]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_codegen_ssa/src/base.rs
Update upstream source from tag 'upstream/1.53.0+dfsg1'
[rustc.git] / compiler / rustc_codegen_ssa / src / base.rs
1 use crate::back::write::{
2 compute_per_cgu_lto_type, start_async_codegen, submit_codegened_module_to_llvm,
3 submit_post_lto_module_to_llvm, submit_pre_lto_module_to_llvm, ComputedLtoType, OngoingCodegen,
4 };
5 use crate::common::{IntPredicate, RealPredicate, TypeKind};
6 use crate::meth;
7 use crate::mir;
8 use crate::mir::operand::OperandValue;
9 use crate::mir::place::PlaceRef;
10 use crate::traits::*;
11 use crate::{CachedModuleCodegen, CrateInfo, MemFlags, ModuleCodegen, ModuleKind};
12
13 use rustc_attr as attr;
14 use rustc_data_structures::fx::FxHashMap;
15 use rustc_data_structures::profiling::{get_resident_set_size, print_time_passes_entry};
16 use rustc_data_structures::sync::{par_iter, ParallelIterator};
17 use rustc_hir as hir;
18 use rustc_hir::def_id::{DefId, LOCAL_CRATE};
19 use rustc_hir::lang_items::LangItem;
20 use rustc_index::vec::Idx;
21 use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
22 use rustc_middle::middle::cstore::EncodedMetadata;
23 use rustc_middle::middle::cstore::{self, LinkagePreference};
24 use rustc_middle::middle::lang_items;
25 use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem};
26 use rustc_middle::ty::layout::{HasTyCtxt, TyAndLayout};
27 use rustc_middle::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
28 use rustc_middle::ty::query::Providers;
29 use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
30 use rustc_session::cgu_reuse_tracker::CguReuse;
31 use rustc_session::config::{self, EntryFnType};
32 use rustc_session::Session;
33 use rustc_target::abi::{Align, LayoutOf, VariantIdx};
34
35 use std::ops::{Deref, DerefMut};
36 use std::time::{Duration, Instant};
37
38 use itertools::Itertools;
39
40 pub fn bin_op_to_icmp_predicate(op: hir::BinOpKind, signed: bool) -> IntPredicate {
41 match op {
42 hir::BinOpKind::Eq => IntPredicate::IntEQ,
43 hir::BinOpKind::Ne => IntPredicate::IntNE,
44 hir::BinOpKind::Lt => {
45 if signed {
46 IntPredicate::IntSLT
47 } else {
48 IntPredicate::IntULT
49 }
50 }
51 hir::BinOpKind::Le => {
52 if signed {
53 IntPredicate::IntSLE
54 } else {
55 IntPredicate::IntULE
56 }
57 }
58 hir::BinOpKind::Gt => {
59 if signed {
60 IntPredicate::IntSGT
61 } else {
62 IntPredicate::IntUGT
63 }
64 }
65 hir::BinOpKind::Ge => {
66 if signed {
67 IntPredicate::IntSGE
68 } else {
69 IntPredicate::IntUGE
70 }
71 }
72 op => bug!(
73 "comparison_op_to_icmp_predicate: expected comparison operator, \
74 found {:?}",
75 op
76 ),
77 }
78 }
79
80 pub fn bin_op_to_fcmp_predicate(op: hir::BinOpKind) -> RealPredicate {
81 match op {
82 hir::BinOpKind::Eq => RealPredicate::RealOEQ,
83 hir::BinOpKind::Ne => RealPredicate::RealUNE,
84 hir::BinOpKind::Lt => RealPredicate::RealOLT,
85 hir::BinOpKind::Le => RealPredicate::RealOLE,
86 hir::BinOpKind::Gt => RealPredicate::RealOGT,
87 hir::BinOpKind::Ge => RealPredicate::RealOGE,
88 op => {
89 bug!(
90 "comparison_op_to_fcmp_predicate: expected comparison operator, \
91 found {:?}",
92 op
93 );
94 }
95 }
96 }
97
98 pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
99 bx: &mut Bx,
100 lhs: Bx::Value,
101 rhs: Bx::Value,
102 t: Ty<'tcx>,
103 ret_ty: Bx::Type,
104 op: hir::BinOpKind,
105 ) -> Bx::Value {
106 let signed = match t.kind() {
107 ty::Float(_) => {
108 let cmp = bin_op_to_fcmp_predicate(op);
109 let cmp = bx.fcmp(cmp, lhs, rhs);
110 return bx.sext(cmp, ret_ty);
111 }
112 ty::Uint(_) => false,
113 ty::Int(_) => true,
114 _ => bug!("compare_simd_types: invalid SIMD type"),
115 };
116
117 let cmp = bin_op_to_icmp_predicate(op, signed);
118 let cmp = bx.icmp(cmp, lhs, rhs);
119 // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
120 // to get the correctly sized type. This will compile to a single instruction
121 // once the IR is converted to assembly if the SIMD instruction is supported
122 // by the target architecture.
123 bx.sext(cmp, ret_ty)
124 }
125
126 /// Retrieves the information we are losing (making dynamic) in an unsizing
127 /// adjustment.
128 ///
129 /// The `old_info` argument is a bit odd. It is intended for use in an upcast,
130 /// where the new vtable for an object will be derived from the old one.
131 pub fn unsized_info<'tcx, Cx: CodegenMethods<'tcx>>(
132 cx: &Cx,
133 source: Ty<'tcx>,
134 target: Ty<'tcx>,
135 old_info: Option<Cx::Value>,
136 ) -> Cx::Value {
137 let (source, target) =
138 cx.tcx().struct_lockstep_tails_erasing_lifetimes(source, target, cx.param_env());
139 match (source.kind(), target.kind()) {
140 (&ty::Array(_, len), &ty::Slice(_)) => {
141 cx.const_usize(len.eval_usize(cx.tcx(), ty::ParamEnv::reveal_all()))
142 }
143 (&ty::Dynamic(..), &ty::Dynamic(..)) => {
144 // For now, upcasts are limited to changes in marker
145 // traits, and hence never actually require an actual
146 // change to the vtable.
147 old_info.expect("unsized_info: missing old info for trait upcast")
148 }
149 (_, &ty::Dynamic(ref data, ..)) => {
150 let vtable_ptr = cx.layout_of(cx.tcx().mk_mut_ptr(target)).field(cx, FAT_PTR_EXTRA);
151 cx.const_ptrcast(
152 meth::get_vtable(cx, source, data.principal()),
153 cx.backend_type(vtable_ptr),
154 )
155 }
156 _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
157 }
158 }
159
160 /// Coerces `src` to `dst_ty`. `src_ty` must be a thin pointer.
161 pub fn unsize_thin_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
162 bx: &mut Bx,
163 src: Bx::Value,
164 src_ty: Ty<'tcx>,
165 dst_ty: Ty<'tcx>,
166 ) -> (Bx::Value, Bx::Value) {
167 debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
168 match (src_ty.kind(), dst_ty.kind()) {
169 (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
170 | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
171 assert!(bx.cx().type_is_sized(a));
172 let ptr_ty = bx.cx().type_ptr_to(bx.cx().backend_type(bx.cx().layout_of(b)));
173 (bx.pointercast(src, ptr_ty), unsized_info(bx.cx(), a, b, None))
174 }
175 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
176 assert_eq!(def_a, def_b);
177
178 let src_layout = bx.cx().layout_of(src_ty);
179 let dst_layout = bx.cx().layout_of(dst_ty);
180 let mut result = None;
181 for i in 0..src_layout.fields.count() {
182 let src_f = src_layout.field(bx.cx(), i);
183 assert_eq!(src_layout.fields.offset(i).bytes(), 0);
184 assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
185 if src_f.is_zst() {
186 continue;
187 }
188 assert_eq!(src_layout.size, src_f.size);
189
190 let dst_f = dst_layout.field(bx.cx(), i);
191 assert_ne!(src_f.ty, dst_f.ty);
192 assert_eq!(result, None);
193 result = Some(unsize_thin_ptr(bx, src, src_f.ty, dst_f.ty));
194 }
195 let (lldata, llextra) = result.unwrap();
196 // HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
197 // FIXME(eddyb) move these out of this `match` arm, so they're always
198 // applied, uniformly, no matter the source/destination types.
199 (
200 bx.bitcast(lldata, bx.cx().scalar_pair_element_backend_type(dst_layout, 0, true)),
201 bx.bitcast(llextra, bx.cx().scalar_pair_element_backend_type(dst_layout, 1, true)),
202 )
203 }
204 _ => bug!("unsize_thin_ptr: called on bad types"),
205 }
206 }
207
208 /// Coerces `src`, which is a reference to a value of type `src_ty`,
209 /// to a value of type `dst_ty`, and stores the result in `dst`.
210 pub fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
211 bx: &mut Bx,
212 src: PlaceRef<'tcx, Bx::Value>,
213 dst: PlaceRef<'tcx, Bx::Value>,
214 ) {
215 let src_ty = src.layout.ty;
216 let dst_ty = dst.layout.ty;
217 match (src_ty.kind(), dst_ty.kind()) {
218 (&ty::Ref(..), &ty::Ref(..) | &ty::RawPtr(..)) | (&ty::RawPtr(..), &ty::RawPtr(..)) => {
219 let (base, info) = match bx.load_operand(src).val {
220 OperandValue::Pair(base, info) => {
221 // fat-ptr to fat-ptr unsize preserves the vtable
222 // i.e., &'a fmt::Debug+Send => &'a fmt::Debug
223 // So we need to pointercast the base to ensure
224 // the types match up.
225 // FIXME(eddyb) use `scalar_pair_element_backend_type` here,
226 // like `unsize_thin_ptr` does.
227 let thin_ptr = dst.layout.field(bx.cx(), FAT_PTR_ADDR);
228 (bx.pointercast(base, bx.cx().backend_type(thin_ptr)), info)
229 }
230 OperandValue::Immediate(base) => unsize_thin_ptr(bx, base, src_ty, dst_ty),
231 OperandValue::Ref(..) => bug!(),
232 };
233 OperandValue::Pair(base, info).store(bx, dst);
234 }
235
236 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
237 assert_eq!(def_a, def_b);
238
239 for i in 0..def_a.variants[VariantIdx::new(0)].fields.len() {
240 let src_f = src.project_field(bx, i);
241 let dst_f = dst.project_field(bx, i);
242
243 if dst_f.layout.is_zst() {
244 continue;
245 }
246
247 if src_f.layout.ty == dst_f.layout.ty {
248 memcpy_ty(
249 bx,
250 dst_f.llval,
251 dst_f.align,
252 src_f.llval,
253 src_f.align,
254 src_f.layout,
255 MemFlags::empty(),
256 );
257 } else {
258 coerce_unsized_into(bx, src_f, dst_f);
259 }
260 }
261 }
262 _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
263 }
264 }
265
266 pub fn cast_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
267 bx: &mut Bx,
268 op: hir::BinOpKind,
269 lhs: Bx::Value,
270 rhs: Bx::Value,
271 ) -> Bx::Value {
272 cast_shift_rhs(bx, op, lhs, rhs)
273 }
274
275 fn cast_shift_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
276 bx: &mut Bx,
277 op: hir::BinOpKind,
278 lhs: Bx::Value,
279 rhs: Bx::Value,
280 ) -> Bx::Value {
281 // Shifts may have any size int on the rhs
282 if op.is_shift() {
283 let mut rhs_llty = bx.cx().val_ty(rhs);
284 let mut lhs_llty = bx.cx().val_ty(lhs);
285 if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
286 rhs_llty = bx.cx().element_type(rhs_llty)
287 }
288 if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
289 lhs_llty = bx.cx().element_type(lhs_llty)
290 }
291 let rhs_sz = bx.cx().int_width(rhs_llty);
292 let lhs_sz = bx.cx().int_width(lhs_llty);
293 if lhs_sz < rhs_sz {
294 bx.trunc(rhs, lhs_llty)
295 } else if lhs_sz > rhs_sz {
296 // FIXME (#1877: If in the future shifting by negative
297 // values is no longer undefined then this is wrong.
298 bx.zext(rhs, lhs_llty)
299 } else {
300 rhs
301 }
302 } else {
303 rhs
304 }
305 }
306
307 /// Returns `true` if this session's target will use SEH-based unwinding.
308 ///
309 /// This is only true for MSVC targets, and even then the 64-bit MSVC target
310 /// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
311 /// 64-bit MinGW) instead of "full SEH".
312 pub fn wants_msvc_seh(sess: &Session) -> bool {
313 sess.target.is_like_msvc
314 }
315
316 pub fn memcpy_ty<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
317 bx: &mut Bx,
318 dst: Bx::Value,
319 dst_align: Align,
320 src: Bx::Value,
321 src_align: Align,
322 layout: TyAndLayout<'tcx>,
323 flags: MemFlags,
324 ) {
325 let size = layout.size.bytes();
326 if size == 0 {
327 return;
328 }
329
330 bx.memcpy(dst, dst_align, src, src_align, bx.cx().const_usize(size), flags);
331 }
332
333 pub fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
334 cx: &'a Bx::CodegenCx,
335 instance: Instance<'tcx>,
336 ) {
337 // this is an info! to allow collecting monomorphization statistics
338 // and to allow finding the last function before LLVM aborts from
339 // release builds.
340 info!("codegen_instance({})", instance);
341
342 mir::codegen_mir::<Bx>(cx, instance);
343 }
344
345 /// Creates the `main` function which will initialize the rust runtime and call
346 /// users main function.
347 pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
348 cx: &'a Bx::CodegenCx,
349 ) -> Option<Bx::Function> {
350 let main_def_id = cx.tcx().entry_fn(LOCAL_CRATE).map(|(def_id, _)| def_id)?;
351 let main_is_local = main_def_id.is_local();
352 let instance = Instance::mono(cx.tcx(), main_def_id);
353
354 if main_is_local {
355 // We want to create the wrapper in the same codegen unit as Rust's main
356 // function.
357 if !cx.codegen_unit().contains_item(&MonoItem::Fn(instance)) {
358 return None;
359 }
360 } else {
361 // FIXME: Add support for non-local main fn codegen
362 let span = cx.tcx().main_def.unwrap().span;
363 let n = 28937;
364 cx.sess()
365 .struct_span_err(span, "entry symbol `main` from foreign crate is not yet supported.")
366 .note(&format!(
367 "see issue #{} <https://github.com/rust-lang/rust/issues/{}> \
368 for more information",
369 n, n,
370 ))
371 .emit();
372 cx.sess().abort_if_errors();
373 bug!();
374 }
375
376 let main_llfn = cx.get_fn_addr(instance);
377
378 return cx.tcx().entry_fn(LOCAL_CRATE).map(|(_, et)| {
379 let use_start_lang_item = EntryFnType::Start != et;
380 create_entry_fn::<Bx>(cx, main_llfn, main_def_id, use_start_lang_item)
381 });
382
383 fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
384 cx: &'a Bx::CodegenCx,
385 rust_main: Bx::Value,
386 rust_main_def_id: DefId,
387 use_start_lang_item: bool,
388 ) -> Bx::Function {
389 // The entry function is either `int main(void)` or `int main(int argc, char **argv)`,
390 // depending on whether the target needs `argc` and `argv` to be passed in.
391 let llfty = if cx.sess().target.main_needs_argc_argv {
392 cx.type_func(&[cx.type_int(), cx.type_ptr_to(cx.type_i8p())], cx.type_int())
393 } else {
394 cx.type_func(&[], cx.type_int())
395 };
396
397 let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).output();
398 // Given that `main()` has no arguments,
399 // then its return type cannot have
400 // late-bound regions, since late-bound
401 // regions must appear in the argument
402 // listing.
403 let main_ret_ty = cx.tcx().erase_regions(main_ret_ty.no_bound_vars().unwrap());
404
405 let llfn = match cx.declare_c_main(llfty) {
406 Some(llfn) => llfn,
407 None => {
408 // FIXME: We should be smart and show a better diagnostic here.
409 let span = cx.tcx().def_span(rust_main_def_id);
410 cx.sess()
411 .struct_span_err(span, "entry symbol `main` declared multiple times")
412 .help("did you use `#[no_mangle]` on `fn main`? Use `#[start]` instead")
413 .emit();
414 cx.sess().abort_if_errors();
415 bug!();
416 }
417 };
418
419 // `main` should respect same config for frame pointer elimination as rest of code
420 cx.set_frame_pointer_elimination(llfn);
421 cx.apply_target_cpu_attr(llfn);
422
423 let mut bx = Bx::new_block(&cx, llfn, "top");
424
425 bx.insert_reference_to_gdb_debug_scripts_section_global();
426
427 let (arg_argc, arg_argv) = get_argc_argv(cx, &mut bx);
428
429 let (start_fn, args) = if use_start_lang_item {
430 let start_def_id = cx.tcx().require_lang_item(LangItem::Start, None);
431 let start_fn = cx.get_fn_addr(
432 ty::Instance::resolve(
433 cx.tcx(),
434 ty::ParamEnv::reveal_all(),
435 start_def_id,
436 cx.tcx().intern_substs(&[main_ret_ty.into()]),
437 )
438 .unwrap()
439 .unwrap(),
440 );
441 (
442 start_fn,
443 vec![bx.pointercast(rust_main, cx.type_ptr_to(cx.type_i8p())), arg_argc, arg_argv],
444 )
445 } else {
446 debug!("using user-defined start fn");
447 (rust_main, vec![arg_argc, arg_argv])
448 };
449
450 let result = bx.call(start_fn, &args, None);
451 let cast = bx.intcast(result, cx.type_int(), true);
452 bx.ret(cast);
453
454 llfn
455 }
456 }
457
458 /// Obtain the `argc` and `argv` values to pass to the rust start function.
459 fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
460 cx: &'a Bx::CodegenCx,
461 bx: &mut Bx,
462 ) -> (Bx::Value, Bx::Value) {
463 if cx.sess().target.main_needs_argc_argv {
464 // Params from native `main()` used as args for rust start function
465 let param_argc = bx.get_param(0);
466 let param_argv = bx.get_param(1);
467 let arg_argc = bx.intcast(param_argc, cx.type_isize(), true);
468 let arg_argv = param_argv;
469 (arg_argc, arg_argv)
470 } else {
471 // The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
472 let arg_argc = bx.const_int(cx.type_int(), 0);
473 let arg_argv = bx.const_null(cx.type_ptr_to(cx.type_i8p()));
474 (arg_argc, arg_argv)
475 }
476 }
477
478 pub fn codegen_crate<B: ExtraBackendMethods>(
479 backend: B,
480 tcx: TyCtxt<'tcx>,
481 metadata: EncodedMetadata,
482 need_metadata_module: bool,
483 ) -> OngoingCodegen<B> {
484 // Skip crate items and just output metadata in -Z no-codegen mode.
485 if tcx.sess.opts.debugging_opts.no_codegen || !tcx.sess.opts.output_types.should_codegen() {
486 let ongoing_codegen = start_async_codegen(backend, tcx, metadata, 1);
487
488 ongoing_codegen.codegen_finished(tcx);
489
490 ongoing_codegen.check_for_errors(tcx.sess);
491
492 return ongoing_codegen;
493 }
494
495 let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
496
497 // Run the monomorphization collector and partition the collected items into
498 // codegen units.
499 let codegen_units = tcx.collect_and_partition_mono_items(LOCAL_CRATE).1;
500
501 // Force all codegen_unit queries so they are already either red or green
502 // when compile_codegen_unit accesses them. We are not able to re-execute
503 // the codegen_unit query from just the DepNode, so an unknown color would
504 // lead to having to re-execute compile_codegen_unit, possibly
505 // unnecessarily.
506 if tcx.dep_graph.is_fully_enabled() {
507 for cgu in codegen_units {
508 tcx.ensure().codegen_unit(cgu.name());
509 }
510 }
511
512 let ongoing_codegen = start_async_codegen(backend.clone(), tcx, metadata, codegen_units.len());
513 let ongoing_codegen = AbortCodegenOnDrop::<B>(Some(ongoing_codegen));
514
515 // Codegen an allocator shim, if necessary.
516 //
517 // If the crate doesn't have an `allocator_kind` set then there's definitely
518 // no shim to generate. Otherwise we also check our dependency graph for all
519 // our output crate types. If anything there looks like its a `Dynamic`
520 // linkage, then it's already got an allocator shim and we'll be using that
521 // one instead. If nothing exists then it's our job to generate the
522 // allocator!
523 let any_dynamic_crate = tcx.dependency_formats(LOCAL_CRATE).iter().any(|(_, list)| {
524 use rustc_middle::middle::dependency_format::Linkage;
525 list.iter().any(|&linkage| linkage == Linkage::Dynamic)
526 });
527 let allocator_module = if any_dynamic_crate {
528 None
529 } else if let Some(kind) = tcx.allocator_kind() {
530 let llmod_id =
531 cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
532 let mut modules = backend.new_metadata(tcx, &llmod_id);
533 tcx.sess.time("write_allocator_module", || {
534 backend.codegen_allocator(tcx, &mut modules, kind, tcx.lang_items().oom().is_some())
535 });
536
537 Some(ModuleCodegen { name: llmod_id, module_llvm: modules, kind: ModuleKind::Allocator })
538 } else {
539 None
540 };
541
542 if let Some(allocator_module) = allocator_module {
543 ongoing_codegen.submit_pre_codegened_module_to_llvm(tcx, allocator_module);
544 }
545
546 if need_metadata_module {
547 // Codegen the encoded metadata.
548 let metadata_cgu_name =
549 cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("metadata")).to_string();
550 let mut metadata_llvm_module = backend.new_metadata(tcx, &metadata_cgu_name);
551 tcx.sess.time("write_compressed_metadata", || {
552 backend.write_compressed_metadata(
553 tcx,
554 &ongoing_codegen.metadata,
555 &mut metadata_llvm_module,
556 );
557 });
558
559 let metadata_module = ModuleCodegen {
560 name: metadata_cgu_name,
561 module_llvm: metadata_llvm_module,
562 kind: ModuleKind::Metadata,
563 };
564 ongoing_codegen.submit_pre_codegened_module_to_llvm(tcx, metadata_module);
565 }
566
567 // For better throughput during parallel processing by LLVM, we used to sort
568 // CGUs largest to smallest. This would lead to better thread utilization
569 // by, for example, preventing a large CGU from being processed last and
570 // having only one LLVM thread working while the rest remained idle.
571 //
572 // However, this strategy would lead to high memory usage, as it meant the
573 // LLVM-IR for all of the largest CGUs would be resident in memory at once.
574 //
575 // Instead, we can compromise by ordering CGUs such that the largest and
576 // smallest are first, second largest and smallest are next, etc. If there
577 // are large size variations, this can reduce memory usage significantly.
578 let codegen_units: Vec<_> = {
579 let mut sorted_cgus = codegen_units.iter().collect::<Vec<_>>();
580 sorted_cgus.sort_by_cached_key(|cgu| cgu.size_estimate());
581
582 let (first_half, second_half) = sorted_cgus.split_at(sorted_cgus.len() / 2);
583 second_half.iter().rev().interleave(first_half).copied().collect()
584 };
585
586 // The non-parallel compiler can only translate codegen units to LLVM IR
587 // on a single thread, leading to a staircase effect where the N LLVM
588 // threads have to wait on the single codegen threads to generate work
589 // for them. The parallel compiler does not have this restriction, so
590 // we can pre-load the LLVM queue in parallel before handing off
591 // coordination to the OnGoingCodegen scheduler.
592 //
593 // This likely is a temporary measure. Once we don't have to support the
594 // non-parallel compiler anymore, we can compile CGUs end-to-end in
595 // parallel and get rid of the complicated scheduling logic.
596 let pre_compile_cgus = |cgu_reuse: &[CguReuse]| {
597 if cfg!(parallel_compiler) {
598 tcx.sess.time("compile_first_CGU_batch", || {
599 // Try to find one CGU to compile per thread.
600 let cgus: Vec<_> = cgu_reuse
601 .iter()
602 .enumerate()
603 .filter(|&(_, reuse)| reuse == &CguReuse::No)
604 .take(tcx.sess.threads())
605 .collect();
606
607 // Compile the found CGUs in parallel.
608 let start_time = Instant::now();
609
610 let pre_compiled_cgus = par_iter(cgus)
611 .map(|(i, _)| {
612 let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
613 (i, module)
614 })
615 .collect();
616
617 (pre_compiled_cgus, start_time.elapsed())
618 })
619 } else {
620 (FxHashMap::default(), Duration::new(0, 0))
621 }
622 };
623
624 let mut cgu_reuse = Vec::new();
625 let mut pre_compiled_cgus: Option<FxHashMap<usize, _>> = None;
626 let mut total_codegen_time = Duration::new(0, 0);
627 let start_rss = tcx.sess.time_passes().then(|| get_resident_set_size());
628
629 for (i, cgu) in codegen_units.iter().enumerate() {
630 ongoing_codegen.wait_for_signal_to_codegen_item();
631 ongoing_codegen.check_for_errors(tcx.sess);
632
633 // Do some setup work in the first iteration
634 if pre_compiled_cgus.is_none() {
635 // Calculate the CGU reuse
636 cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
637 codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, &cgu)).collect()
638 });
639 // Pre compile some CGUs
640 let (compiled_cgus, codegen_time) = pre_compile_cgus(&cgu_reuse);
641 pre_compiled_cgus = Some(compiled_cgus);
642 total_codegen_time += codegen_time;
643 }
644
645 let cgu_reuse = cgu_reuse[i];
646 tcx.sess.cgu_reuse_tracker.set_actual_reuse(&cgu.name().as_str(), cgu_reuse);
647
648 match cgu_reuse {
649 CguReuse::No => {
650 let (module, cost) =
651 if let Some(cgu) = pre_compiled_cgus.as_mut().unwrap().remove(&i) {
652 cgu
653 } else {
654 let start_time = Instant::now();
655 let module = backend.compile_codegen_unit(tcx, cgu.name());
656 total_codegen_time += start_time.elapsed();
657 module
658 };
659 // This will unwind if there are errors, which triggers our `AbortCodegenOnDrop`
660 // guard. Unfortunately, just skipping the `submit_codegened_module_to_llvm` makes
661 // compilation hang on post-monomorphization errors.
662 tcx.sess.abort_if_errors();
663
664 submit_codegened_module_to_llvm(
665 &backend,
666 &ongoing_codegen.coordinator_send,
667 module,
668 cost,
669 );
670 false
671 }
672 CguReuse::PreLto => {
673 submit_pre_lto_module_to_llvm(
674 &backend,
675 tcx,
676 &ongoing_codegen.coordinator_send,
677 CachedModuleCodegen {
678 name: cgu.name().to_string(),
679 source: cgu.work_product(tcx),
680 },
681 );
682 true
683 }
684 CguReuse::PostLto => {
685 submit_post_lto_module_to_llvm(
686 &backend,
687 &ongoing_codegen.coordinator_send,
688 CachedModuleCodegen {
689 name: cgu.name().to_string(),
690 source: cgu.work_product(tcx),
691 },
692 );
693 true
694 }
695 };
696 }
697
698 ongoing_codegen.codegen_finished(tcx);
699
700 // Since the main thread is sometimes blocked during codegen, we keep track
701 // -Ztime-passes output manually.
702 if tcx.sess.time_passes() {
703 let end_rss = get_resident_set_size();
704
705 print_time_passes_entry(
706 "codegen_to_LLVM_IR",
707 total_codegen_time,
708 start_rss.unwrap(),
709 end_rss,
710 );
711 }
712
713 ongoing_codegen.check_for_errors(tcx.sess);
714
715 ongoing_codegen.into_inner()
716 }
717
718 /// A curious wrapper structure whose only purpose is to call `codegen_aborted`
719 /// when it's dropped abnormally.
720 ///
721 /// In the process of working on rust-lang/rust#55238 a mysterious segfault was
722 /// stumbled upon. The segfault was never reproduced locally, but it was
723 /// suspected to be related to the fact that codegen worker threads were
724 /// sticking around by the time the main thread was exiting, causing issues.
725 ///
726 /// This structure is an attempt to fix that issue where the `codegen_aborted`
727 /// message will block until all workers have finished. This should ensure that
728 /// even if the main codegen thread panics we'll wait for pending work to
729 /// complete before returning from the main thread, hopefully avoiding
730 /// segfaults.
731 ///
732 /// If you see this comment in the code, then it means that this workaround
733 /// worked! We may yet one day track down the mysterious cause of that
734 /// segfault...
735 struct AbortCodegenOnDrop<B: ExtraBackendMethods>(Option<OngoingCodegen<B>>);
736
737 impl<B: ExtraBackendMethods> AbortCodegenOnDrop<B> {
738 fn into_inner(mut self) -> OngoingCodegen<B> {
739 self.0.take().unwrap()
740 }
741 }
742
743 impl<B: ExtraBackendMethods> Deref for AbortCodegenOnDrop<B> {
744 type Target = OngoingCodegen<B>;
745
746 fn deref(&self) -> &OngoingCodegen<B> {
747 self.0.as_ref().unwrap()
748 }
749 }
750
751 impl<B: ExtraBackendMethods> DerefMut for AbortCodegenOnDrop<B> {
752 fn deref_mut(&mut self) -> &mut OngoingCodegen<B> {
753 self.0.as_mut().unwrap()
754 }
755 }
756
757 impl<B: ExtraBackendMethods> Drop for AbortCodegenOnDrop<B> {
758 fn drop(&mut self) {
759 if let Some(codegen) = self.0.take() {
760 codegen.codegen_aborted();
761 }
762 }
763 }
764
765 impl CrateInfo {
766 pub fn new(tcx: TyCtxt<'_>) -> CrateInfo {
767 let mut info = CrateInfo {
768 panic_runtime: None,
769 compiler_builtins: None,
770 profiler_runtime: None,
771 is_no_builtins: Default::default(),
772 native_libraries: Default::default(),
773 used_libraries: tcx.native_libraries(LOCAL_CRATE).iter().map(Into::into).collect(),
774 crate_name: Default::default(),
775 used_crates_dynamic: cstore::used_crates(tcx, LinkagePreference::RequireDynamic),
776 used_crates_static: cstore::used_crates(tcx, LinkagePreference::RequireStatic),
777 used_crate_source: Default::default(),
778 lang_item_to_crate: Default::default(),
779 missing_lang_items: Default::default(),
780 dependency_formats: tcx.dependency_formats(LOCAL_CRATE),
781 };
782 let lang_items = tcx.lang_items();
783
784 let crates = tcx.crates();
785
786 let n_crates = crates.len();
787 info.native_libraries.reserve(n_crates);
788 info.crate_name.reserve(n_crates);
789 info.used_crate_source.reserve(n_crates);
790 info.missing_lang_items.reserve(n_crates);
791
792 for &cnum in crates.iter() {
793 info.native_libraries
794 .insert(cnum, tcx.native_libraries(cnum).iter().map(Into::into).collect());
795 info.crate_name.insert(cnum, tcx.crate_name(cnum).to_string());
796 info.used_crate_source.insert(cnum, tcx.used_crate_source(cnum));
797 if tcx.is_panic_runtime(cnum) {
798 info.panic_runtime = Some(cnum);
799 }
800 if tcx.is_compiler_builtins(cnum) {
801 info.compiler_builtins = Some(cnum);
802 }
803 if tcx.is_profiler_runtime(cnum) {
804 info.profiler_runtime = Some(cnum);
805 }
806 if tcx.is_no_builtins(cnum) {
807 info.is_no_builtins.insert(cnum);
808 }
809 let missing = tcx.missing_lang_items(cnum);
810 for &item in missing.iter() {
811 if let Ok(id) = lang_items.require(item) {
812 info.lang_item_to_crate.insert(item, id.krate);
813 }
814 }
815
816 // No need to look for lang items that don't actually need to exist.
817 let missing =
818 missing.iter().cloned().filter(|&l| lang_items::required(tcx, l)).collect();
819 info.missing_lang_items.insert(cnum, missing);
820 }
821
822 info
823 }
824 }
825
826 pub fn provide(providers: &mut Providers) {
827 providers.backend_optimization_level = |tcx, cratenum| {
828 let for_speed = match tcx.sess.opts.optimize {
829 // If globally no optimisation is done, #[optimize] has no effect.
830 //
831 // This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
832 // pass manager and it is likely that some module-wide passes (such as inliner or
833 // cross-function constant propagation) would ignore the `optnone` annotation we put
834 // on the functions, thus necessarily involving these functions into optimisations.
835 config::OptLevel::No => return config::OptLevel::No,
836 // If globally optimise-speed is already specified, just use that level.
837 config::OptLevel::Less => return config::OptLevel::Less,
838 config::OptLevel::Default => return config::OptLevel::Default,
839 config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
840 // If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
841 // are present).
842 config::OptLevel::Size => config::OptLevel::Default,
843 config::OptLevel::SizeMin => config::OptLevel::Default,
844 };
845
846 let (defids, _) = tcx.collect_and_partition_mono_items(cratenum);
847 for id in &*defids {
848 let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
849 match optimize {
850 attr::OptimizeAttr::None => continue,
851 attr::OptimizeAttr::Size => continue,
852 attr::OptimizeAttr::Speed => {
853 return for_speed;
854 }
855 }
856 }
857 tcx.sess.opts.optimize
858 };
859 }
860
861 fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
862 if !tcx.dep_graph.is_fully_enabled() {
863 return CguReuse::No;
864 }
865
866 let work_product_id = &cgu.work_product_id();
867 if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
868 // We don't have anything cached for this CGU. This can happen
869 // if the CGU did not exist in the previous session.
870 return CguReuse::No;
871 }
872
873 // Try to mark the CGU as green. If it we can do so, it means that nothing
874 // affecting the LLVM module has changed and we can re-use a cached version.
875 // If we compile with any kind of LTO, this means we can re-use the bitcode
876 // of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
877 // know that later). If we are not doing LTO, there is only one optimized
878 // version of each module, so we re-use that.
879 let dep_node = cgu.codegen_dep_node(tcx);
880 assert!(
881 !tcx.dep_graph.dep_node_exists(&dep_node),
882 "CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
883 cgu.name()
884 );
885
886 if tcx.try_mark_green(&dep_node) {
887 // We can re-use either the pre- or the post-thinlto state. If no LTO is
888 // being performed then we can use post-LTO artifacts, otherwise we must
889 // reuse pre-LTO artifacts
890 match compute_per_cgu_lto_type(
891 &tcx.sess.lto(),
892 &tcx.sess.opts,
893 &tcx.sess.crate_types(),
894 ModuleKind::Regular,
895 ) {
896 ComputedLtoType::No => CguReuse::PostLto,
897 _ => CguReuse::PreLto,
898 }
899 } else {
900 CguReuse::No
901 }
902 }