]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_hir/src/def.rs
149cf4ece37d154613cd4bc44245ca60f2f73cd6
[rustc.git] / compiler / rustc_hir / src / def.rs
1 use crate::hir;
2
3 use rustc_ast as ast;
4 use rustc_ast::NodeId;
5 use rustc_macros::HashStable_Generic;
6 use rustc_span::def_id::{DefId, LocalDefId};
7 use rustc_span::hygiene::MacroKind;
8 use rustc_span::Symbol;
9
10 use std::array::IntoIter;
11 use std::fmt::Debug;
12
13 /// Encodes if a `DefKind::Ctor` is the constructor of an enum variant or a struct.
14 #[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug)]
15 #[derive(HashStable_Generic)]
16 pub enum CtorOf {
17 /// This `DefKind::Ctor` is a synthesized constructor of a tuple or unit struct.
18 Struct,
19 /// This `DefKind::Ctor` is a synthesized constructor of a tuple or unit variant.
20 Variant,
21 }
22
23 /// What kind of constructor something is.
24 #[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug)]
25 #[derive(HashStable_Generic)]
26 pub enum CtorKind {
27 /// Constructor function automatically created by a tuple struct/variant.
28 Fn,
29 /// Constructor constant automatically created by a unit struct/variant.
30 Const,
31 }
32
33 /// An attribute that is not a macro; e.g., `#[inline]` or `#[rustfmt::skip]`.
34 #[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug)]
35 #[derive(HashStable_Generic)]
36 pub enum NonMacroAttrKind {
37 /// Single-segment attribute defined by the language (`#[inline]`)
38 Builtin(Symbol),
39 /// Multi-segment custom attribute living in a "tool module" (`#[rustfmt::skip]`).
40 Tool,
41 /// Single-segment custom attribute registered by a derive macro (`#[serde(default)]`).
42 DeriveHelper,
43 /// Single-segment custom attribute registered by a derive macro
44 /// but used before that derive macro was expanded (deprecated).
45 DeriveHelperCompat,
46 }
47
48 /// What kind of definition something is; e.g., `mod` vs `struct`.
49 #[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug)]
50 #[derive(HashStable_Generic)]
51 pub enum DefKind {
52 // Type namespace
53 Mod,
54 /// Refers to the struct itself, [`DefKind::Ctor`] refers to its constructor if it exists.
55 Struct,
56 Union,
57 Enum,
58 /// Refers to the variant itself, [`DefKind::Ctor`] refers to its constructor if it exists.
59 Variant,
60 Trait,
61 /// Type alias: `type Foo = Bar;`
62 TyAlias,
63 /// Type from an `extern` block.
64 ForeignTy,
65 /// Trait alias: `trait IntIterator = Iterator<Item = i32>;`
66 TraitAlias,
67 /// Associated type: `trait MyTrait { type Assoc; }`
68 AssocTy,
69 /// Type parameter: the `T` in `struct Vec<T> { ... }`
70 TyParam,
71
72 // Value namespace
73 Fn,
74 Const,
75 /// Constant generic parameter: `struct Foo<const N: usize> { ... }`
76 ConstParam,
77 Static(ast::Mutability),
78 /// Refers to the struct or enum variant's constructor.
79 ///
80 /// The reason `Ctor` exists in addition to [`DefKind::Struct`] and
81 /// [`DefKind::Variant`] is because structs and enum variants exist
82 /// in the *type* namespace, whereas struct and enum variant *constructors*
83 /// exist in the *value* namespace.
84 ///
85 /// You may wonder why enum variants exist in the type namespace as opposed
86 /// to the value namespace. Check out [RFC 2593] for intuition on why that is.
87 ///
88 /// [RFC 2593]: https://github.com/rust-lang/rfcs/pull/2593
89 Ctor(CtorOf, CtorKind),
90 /// Associated function: `impl MyStruct { fn associated() {} }`
91 /// or `trait Foo { fn associated() {} }`
92 AssocFn,
93 /// Associated constant: `trait MyTrait { const ASSOC: usize; }`
94 AssocConst,
95
96 // Macro namespace
97 Macro(MacroKind),
98
99 // Not namespaced (or they are, but we don't treat them so)
100 ExternCrate,
101 Use,
102 /// An `extern` block.
103 ForeignMod,
104 /// Anonymous constant, e.g. the `1 + 2` in `[u8; 1 + 2]`
105 AnonConst,
106 /// An inline constant, e.g. `const { 1 + 2 }`
107 InlineConst,
108 /// Opaque type, aka `impl Trait`.
109 OpaqueTy,
110 /// A return-position `impl Trait` in a trait definition
111 ImplTraitPlaceholder,
112 Field,
113 /// Lifetime parameter: the `'a` in `struct Foo<'a> { ... }`
114 LifetimeParam,
115 /// A use of `global_asm!`.
116 GlobalAsm,
117 Impl,
118 Closure,
119 Generator,
120 }
121
122 impl DefKind {
123 pub fn descr(self, def_id: DefId) -> &'static str {
124 match self {
125 DefKind::Fn => "function",
126 DefKind::Mod if def_id.is_crate_root() && !def_id.is_local() => "crate",
127 DefKind::Mod => "module",
128 DefKind::Static(..) => "static",
129 DefKind::Enum => "enum",
130 DefKind::Variant => "variant",
131 DefKind::Ctor(CtorOf::Variant, CtorKind::Fn) => "tuple variant",
132 DefKind::Ctor(CtorOf::Variant, CtorKind::Const) => "unit variant",
133 DefKind::Struct => "struct",
134 DefKind::Ctor(CtorOf::Struct, CtorKind::Fn) => "tuple struct",
135 DefKind::Ctor(CtorOf::Struct, CtorKind::Const) => "unit struct",
136 DefKind::OpaqueTy => "opaque type",
137 DefKind::ImplTraitPlaceholder => "opaque type in trait",
138 DefKind::TyAlias => "type alias",
139 DefKind::TraitAlias => "trait alias",
140 DefKind::AssocTy => "associated type",
141 DefKind::Union => "union",
142 DefKind::Trait => "trait",
143 DefKind::ForeignTy => "foreign type",
144 DefKind::AssocFn => "associated function",
145 DefKind::Const => "constant",
146 DefKind::AssocConst => "associated constant",
147 DefKind::TyParam => "type parameter",
148 DefKind::ConstParam => "const parameter",
149 DefKind::Macro(macro_kind) => macro_kind.descr(),
150 DefKind::LifetimeParam => "lifetime parameter",
151 DefKind::Use => "import",
152 DefKind::ForeignMod => "foreign module",
153 DefKind::AnonConst => "constant expression",
154 DefKind::InlineConst => "inline constant",
155 DefKind::Field => "field",
156 DefKind::Impl => "implementation",
157 DefKind::Closure => "closure",
158 DefKind::Generator => "generator",
159 DefKind::ExternCrate => "extern crate",
160 DefKind::GlobalAsm => "global assembly block",
161 }
162 }
163
164 /// Gets an English article for the definition.
165 pub fn article(&self) -> &'static str {
166 match *self {
167 DefKind::AssocTy
168 | DefKind::AssocConst
169 | DefKind::AssocFn
170 | DefKind::Enum
171 | DefKind::OpaqueTy
172 | DefKind::Impl
173 | DefKind::Use
174 | DefKind::InlineConst
175 | DefKind::ExternCrate => "an",
176 DefKind::Macro(macro_kind) => macro_kind.article(),
177 _ => "a",
178 }
179 }
180
181 pub fn ns(&self) -> Option<Namespace> {
182 match self {
183 DefKind::Mod
184 | DefKind::Struct
185 | DefKind::Union
186 | DefKind::Enum
187 | DefKind::Variant
188 | DefKind::Trait
189 | DefKind::OpaqueTy
190 | DefKind::TyAlias
191 | DefKind::ForeignTy
192 | DefKind::TraitAlias
193 | DefKind::AssocTy
194 | DefKind::TyParam => Some(Namespace::TypeNS),
195
196 DefKind::Fn
197 | DefKind::Const
198 | DefKind::ConstParam
199 | DefKind::Static(..)
200 | DefKind::Ctor(..)
201 | DefKind::AssocFn
202 | DefKind::AssocConst => Some(Namespace::ValueNS),
203
204 DefKind::Macro(..) => Some(Namespace::MacroNS),
205
206 // Not namespaced.
207 DefKind::AnonConst
208 | DefKind::InlineConst
209 | DefKind::Field
210 | DefKind::LifetimeParam
211 | DefKind::ExternCrate
212 | DefKind::Closure
213 | DefKind::Generator
214 | DefKind::Use
215 | DefKind::ForeignMod
216 | DefKind::GlobalAsm
217 | DefKind::Impl
218 | DefKind::ImplTraitPlaceholder => None,
219 }
220 }
221
222 #[inline]
223 pub fn is_fn_like(self) -> bool {
224 match self {
225 DefKind::Fn | DefKind::AssocFn | DefKind::Closure | DefKind::Generator => true,
226 _ => false,
227 }
228 }
229
230 /// Whether `query get_codegen_attrs` should be used with this definition.
231 pub fn has_codegen_attrs(self) -> bool {
232 match self {
233 DefKind::Fn
234 | DefKind::AssocFn
235 | DefKind::Ctor(..)
236 | DefKind::Closure
237 | DefKind::Generator
238 | DefKind::Static(_) => true,
239 DefKind::Mod
240 | DefKind::Struct
241 | DefKind::Union
242 | DefKind::Enum
243 | DefKind::Variant
244 | DefKind::Trait
245 | DefKind::TyAlias
246 | DefKind::ForeignTy
247 | DefKind::TraitAlias
248 | DefKind::AssocTy
249 | DefKind::Const
250 | DefKind::AssocConst
251 | DefKind::Macro(..)
252 | DefKind::Use
253 | DefKind::ForeignMod
254 | DefKind::OpaqueTy
255 | DefKind::ImplTraitPlaceholder
256 | DefKind::Impl
257 | DefKind::Field
258 | DefKind::TyParam
259 | DefKind::ConstParam
260 | DefKind::LifetimeParam
261 | DefKind::AnonConst
262 | DefKind::InlineConst
263 | DefKind::GlobalAsm
264 | DefKind::ExternCrate => false,
265 }
266 }
267 }
268
269 /// The resolution of a path or export.
270 ///
271 /// For every path or identifier in Rust, the compiler must determine
272 /// what the path refers to. This process is called name resolution,
273 /// and `Res` is the primary result of name resolution.
274 ///
275 /// For example, everything prefixed with `/* Res */` in this example has
276 /// an associated `Res`:
277 ///
278 /// ```
279 /// fn str_to_string(s: & /* Res */ str) -> /* Res */ String {
280 /// /* Res */ String::from(/* Res */ s)
281 /// }
282 ///
283 /// /* Res */ str_to_string("hello");
284 /// ```
285 ///
286 /// The associated `Res`s will be:
287 ///
288 /// - `str` will resolve to [`Res::PrimTy`];
289 /// - `String` will resolve to [`Res::Def`], and the `Res` will include the [`DefId`]
290 /// for `String` as defined in the standard library;
291 /// - `String::from` will also resolve to [`Res::Def`], with the [`DefId`]
292 /// pointing to `String::from`;
293 /// - `s` will resolve to [`Res::Local`];
294 /// - the call to `str_to_string` will resolve to [`Res::Def`], with the [`DefId`]
295 /// pointing to the definition of `str_to_string` in the current crate.
296 //
297 #[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug)]
298 #[derive(HashStable_Generic)]
299 pub enum Res<Id = hir::HirId> {
300 /// Definition having a unique ID (`DefId`), corresponds to something defined in user code.
301 ///
302 /// **Not bound to a specific namespace.**
303 Def(DefKind, DefId),
304
305 // Type namespace
306 /// A primitive type such as `i32` or `str`.
307 ///
308 /// **Belongs to the type namespace.**
309 PrimTy(hir::PrimTy),
310
311 /// The `Self` type, as used within a trait.
312 ///
313 /// **Belongs to the type namespace.**
314 ///
315 /// See the examples on [`Res::SelfTyAlias`] for details.
316 SelfTyParam {
317 /// The trait this `Self` is a generic parameter for.
318 trait_: DefId,
319 },
320
321 /// The `Self` type, as used somewhere other than within a trait.
322 ///
323 /// **Belongs to the type namespace.**
324 ///
325 /// Examples:
326 /// ```
327 /// struct Bar(Box<Self>); // SelfTyAlias
328 ///
329 /// trait Foo {
330 /// fn foo() -> Box<Self>; // SelfTyParam
331 /// }
332 ///
333 /// impl Bar {
334 /// fn blah() {
335 /// let _: Self; // SelfTyAlias
336 /// }
337 /// }
338 ///
339 /// impl Foo for Bar {
340 /// fn foo() -> Box<Self> { // SelfTyAlias
341 /// let _: Self; // SelfTyAlias
342 ///
343 /// todo!()
344 /// }
345 /// }
346 /// ```
347 /// *See also [`Res::SelfCtor`].*
348 ///
349 SelfTyAlias {
350 /// The item introducing the `Self` type alias. Can be used in the `type_of` query
351 /// to get the underlying type.
352 alias_to: DefId,
353
354 /// Whether the `Self` type is disallowed from mentioning generics (i.e. when used in an
355 /// anonymous constant).
356 ///
357 /// HACK(min_const_generics): self types also have an optional requirement to **not**
358 /// mention any generic parameters to allow the following with `min_const_generics`:
359 /// ```
360 /// # struct Foo;
361 /// impl Foo { fn test() -> [u8; std::mem::size_of::<Self>()] { todo!() } }
362 ///
363 /// struct Bar([u8; baz::<Self>()]);
364 /// const fn baz<T>() -> usize { 10 }
365 /// ```
366 /// We do however allow `Self` in repeat expression even if it is generic to not break code
367 /// which already works on stable while causing the `const_evaluatable_unchecked` future
368 /// compat lint:
369 /// ```
370 /// fn foo<T>() {
371 /// let _bar = [1_u8; std::mem::size_of::<*mut T>()];
372 /// }
373 /// ```
374 // FIXME(generic_const_exprs): Remove this bodge once that feature is stable.
375 forbid_generic: bool,
376
377 /// Is this within an `impl Foo for bar`?
378 is_trait_impl: bool,
379 },
380
381 // Value namespace
382 /// The `Self` constructor, along with the [`DefId`]
383 /// of the impl it is associated with.
384 ///
385 /// **Belongs to the value namespace.**
386 ///
387 /// *See also [`Res::SelfTyParam`] and [`Res::SelfTyAlias`].*
388 SelfCtor(DefId),
389
390 /// A local variable or function parameter.
391 ///
392 /// **Belongs to the value namespace.**
393 Local(Id),
394
395 /// A tool attribute module; e.g., the `rustfmt` in `#[rustfmt::skip]`.
396 ///
397 /// **Belongs to the type namespace.**
398 ToolMod,
399
400 // Macro namespace
401 /// An attribute that is *not* implemented via macro.
402 /// E.g., `#[inline]` and `#[rustfmt::skip]`, which are essentially directives,
403 /// as opposed to `#[test]`, which is a builtin macro.
404 ///
405 /// **Belongs to the macro namespace.**
406 NonMacroAttr(NonMacroAttrKind), // e.g., `#[inline]` or `#[rustfmt::skip]`
407
408 // All namespaces
409 /// Name resolution failed. We use a dummy `Res` variant so later phases
410 /// of the compiler won't crash and can instead report more errors.
411 ///
412 /// **Not bound to a specific namespace.**
413 Err,
414 }
415
416 /// The result of resolving a path before lowering to HIR,
417 /// with "module" segments resolved and associated item
418 /// segments deferred to type checking.
419 /// `base_res` is the resolution of the resolved part of the
420 /// path, `unresolved_segments` is the number of unresolved
421 /// segments.
422 ///
423 /// ```text
424 /// module::Type::AssocX::AssocY::MethodOrAssocType
425 /// ^~~~~~~~~~~~ ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
426 /// base_res unresolved_segments = 3
427 ///
428 /// <T as Trait>::AssocX::AssocY::MethodOrAssocType
429 /// ^~~~~~~~~~~~~~ ^~~~~~~~~~~~~~~~~~~~~~~~~
430 /// base_res unresolved_segments = 2
431 /// ```
432 #[derive(Copy, Clone, Debug)]
433 pub struct PartialRes {
434 base_res: Res<NodeId>,
435 unresolved_segments: usize,
436 }
437
438 impl PartialRes {
439 #[inline]
440 pub fn new(base_res: Res<NodeId>) -> Self {
441 PartialRes { base_res, unresolved_segments: 0 }
442 }
443
444 #[inline]
445 pub fn with_unresolved_segments(base_res: Res<NodeId>, mut unresolved_segments: usize) -> Self {
446 if base_res == Res::Err {
447 unresolved_segments = 0
448 }
449 PartialRes { base_res, unresolved_segments }
450 }
451
452 #[inline]
453 pub fn base_res(&self) -> Res<NodeId> {
454 self.base_res
455 }
456
457 #[inline]
458 pub fn unresolved_segments(&self) -> usize {
459 self.unresolved_segments
460 }
461
462 #[inline]
463 pub fn full_res(&self) -> Option<Res<NodeId>> {
464 (self.unresolved_segments == 0).then_some(self.base_res)
465 }
466
467 #[inline]
468 pub fn expect_full_res(&self) -> Res<NodeId> {
469 self.full_res().expect("unexpected unresolved segments")
470 }
471 }
472
473 /// Different kinds of symbols can coexist even if they share the same textual name.
474 /// Therefore, they each have a separate universe (known as a "namespace").
475 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
476 pub enum Namespace {
477 /// The type namespace includes `struct`s, `enum`s, `union`s, `trait`s, and `mod`s
478 /// (and, by extension, crates).
479 ///
480 /// Note that the type namespace includes other items; this is not an
481 /// exhaustive list.
482 TypeNS,
483 /// The value namespace includes `fn`s, `const`s, `static`s, and local variables (including function arguments).
484 ValueNS,
485 /// The macro namespace includes `macro_rules!` macros, declarative `macro`s,
486 /// procedural macros, attribute macros, `derive` macros, and non-macro attributes
487 /// like `#[inline]` and `#[rustfmt::skip]`.
488 MacroNS,
489 }
490
491 impl Namespace {
492 /// The English description of the namespace.
493 pub fn descr(self) -> &'static str {
494 match self {
495 Self::TypeNS => "type",
496 Self::ValueNS => "value",
497 Self::MacroNS => "macro",
498 }
499 }
500 }
501
502 /// Just a helper ‒ separate structure for each namespace.
503 #[derive(Copy, Clone, Default, Debug)]
504 pub struct PerNS<T> {
505 pub value_ns: T,
506 pub type_ns: T,
507 pub macro_ns: T,
508 }
509
510 impl<T> PerNS<T> {
511 pub fn map<U, F: FnMut(T) -> U>(self, mut f: F) -> PerNS<U> {
512 PerNS { value_ns: f(self.value_ns), type_ns: f(self.type_ns), macro_ns: f(self.macro_ns) }
513 }
514
515 pub fn into_iter(self) -> IntoIter<T, 3> {
516 [self.value_ns, self.type_ns, self.macro_ns].into_iter()
517 }
518
519 pub fn iter(&self) -> IntoIter<&T, 3> {
520 [&self.value_ns, &self.type_ns, &self.macro_ns].into_iter()
521 }
522 }
523
524 impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
525 type Output = T;
526
527 fn index(&self, ns: Namespace) -> &T {
528 match ns {
529 Namespace::ValueNS => &self.value_ns,
530 Namespace::TypeNS => &self.type_ns,
531 Namespace::MacroNS => &self.macro_ns,
532 }
533 }
534 }
535
536 impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
537 fn index_mut(&mut self, ns: Namespace) -> &mut T {
538 match ns {
539 Namespace::ValueNS => &mut self.value_ns,
540 Namespace::TypeNS => &mut self.type_ns,
541 Namespace::MacroNS => &mut self.macro_ns,
542 }
543 }
544 }
545
546 impl<T> PerNS<Option<T>> {
547 /// Returns `true` if all the items in this collection are `None`.
548 pub fn is_empty(&self) -> bool {
549 self.type_ns.is_none() && self.value_ns.is_none() && self.macro_ns.is_none()
550 }
551
552 /// Returns an iterator over the items which are `Some`.
553 pub fn present_items(self) -> impl Iterator<Item = T> {
554 [self.type_ns, self.value_ns, self.macro_ns].into_iter().flatten()
555 }
556 }
557
558 impl CtorKind {
559 pub fn from_ast(vdata: &ast::VariantData) -> Option<(CtorKind, NodeId)> {
560 match *vdata {
561 ast::VariantData::Tuple(_, node_id) => Some((CtorKind::Fn, node_id)),
562 ast::VariantData::Unit(node_id) => Some((CtorKind::Const, node_id)),
563 ast::VariantData::Struct(..) => None,
564 }
565 }
566 }
567
568 impl NonMacroAttrKind {
569 pub fn descr(self) -> &'static str {
570 match self {
571 NonMacroAttrKind::Builtin(..) => "built-in attribute",
572 NonMacroAttrKind::Tool => "tool attribute",
573 NonMacroAttrKind::DeriveHelper | NonMacroAttrKind::DeriveHelperCompat => {
574 "derive helper attribute"
575 }
576 }
577 }
578
579 pub fn article(self) -> &'static str {
580 "a"
581 }
582
583 /// Users of some attributes cannot mark them as used, so they are considered always used.
584 pub fn is_used(self) -> bool {
585 match self {
586 NonMacroAttrKind::Tool
587 | NonMacroAttrKind::DeriveHelper
588 | NonMacroAttrKind::DeriveHelperCompat => true,
589 NonMacroAttrKind::Builtin(..) => false,
590 }
591 }
592 }
593
594 impl<Id> Res<Id> {
595 /// Return the `DefId` of this `Def` if it has an ID, else panic.
596 pub fn def_id(&self) -> DefId
597 where
598 Id: Debug,
599 {
600 self.opt_def_id()
601 .unwrap_or_else(|| panic!("attempted .def_id() on invalid res: {:?}", self))
602 }
603
604 /// Return `Some(..)` with the `DefId` of this `Res` if it has a ID, else `None`.
605 pub fn opt_def_id(&self) -> Option<DefId> {
606 match *self {
607 Res::Def(_, id) => Some(id),
608
609 Res::Local(..)
610 | Res::PrimTy(..)
611 | Res::SelfTyParam { .. }
612 | Res::SelfTyAlias { .. }
613 | Res::SelfCtor(..)
614 | Res::ToolMod
615 | Res::NonMacroAttr(..)
616 | Res::Err => None,
617 }
618 }
619
620 /// Return the `DefId` of this `Res` if it represents a module.
621 pub fn mod_def_id(&self) -> Option<DefId> {
622 match *self {
623 Res::Def(DefKind::Mod, id) => Some(id),
624 _ => None,
625 }
626 }
627
628 /// A human readable name for the res kind ("function", "module", etc.).
629 pub fn descr(&self) -> &'static str {
630 match *self {
631 Res::Def(kind, def_id) => kind.descr(def_id),
632 Res::SelfCtor(..) => "self constructor",
633 Res::PrimTy(..) => "builtin type",
634 Res::Local(..) => "local variable",
635 Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } => "self type",
636 Res::ToolMod => "tool module",
637 Res::NonMacroAttr(attr_kind) => attr_kind.descr(),
638 Res::Err => "unresolved item",
639 }
640 }
641
642 /// Gets an English article for the `Res`.
643 pub fn article(&self) -> &'static str {
644 match *self {
645 Res::Def(kind, _) => kind.article(),
646 Res::NonMacroAttr(kind) => kind.article(),
647 Res::Err => "an",
648 _ => "a",
649 }
650 }
651
652 pub fn map_id<R>(self, mut map: impl FnMut(Id) -> R) -> Res<R> {
653 match self {
654 Res::Def(kind, id) => Res::Def(kind, id),
655 Res::SelfCtor(id) => Res::SelfCtor(id),
656 Res::PrimTy(id) => Res::PrimTy(id),
657 Res::Local(id) => Res::Local(map(id)),
658 Res::SelfTyParam { trait_ } => Res::SelfTyParam { trait_ },
659 Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl } => {
660 Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl }
661 }
662 Res::ToolMod => Res::ToolMod,
663 Res::NonMacroAttr(attr_kind) => Res::NonMacroAttr(attr_kind),
664 Res::Err => Res::Err,
665 }
666 }
667
668 pub fn apply_id<R, E>(self, mut map: impl FnMut(Id) -> Result<R, E>) -> Result<Res<R>, E> {
669 Ok(match self {
670 Res::Def(kind, id) => Res::Def(kind, id),
671 Res::SelfCtor(id) => Res::SelfCtor(id),
672 Res::PrimTy(id) => Res::PrimTy(id),
673 Res::Local(id) => Res::Local(map(id)?),
674 Res::SelfTyParam { trait_ } => Res::SelfTyParam { trait_ },
675 Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl } => {
676 Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl }
677 }
678 Res::ToolMod => Res::ToolMod,
679 Res::NonMacroAttr(attr_kind) => Res::NonMacroAttr(attr_kind),
680 Res::Err => Res::Err,
681 })
682 }
683
684 #[track_caller]
685 pub fn expect_non_local<OtherId>(self) -> Res<OtherId> {
686 self.map_id(
687 #[track_caller]
688 |_| panic!("unexpected `Res::Local`"),
689 )
690 }
691
692 pub fn macro_kind(self) -> Option<MacroKind> {
693 match self {
694 Res::Def(DefKind::Macro(kind), _) => Some(kind),
695 Res::NonMacroAttr(..) => Some(MacroKind::Attr),
696 _ => None,
697 }
698 }
699
700 /// Returns `None` if this is `Res::Err`
701 pub fn ns(&self) -> Option<Namespace> {
702 match self {
703 Res::Def(kind, ..) => kind.ns(),
704 Res::PrimTy(..) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } | Res::ToolMod => {
705 Some(Namespace::TypeNS)
706 }
707 Res::SelfCtor(..) | Res::Local(..) => Some(Namespace::ValueNS),
708 Res::NonMacroAttr(..) => Some(Namespace::MacroNS),
709 Res::Err => None,
710 }
711 }
712
713 /// Always returns `true` if `self` is `Res::Err`
714 pub fn matches_ns(&self, ns: Namespace) -> bool {
715 self.ns().map_or(true, |actual_ns| actual_ns == ns)
716 }
717
718 /// Returns whether such a resolved path can occur in a tuple struct/variant pattern
719 pub fn expected_in_tuple_struct_pat(&self) -> bool {
720 matches!(self, Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) | Res::SelfCtor(..))
721 }
722
723 /// Returns whether such a resolved path can occur in a unit struct/variant pattern
724 pub fn expected_in_unit_struct_pat(&self) -> bool {
725 matches!(self, Res::Def(DefKind::Ctor(_, CtorKind::Const), _) | Res::SelfCtor(..))
726 }
727 }
728
729 /// Resolution for a lifetime appearing in a type.
730 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
731 pub enum LifetimeRes {
732 /// Successfully linked the lifetime to a generic parameter.
733 Param {
734 /// Id of the generic parameter that introduced it.
735 param: LocalDefId,
736 /// Id of the introducing place. That can be:
737 /// - an item's id, for the item's generic parameters;
738 /// - a TraitRef's ref_id, identifying the `for<...>` binder;
739 /// - a BareFn type's id.
740 ///
741 /// This information is used for impl-trait lifetime captures, to know when to or not to
742 /// capture any given lifetime.
743 binder: NodeId,
744 },
745 /// Created a generic parameter for an anonymous lifetime.
746 Fresh {
747 /// Id of the generic parameter that introduced it.
748 ///
749 /// Creating the associated `LocalDefId` is the responsibility of lowering.
750 param: NodeId,
751 /// Id of the introducing place. See `Param`.
752 binder: NodeId,
753 },
754 /// This variant is used for anonymous lifetimes that we did not resolve during
755 /// late resolution. Those lifetimes will be inferred by typechecking.
756 Infer,
757 /// Explicit `'static` lifetime.
758 Static,
759 /// Resolution failure.
760 Error,
761 /// HACK: This is used to recover the NodeId of an elided lifetime.
762 ElidedAnchor { start: NodeId, end: NodeId },
763 }