]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_borrowck/src/constraints/graph.rs
New upstream version 1.62.1+dfsg1
[rustc.git] / compiler / rustc_borrowck / src / constraints / graph.rs
1 use rustc_data_structures::graph;
2 use rustc_index::vec::IndexVec;
3 use rustc_middle::mir::ConstraintCategory;
4 use rustc_middle::ty::{RegionVid, VarianceDiagInfo};
5 use rustc_span::DUMMY_SP;
6
7 use crate::{
8 constraints::OutlivesConstraintIndex,
9 constraints::{OutlivesConstraint, OutlivesConstraintSet},
10 type_check::Locations,
11 };
12
13 /// The construct graph organizes the constraints by their end-points.
14 /// It can be used to view a `R1: R2` constraint as either an edge `R1
15 /// -> R2` or `R2 -> R1` depending on the direction type `D`.
16 crate struct ConstraintGraph<D: ConstraintGraphDirecton> {
17 _direction: D,
18 first_constraints: IndexVec<RegionVid, Option<OutlivesConstraintIndex>>,
19 next_constraints: IndexVec<OutlivesConstraintIndex, Option<OutlivesConstraintIndex>>,
20 }
21
22 crate type NormalConstraintGraph = ConstraintGraph<Normal>;
23
24 crate type ReverseConstraintGraph = ConstraintGraph<Reverse>;
25
26 /// Marker trait that controls whether a `R1: R2` constraint
27 /// represents an edge `R1 -> R2` or `R2 -> R1`.
28 crate trait ConstraintGraphDirecton: Copy + 'static {
29 fn start_region(c: &OutlivesConstraint<'_>) -> RegionVid;
30 fn end_region(c: &OutlivesConstraint<'_>) -> RegionVid;
31 fn is_normal() -> bool;
32 }
33
34 /// In normal mode, a `R1: R2` constraint results in an edge `R1 ->
35 /// R2`. This is what we use when constructing the SCCs for
36 /// inference. This is because we compute the value of R1 by union'ing
37 /// all the things that it relies on.
38 #[derive(Copy, Clone, Debug)]
39 crate struct Normal;
40
41 impl ConstraintGraphDirecton for Normal {
42 fn start_region(c: &OutlivesConstraint<'_>) -> RegionVid {
43 c.sup
44 }
45
46 fn end_region(c: &OutlivesConstraint<'_>) -> RegionVid {
47 c.sub
48 }
49
50 fn is_normal() -> bool {
51 true
52 }
53 }
54
55 /// In reverse mode, a `R1: R2` constraint results in an edge `R2 ->
56 /// R1`. We use this for optimizing liveness computation, because then
57 /// we wish to iterate from a region (e.g., R2) to all the regions
58 /// that will outlive it (e.g., R1).
59 #[derive(Copy, Clone, Debug)]
60 crate struct Reverse;
61
62 impl ConstraintGraphDirecton for Reverse {
63 fn start_region(c: &OutlivesConstraint<'_>) -> RegionVid {
64 c.sub
65 }
66
67 fn end_region(c: &OutlivesConstraint<'_>) -> RegionVid {
68 c.sup
69 }
70
71 fn is_normal() -> bool {
72 false
73 }
74 }
75
76 impl<D: ConstraintGraphDirecton> ConstraintGraph<D> {
77 /// Creates a "dependency graph" where each region constraint `R1:
78 /// R2` is treated as an edge `R1 -> R2`. We use this graph to
79 /// construct SCCs for region inference but also for error
80 /// reporting.
81 crate fn new(direction: D, set: &OutlivesConstraintSet<'_>, num_region_vars: usize) -> Self {
82 let mut first_constraints = IndexVec::from_elem_n(None, num_region_vars);
83 let mut next_constraints = IndexVec::from_elem(None, &set.outlives);
84
85 for (idx, constraint) in set.outlives.iter_enumerated().rev() {
86 let head = &mut first_constraints[D::start_region(constraint)];
87 let next = &mut next_constraints[idx];
88 debug_assert!(next.is_none());
89 *next = *head;
90 *head = Some(idx);
91 }
92
93 Self { _direction: direction, first_constraints, next_constraints }
94 }
95
96 /// Given the constraint set from which this graph was built
97 /// creates a region graph so that you can iterate over *regions*
98 /// and not constraints.
99 crate fn region_graph<'rg, 'tcx>(
100 &'rg self,
101 set: &'rg OutlivesConstraintSet<'tcx>,
102 static_region: RegionVid,
103 ) -> RegionGraph<'rg, 'tcx, D> {
104 RegionGraph::new(set, self, static_region)
105 }
106
107 /// Given a region `R`, iterate over all constraints `R: R1`.
108 crate fn outgoing_edges<'a, 'tcx>(
109 &'a self,
110 region_sup: RegionVid,
111 constraints: &'a OutlivesConstraintSet<'tcx>,
112 static_region: RegionVid,
113 ) -> Edges<'a, 'tcx, D> {
114 //if this is the `'static` region and the graph's direction is normal,
115 //then setup the Edges iterator to return all regions #53178
116 if region_sup == static_region && D::is_normal() {
117 Edges {
118 graph: self,
119 constraints,
120 pointer: None,
121 next_static_idx: Some(0),
122 static_region,
123 }
124 } else {
125 //otherwise, just setup the iterator as normal
126 let first = self.first_constraints[region_sup];
127 Edges { graph: self, constraints, pointer: first, next_static_idx: None, static_region }
128 }
129 }
130 }
131
132 crate struct Edges<'s, 'tcx, D: ConstraintGraphDirecton> {
133 graph: &'s ConstraintGraph<D>,
134 constraints: &'s OutlivesConstraintSet<'tcx>,
135 pointer: Option<OutlivesConstraintIndex>,
136 next_static_idx: Option<usize>,
137 static_region: RegionVid,
138 }
139
140 impl<'s, 'tcx, D: ConstraintGraphDirecton> Iterator for Edges<'s, 'tcx, D> {
141 type Item = OutlivesConstraint<'tcx>;
142
143 fn next(&mut self) -> Option<Self::Item> {
144 if let Some(p) = self.pointer {
145 self.pointer = self.graph.next_constraints[p];
146
147 Some(self.constraints[p].clone())
148 } else if let Some(next_static_idx) = self.next_static_idx {
149 self.next_static_idx = if next_static_idx == (self.graph.first_constraints.len() - 1) {
150 None
151 } else {
152 Some(next_static_idx + 1)
153 };
154
155 Some(OutlivesConstraint {
156 sup: self.static_region,
157 sub: next_static_idx.into(),
158 locations: Locations::All(DUMMY_SP),
159 span: DUMMY_SP,
160 category: ConstraintCategory::Internal,
161 variance_info: VarianceDiagInfo::default(),
162 })
163 } else {
164 None
165 }
166 }
167 }
168
169 /// This struct brings together a constraint set and a (normal, not
170 /// reverse) constraint graph. It implements the graph traits and is
171 /// usd for doing the SCC computation.
172 crate struct RegionGraph<'s, 'tcx, D: ConstraintGraphDirecton> {
173 set: &'s OutlivesConstraintSet<'tcx>,
174 constraint_graph: &'s ConstraintGraph<D>,
175 static_region: RegionVid,
176 }
177
178 impl<'s, 'tcx, D: ConstraintGraphDirecton> RegionGraph<'s, 'tcx, D> {
179 /// Creates a "dependency graph" where each region constraint `R1:
180 /// R2` is treated as an edge `R1 -> R2`. We use this graph to
181 /// construct SCCs for region inference but also for error
182 /// reporting.
183 crate fn new(
184 set: &'s OutlivesConstraintSet<'tcx>,
185 constraint_graph: &'s ConstraintGraph<D>,
186 static_region: RegionVid,
187 ) -> Self {
188 Self { set, constraint_graph, static_region }
189 }
190
191 /// Given a region `R`, iterate over all regions `R1` such that
192 /// there exists a constraint `R: R1`.
193 crate fn outgoing_regions(&self, region_sup: RegionVid) -> Successors<'s, 'tcx, D> {
194 Successors {
195 edges: self.constraint_graph.outgoing_edges(region_sup, self.set, self.static_region),
196 }
197 }
198 }
199
200 crate struct Successors<'s, 'tcx, D: ConstraintGraphDirecton> {
201 edges: Edges<'s, 'tcx, D>,
202 }
203
204 impl<'s, 'tcx, D: ConstraintGraphDirecton> Iterator for Successors<'s, 'tcx, D> {
205 type Item = RegionVid;
206
207 fn next(&mut self) -> Option<Self::Item> {
208 self.edges.next().map(|c| D::end_region(&c))
209 }
210 }
211
212 impl<'s, 'tcx, D: ConstraintGraphDirecton> graph::DirectedGraph for RegionGraph<'s, 'tcx, D> {
213 type Node = RegionVid;
214 }
215
216 impl<'s, 'tcx, D: ConstraintGraphDirecton> graph::WithNumNodes for RegionGraph<'s, 'tcx, D> {
217 fn num_nodes(&self) -> usize {
218 self.constraint_graph.first_constraints.len()
219 }
220 }
221
222 impl<'s, 'tcx, D: ConstraintGraphDirecton> graph::WithSuccessors for RegionGraph<'s, 'tcx, D> {
223 fn successors(&self, node: Self::Node) -> <Self as graph::GraphSuccessors<'_>>::Iter {
224 self.outgoing_regions(node)
225 }
226 }
227
228 impl<'s, 'tcx, D: ConstraintGraphDirecton> graph::GraphSuccessors<'_> for RegionGraph<'s, 'tcx, D> {
229 type Item = RegionVid;
230 type Iter = Successors<'s, 'tcx, D>;
231 }