]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_codegen_ssa/src/coverageinfo/map.rs
New upstream version 1.49.0~beta.4+dfsg1
[rustc.git] / compiler / rustc_codegen_ssa / src / coverageinfo / map.rs
1 pub use super::ffi::*;
2
3 use rustc_index::vec::IndexVec;
4 use rustc_middle::mir::coverage::{
5 CodeRegion, CounterValueReference, ExpressionOperandId, InjectedExpressionId,
6 InjectedExpressionIndex, MappedExpressionIndex, Op,
7 };
8 use rustc_middle::ty::Instance;
9 use rustc_middle::ty::TyCtxt;
10
11 #[derive(Clone, Debug)]
12 pub struct Expression {
13 lhs: ExpressionOperandId,
14 op: Op,
15 rhs: ExpressionOperandId,
16 region: Option<CodeRegion>,
17 }
18
19 /// Collects all of the coverage regions associated with (a) injected counters, (b) counter
20 /// expressions (additions or subtraction), and (c) unreachable regions (always counted as zero),
21 /// for a given Function. Counters and counter expressions have non-overlapping `id`s because they
22 /// can both be operands in an expression. This struct also stores the `function_source_hash`,
23 /// computed during instrumentation, and forwarded with counters.
24 ///
25 /// Note, it may be important to understand LLVM's definitions of `unreachable` regions versus "gap
26 /// regions" (or "gap areas"). A gap region is a code region within a counted region (either counter
27 /// or expression), but the line or lines in the gap region are not executable (such as lines with
28 /// only whitespace or comments). According to LLVM Code Coverage Mapping documentation, "A count
29 /// for a gap area is only used as the line execution count if there are no other regions on a
30 /// line."
31 pub struct FunctionCoverage<'tcx> {
32 instance: Instance<'tcx>,
33 source_hash: u64,
34 counters: IndexVec<CounterValueReference, Option<CodeRegion>>,
35 expressions: IndexVec<InjectedExpressionIndex, Option<Expression>>,
36 unreachable_regions: Vec<CodeRegion>,
37 }
38
39 impl<'tcx> FunctionCoverage<'tcx> {
40 pub fn new(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> Self {
41 let coverageinfo = tcx.coverageinfo(instance.def_id());
42 debug!(
43 "FunctionCoverage::new(instance={:?}) has coverageinfo={:?}",
44 instance, coverageinfo
45 );
46 Self {
47 instance,
48 source_hash: 0, // will be set with the first `add_counter()`
49 counters: IndexVec::from_elem_n(None, coverageinfo.num_counters as usize),
50 expressions: IndexVec::from_elem_n(None, coverageinfo.num_expressions as usize),
51 unreachable_regions: Vec::new(),
52 }
53 }
54
55 /// Sets the function source hash value. If called multiple times for the same function, all
56 /// calls should have the same hash value.
57 pub fn set_function_source_hash(&mut self, source_hash: u64) {
58 if self.source_hash == 0 {
59 self.source_hash = source_hash;
60 } else {
61 debug_assert_eq!(source_hash, self.source_hash);
62 }
63 }
64
65 /// Adds a code region to be counted by an injected counter intrinsic.
66 pub fn add_counter(&mut self, id: CounterValueReference, region: CodeRegion) {
67 self.counters[id].replace(region).expect_none("add_counter called with duplicate `id`");
68 }
69
70 /// Both counters and "counter expressions" (or simply, "expressions") can be operands in other
71 /// expressions. Expression IDs start from `u32::MAX` and go down, so the range of expression
72 /// IDs will not overlap with the range of counter IDs. Counters and expressions can be added in
73 /// any order, and expressions can still be assigned contiguous (though descending) IDs, without
74 /// knowing what the last counter ID will be.
75 ///
76 /// When storing the expression data in the `expressions` vector in the `FunctionCoverage`
77 /// struct, its vector index is computed, from the given expression ID, by subtracting from
78 /// `u32::MAX`.
79 ///
80 /// Since the expression operands (`lhs` and `rhs`) can reference either counters or
81 /// expressions, an operand that references an expression also uses its original ID, descending
82 /// from `u32::MAX`. Theses operands are translated only during code generation, after all
83 /// counters and expressions have been added.
84 pub fn add_counter_expression(
85 &mut self,
86 expression_id: InjectedExpressionId,
87 lhs: ExpressionOperandId,
88 op: Op,
89 rhs: ExpressionOperandId,
90 region: Option<CodeRegion>,
91 ) {
92 debug!(
93 "add_counter_expression({:?}, lhs={:?}, op={:?}, rhs={:?} at {:?}",
94 expression_id, lhs, op, rhs, region
95 );
96 let expression_index = self.expression_index(u32::from(expression_id));
97 self.expressions[expression_index]
98 .replace(Expression { lhs, op, rhs, region })
99 .expect_none("add_counter_expression called with duplicate `id_descending_from_max`");
100 }
101
102 /// Add a region that will be marked as "unreachable", with a constant "zero counter".
103 pub fn add_unreachable_region(&mut self, region: CodeRegion) {
104 self.unreachable_regions.push(region)
105 }
106
107 /// Return the source hash, generated from the HIR node structure, and used to indicate whether
108 /// or not the source code structure changed between different compilations.
109 pub fn source_hash(&self) -> u64 {
110 self.source_hash
111 }
112
113 /// Generate an array of CounterExpressions, and an iterator over all `Counter`s and their
114 /// associated `Regions` (from which the LLVM-specific `CoverageMapGenerator` will create
115 /// `CounterMappingRegion`s.
116 pub fn get_expressions_and_counter_regions<'a>(
117 &'a self,
118 ) -> (Vec<CounterExpression>, impl Iterator<Item = (Counter, &'a CodeRegion)>) {
119 assert!(
120 self.source_hash != 0,
121 "No counters provided the source_hash for function: {:?}",
122 self.instance
123 );
124
125 let counter_regions = self.counter_regions();
126 let (counter_expressions, expression_regions) = self.expressions_with_regions();
127 let unreachable_regions = self.unreachable_regions();
128
129 let counter_regions =
130 counter_regions.chain(expression_regions.into_iter().chain(unreachable_regions));
131 (counter_expressions, counter_regions)
132 }
133
134 fn counter_regions<'a>(&'a self) -> impl Iterator<Item = (Counter, &'a CodeRegion)> {
135 self.counters.iter_enumerated().filter_map(|(index, entry)| {
136 // Option::map() will return None to filter out missing counters. This may happen
137 // if, for example, a MIR-instrumented counter is removed during an optimization.
138 entry.as_ref().map(|region| {
139 (Counter::counter_value_reference(index as CounterValueReference), region)
140 })
141 })
142 }
143
144 fn expressions_with_regions(
145 &'a self,
146 ) -> (Vec<CounterExpression>, impl Iterator<Item = (Counter, &'a CodeRegion)>) {
147 let mut counter_expressions = Vec::with_capacity(self.expressions.len());
148 let mut expression_regions = Vec::with_capacity(self.expressions.len());
149 let mut new_indexes = IndexVec::from_elem_n(None, self.expressions.len());
150
151 // This closure converts any `Expression` operand (`lhs` or `rhs` of the `Op::Add` or
152 // `Op::Subtract` operation) into its native `llvm::coverage::Counter::CounterKind` type
153 // and value. Operand ID value `0` maps to `CounterKind::Zero`; values in the known range
154 // of injected LLVM counters map to `CounterKind::CounterValueReference` (and the value
155 // matches the injected counter index); and any other value is converted into a
156 // `CounterKind::Expression` with the expression's `new_index`.
157 //
158 // Expressions will be returned from this function in a sequential vector (array) of
159 // `CounterExpression`, so the expression IDs must be mapped from their original,
160 // potentially sparse set of indexes, originally in reverse order from `u32::MAX`.
161 //
162 // An `Expression` as an operand will have already been encountered as an `Expression` with
163 // operands, so its new_index will already have been generated (as a 1-up index value).
164 // (If an `Expression` as an operand does not have a corresponding new_index, it was
165 // probably optimized out, after the expression was injected into the MIR, so it will
166 // get a `CounterKind::Zero` instead.)
167 //
168 // In other words, an `Expression`s at any given index can include other expressions as
169 // operands, but expression operands can only come from the subset of expressions having
170 // `expression_index`s lower than the referencing `Expression`. Therefore, it is
171 // reasonable to look up the new index of an expression operand while the `new_indexes`
172 // vector is only complete up to the current `ExpressionIndex`.
173 let id_to_counter =
174 |new_indexes: &IndexVec<InjectedExpressionIndex, Option<MappedExpressionIndex>>,
175 id: ExpressionOperandId| {
176 if id == ExpressionOperandId::ZERO {
177 Some(Counter::zero())
178 } else if id.index() < self.counters.len() {
179 // Note: Some codegen-injected Counters may be only referenced by `Expression`s,
180 // and may not have their own `CodeRegion`s,
181 let index = CounterValueReference::from(id.index());
182 Some(Counter::counter_value_reference(index))
183 } else {
184 let index = self.expression_index(u32::from(id));
185 self.expressions
186 .get(index)
187 .expect("expression id is out of range")
188 .as_ref()
189 // If an expression was optimized out, assume it would have produced a count
190 // of zero. This ensures that expressions dependent on optimized-out
191 // expressions are still valid.
192 .map_or(Some(Counter::zero()), |_| {
193 new_indexes[index].map(|new_index| Counter::expression(new_index))
194 })
195 }
196 };
197
198 for (original_index, expression) in
199 self.expressions.iter_enumerated().filter_map(|(original_index, entry)| {
200 // Option::map() will return None to filter out missing expressions. This may happen
201 // if, for example, a MIR-instrumented expression is removed during an optimization.
202 entry.as_ref().map(|expression| (original_index, expression))
203 })
204 {
205 let optional_region = &expression.region;
206 let Expression { lhs, op, rhs, .. } = *expression;
207
208 if let Some(Some((lhs_counter, rhs_counter))) =
209 id_to_counter(&new_indexes, lhs).map(|lhs_counter| {
210 id_to_counter(&new_indexes, rhs).map(|rhs_counter| (lhs_counter, rhs_counter))
211 })
212 {
213 debug_assert!(
214 (lhs_counter.id as usize)
215 < usize::max(self.counters.len(), self.expressions.len())
216 );
217 debug_assert!(
218 (rhs_counter.id as usize)
219 < usize::max(self.counters.len(), self.expressions.len())
220 );
221 // Both operands exist. `Expression` operands exist in `self.expressions` and have
222 // been assigned a `new_index`.
223 let mapped_expression_index =
224 MappedExpressionIndex::from(counter_expressions.len());
225 let expression = CounterExpression::new(
226 lhs_counter,
227 match op {
228 Op::Add => ExprKind::Add,
229 Op::Subtract => ExprKind::Subtract,
230 },
231 rhs_counter,
232 );
233 debug!(
234 "Adding expression {:?} = {:?}, region: {:?}",
235 mapped_expression_index, expression, optional_region
236 );
237 counter_expressions.push(expression);
238 new_indexes[original_index] = Some(mapped_expression_index);
239 if let Some(region) = optional_region {
240 expression_regions.push((Counter::expression(mapped_expression_index), region));
241 }
242 } else {
243 debug!(
244 "Ignoring expression with one or more missing operands: \
245 original_index={:?}, lhs={:?}, op={:?}, rhs={:?}, region={:?}",
246 original_index, lhs, op, rhs, optional_region,
247 )
248 }
249 }
250 (counter_expressions, expression_regions.into_iter())
251 }
252
253 fn unreachable_regions<'a>(&'a self) -> impl Iterator<Item = (Counter, &'a CodeRegion)> {
254 self.unreachable_regions.iter().map(|region| (Counter::zero(), region))
255 }
256
257 fn expression_index(&self, id_descending_from_max: u32) -> InjectedExpressionIndex {
258 debug_assert!(id_descending_from_max >= self.counters.len() as u32);
259 InjectedExpressionIndex::from(u32::MAX - id_descending_from_max)
260 }
261 }