states */
1250 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1251 bs_src->device_name);
1252 bs_dest->list = bs_src->list;
1253 }
1254
1255 /*
1256 * Swap bs contents for two image chains while they are live,
1257 * while keeping required fields on the BlockDriverState that is
1258 * actually attached to a device.
1259 *
1260 * This will modify the BlockDriverState fields, and swap contents
1261 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1262 *
1263 * bs_new is required to be anonymous.
1264 *
1265 * This function does not create any image files.
1266 */
1267 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1268 {
1269 BlockDriverState tmp;
1270
1271 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1272 assert(bs_new->device_name[0] == '\0');
1273 assert(bs_new->dirty_bitmap == NULL);
1274 assert(bs_new->job == NULL);
1275 assert(bs_new->dev == NULL);
1276 assert(bs_new->in_use == 0);
1277 assert(bs_new->io_limits_enabled == false);
1278 assert(bs_new->block_timer == NULL);
1279
1280 tmp = *bs_new;
1281 *bs_new = *bs_old;
1282 *bs_old = tmp;
1283
1284 /* there are some fields that should not be swapped, move them back */
1285 bdrv_move_feature_fields(&tmp, bs_old);
1286 bdrv_move_feature_fields(bs_old, bs_new);
1287 bdrv_move_feature_fields(bs_new, &tmp);
1288
1289 /* bs_new shouldn't be in bdrv_states even after the swap! */
1290 assert(bs_new->device_name[0] == '\0');
1291
1292 /* Check a few fields that should remain attached to the device */
1293 assert(bs_new->dev == NULL);
1294 assert(bs_new->job == NULL);
1295 assert(bs_new->in_use == 0);
1296 assert(bs_new->io_limits_enabled == false);
1297 assert(bs_new->block_timer == NULL);
1298
1299 bdrv_rebind(bs_new);
1300 bdrv_rebind(bs_old);
1301 }
1302
1303 /*
1304 * Add new bs contents at the top of an image chain while the chain is
1305 * live, while keeping required fields on the top layer.
1306 *
1307 * This will modify the BlockDriverState fields, and swap contents
1308 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1309 *
1310 * bs_new is required to be anonymous.
1311 *
1312 * This function does not create any image files.
1313 */
1314 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1315 {
1316 bdrv_swap(bs_new, bs_top);
1317
1318 /* The contents of 'tmp' will become bs_top, as we are
1319 * swapping bs_new and bs_top contents. */
1320 bs_top->backing_hd = bs_new;
1321 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1322 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1323 bs_new->filename);
1324 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1325 bs_new->drv ? bs_new->drv->format_name : "");
1326 }
1327
1328 void bdrv_delete(BlockDriverState *bs)
1329 {
1330 assert(!bs->dev);
1331 assert(!bs->job);
1332 assert(!bs->in_use);
1333
1334 /* remove from list, if necessary */
1335 bdrv_make_anon(bs);
1336
1337 bdrv_close(bs);
1338
1339 assert(bs != bs_snapshots);
1340 g_free(bs);
1341 }
1342
1343 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1344 /* TODO change to DeviceState *dev when all users are qdevified */
1345 {
1346 if (bs->dev) {
1347 return -EBUSY;
1348 }
1349 bs->dev = dev;
1350 bdrv_iostatus_reset(bs);
1351 return 0;
1352 }
1353
1354 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1355 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1356 {
1357 if (bdrv_attach_dev(bs, dev) < 0) {
1358 abort();
1359 }
1360 }
1361
1362 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1363 /* TODO change to DeviceState *dev when all users are qdevified */
1364 {
1365 assert(bs->dev == dev);
1366 bs->dev = NULL;
1367 bs->dev_ops = NULL;
1368 bs->dev_opaque = NULL;
1369 bs->buffer_alignment = 512;
1370 }
1371
1372 /* TODO change to return DeviceState * when all users are qdevified */
1373 void *bdrv_get_attached_dev(BlockDriverState *bs)
1374 {
1375 return bs->dev;
1376 }
1377
1378 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1379 void *opaque)
1380 {
1381 bs->dev_ops = ops;
1382 bs->dev_opaque = opaque;
1383 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1384 bs_snapshots = NULL;
1385 }
1386 }
1387
1388 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1389 BlockQMPEventAction action, int is_read)
1390 {
1391 QObject *data;
1392 const char *action_str;
1393
1394 switch (action) {
1395 case BDRV_ACTION_REPORT:
1396 action_str = "report";
1397 break;
1398 case BDRV_ACTION_IGNORE:
1399 action_str = "ignore";
1400 break;
1401 case BDRV_ACTION_STOP:
1402 action_str = "stop";
1403 break;
1404 default:
1405 abort();
1406 }
1407
1408 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1409 bdrv->device_name,
1410 action_str,
1411 is_read ? "read" : "write");
1412 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
1413
1414 qobject_decref(data);
1415 }
1416
1417 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1418 {
1419 QObject *data;
1420
1421 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1422 bdrv_get_device_name(bs), ejected);
1423 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1424
1425 qobject_decref(data);
1426 }
1427
1428 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1429 {
1430 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1431 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1432 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1433 if (tray_was_closed) {
1434 /* tray open */
1435 bdrv_emit_qmp_eject_event(bs, true);
1436 }
1437 if (load) {
1438 /* tray close */
1439 bdrv_emit_qmp_eject_event(bs, false);
1440 }
1441 }
1442 }
1443
1444 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1445 {
1446 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1447 }
1448
1449 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1450 {
1451 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1452 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1453 }
1454 }
1455
1456 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1457 {
1458 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1459 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1460 }
1461 return false;
1462 }
1463
1464 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1465 {
1466 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1467 bs->dev_ops->resize_cb(bs->dev_opaque);
1468 }
1469 }
1470
1471 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1472 {
1473 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1474 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1475 }
1476 return false;
1477 }
1478
1479 /*
1480 * Run consistency checks on an image
1481 *
1482 * Returns 0 if the check could be completed (it doesn't mean that the image is
1483 * free of errors) or -errno when an internal error occurred. The results of the
1484 * check are stored in res.
1485 */
1486 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1487 {
1488 if (bs->drv->bdrv_check == NULL) {
1489 return -ENOTSUP;
1490 }
1491
1492 memset(res, 0, sizeof(*res));
1493 return bs->drv->bdrv_check(bs, res, fix);
1494 }
1495
1496 #define COMMIT_BUF_SECTORS 2048
1497
1498 /* commit COW file into the raw image */
1499 int bdrv_commit(BlockDriverState *bs)
1500 {
1501 BlockDriver *drv = bs->drv;
1502 int64_t sector, total_sectors;
1503 int n, ro, open_flags;
1504 int ret = 0;
1505 uint8_t *buf;
1506 char filename[1024];
1507
1508 if (!drv)
1509 return -ENOMEDIUM;
1510
1511 if (!bs->backing_hd) {
1512 return -ENOTSUP;
1513 }
1514
1515 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1516 return -EBUSY;
1517 }
1518
1519 ro = bs->backing_hd->read_only;
1520 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1521 open_flags = bs->backing_hd->open_flags;
1522
1523 if (ro) {
1524 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1525 return -EACCES;
1526 }
1527 }
1528
1529 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1530 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1531
1532 for (sector = 0; sector < total_sectors; sector += n) {
1533 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1534
1535 if (bdrv_read(bs, sector, buf, n) != 0) {
1536 ret = -EIO;
1537 goto ro_cleanup;
1538 }
1539
1540 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1541 ret = -EIO;
1542 goto ro_cleanup;
1543 }
1544 }
1545 }
1546
1547 if (drv->bdrv_make_empty) {
1548 ret = drv->bdrv_make_empty(bs);
1549 bdrv_flush(bs);
1550 }
1551
1552 /*
1553 * Make sure all data we wrote to the backing device is actually
1554 * stable on disk.
1555 */
1556 if (bs->backing_hd)
1557 bdrv_flush(bs->backing_hd);
1558
1559 ro_cleanup:
1560 g_free(buf);
1561
1562 if (ro) {
1563 /* ignoring error return here */
1564 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1565 }
1566
1567 return ret;
1568 }
1569
1570 int bdrv_commit_all(void)
1571 {
1572 BlockDriverState *bs;
1573
1574 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1575 int ret = bdrv_commit(bs);
1576 if (ret < 0) {
1577 return ret;
1578 }
1579 }
1580 return 0;
1581 }
1582
1583 struct BdrvTrackedRequest {
1584 BlockDriverState *bs;
1585 int64_t sector_num;
1586 int nb_sectors;
1587 bool is_write;
1588 QLIST_ENTRY(BdrvTrackedRequest) list;
1589 Coroutine *co; /* owner, used for deadlock detection */
1590 CoQueue wait_queue; /* coroutines blocked on this request */
1591 };
1592
1593 /**
1594 * Remove an active request from the tracked requests list
1595 *
1596 * This function should be called when a tracked request is completing.
1597 */
1598 static void tracked_request_end(BdrvTrackedRequest *req)
1599 {
1600 QLIST_REMOVE(req, list);
1601 qemu_co_queue_restart_all(&req->wait_queue);
1602 }
1603
1604 /**
1605 * Add an active request to the tracked requests list
1606 */
1607 static void tracked_request_begin(BdrvTrackedRequest *req,
1608 BlockDriverState *bs,
1609 int64_t sector_num,
1610 int nb_sectors, bool is_write)
1611 {
1612 *req = (BdrvTrackedRequest){
1613 .bs = bs,
1614 .sector_num = sector_num,
1615 .nb_sectors = nb_sectors,
1616 .is_write = is_write,
1617 .co = qemu_coroutine_self(),
1618 };
1619
1620 qemu_co_queue_init(&req->wait_queue);
1621
1622 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1623 }
1624
1625 /**
1626 * Round a region to cluster boundaries
1627 */
1628 static void round_to_clusters(BlockDriverState *bs,
1629 int64_t sector_num, int nb_sectors,
1630 int64_t *cluster_sector_num,
1631 int *cluster_nb_sectors)
1632 {
1633 BlockDriverInfo bdi;
1634
1635 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1636 *cluster_sector_num = sector_num;
1637 *cluster_nb_sectors = nb_sectors;
1638 } else {
1639 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1640 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1641 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1642 nb_sectors, c);
1643 }
1644 }
1645
1646 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1647 int64_t sector_num, int nb_sectors) {
1648 /* aaaa bbbb */
1649 if (sector_num >= req->sector_num + req->nb_sectors) {
1650 return false;
1651 }
1652 /* bbbb aaaa */
1653 if (req->sector_num >= sector_num + nb_sectors) {
1654 return false;
1655 }
1656 return true;
1657 }
1658
1659 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1660 int64_t sector_num, int nb_sectors)
1661 {
1662 BdrvTrackedRequest *req;
1663 int64_t cluster_sector_num;
1664 int cluster_nb_sectors;
1665 bool retry;
1666
1667 /* If we touch the same cluster it counts as an overlap. This guarantees
1668 * that allocating writes will be serialized and not race with each other
1669 * for the same cluster. For example, in copy-on-read it ensures that the
1670 * CoR read and write operations are atomic and guest writes cannot
1671 * interleave between them.
1672 */
1673 round_to_clusters(bs, sector_num, nb_sectors,
1674 &cluster_sector_num, &cluster_nb_sectors);
1675
1676 do {
1677 retry = false;
1678 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1679 if (tracked_request_overlaps(req, cluster_sector_num,
1680 cluster_nb_sectors)) {
1681 /* Hitting this means there was a reentrant request, for
1682 * example, a block driver issuing nested requests. This must
1683 * never happen since it means deadlock.
1684 */
1685 assert(qemu_coroutine_self() != req->co);
1686
1687 qemu_co_queue_wait(&req->wait_queue);
1688 retry = true;
1689 break;
1690 }
1691 }
1692 } while (retry);
1693 }
1694
1695 /*
1696 * Return values:
1697 * 0 - success
1698 * -EINVAL - backing format specified, but no file
1699 * -ENOSPC - can't update the backing file because no space is left in the
1700 * image file header
1701 * -ENOTSUP - format driver doesn't support changing the backing file
1702 */
1703 int bdrv_change_backing_file(BlockDriverState *bs,
1704 const char *backing_file, const char *backing_fmt)
1705 {
1706 BlockDriver *drv = bs->drv;
1707 int ret;
1708
1709 /* Backing file format doesn't make sense without a backing file */
1710 if (backing_fmt && !backing_file) {
1711 return -EINVAL;
1712 }
1713
1714 if (drv->bdrv_change_backing_file != NULL) {
1715 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1716 } else {
1717 ret = -ENOTSUP;
1718 }
1719
1720 if (ret == 0) {
1721 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1722 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1723 }
1724 return ret;
1725 }
1726
1727 /*
1728 * Finds the image layer in the chain that has 'bs' as its backing file.
1729 *
1730 * active is the current topmost image.
1731 *
1732 * Returns NULL if bs is not found in active's image chain,
1733 * or if active == bs.
1734 */
1735 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1736 BlockDriverState *bs)
1737 {
1738 BlockDriverState *overlay = NULL;
1739 BlockDriverState *intermediate;
1740
1741 assert(active != NULL);
1742 assert(bs != NULL);
1743
1744 /* if bs is the same as active, then by definition it has no overlay
1745 */
1746 if (active == bs) {
1747 return NULL;
1748 }
1749
1750 intermediate = active;
1751 while (intermediate->backing_hd) {
1752 if (intermediate->backing_hd == bs) {
1753 overlay = intermediate;
1754 break;
1755 }
1756 intermediate = intermediate->backing_hd;
1757 }
1758
1759 return overlay;
1760 }
1761
1762 typedef struct BlkIntermediateStates {
1763 BlockDriverState *bs;
1764 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1765 } BlkIntermediateStates;
1766
1767
1768 /*
1769 * Drops images above 'base' up to and including 'top', and sets the image
1770 * above 'top' to have base as its backing file.
1771 *
1772 * Requires that the overlay to 'top' is opened r/w, so that the backing file
1773 * information in 'bs' can be properly updated.
1774 *
1775 * E.g., this will convert the following chain:
1776 * bottom <- base <- intermediate <- top <- active
1777 *
1778 * to
1779 *
1780 * bottom <- base <- active
1781 *
1782 * It is allowed for bottom==base, in which case it converts:
1783 *
1784 * base <- intermediate <- top <- active
1785 *
1786 * to
1787 *
1788 * base <- active
1789 *
1790 * Error conditions:
1791 * if active == top, that is considered an error
1792 *
1793 */
1794 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1795 BlockDriverState *base)
1796 {
1797 BlockDriverState *intermediate;
1798 BlockDriverState *base_bs = NULL;
1799 BlockDriverState *new_top_bs = NULL;
1800 BlkIntermediateStates *intermediate_state, *next;
1801 int ret = -EIO;
1802
1803 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1804 QSIMPLEQ_INIT(&states_to_delete);
1805
1806 if (!top->drv || !base->drv) {
1807 goto exit;
1808 }
1809
1810 new_top_bs = bdrv_find_overlay(active, top);
1811
1812 if (new_top_bs == NULL) {
1813 /* we could not find the image above 'top', this is an error */
1814 goto exit;
1815 }
1816
1817 /* special case of new_top_bs->backing_hd already pointing to base - nothing
1818 * to do, no intermediate images */
1819 if (new_top_bs->backing_hd == base) {
1820 ret = 0;
1821 goto exit;
1822 }
1823
1824 intermediate = top;
1825
1826 /* now we will go down through the list, and add each BDS we find
1827 * into our deletion queue, until we hit the 'base'
1828 */
1829 while (intermediate) {
1830 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1831 intermediate_state->bs = intermediate;
1832 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1833
1834 if (intermediate->backing_hd == base) {
1835 base_bs = intermediate->backing_hd;
1836 break;
1837 }
1838 intermediate = intermediate->backing_hd;
1839 }
1840 if (base_bs == NULL) {
1841 /* something went wrong, we did not end at the base. safely
1842 * unravel everything, and exit with error */
1843 goto exit;
1844 }
1845
1846 /* success - we can delete the intermediate states, and link top->base */
1847 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1848 base_bs->drv ? base_bs->drv->format_name : "");
1849 if (ret) {
1850 goto exit;
1851 }
1852 new_top_bs->backing_hd = base_bs;
1853
1854
1855 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1856 /* so that bdrv_close() does not recursively close the chain */
1857 intermediate_state->bs->backing_hd = NULL;
1858 bdrv_delete(intermediate_state->bs);
1859 }
1860 ret = 0;
1861
1862 exit:
1863 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1864 g_free(intermediate_state);
1865 }
1866 return ret;
1867 }
1868
1869
1870 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1871 size_t size)
1872 {
1873 int64_t len;
1874
1875 if (!bdrv_is_inserted(bs))
1876 return -ENOMEDIUM;
1877
1878 if (bs->growable)
1879 return 0;
1880
1881 len = bdrv_getlength(bs);
1882
1883 if (offset < 0)
1884 return -EIO;
1885
1886 if ((offset > len) || (len - offset < size))
1887 return -EIO;
1888
1889 return 0;
1890 }
1891
1892 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1893 int nb_sectors)
1894 {
1895 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1896 nb_sectors * BDRV_SECTOR_SIZE);
1897 }
1898
1899 typedef struct RwCo {
1900 BlockDriverState *bs;
1901 int64_t sector_num;
1902 int nb_sectors;
1903 QEMUIOVector *qiov;
1904 bool is_write;
1905 int ret;
1906 } RwCo;
1907
1908 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1909 {
1910 RwCo *rwco = opaque;
1911
1912 if (!rwco->is_write) {
1913 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1914 rwco->nb_sectors, rwco->qiov, 0);
1915 } else {
1916 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1917 rwco->nb_sectors, rwco->qiov, 0);
1918 }
1919 }
1920
1921 /*
1922 * Process a synchronous request using coroutines
1923 */
1924 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1925 int nb_sectors, bool is_write)
1926 {
1927 QEMUIOVector qiov;
1928 struct iovec iov = {
1929 .iov_base = (void *)buf,
1930 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1931 };
1932 Coroutine *co;
1933 RwCo rwco = {
1934 .bs = bs,
1935 .sector_num = sector_num,
1936 .nb_sectors = nb_sectors,
1937 .qiov = &qiov,
1938 .is_write = is_write,
1939 .ret = NOT_DONE,
1940 };
1941
1942 qemu_iovec_init_external(&qiov, &iov, 1);
1943
1944 /**
1945 * In sync call context, when the vcpu is blocked, this throttling timer
1946 * will not fire; so the I/O throttling function has to be disabled here
1947 * if it has been enabled.
1948 */
1949 if (bs->io_limits_enabled) {
1950 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1951 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1952 bdrv_io_limits_disable(bs);
1953 }
1954
1955 if (qemu_in_coroutine()) {
1956 /* Fast-path if already in coroutine context */
1957 bdrv_rw_co_entry(&rwco);
1958 } else {
1959 co = qemu_coroutine_create(bdrv_rw_co_entry);
1960 qemu_coroutine_enter(co, &rwco);
1961 while (rwco.ret == NOT_DONE) {
1962 qemu_aio_wait();
1963 }
1964 }
1965 return rwco.ret;
1966 }
1967
1968 /* return < 0 if error. See bdrv_write() for the return codes */
1969 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1970 uint8_t *buf, int nb_sectors)
1971 {
1972 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1973 }
1974
1975 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
1976 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
1977 uint8_t *buf, int nb_sectors)
1978 {
1979 bool enabled;
1980 int ret;
1981
1982 enabled = bs->io_limits_enabled;
1983 bs->io_limits_enabled = false;
1984 ret = bdrv_read(bs, 0, buf, 1);
1985 bs->io_limits_enabled = enabled;
1986 return ret;
1987 }
1988
1989 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
1990
1991 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1992 int nb_sectors, int dirty)
1993 {
1994 int64_t start, end;
1995 unsigned long val, idx, bit;
1996
1997 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1998 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1999
2000 for (; start <= end; start++) {
2001 idx = start / BITS_PER_LONG;
2002 bit = start % BITS_PER_LONG;
2003 val = bs->dirty_bitmap[idx];
2004 if (dirty) {
2005 if (!(val & (1UL << bit))) {
2006 bs->dirty_count++;
2007 val |= 1UL << bit;
2008 }
2009 } else {
2010 if (val & (1UL << bit)) {
2011 bs->dirty_count--;
2012 val &= ~(1UL << bit);
2013 }
2014 }
2015 bs->dirty_bitmap[idx] = val;
2016 }
2017 }
2018
2019 /* Return < 0 if error. Important errors are:
2020 -EIO generic I/O error (may happen for all errors)
2021 -ENOMEDIUM No media inserted.
2022 -EINVAL Invalid sector number or nb_sectors
2023 -EACCES Trying to write a read-only device
2024 */
2025 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2026 const uint8_t *buf, int nb_sectors)
2027 {
2028 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2029 }
2030
2031 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2032 void *buf, int count1)
2033 {
2034 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2035 int len, nb_sectors, count;
2036 int64_t sector_num;
2037 int ret;
2038
2039 count = count1;
2040 /* first read to align to sector start */
2041 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2042 if (len > count)
2043 len = count;
2044 sector_num = offset >> BDRV_SECTOR_BITS;
2045 if (len > 0) {
2046 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2047 return ret;
2048 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2049 count -= len;
2050 if (count == 0)
2051 return count1;
2052 sector_num++;
2053 buf += len;
2054 }
2055
2056 /* read the sectors "in place" */
2057 nb_sectors = count >> BDRV_SECTOR_BITS;
2058 if (nb_sectors > 0) {
2059 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2060 return ret;
2061 sector_num += nb_sectors;
2062 len = nb_sectors << BDRV_SECTOR_BITS;
2063 buf += len;
2064 count -= len;
2065 }
2066
2067 /* add data from the last sector */
2068 if (count > 0) {
2069 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2070 return ret;
2071 memcpy(buf, tmp_buf, count);
2072 }
2073 return count1;
2074 }
2075
2076 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2077 const void *buf, int count1)
2078 {
2079 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2080 int len, nb_sectors, count;
2081 int64_t sector_num;
2082 int ret;
2083
2084 count = count1;
2085 /* first write to align to sector start */
2086 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2087 if (len > count)
2088 len = count;
2089 sector_num = offset >> BDRV_SECTOR_BITS;
2090 if (len > 0) {
2091 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2092 return ret;
2093 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2094 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2095 return ret;
2096 count -= len;
2097 if (count == 0)
2098 return count1;
2099 sector_num++;
2100 buf += len;
2101 }
2102
2103 /* write the sectors "in place" */
2104 nb_sectors = count >> BDRV_SECTOR_BITS;
2105 if (nb_sectors > 0) {
2106 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2107 return ret;
2108 sector_num += nb_sectors;
2109 len = nb_sectors << BDRV_SECTOR_BITS;
2110 buf += len;
2111 count -= len;
2112 }
2113
2114 /* add data from the last sector */
2115 if (count > 0) {
2116 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2117 return ret;
2118 memcpy(tmp_buf, buf, count);
2119 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2120 return ret;
2121 }
2122 return count1;
2123 }
2124
2125 /*
2126 * Writes to the file and ensures that no writes are reordered across this
2127 * request (acts as a barrier)
2128 *
2129 * Returns 0 on success, -errno in error cases.
2130 */
2131 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2132 const void *buf, int count)
2133 {
2134 int ret;
2135
2136 ret = bdrv_pwrite(bs, offset, buf, count);
2137 if (ret < 0) {
2138 return ret;
2139 }
2140
2141 /* No flush needed for cache modes that already do it */
2142 if (bs->enable_write_cache) {
2143 bdrv_flush(bs);
2144 }
2145
2146 return 0;
2147 }
2148
2149 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2150 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2151 {
2152 /* Perform I/O through a temporary buffer so that users who scribble over
2153 * their read buffer while the operation is in progress do not end up
2154 * modifying the image file. This is critical for zero-copy guest I/O
2155 * where anything might happen inside guest memory.
2156 */
2157 void *bounce_buffer;
2158
2159 BlockDriver *drv = bs->drv;
2160 struct iovec iov;
2161 QEMUIOVector bounce_qiov;
2162 int64_t cluster_sector_num;
2163 int cluster_nb_sectors;
2164 size_t skip_bytes;
2165 int ret;
2166
2167 /* Cover entire cluster so no additional backing file I/O is required when
2168 * allocating cluster in the image file.
2169 */
2170 round_to_clusters(bs, sector_num, nb_sectors,
2171 &cluster_sector_num, &cluster_nb_sectors);
2172
2173 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2174 cluster_sector_num, cluster_nb_sectors);
2175
2176 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2177 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2178 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2179
2180 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2181 &bounce_qiov);
2182 if (ret < 0) {
2183 goto err;
2184 }
2185
2186 if (drv->bdrv_co_write_zeroes &&
2187 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2188 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2189 cluster_nb_sectors);
2190 } else {
2191 /* This does not change the data on the disk, it is not necessary
2192 * to flush even in cache=writethrough mode.
2193 */
2194 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2195 &bounce_qiov);
2196 }
2197
2198 if (ret < 0) {
2199 /* It might be okay to ignore write errors for guest requests. If this
2200 * is a deliberate copy-on-read then we don't want to ignore the error.
2201 * Simply report it in all cases.
2202 */
2203 goto err;
2204 }
2205
2206 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2207 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2208 nb_sectors * BDRV_SECTOR_SIZE);
2209
2210 err:
2211 qemu_vfree(bounce_buffer);
2212 return ret;
2213 }
2214
2215 /*
2216 * Handle a read request in coroutine context
2217 */
2218 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2219 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2220 BdrvRequestFlags flags)
2221 {
2222 BlockDriver *drv = bs->drv;
2223 BdrvTrackedRequest req;
2224 int ret;
2225
2226 if (!drv) {
2227 return -ENOMEDIUM;
2228 }
2229 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2230 return -EIO;
2231 }
2232
2233 /* throttling disk read I/O */
2234 if (bs->io_limits_enabled) {
2235 bdrv_io_limits_intercept(bs, false, nb_sectors);
2236 }
2237
2238 if (bs->copy_on_read) {
2239 flags |= BDRV_REQ_COPY_ON_READ;
2240 }
2241 if (flags & BDRV_REQ_COPY_ON_READ) {
2242 bs->copy_on_read_in_flight++;
2243 }
2244
2245 if (bs->copy_on_read_in_flight) {
2246 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2247 }
2248
2249 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2250
2251 if (flags & BDRV_REQ_COPY_ON_READ) {
2252 int pnum;
2253
2254 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2255 if (ret < 0) {
2256 goto out;
2257 }
2258
2259 if (!ret || pnum != nb_sectors) {
2260 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2261 goto out;
2262 }
2263 }
2264
2265 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2266
2267 out:
2268 tracked_request_end(&req);
2269
2270 if (flags & BDRV_REQ_COPY_ON_READ) {
2271 bs->copy_on_read_in_flight--;
2272 }
2273
2274 return ret;
2275 }
2276
2277 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2278 int nb_sectors, QEMUIOVector *qiov)
2279 {
2280 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2281
2282 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2283 }
2284
2285 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2286 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2287 {
2288 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2289
2290 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2291 BDRV_REQ_COPY_ON_READ);
2292 }
2293
2294 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2295 int64_t sector_num, int nb_sectors)
2296 {
2297 BlockDriver *drv = bs->drv;
2298 QEMUIOVector qiov;
2299 struct iovec iov;
2300 int ret;
2301
2302 /* TODO Emulate only part of misaligned requests instead of letting block
2303 * drivers return -ENOTSUP and emulate everything */
2304
2305 /* First try the efficient write zeroes operation */
2306 if (drv->bdrv_co_write_zeroes) {
2307 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2308 if (ret != -ENOTSUP) {
2309 return ret;
2310 }
2311 }
2312
2313 /* Fall back to bounce buffer if write zeroes is unsupported */
2314 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2315 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2316 memset(iov.iov_base, 0, iov.iov_len);
2317 qemu_iovec_init_external(&qiov, &iov, 1);
2318
2319 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2320
2321 qemu_vfree(iov.iov_base);
2322 return ret;
2323 }
2324
2325 /*
2326 * Handle a write request in coroutine context
2327 */
2328 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2329 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2330 BdrvRequestFlags flags)
2331 {
2332 BlockDriver *drv = bs->drv;
2333 BdrvTrackedRequest req;
2334 int ret;
2335
2336 if (!bs->drv) {
2337 return -ENOMEDIUM;
2338 }
2339 if (bs->read_only) {
2340 return -EACCES;
2341 }
2342 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2343 return -EIO;
2344 }
2345
2346 /* throttling disk write I/O */
2347 if (bs->io_limits_enabled) {
2348 bdrv_io_limits_intercept(bs, true, nb_sectors);
2349 }
2350
2351 if (bs->copy_on_read_in_flight) {
2352 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2353 }
2354
2355 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2356
2357 if (flags & BDRV_REQ_ZERO_WRITE) {
2358 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2359 } else {
2360 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2361 }
2362
2363 if (ret == 0 && !bs->enable_write_cache) {
2364 ret = bdrv_co_flush(bs);
2365 }
2366
2367 if (bs->dirty_bitmap) {
2368 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2369 }
2370
2371 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2372 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2373 }
2374
2375 tracked_request_end(&req);
2376
2377 return ret;
2378 }
2379
2380 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2381 int nb_sectors, QEMUIOVector *qiov)
2382 {
2383 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2384
2385 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2386 }
2387
2388 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2389 int64_t sector_num, int nb_sectors)
2390 {
2391 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2392
2393 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2394 BDRV_REQ_ZERO_WRITE);
2395 }
2396
2397 /**
2398 * Truncate file to 'offset' bytes (needed only for file protocols)
2399 */
2400 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2401 {
2402 BlockDriver *drv = bs->drv;
2403 int ret;
2404 if (!drv)
2405 return -ENOMEDIUM;
2406 if (!drv->bdrv_truncate)
2407 return -ENOTSUP;
2408 if (bs->read_only)
2409 return -EACCES;
2410 if (bdrv_in_use(bs))
2411 return -EBUSY;
2412 ret = drv->bdrv_truncate(bs, offset);
2413 if (ret == 0) {
2414 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2415 bdrv_dev_resize_cb(bs);
2416 }
2417 return ret;
2418 }
2419
2420 /**
2421 * Length of a allocated file in bytes. Sparse files are counted by actual
2422 * allocated space. Return < 0 if error or unknown.
2423 */
2424 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2425 {
2426 BlockDriver *drv = bs->drv;
2427 if (!drv) {
2428 return -ENOMEDIUM;
2429 }
2430 if (drv->bdrv_get_allocated_file_size) {
2431 return drv->bdrv_get_allocated_file_size(bs);
2432 }
2433 if (bs->file) {
2434 return bdrv_get_allocated_file_size(bs->file);
2435 }
2436 return -ENOTSUP;
2437 }
2438
2439 /**
2440 * Length of a file in bytes. Return < 0 if error or unknown.
2441 */
2442 int64_t bdrv_getlength(BlockDriverState *bs)
2443 {
2444 BlockDriver *drv = bs->drv;
2445 if (!drv)
2446 return -ENOMEDIUM;
2447
2448 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2449 if (drv->bdrv_getlength) {
2450 return drv->bdrv_getlength(bs);
2451 }
2452 }
2453 return bs->total_sectors * BDRV_SECTOR_SIZE;
2454 }
2455
2456 /* return 0 as number of sectors if no device present or error */
2457 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2458 {
2459 int64_t length;
2460 length = bdrv_getlength(bs);
2461 if (length < 0)
2462 length = 0;
2463 else
2464 length = length >> BDRV_SECTOR_BITS;
2465 *nb_sectors_ptr = length;
2466 }
2467
2468 /* throttling disk io limits */
2469 void bdrv_set_io_limits(BlockDriverState *bs,
2470 BlockIOLimit *io_limits)
2471 {
2472 bs->io_limits = *io_limits;
2473 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2474 }
2475
2476 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2477 BlockErrorAction on_write_error)
2478 {
2479 bs->on_read_error = on_read_error;
2480 bs->on_write_error = on_write_error;
2481 }
2482
2483 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2484 {
2485 return is_read ? bs->on_read_error : bs->on_write_error;
2486 }
2487
2488 int bdrv_is_read_only(BlockDriverState *bs)
2489 {
2490 return bs->read_only;
2491 }
2492
2493 int bdrv_is_sg(BlockDriverState *bs)
2494 {
2495 return bs->sg;
2496 }
2497
2498 int bdrv_enable_write_cache(BlockDriverState *bs)
2499 {
2500 return bs->enable_write_cache;
2501 }
2502
2503 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2504 {
2505 bs->enable_write_cache = wce;
2506
2507 /* so a reopen() will preserve wce */
2508 if (wce) {
2509 bs->open_flags |= BDRV_O_CACHE_WB;
2510 } else {
2511 bs->open_flags &= ~BDRV_O_CACHE_WB;
2512 }
2513 }
2514
2515 int bdrv_is_encrypted(BlockDriverState *bs)
2516 {
2517 if (bs->backing_hd && bs->backing_hd->encrypted)
2518 return 1;
2519 return bs->encrypted;
2520 }
2521
2522 int bdrv_key_required(BlockDriverState *bs)
2523 {
2524 BlockDriverState *backing_hd = bs->backing_hd;
2525
2526 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2527 return 1;
2528 return (bs->encrypted && !bs->valid_key);
2529 }
2530
2531 int bdrv_set_key(BlockDriverState *bs, const char *key)
2532 {
2533 int ret;
2534 if (bs->backing_hd && bs->backing_hd->encrypted) {
2535 ret = bdrv_set_key(bs->backing_hd, key);
2536 if (ret < 0)
2537 return ret;
2538 if (!bs->encrypted)
2539 return 0;
2540 }
2541 if (!bs->encrypted) {
2542 return -EINVAL;
2543 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2544 return -ENOMEDIUM;
2545 }
2546 ret = bs->drv->bdrv_set_key(bs, key);
2547 if (ret < 0) {
2548 bs->valid_key = 0;
2549 } else if (!bs->valid_key) {
2550 bs->valid_key = 1;
2551 /* call the change callback now, we skipped it on open */
2552 bdrv_dev_change_media_cb(bs, true);
2553 }
2554 return ret;
2555 }
2556
2557 const char *bdrv_get_format_name(BlockDriverState *bs)
2558 {
2559 return bs->drv ? bs->drv->format_name : NULL;
2560 }
2561
2562 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2563 void *opaque)
2564 {
2565 BlockDriver *drv;
2566
2567 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2568 it(opaque, drv->format_name);
2569 }
2570 }
2571
2572 BlockDriverState *bdrv_find(const char *name)
2573 {
2574 BlockDriverState *bs;
2575
2576 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2577 if (!strcmp(name, bs->device_name)) {
2578 return bs;
2579 }
2580 }
2581 return NULL;
2582 }
2583
2584 BlockDriverState *bdrv_next(BlockDriverState *bs)
2585 {
2586 if (!bs) {
2587 return QTAILQ_FIRST(&bdrv_states);
2588 }
2589 return QTAILQ_NEXT(bs, list);
2590 }
2591
2592 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2593 {
2594 BlockDriverState *bs;
2595
2596 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2597 it(opaque, bs);
2598 }
2599 }
2600
2601 const char *bdrv_get_device_name(BlockDriverState *bs)
2602 {
2603 return bs->device_name;
2604 }
2605
2606 int bdrv_get_flags(BlockDriverState *bs)
2607 {
2608 return bs->open_flags;
2609 }
2610
2611 void bdrv_flush_all(void)
2612 {
2613 BlockDriverState *bs;
2614
2615 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2616 bdrv_flush(bs);
2617 }
2618 }
2619
2620 int bdrv_has_zero_init(BlockDriverState *bs)
2621 {
2622 assert(bs->drv);
2623
2624 if (bs->drv->bdrv_has_zero_init) {
2625 return bs->drv->bdrv_has_zero_init(bs);
2626 }
2627
2628 return 1;
2629 }
2630
2631 typedef struct BdrvCoIsAllocatedData {
2632 BlockDriverState *bs;
2633 int64_t sector_num;
2634 int nb_sectors;
2635 int *pnum;
2636 int ret;
2637 bool done;
2638 } BdrvCoIsAllocatedData;
2639
2640 /*
2641 * Returns true iff the specified sector is present in the disk image. Drivers
2642 * not implementing the functionality are assumed to not support backing files,
2643 * hence all their sectors are reported as allocated.
2644 *
2645 * If 'sector_num' is beyond the end of the disk image the return value is 0
2646 * and 'pnum' is set to 0.
2647 *
2648 * 'pnum' is set to the number of sectors (including and immediately following
2649 * the specified sector) that are known to be in the same
2650 * allocated/unallocated state.
2651 *
2652 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2653 * beyond the end of the disk image it will be clamped.
2654 */
2655 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2656 int nb_sectors, int *pnum)
2657 {
2658 int64_t n;
2659
2660 if (sector_num >= bs->total_sectors) {
2661 *pnum = 0;
2662 return 0;
2663 }
2664
2665 n = bs->total_sectors - sector_num;
2666 if (n < nb_sectors) {
2667 nb_sectors = n;
2668 }
2669
2670 if (!bs->drv->bdrv_co_is_allocated) {
2671 *pnum = nb_sectors;
2672 return 1;
2673 }
2674
2675 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2676 }
2677
2678 /* Coroutine wrapper for bdrv_is_allocated() */
2679 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2680 {
2681 BdrvCoIsAllocatedData *data = opaque;
2682 BlockDriverState *bs = data->bs;
2683
2684 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2685 data->pnum);
2686 data->done = true;
2687 }
2688
2689 /*
2690 * Synchronous wrapper around bdrv_co_is_allocated().
2691 *
2692 * See bdrv_co_is_allocated() for details.
2693 */
2694 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2695 int *pnum)
2696 {
2697 Coroutine *co;
2698 BdrvCoIsAllocatedData data = {
2699 .bs = bs,
2700 .sector_num = sector_num,
2701 .nb_sectors = nb_sectors,
2702 .pnum = pnum,
2703 .done = false,
2704 };
2705
2706 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2707 qemu_coroutine_enter(co, &data);
2708 while (!data.done) {
2709 qemu_aio_wait();
2710 }
2711 return data.ret;
2712 }
2713
2714 /*
2715 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2716 *
2717 * Return true if the given sector is allocated in any image between
2718 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2719 * sector is allocated in any image of the chain. Return false otherwise.
2720 *
2721 * 'pnum' is set to the number of sectors (including and immediately following
2722 * the specified sector) that are known to be in the same
2723 * allocated/unallocated state.
2724 *
2725 */
2726 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2727 BlockDriverState *base,
2728 int64_t sector_num,
2729 int nb_sectors, int *pnum)
2730 {
2731 BlockDriverState *intermediate;
2732 int ret, n = nb_sectors;
2733
2734 intermediate = top;
2735 while (intermediate && intermediate != base) {
2736 int pnum_inter;
2737 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2738 &pnum_inter);
2739 if (ret < 0) {
2740 return ret;
2741 } else if (ret) {
2742 *pnum = pnum_inter;
2743 return 1;
2744 }
2745
2746 /*
2747 * [sector_num, nb_sectors] is unallocated on top but intermediate
2748 * might have
2749 *
2750 * [sector_num+x, nr_sectors] allocated.
2751 */
2752 if (n > pnum_inter) {
2753 n = pnum_inter;
2754 }
2755
2756 intermediate = intermediate->backing_hd;
2757 }
2758
2759 *pnum = n;
2760 return 0;
2761 }
2762
2763 BlockInfoList *qmp_query_block(Error **errp)
2764 {
2765 BlockInfoList *head = NULL, *cur_item = NULL;
2766 BlockDriverState *bs;
2767
2768 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2769 BlockInfoList *info = g_malloc0(sizeof(*info));
2770
2771 info->value = g_malloc0(sizeof(*info->value));
2772 info->value->device = g_strdup(bs->device_name);
2773 info->value->type = g_strdup("unknown");
2774 info->value->locked = bdrv_dev_is_medium_locked(bs);
2775 info->value->removable = bdrv_dev_has_removable_media(bs);
2776
2777 if (bdrv_dev_has_removable_media(bs)) {
2778 info->value->has_tray_open = true;
2779 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2780 }
2781
2782 if (bdrv_iostatus_is_enabled(bs)) {
2783 info->value->has_io_status = true;
2784 info->value->io_status = bs->iostatus;
2785 }
2786
2787 if (bs->drv) {
2788 info->value->has_inserted = true;
2789 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2790 info->value->inserted->file = g_strdup(bs->filename);
2791 info->value->inserted->ro = bs->read_only;
2792 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2793 info->value->inserted->encrypted = bs->encrypted;
2794 info->value->inserted->encryption_key_missing = bdrv_key_required(bs);
2795 if (bs->backing_file[0]) {
2796 info->value->inserted->has_backing_file = true;
2797 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2798 }
2799
2800 info->value->inserted->backing_file_depth =
2801 bdrv_get_backing_file_depth(bs);
2802
2803 if (bs->io_limits_enabled) {
2804 info->value->inserted->bps =
2805 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2806 info->value->inserted->bps_rd =
2807 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2808 info->value->inserted->bps_wr =
2809 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2810 info->value->inserted->iops =
2811 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2812 info->value->inserted->iops_rd =
2813 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2814 info->value->inserted->iops_wr =
2815 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2816 }
2817 }
2818
2819 /* XXX: waiting for the qapi to support GSList */
2820 if (!cur_item) {
2821 head = cur_item = info;
2822 } else {
2823 cur_item->next = info;
2824 cur_item = info;
2825 }
2826 }
2827
2828 return head;
2829 }
2830
2831 /* Consider exposing this as a full fledged QMP command */
2832 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2833 {
2834 BlockStats *s;
2835
2836 s = g_malloc0(sizeof(*s));
2837
2838 if (bs->device_name[0]) {
2839 s->has_device = true;
2840 s->device = g_strdup(bs->device_name);
2841 }
2842
2843 s->stats = g_malloc0(sizeof(*s->stats));
2844 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2845 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2846 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2847 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2848 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2849 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2850 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2851 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2852 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2853
2854 if (bs->file) {
2855 s->has_parent = true;
2856 s->parent = qmp_query_blockstat(bs->file, NULL);
2857 }
2858
2859 return s;
2860 }
2861
2862 BlockStatsList *qmp_query_blockstats(Error **errp)
2863 {
2864 BlockStatsList *head = NULL, *cur_item = NULL;
2865 BlockDriverState *bs;
2866
2867 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2868 BlockStatsList *info = g_malloc0(sizeof(*info));
2869 info->value = qmp_query_blockstat(bs, NULL);
2870
2871 /* XXX: waiting for the qapi to support GSList */
2872 if (!cur_item) {
2873 head = cur_item = info;
2874 } else {
2875 cur_item->next = info;
2876 cur_item = info;
2877 }
2878 }
2879
2880 return head;
2881 }
2882
2883 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2884 {
2885 if (bs->backing_hd && bs->backing_hd->encrypted)
2886 return bs->backing_file;
2887 else if (bs->encrypted)
2888 return bs->filename;
2889 else
2890 return NULL;
2891 }
2892
2893 void bdrv_get_backing_filename(BlockDriverState *bs,
2894 char *filename, int filename_size)
2895 {
2896 pstrcpy(filename, filename_size, bs->backing_file);
2897 }
2898
2899 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2900 const uint8_t *buf, int nb_sectors)
2901 {
2902 BlockDriver *drv = bs->drv;
2903 if (!drv)
2904 return -ENOMEDIUM;
2905 if (!drv->bdrv_write_compressed)
2906 return -ENOTSUP;
2907 if (bdrv_check_request(bs, sector_num, nb_sectors))
2908 return -EIO;
2909
2910 if (bs->dirty_bitmap) {
2911 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2912 }
2913
2914 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2915 }
2916
2917 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2918 {
2919 BlockDriver *drv = bs->drv;
2920 if (!drv)
2921 return -ENOMEDIUM;
2922 if (!drv->bdrv_get_info)
2923 return -ENOTSUP;
2924 memset(bdi, 0, sizeof(*bdi));
2925 return drv->bdrv_get_info(bs, bdi);
2926 }
2927
2928 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2929 int64_t pos, int size)
2930 {
2931 BlockDriver *drv = bs->drv;
2932 if (!drv)
2933 return -ENOMEDIUM;
2934 if (drv->bdrv_save_vmstate)
2935 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2936 if (bs->file)
2937 return bdrv_save_vmstate(bs->file, buf, pos, size);
2938 return -ENOTSUP;
2939 }
2940
2941 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2942 int64_t pos, int size)
2943 {
2944 BlockDriver *drv = bs->drv;
2945 if (!drv)
2946 return -ENOMEDIUM;
2947 if (drv->bdrv_load_vmstate)
2948 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2949 if (bs->file)
2950 return bdrv_load_vmstate(bs->file, buf, pos, size);
2951 return -ENOTSUP;
2952 }
2953
2954 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2955 {
2956 BlockDriver *drv = bs->drv;
2957
2958 if (!drv || !drv->bdrv_debug_event) {
2959 return;
2960 }
2961
2962 drv->bdrv_debug_event(bs, event);
2963
2964 }
2965
2966 /**************************************************************/
2967 /* handling of snapshots */
2968
2969 int bdrv_can_snapshot(BlockDriverState *bs)
2970 {
2971 BlockDriver *drv = bs->drv;
2972 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2973 return 0;
2974 }
2975
2976 if (!drv->bdrv_snapshot_create) {
2977 if (bs->file != NULL) {
2978 return bdrv_can_snapshot(bs->file);
2979 }
2980 return 0;
2981 }
2982
2983 return 1;
2984 }
2985
2986 int bdrv_is_snapshot(BlockDriverState *bs)
2987 {
2988 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2989 }
2990
2991 BlockDriverState *bdrv_snapshots(void)
2992 {
2993 BlockDriverState *bs;
2994
2995 if (bs_snapshots) {
2996 return bs_snapshots;
2997 }
2998
2999 bs = NULL;
3000 while ((bs = bdrv_next(bs))) {
3001 if (bdrv_can_snapshot(bs)) {
3002 bs_snapshots = bs;
3003 return bs;
3004 }
3005 }
3006 return NULL;
3007 }
3008
3009 int bdrv_snapshot_create(BlockDriverState *bs,
3010 QEMUSnapshotInfo *sn_info)
3011 {
3012 BlockDriver *drv = bs->drv;
3013 if (!drv)
3014 return -ENOMEDIUM;
3015 if (drv->bdrv_snapshot_create)
3016 return drv->bdrv_snapshot_create(bs, sn_info);
3017 if (bs->file)
3018 return bdrv_snapshot_create(bs->file, sn_info);
3019 return -ENOTSUP;
3020 }
3021
3022 int bdrv_snapshot_goto(BlockDriverState *bs,
3023 const char *snapshot_id)
3024 {
3025 BlockDriver *drv = bs->drv;
3026 int ret, open_ret;
3027
3028 if (!drv)
3029 return -ENOMEDIUM;
3030 if (drv->bdrv_snapshot_goto)
3031 return drv->bdrv_snapshot_goto(bs, snapshot_id);
3032
3033 if (bs->file) {
3034 drv->bdrv_close(bs);
3035 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3036 open_ret = drv->bdrv_open(bs, bs->open_flags);
3037 if (open_ret < 0) {
3038 bdrv_delete(bs->file);
3039 bs->drv = NULL;
3040 return open_ret;
3041 }
3042 return ret;
3043 }
3044
3045 return -ENOTSUP;
3046 }
3047
3048 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3049 {
3050 BlockDriver *drv = bs->drv;
3051 if (!drv)
3052 return -ENOMEDIUM;
3053 if (drv->bdrv_snapshot_delete)
3054 return drv->bdrv_snapshot_delete(bs, snapshot_id);
3055 if (bs->file)
3056 return bdrv_snapshot_delete(bs->file, snapshot_id);
3057 return -ENOTSUP;
3058 }
3059
3060 int bdrv_snapshot_list(BlockDriverState *bs,
3061 QEMUSnapshotInfo **psn_info)
3062 {
3063 BlockDriver *drv = bs->drv;
3064 if (!drv)
3065 return -ENOMEDIUM;
3066 if (drv->bdrv_snapshot_list)
3067 return drv->bdrv_snapshot_list(bs, psn_info);
3068 if (bs->file)
3069 return bdrv_snapshot_list(bs->file, psn_info);
3070 return -ENOTSUP;
3071 }
3072
3073 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3074 const char *snapshot_name)
3075 {
3076 BlockDriver *drv = bs->drv;
3077 if (!drv) {
3078 return -ENOMEDIUM;
3079 }
3080 if (!bs->read_only) {
3081 return -EINVAL;
3082 }
3083 if (drv->bdrv_snapshot_load_tmp) {
3084 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3085 }
3086 return -ENOTSUP;
3087 }
3088
3089 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3090 const char *backing_file)
3091 {
3092 if (!bs->drv) {
3093 return NULL;
3094 }
3095
3096 if (bs->backing_hd) {
3097 if (strcmp(bs->backing_file, backing_file) == 0) {
3098 return bs->backing_hd;
3099 } else {
3100 return bdrv_find_backing_image(bs->backing_hd, backing_file);
3101 }
3102 }
3103
3104 return NULL;
3105 }
3106
3107 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3108 {
3109 if (!bs->drv) {
3110 return 0;
3111 }
3112
3113 if (!bs->backing_hd) {
3114 return 0;
3115 }
3116
3117 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3118 }
3119
3120 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3121 {
3122 BlockDriverState *curr_bs = NULL;
3123
3124 if (!bs) {
3125 return NULL;
3126 }
3127
3128 curr_bs = bs;
3129
3130 while (curr_bs->backing_hd) {
3131 curr_bs = curr_bs->backing_hd;
3132 }
3133 return curr_bs;
3134 }
3135
3136 #define NB_SUFFIXES 4
3137
3138 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3139 {
3140 static const char suffixes[NB_SUFFIXES] = "KMGT";
3141 int64_t base;
3142 int i;
3143
3144 if (size <= 999) {
3145 snprintf(buf, buf_size, "%" PRId64, size);
3146 } else {
3147 base = 1024;
3148 for(i = 0; i < NB_SUFFIXES; i++) {
3149 if (size < (10 * base)) {
3150 snprintf(buf, buf_size, "%0.1f%c",
3151 (double)size / base,
3152 suffixes[i]);
3153 break;
3154 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3155 snprintf(buf, buf_size, "%" PRId64 "%c",
3156 ((size + (base >> 1)) / base),
3157 suffixes[i]);
3158 break;
3159 }
3160 base = base * 1024;
3161 }
3162 }
3163 return buf;
3164 }
3165
3166 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3167 {
3168 char buf1[128], date_buf[128], clock_buf[128];
3169 #ifdef _WIN32
3170 struct tm *ptm;
3171 #else
3172 struct tm tm;
3173 #endif
3174 time_t ti;
3175 int64_t secs;
3176
3177 if (!sn) {
3178 snprintf(buf, buf_size,
3179 "%-10s%-20s%7s%20s%15s",
3180 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3181 } else {
3182 ti = sn->date_sec;
3183 #ifdef _WIN32
3184 ptm = localtime(&ti);
3185 strftime(date_buf, sizeof(date_buf),
3186 "%Y-%m-%d %H:%M:%S", ptm);
3187 #else
3188 localtime_r(&ti, &tm);
3189 strftime(date_buf, sizeof(date_buf),
3190 "%Y-%m-%d %H:%M:%S", &tm);
3191 #endif
3192 secs = sn->vm_clock_nsec / 1000000000;
3193 snprintf(clock_buf, sizeof(clock_buf),
3194 "%02d:%02d:%02d.%03d",
3195 (int)(secs / 3600),
3196 (int)((secs / 60) % 60),
3197 (int)(secs % 60),
3198 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3199 snprintf(buf, buf_size,
3200 "%-10s%-20s%7s%20s%15s",
3201 sn->id_str, sn->name,
3202 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3203 date_buf,
3204 clock_buf);
3205 }
3206 return buf;
3207 }
3208
3209 /**************************************************************/
3210 /* async I/Os */
3211
3212 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3213 QEMUIOVector *qiov, int nb_sectors,
3214 BlockDriverCompletionFunc *cb, void *opaque)
3215 {
3216 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3217
3218 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3219 cb, opaque, false);
3220 }
3221
3222 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3223 QEMUIOVector *qiov, int nb_sectors,
3224 BlockDriverCompletionFunc *cb, void *opaque)
3225 {
3226 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3227
3228 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3229 cb, opaque, true);
3230 }
3231
3232
3233 typedef struct MultiwriteCB {
3234 int error;
3235 int num_requests;
3236 int num_callbacks;
3237 struct {
3238 BlockDriverCompletionFunc *cb;
3239 void *opaque;
3240 QEMUIOVector *free_qiov;
3241 } callbacks[];
3242 } MultiwriteCB;
3243
3244 static void multiwrite_user_cb(MultiwriteCB *mcb)
3245 {
3246 int i;
3247
3248 for (i = 0; i < mcb->num_callbacks; i++) {
3249 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3250 if (mcb->callbacks[i].free_qiov) {
3251 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3252 }
3253 g_free(mcb->callbacks[i].free_qiov);
3254 }
3255 }
3256
3257 static void multiwrite_cb(void *opaque, int ret)
3258 {
3259 MultiwriteCB *mcb = opaque;
3260
3261 trace_multiwrite_cb(mcb, ret);
3262
3263 if (ret < 0 && !mcb->error) {
3264 mcb->error = ret;
3265 }
3266
3267 mcb->num_requests--;
3268 if (mcb->num_requests == 0) {
3269 multiwrite_user_cb(mcb);
3270 g_free(mcb);
3271 }
3272 }
3273
3274 static int multiwrite_req_compare(const void *a, const void *b)
3275 {
3276 const BlockRequest *req1 = a, *req2 = b;
3277
3278 /*
3279 * Note that we can't simply subtract req2->sector from req1->sector
3280 * here as that could overflow the return value.
3281 */
3282 if (req1->sector > req2->sector) {
3283 return 1;
3284 } else if (req1->sector < req2->sector) {
3285 return -1;
3286 } else {
3287 return 0;
3288 }
3289 }
3290
3291 /*
3292 * Takes a bunch of requests and tries to merge them. Returns the number of
3293 * requests that remain after merging.
3294 */
3295 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3296 int num_reqs, MultiwriteCB *mcb)
3297 {
3298 int i, outidx;
3299
3300 // Sort requests by start sector
3301 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3302
3303 // Check if adjacent requests touch the same clusters. If so, combine them,
3304 // filling up gaps with zero sectors.
3305 outidx = 0;
3306 for (i = 1; i < num_reqs; i++) {
3307 int merge = 0;
3308 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3309
3310 // Handle exactly sequential writes and overlapping writes.
3311 if (reqs[i].sector <= oldreq_last) {
3312 merge = 1;
3313 }
3314
3315 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3316 merge = 0;
3317 }
3318
3319 if (merge) {
3320 size_t size;
3321 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3322 qemu_iovec_init(qiov,
3323 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3324
3325 // Add the first request to the merged one. If the requests are
3326 // overlapping, drop the last sectors of the first request.
3327 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3328 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3329
3330 // We should need to add any zeros between the two requests
3331 assert (reqs[i].sector <= oldreq_last);
3332
3333 // Add the second request
3334 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3335
3336 reqs[outidx].nb_sectors = qiov->size >> 9;
3337 reqs[outidx].qiov = qiov;
3338
3339 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3340 } else {
3341 outidx++;
3342 reqs[outidx].sector = reqs[i].sector;
3343 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3344 reqs[outidx].qiov = reqs[i].qiov;
3345 }
3346 }
3347
3348 return outidx + 1;
3349 }
3350
3351 /*
3352 * Submit multiple AIO write requests at once.
3353 *
3354 * On success, the function returns 0 and all requests in the reqs array have
3355 * been submitted. In error case this function returns -1, and any of the
3356 * requests may or may not be submitted yet. In particular, this means that the
3357 * callback will be called for some of the requests, for others it won't. The
3358 * caller must check the error field of the BlockRequest to wait for the right
3359 * callbacks (if error != 0, no callback will be called).
3360 *
3361 * The implementation may modify the contents of the reqs array, e.g. to merge
3362 * requests. However, the fields opaque and error are left unmodified as they
3363 * are used to signal failure for a single request to the caller.
3364 */
3365 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3366 {
3367 MultiwriteCB *mcb;
3368 int i;
3369
3370 /* don't submit writes if we don't have a medium */
3371 if (bs->drv == NULL) {
3372 for (i = 0; i < num_reqs; i++) {
3373 reqs[i].error = -ENOMEDIUM;
3374 }
3375 return -1;
3376 }
3377
3378 if (num_reqs == 0) {
3379 return 0;
3380 }
3381
3382 // Create MultiwriteCB structure
3383 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3384 mcb->num_requests = 0;
3385 mcb->num_callbacks = num_reqs;
3386
3387 for (i = 0; i < num_reqs; i++) {
3388 mcb->callbacks[i].cb = reqs[i].cb;
3389 mcb->callbacks[i].opaque = reqs[i].opaque;
3390 }
3391
3392 // Check for mergable requests
3393 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3394
3395 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3396
3397 /* Run the aio requests. */
3398 mcb->num_requests = num_reqs;
3399 for (i = 0; i < num_reqs; i++) {
3400 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3401 reqs[i].nb_sectors, multiwrite_cb, mcb);
3402 }
3403
3404 return 0;
3405 }
3406
3407 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3408 {
3409 acb->pool->cancel(acb);
3410 }
3411
3412 /* block I/O throttling */
3413 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3414 bool is_write, double elapsed_time, uint64_t *wait)
3415 {
3416 uint64_t bps_limit = 0;
3417 double bytes_limit, bytes_base, bytes_res;
3418 double slice_time, wait_time;
3419
3420 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3421 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3422 } else if (bs->io_limits.bps[is_write]) {
3423 bps_limit = bs->io_limits.bps[is_write];
3424 } else {
3425 if (wait) {
3426 *wait = 0;
3427 }
3428
3429 return false;
3430 }
3431
3432 slice_time = bs->slice_end - bs->slice_start;
3433 slice_time /= (NANOSECONDS_PER_SECOND);
3434 bytes_limit = bps_limit * slice_time;
3435 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3436 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3437 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3438 }
3439
3440 /* bytes_base: the bytes of data which have been read/written; and
3441 * it is obtained from the history statistic info.
3442 * bytes_res: the remaining bytes of data which need to be read/written.
3443 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3444 * the total time for completing reading/writting all data.
3445 */
3446 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3447
3448 if (bytes_base + bytes_res <= bytes_limit) {
3449 if (wait) {
3450 *wait = 0;
3451 }
3452
3453 return false;
3454 }
3455
3456 /* Calc approx time to dispatch */
3457 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3458
3459 /* When the I/O rate at runtime exceeds the limits,
3460 * bs->slice_end need to be extended in order that the current statistic
3461 * info can be kept until the timer fire, so it is increased and tuned
3462 * based on the result of experiment.
3463 */
3464 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3465 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3466 if (wait) {
3467 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3468 }
3469
3470 return true;
3471 }
3472
3473 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3474 double elapsed_time, uint64_t *wait)
3475 {
3476 uint64_t iops_limit = 0;
3477 double ios_limit, ios_base;
3478 double slice_time, wait_time;
3479
3480 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3481 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3482 } else if (bs->io_limits.iops[is_write]) {
3483 iops_limit = bs->io_limits.iops[is_write];
3484 } else {
3485 if (wait) {
3486 *wait = 0;
3487 }
3488
3489 return false;
3490 }
3491
3492 slice_time = bs->slice_end - bs->slice_start;
3493 slice_time /= (NANOSECONDS_PER_SECOND);
3494 ios_limit = iops_limit * slice_time;
3495 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3496 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3497 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3498 }
3499
3500 if (ios_base + 1 <= ios_limit) {
3501 if (wait) {
3502 *wait = 0;
3503 }
3504
3505 return false;
3506 }
3507
3508 /* Calc approx time to dispatch */
3509 wait_time = (ios_base + 1) / iops_limit;
3510 if (wait_time > elapsed_time) {
3511 wait_time = wait_time - elapsed_time;
3512 } else {
3513 wait_time = 0;
3514 }
3515
3516 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3517 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3518 if (wait) {
3519 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3520 }
3521
3522 return true;
3523 }
3524
3525 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3526 bool is_write, int64_t *wait)
3527 {
3528 int64_t now, max_wait;
3529 uint64_t bps_wait = 0, iops_wait = 0;
3530 double elapsed_time;
3531 int bps_ret, iops_ret;
3532
3533 now = qemu_get_clock_ns(vm_clock);
3534 if ((bs->slice_start < now)
3535 && (bs->slice_end > now)) {
3536 bs->slice_end = now + bs->slice_time;
3537 } else {
3538 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3539 bs->slice_start = now;
3540 bs->slice_end = now + bs->slice_time;
3541
3542 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3543 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3544
3545 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3546 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3547 }
3548
3549 elapsed_time = now - bs->slice_start;
3550 elapsed_time /= (NANOSECONDS_PER_SECOND);
3551
3552 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3553 is_write, elapsed_time, &bps_wait);
3554 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3555 elapsed_time, &iops_wait);
3556 if (bps_ret || iops_ret) {
3557 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3558 if (wait) {
3559 *wait = max_wait;
3560 }
3561
3562 now = qemu_get_clock_ns(vm_clock);
3563 if (bs->slice_end < now + max_wait) {
3564 bs->slice_end = now + max_wait;
3565 }
3566
3567 return true;
3568 }
3569
3570 if (wait) {
3571 *wait = 0;
3572 }
3573
3574 return false;
3575 }
3576
3577 /**************************************************************/
3578 /* async block device emulation */
3579
3580 typedef struct BlockDriverAIOCBSync {
3581 BlockDriverAIOCB common;
3582 QEMUBH *bh;
3583 int ret;
3584 /* vector translation state */
3585 QEMUIOVector *qiov;
3586 uint8_t *bounce;
3587 int is_write;
3588 } BlockDriverAIOCBSync;
3589
3590 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3591 {
3592 BlockDriverAIOCBSync *acb =
3593 container_of(blockacb, BlockDriverAIOCBSync, common);
3594 qemu_bh_delete(acb->bh);
3595 acb->bh = NULL;
3596 qemu_aio_release(acb);
3597 }
3598
3599 static AIOPool bdrv_em_aio_pool = {
3600 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3601 .cancel = bdrv_aio_cancel_em,
3602 };
3603
3604 static void bdrv_aio_bh_cb(void *opaque)
3605 {
3606 BlockDriverAIOCBSync *acb = opaque;
3607
3608 if (!acb->is_write)
3609 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3610 qemu_vfree(acb->bounce);
3611 acb->common.cb(acb->common.opaque, acb->ret);
3612 qemu_bh_delete(acb->bh);
3613 acb->bh = NULL;
3614 qemu_aio_release(acb);
3615 }
3616
3617 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3618 int64_t sector_num,
3619 QEMUIOVector *qiov,
3620 int nb_sectors,
3621 BlockDriverCompletionFunc *cb,
3622 void *opaque,
3623 int is_write)
3624
3625 {
3626 BlockDriverAIOCBSync *acb;
3627
3628 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3629 acb->is_write = is_write;
3630 acb->qiov = qiov;
3631 acb->bounce = qemu_blockalign(bs, qiov->size);
3632 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3633
3634 if (is_write) {
3635 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3636 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3637 } else {
3638 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3639 }
3640
3641 qemu_bh_schedule(acb->bh);
3642
3643 return &acb->common;
3644 }
3645
3646 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3647 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3648 BlockDriverCompletionFunc *cb, void *opaque)
3649 {
3650 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3651 }
3652
3653 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3654 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3655 BlockDriverCompletionFunc *cb, void *opaque)
3656 {
3657 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3658 }
3659
3660
3661 typedef struct BlockDriverAIOCBCoroutine {
3662 BlockDriverAIOCB common;
3663 BlockRequest req;
3664 bool is_write;
3665 QEMUBH* bh;
3666 } BlockDriverAIOCBCoroutine;
3667
3668 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3669 {
3670 qemu_aio_flush();
3671 }
3672
3673 static AIOPool bdrv_em_co_aio_pool = {
3674 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3675 .cancel = bdrv_aio_co_cancel_em,
3676 };
3677
3678 static void bdrv_co_em_bh(void *opaque)
3679 {
3680 BlockDriverAIOCBCoroutine *acb = opaque;
3681
3682 acb->common.cb(acb->common.opaque, acb->req.error);
3683 qemu_bh_delete(acb->bh);
3684 qemu_aio_release(acb);
3685 }
3686
3687 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3688 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3689 {
3690 BlockDriverAIOCBCoroutine *acb = opaque;
3691 BlockDriverState *bs = acb->common.bs;
3692
3693 if (!acb->is_write) {
3694 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3695 acb->req.nb_sectors, acb->req.qiov, 0);
3696 } else {
3697 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3698 acb->req.nb_sectors, acb->req.qiov, 0);
3699 }
3700
3701 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3702 qemu_bh_schedule(acb->bh);
3703 }
3704
3705 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3706 int64_t sector_num,
3707 QEMUIOVector *qiov,
3708 int nb_sectors,
3709 BlockDriverCompletionFunc *cb,
3710 void *opaque,
3711 bool is_write)
3712 {
3713 Coroutine *co;
3714 BlockDriverAIOCBCoroutine *acb;
3715
3716 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3717 acb->req.sector = sector_num;
3718 acb->req.nb_sectors = nb_sectors;
3719 acb->req.qiov = qiov;
3720 acb->is_write = is_write;
3721
3722 co = qemu_coroutine_create(bdrv_co_do_rw);
3723 qemu_coroutine_enter(co, acb);
3724
3725 return &acb->common;
3726 }
3727
3728 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3729 {
3730 BlockDriverAIOCBCoroutine *acb = opaque;
3731 BlockDriverState *bs = acb->common.bs;
3732
3733 acb->req.error = bdrv_co_flush(bs);
3734 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3735 qemu_bh_schedule(acb->bh);
3736 }
3737
3738 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3739 BlockDriverCompletionFunc *cb, void *opaque)
3740 {
3741 trace_bdrv_aio_flush(bs, opaque);
3742
3743 Coroutine *co;
3744 BlockDriverAIOCBCoroutine *acb;
3745
3746 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3747 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3748 qemu_coroutine_enter(co, acb);
3749
3750 return &acb->common;
3751 }
3752
3753 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3754 {
3755 BlockDriverAIOCBCoroutine *acb = opaque;
3756 BlockDriverState *bs = acb->common.bs;
3757
3758 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3759 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3760 qemu_bh_schedule(acb->bh);
3761 }
3762
3763 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3764 int64_t sector_num, int nb_sectors,
3765 BlockDriverCompletionFunc *cb, void *opaque)
3766 {
3767 Coroutine *co;
3768 BlockDriverAIOCBCoroutine *acb;
3769
3770 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3771
3772 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3773 acb->req.sector = sector_num;
3774 acb->req.nb_sectors = nb_sectors;
3775 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3776 qemu_coroutine_enter(co, acb);
3777
3778 return &acb->common;
3779 }
3780
3781 void bdrv_init(void)
3782 {
3783 module_call_init(MODULE_INIT_BLOCK);
3784 }
3785
3786 void bdrv_init_with_whitelist(void)
3787 {
3788 use_bdrv_whitelist = 1;
3789 bdrv_init();
3790 }
3791
3792 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3793 BlockDriverCompletionFunc *cb, void *opaque)
3794 {
3795 BlockDriverAIOCB *acb;
3796
3797 if (pool->free_aiocb) {
3798 acb = pool->free_aiocb;
3799 pool->free_aiocb = acb->next;
3800 } else {
3801 acb = g_malloc0(pool->aiocb_size);
3802 acb->pool = pool;
3803 }
3804 acb->bs = bs;
3805 acb->cb = cb;
3806 acb->opaque = opaque;
3807 return acb;
3808 }
3809
3810 void qemu_aio_release(void *p)
3811 {
3812 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3813 AIOPool *pool = acb->pool;
3814 acb->next = pool->free_aiocb;
3815 pool->free_aiocb = acb;
3816 }
3817
3818 /**************************************************************/
3819 /* Coroutine block device emulation */
3820
3821 typedef struct CoroutineIOCompletion {
3822 Coroutine *coroutine;
3823 int ret;
3824 } CoroutineIOCompletion;
3825
3826 static void bdrv_co_io_em_complete(void *opaque, int ret)
3827 {
3828 CoroutineIOCompletion *co = opaque;
3829
3830 co->ret = ret;
3831 qemu_coroutine_enter(co->coroutine, NULL);
3832 }
3833
3834 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3835 int nb_sectors, QEMUIOVector *iov,
3836 bool is_write)
3837 {
3838 CoroutineIOCompletion co = {
3839 .coroutine = qemu_coroutine_self(),
3840 };
3841 BlockDriverAIOCB *acb;
3842
3843 if (is_write) {
3844 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3845 bdrv_co_io_em_complete, &co);
3846 } else {
3847 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3848 bdrv_co_io_em_complete, &co);
3849 }
3850
3851 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3852 if (!acb) {
3853 return -EIO;
3854 }
3855 qemu_coroutine_yield();
3856
3857 return co.ret;
3858 }
3859
3860 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3861 int64_t sector_num, int nb_sectors,
3862 QEMUIOVector *iov)
3863 {
3864 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3865 }
3866
3867 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3868 int64_t sector_num, int nb_sectors,
3869 QEMUIOVector *iov)
3870 {
3871 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3872 }
3873
3874 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3875 {
3876 RwCo *rwco = opaque;
3877
3878 rwco->ret = bdrv_co_flush(rwco->bs);
3879 }
3880
3881 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3882 {
3883 int ret;
3884
3885 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3886 return 0;
3887 }
3888
3889 /* Write back cached data to the OS even with cache=unsafe */
3890 if (bs->drv->bdrv_co_flush_to_os) {
3891 ret = bs->drv->bdrv_co_flush_to_os(bs);
3892 if (ret < 0) {
3893 return ret;
3894 }
3895 }
3896
3897 /* But don't actually force it to the disk with cache=unsafe */
3898 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3899 goto flush_parent;
3900 }
3901
3902 if (bs->drv->bdrv_co_flush_to_disk) {
3903 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3904 } else if (bs->drv->bdrv_aio_flush) {
3905 BlockDriverAIOCB *acb;
3906 CoroutineIOCompletion co = {
3907 .coroutine = qemu_coroutine_self(),
3908 };
3909
3910 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3911 if (acb == NULL) {
3912 ret = -EIO;
3913 } else {
3914 qemu_coroutine_yield();
3915 ret = co.ret;
3916 }
3917 } else {
3918 /*
3919 * Some block drivers always operate in either writethrough or unsafe
3920 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3921 * know how the server works (because the behaviour is hardcoded or
3922 * depends on server-side configuration), so we can't ensure that
3923 * everything is safe on disk. Returning an error doesn't work because
3924 * that would break guests even if the server operates in writethrough
3925 * mode.
3926 *
3927 * Let's hope the user knows what he's doing.
3928 */
3929 ret = 0;
3930 }
3931 if (ret < 0) {
3932 return ret;
3933 }
3934
3935 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3936 * in the case of cache=unsafe, so there are no useless flushes.
3937 */
3938 flush_parent:
3939 return bdrv_co_flush(bs->file);
3940 }
3941
3942 void bdrv_invalidate_cache(BlockDriverState *bs)
3943 {
3944 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3945 bs->drv->bdrv_invalidate_cache(bs);
3946 }
3947 }
3948
3949 void bdrv_invalidate_cache_all(void)
3950 {
3951 BlockDriverState *bs;
3952
3953 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3954 bdrv_invalidate_cache(bs);
3955 }
3956 }
3957
3958 void bdrv_clear_incoming_migration_all(void)
3959 {
3960 BlockDriverState *bs;
3961
3962 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3963 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
3964 }
3965 }
3966
3967 int bdrv_flush(BlockDriverState *bs)
3968 {
3969 Coroutine *co;
3970 RwCo rwco = {
3971 .bs = bs,
3972 .ret = NOT_DONE,
3973 };
3974
3975 if (qemu_in_coroutine()) {
3976 /* Fast-path if already in coroutine context */
3977 bdrv_flush_co_entry(&rwco);
3978 } else {
3979 co = qemu_coroutine_create(bdrv_flush_co_entry);
3980 qemu_coroutine_enter(co, &rwco);
3981 while (rwco.ret == NOT_DONE) {
3982 qemu_aio_wait();
3983 }
3984 }
3985
3986 return rwco.ret;
3987 }
3988
3989 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3990 {
3991 RwCo *rwco = opaque;
3992
3993 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3994 }
3995
3996 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3997 int nb_sectors)
3998 {
3999 if (!bs->drv) {
4000 return -ENOMEDIUM;
4001 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4002 return -EIO;
4003 } else if (bs->read_only) {
4004 return -EROFS;
4005 } else if (bs->drv->bdrv_co_discard) {
4006 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4007 } else if (bs->drv->bdrv_aio_discard) {
4008 BlockDriverAIOCB *acb;
4009 CoroutineIOCompletion co = {
4010 .coroutine = qemu_coroutine_self(),
4011 };
4012
4013 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4014 bdrv_co_io_em_complete, &co);
4015 if (acb == NULL) {
4016 return -EIO;
4017 } else {
4018 qemu_coroutine_yield();
4019 return co.ret;
4020 }
4021 } else {
4022 return 0;
4023 }
4024 }
4025
4026 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4027 {
4028 Coroutine *co;
4029 RwCo rwco = {
4030 .bs = bs,
4031 .sector_num = sector_num,
4032 .nb_sectors = nb_sectors,
4033 .ret = NOT_DONE,
4034 };
4035
4036 if (qemu_in_coroutine()) {
4037 /* Fast-path if already in coroutine context */
4038 bdrv_discard_co_entry(&rwco);
4039 } else {
4040 co = qemu_coroutine_create(bdrv_discard_co_entry);
4041 qemu_coroutine_enter(co, &rwco);
4042 while (rwco.ret == NOT_DONE) {
4043 qemu_aio_wait();
4044 }
4045 }
4046
4047 return rwco.ret;
4048 }
4049
4050 /**************************************************************/
4051 /* removable device support */
4052
4053 /**
4054 * Return TRUE if the media is present
4055 */
4056 int bdrv_is_inserted(BlockDriverState *bs)
4057 {
4058 BlockDriver *drv = bs->drv;
4059
4060 if (!drv)
4061 return 0;
4062 if (!drv->bdrv_is_inserted)
4063 return 1;
4064 return drv->bdrv_is_inserted(bs);
4065 }
4066
4067 /**
4068 * Return whether the media changed since the last call to this
4069 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4070 */
4071 int bdrv_media_changed(BlockDriverState *bs)
4072 {
4073 BlockDriver *drv = bs->drv;
4074
4075 if (drv && drv->bdrv_media_changed) {
4076 return drv->bdrv_media_changed(bs);
4077 }
4078 return -ENOTSUP;
4079 }
4080
4081 /**
4082 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4083 */
4084 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4085 {
4086 BlockDriver *drv = bs->drv;
4087
4088 if (drv && drv->bdrv_eject) {
4089 drv->bdrv_eject(bs, eject_flag);
4090 }
4091
4092 if (bs->device_name[0] != '\0') {
4093 bdrv_emit_qmp_eject_event(bs, eject_flag);
4094 }
4095 }
4096
4097 /**
4098 * Lock or unlock the media (if it is locked, the user won't be able
4099 * to eject it manually).
4100 */
4101 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4102 {
4103 BlockDriver *drv = bs->drv;
4104
4105 trace_bdrv_lock_medium(bs, locked);
4106
4107 if (drv && drv->bdrv_lock_medium) {
4108 drv->bdrv_lock_medium(bs, locked);
4109 }
4110 }
4111
4112 /* needed for generic scsi interface */
4113
4114 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4115 {
4116 BlockDriver *drv = bs->drv;
4117
4118 if (drv && drv->bdrv_ioctl)
4119 return drv->bdrv_ioctl(bs, req, buf);
4120 return -ENOTSUP;
4121 }
4122
4123 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4124 unsigned long int req, void *buf,
4125 BlockDriverCompletionFunc *cb, void *opaque)
4126 {
4127 BlockDriver *drv = bs->drv;
4128
4129 if (drv && drv->bdrv_aio_ioctl)
4130 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4131 return NULL;
4132 }
4133
4134 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4135 {
4136 bs->buffer_alignment = align;
4137 }
4138
4139 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4140 {
4141 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4142 }
4143
4144 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
4145 {
4146 int64_t bitmap_size;
4147
4148 bs->dirty_count = 0;
4149 if (enable) {
4150 if (!bs->dirty_bitmap) {
4151 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
4152 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
4153 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4154
4155 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
4156 }
4157 } else {
4158 if (bs->dirty_bitmap) {
4159 g_free(bs->dirty_bitmap);
4160 bs->dirty_bitmap = NULL;
4161 }
4162 }
4163 }
4164
4165 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4166 {
4167 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4168
4169 if (bs->dirty_bitmap &&
4170 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4171 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
4172 (1UL << (chunk % (sizeof(unsigned long) * 8))));
4173 } else {
4174 return 0;
4175 }
4176 }
4177
4178 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4179 int nr_sectors)
4180 {
4181 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4182 }
4183
4184 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4185 {
4186 return bs->dirty_count;
4187 }
4188
4189 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4190 {
4191 assert(bs->in_use != in_use);
4192 bs->in_use = in_use;
4193 }
4194
4195 int bdrv_in_use(BlockDriverState *bs)
4196 {
4197 return bs->in_use;
4198 }
4199
4200 void bdrv_iostatus_enable(BlockDriverState *bs)
4201 {
4202 bs->iostatus_enabled = true;
4203 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4204 }
4205
4206 /* The I/O status is only enabled if the drive explicitly
4207 * enables it _and_ the VM is configured to stop on errors */
4208 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4209 {
4210 return (bs->iostatus_enabled &&
4211 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
4212 bs->on_write_error == BLOCK_ERR_STOP_ANY ||
4213 bs->on_read_error == BLOCK_ERR_STOP_ANY));
4214 }
4215
4216 void bdrv_iostatus_disable(BlockDriverState *bs)
4217 {
4218 bs->iostatus_enabled = false;
4219 }
4220
4221 void bdrv_iostatus_reset(BlockDriverState *bs)
4222 {
4223 if (bdrv_iostatus_is_enabled(bs)) {
4224 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4225 }
4226 }
4227
4228 /* XXX: Today this is set by device models because it makes the implementation
4229 quite simple. However, the block layer knows about the error, so it's
4230 possible to implement this without device models being involved */
4231 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4232 {
4233 if (bdrv_iostatus_is_enabled(bs) &&
4234 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4235 assert(error >= 0);
4236 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4237 BLOCK_DEVICE_IO_STATUS_FAILED;
4238 }
4239 }
4240
4241 void
4242 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4243 enum BlockAcctType type)
4244 {
4245 assert(type < BDRV_MAX_IOTYPE);
4246
4247 cookie->bytes = bytes;
4248 cookie->start_time_ns = get_clock();
4249 cookie->type = type;
4250 }
4251
4252 void
4253 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4254 {
4255 assert(cookie->type < BDRV_MAX_IOTYPE);
4256
4257 bs->nr_bytes[cookie->type] += cookie->bytes;
4258 bs->nr_ops[cookie->type]++;
4259 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4260 }
4261
4262 int bdrv_img_create(const char *filename, const char *fmt,
4263 const char *base_filename, const char *base_fmt,
4264 char *options, uint64_t img_size, int flags)
4265 {
4266 QEMUOptionParameter *param = NULL, *create_options = NULL;
4267 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4268 BlockDriverState *bs = NULL;
4269 BlockDriver *drv, *proto_drv;
4270 BlockDriver *backing_drv = NULL;
4271 int ret = 0;
4272
4273 /* Find driver and parse its options */
4274 drv = bdrv_find_format(fmt);
4275 if (!drv) {
4276 error_report("Unknown file format '%s'", fmt);
4277 ret = -EINVAL;
4278 goto out;
4279 }
4280
4281 proto_drv = bdrv_find_protocol(filename);
4282 if (!proto_drv) {
4283 error_report("Unknown protocol '%s'", filename);
4284 ret = -EINVAL;
4285 goto out;
4286 }
4287
4288 create_options = append_option_parameters(create_options,
4289 drv->create_options);
4290 create_options = append_option_parameters(create_options,
4291 proto_drv->create_options);
4292
4293 /* Create parameter list with default values */
4294 param = parse_option_parameters("", create_options, param);
4295
4296 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4297
4298 /* Parse -o options */
4299 if (options) {
4300 param = parse_option_parameters(options, create_options, param);
4301 if (param == NULL) {
4302 error_report("Invalid options for file format '%s'.", fmt);
4303 ret = -EINVAL;
4304 goto out;
4305 }
4306 }
4307
4308 if (base_filename) {
4309 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4310 base_filename)) {
4311 error_report("Backing file not supported for file format '%s'",
4312 fmt);
4313 ret = -EINVAL;
4314 goto out;
4315 }
4316 }
4317
4318 if (base_fmt) {
4319 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4320 error_report("Backing file format not supported for file "
4321 "format '%s'", fmt);
4322 ret = -EINVAL;
4323 goto out;
4324 }
4325 }
4326
4327 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4328 if (backing_file && backing_file->value.s) {
4329 if (!strcmp(filename, backing_file->value.s)) {
4330 error_report("Error: Trying to create an image with the "
4331 "same filename as the backing file");
4332 ret = -EINVAL;
4333 goto out;
4334 }
4335 }
4336
4337 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4338 if (backing_fmt && backing_fmt->value.s) {
4339 backing_drv = bdrv_find_format(backing_fmt->value.s);
4340 if (!backing_drv) {
4341 error_report("Unknown backing file format '%s'",
4342 backing_fmt->value.s);
4343 ret = -EINVAL;
4344 goto out;
4345 }
4346 }
4347
4348 // The size for the image must always be specified, with one exception:
4349 // If we are using a backing file, we can obtain the size from there
4350 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4351 if (size && size->value.n == -1) {
4352 if (backing_file && backing_file->value.s) {
4353 uint64_t size;
4354 char buf[32];
4355 int back_flags;
4356
4357 /* backing files always opened read-only */
4358 back_flags =
4359 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4360
4361 bs = bdrv_new("");
4362
4363 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4364 if (ret < 0) {
4365 error_report("Could not open '%s'", backing_file->value.s);
4366 goto out;
4367 }
4368 bdrv_get_geometry(bs, &size);
4369 size *= 512;
4370
4371 snprintf(buf, sizeof(buf), "%" PRId64, size);
4372 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4373 } else {
4374 error_report("Image creation needs a size parameter");
4375 ret = -EINVAL;
4376 goto out;
4377 }
4378 }
4379
4380 printf("Formatting '%s', fmt=%s ", filename, fmt);
4381 print_option_parameters(param);
4382 puts("");
4383
4384 ret = bdrv_create(drv, filename, param);
4385
4386 if (ret < 0) {
4387 if (ret == -ENOTSUP) {
4388 error_report("Formatting or formatting option not supported for "
4389 "file format '%s'", fmt);
4390 } else if (ret == -EFBIG) {
4391 error_report("The image size is too large for file format '%s'",
4392 fmt);
4393 } else {
4394 error_report("%s: error while creating %s: %s", filename, fmt,
4395 strerror(-ret));
4396 }
4397 }
4398
4399 out:
4400 free_option_parameters(create_options);
4401 free_option_parameters(param);
4402
4403 if (bs) {
4404 bdrv_delete(bs);
4405 }
4406
4407 return ret;
4408 }
4409
4410 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
4411 int64_t speed, BlockDriverCompletionFunc *cb,
4412 void *opaque, Error **errp)
4413 {
4414 BlockJob *job;
4415
4416 if (bs->job || bdrv_in_use(bs)) {
4417 error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs));
4418 return NULL;
4419 }
4420 bdrv_set_in_use(bs, 1);
4421
4422 job = g_malloc0(job_type->instance_size);
4423 job->job_type = job_type;
4424 job->bs = bs;
4425 job->cb = cb;
4426 job->opaque = opaque;
4427 job->busy = true;
4428 bs->job = job;
4429
4430 /* Only set speed when necessary to avoid NotSupported error */
4431 if (speed != 0) {
4432 Error *local_err = NULL;
4433
4434 block_job_set_speed(job, speed, &local_err);
4435 if (error_is_set(&local_err)) {
4436 bs->job = NULL;
4437 g_free(job);
4438 bdrv_set_in_use(bs, 0);
4439 error_propagate(errp, local_err);
4440 return NULL;
4441 }
4442 }
4443 return job;
4444 }
4445
4446 void block_job_complete(BlockJob *job, int ret)
4447 {
4448 BlockDriverState *bs = job->bs;
4449
4450 assert(bs->job == job);
4451 job->cb(job->opaque, ret);
4452 bs->job = NULL;
4453 g_free(job);
4454 bdrv_set_in_use(bs, 0);
4455 }
4456
4457 void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp)
4458 {
4459 Error *local_err = NULL;
4460
4461 if (!job->job_type->set_speed) {
4462 error_set(errp, QERR_NOT_SUPPORTED);
4463 return;
4464 }
4465 job->job_type->set_speed(job, speed, &local_err);
4466 if (error_is_set(&local_err)) {
4467 error_propagate(errp, local_err);
4468 return;
4469 }
4470
4471 job->speed = speed;
4472 }
4473
4474 void block_job_cancel(BlockJob *job)
4475 {
4476 job->cancelled = true;
4477 if (job->co && !job->busy) {
4478 qemu_coroutine_enter(job->co, NULL);
4479 }
4480 }
4481
4482 bool block_job_is_cancelled(BlockJob *job)
4483 {
4484 return job->cancelled;
4485 }
4486
4487 struct BlockCancelData {
4488 BlockJob *job;
4489 BlockDriverCompletionFunc *cb;
4490 void *opaque;
4491 bool cancelled;
4492 int ret;
4493 };
4494
4495 static void block_job_cancel_cb(void *opaque, int ret)
4496 {
4497 struct BlockCancelData *data = opaque;
4498
4499 data->cancelled = block_job_is_cancelled(data->job);
4500 data->ret = ret;
4501 data->cb(data->opaque, ret);
4502 }
4503
4504 int block_job_cancel_sync(BlockJob *job)
4505 {
4506 struct BlockCancelData data;
4507 BlockDriverState *bs = job->bs;
4508
4509 assert(bs->job == job);
4510
4511 /* Set up our own callback to store the result and chain to
4512 * the original callback.
4513 */
4514 data.job = job;
4515 data.cb = job->cb;
4516 data.opaque = job->opaque;
4517 data.ret = -EINPROGRESS;
4518 job->cb = block_job_cancel_cb;
4519 job->opaque = &data;
4520 block_job_cancel(job);
4521 while (data.ret == -EINPROGRESS) {
4522 qemu_aio_wait();
4523 }
4524 return (data.cancelled && data.ret == 0) ? -ECANCELED : data.ret;
4525 }
4526
4527 void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns)
4528 {
4529 /* Check cancellation *before* setting busy = false, too! */
4530 if (!block_job_is_cancelled(job)) {
4531 job->busy = false;
4532 co_sleep_ns(clock, ns);
4533 job->busy = true;
4534 }
4535 }