]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_middle/src/mir/interpret/allocation.rs
New upstream version 1.52.0~beta.3+dfsg1
[rustc.git] / compiler / rustc_middle / src / mir / interpret / allocation.rs
1 //! The virtual memory representation of the MIR interpreter.
2
3 use std::borrow::Cow;
4 use std::convert::TryFrom;
5 use std::iter;
6 use std::ops::{Deref, DerefMut, Range};
7
8 use rustc_ast::Mutability;
9 use rustc_data_structures::sorted_map::SortedMap;
10 use rustc_target::abi::{Align, HasDataLayout, Size};
11
12 use super::{
13 read_target_uint, write_target_uint, AllocId, InterpResult, Pointer, Scalar, ScalarMaybeUninit,
14 UninitBytesAccess,
15 };
16
17 #[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
18 #[derive(HashStable)]
19 pub struct Allocation<Tag = (), Extra = ()> {
20 /// The actual bytes of the allocation.
21 /// Note that the bytes of a pointer represent the offset of the pointer.
22 bytes: Vec<u8>,
23 /// Maps from byte addresses to extra data for each pointer.
24 /// Only the first byte of a pointer is inserted into the map; i.e.,
25 /// every entry in this map applies to `pointer_size` consecutive bytes starting
26 /// at the given offset.
27 relocations: Relocations<Tag>,
28 /// Denotes which part of this allocation is initialized.
29 init_mask: InitMask,
30 /// The size of the allocation. Currently, must always equal `bytes.len()`.
31 pub size: Size,
32 /// The alignment of the allocation to detect unaligned reads.
33 /// (`Align` guarantees that this is a power of two.)
34 pub align: Align,
35 /// `true` if the allocation is mutable.
36 /// Also used by codegen to determine if a static should be put into mutable memory,
37 /// which happens for `static mut` and `static` with interior mutability.
38 pub mutability: Mutability,
39 /// Extra state for the machine.
40 pub extra: Extra,
41 }
42
43 pub trait AllocationExtra<Tag>: std::fmt::Debug + Clone {
44 // There is no constructor in here because the constructor's type depends
45 // on `MemoryKind`, and making things sufficiently generic leads to painful
46 // inference failure.
47
48 /// Hook for performing extra checks on a memory read access.
49 ///
50 /// Takes read-only access to the allocation so we can keep all the memory read
51 /// operations take `&self`. Use a `RefCell` in `AllocExtra` if you
52 /// need to mutate.
53 #[inline(always)]
54 fn memory_read(
55 _alloc: &Allocation<Tag, Self>,
56 _ptr: Pointer<Tag>,
57 _size: Size,
58 ) -> InterpResult<'tcx> {
59 Ok(())
60 }
61
62 /// Hook for performing extra checks on a memory write access.
63 #[inline(always)]
64 fn memory_written(
65 _alloc: &mut Allocation<Tag, Self>,
66 _ptr: Pointer<Tag>,
67 _size: Size,
68 ) -> InterpResult<'tcx> {
69 Ok(())
70 }
71
72 /// Hook for performing extra checks on a memory deallocation.
73 /// `size` will be the size of the allocation.
74 #[inline(always)]
75 fn memory_deallocated(
76 _alloc: &mut Allocation<Tag, Self>,
77 _ptr: Pointer<Tag>,
78 _size: Size,
79 ) -> InterpResult<'tcx> {
80 Ok(())
81 }
82 }
83
84 // For `Tag = ()` and no extra state, we have a trivial implementation.
85 impl AllocationExtra<()> for () {}
86
87 // The constructors are all without extra; the extra gets added by a machine hook later.
88 impl<Tag> Allocation<Tag> {
89 /// Creates a read-only allocation initialized by the given bytes
90 pub fn from_bytes<'a>(slice: impl Into<Cow<'a, [u8]>>, align: Align) -> Self {
91 let bytes = slice.into().into_owned();
92 let size = Size::from_bytes(bytes.len());
93 Self {
94 bytes,
95 relocations: Relocations::new(),
96 init_mask: InitMask::new(size, true),
97 size,
98 align,
99 mutability: Mutability::Not,
100 extra: (),
101 }
102 }
103
104 pub fn from_byte_aligned_bytes<'a>(slice: impl Into<Cow<'a, [u8]>>) -> Self {
105 Allocation::from_bytes(slice, Align::from_bytes(1).unwrap())
106 }
107
108 pub fn uninit(size: Size, align: Align) -> Self {
109 Allocation {
110 bytes: vec![0; size.bytes_usize()],
111 relocations: Relocations::new(),
112 init_mask: InitMask::new(size, false),
113 size,
114 align,
115 mutability: Mutability::Mut,
116 extra: (),
117 }
118 }
119 }
120
121 impl Allocation<(), ()> {
122 /// Add Tag and Extra fields
123 pub fn with_tags_and_extra<T, E>(
124 self,
125 mut tagger: impl FnMut(AllocId) -> T,
126 extra: E,
127 ) -> Allocation<T, E> {
128 Allocation {
129 bytes: self.bytes,
130 size: self.size,
131 relocations: Relocations::from_presorted(
132 self.relocations
133 .iter()
134 // The allocations in the relocations (pointers stored *inside* this allocation)
135 // all get the base pointer tag.
136 .map(|&(offset, ((), alloc))| {
137 let tag = tagger(alloc);
138 (offset, (tag, alloc))
139 })
140 .collect(),
141 ),
142 init_mask: self.init_mask,
143 align: self.align,
144 mutability: self.mutability,
145 extra,
146 }
147 }
148 }
149
150 /// Raw accessors. Provide access to otherwise private bytes.
151 impl<Tag, Extra> Allocation<Tag, Extra> {
152 pub fn len(&self) -> usize {
153 self.size.bytes_usize()
154 }
155
156 /// Looks at a slice which may describe uninitialized bytes or describe a relocation. This differs
157 /// from `get_bytes_with_uninit_and_ptr` in that it does no relocation checks (even on the
158 /// edges) at all. It further ignores `AllocationExtra` callbacks.
159 /// This must not be used for reads affecting the interpreter execution.
160 pub fn inspect_with_uninit_and_ptr_outside_interpreter(&self, range: Range<usize>) -> &[u8] {
161 &self.bytes[range]
162 }
163
164 /// Returns the mask indicating which bytes are initialized.
165 pub fn init_mask(&self) -> &InitMask {
166 &self.init_mask
167 }
168
169 /// Returns the relocation list.
170 pub fn relocations(&self) -> &Relocations<Tag> {
171 &self.relocations
172 }
173 }
174
175 /// Byte accessors.
176 impl<'tcx, Tag: Copy, Extra: AllocationExtra<Tag>> Allocation<Tag, Extra> {
177 /// Just a small local helper function to avoid a bit of code repetition.
178 /// Returns the range of this allocation that was meant.
179 #[inline]
180 fn check_bounds(&self, offset: Size, size: Size) -> Range<usize> {
181 let end = offset + size; // This does overflow checking.
182 let end = usize::try_from(end.bytes()).expect("access too big for this host architecture");
183 assert!(
184 end <= self.len(),
185 "Out-of-bounds access at offset {}, size {} in allocation of size {}",
186 offset.bytes(),
187 size.bytes(),
188 self.len()
189 );
190 offset.bytes_usize()..end
191 }
192
193 /// The last argument controls whether we error out when there are uninitialized
194 /// or pointer bytes. You should never call this, call `get_bytes` or
195 /// `get_bytes_with_uninit_and_ptr` instead,
196 ///
197 /// This function also guarantees that the resulting pointer will remain stable
198 /// even when new allocations are pushed to the `HashMap`. `copy_repeatedly` relies
199 /// on that.
200 ///
201 /// It is the caller's responsibility to check bounds and alignment beforehand.
202 fn get_bytes_internal(
203 &self,
204 cx: &impl HasDataLayout,
205 ptr: Pointer<Tag>,
206 size: Size,
207 check_init_and_ptr: bool,
208 ) -> InterpResult<'tcx, &[u8]> {
209 let range = self.check_bounds(ptr.offset, size);
210
211 if check_init_and_ptr {
212 self.check_init(ptr, size)?;
213 self.check_relocations(cx, ptr, size)?;
214 } else {
215 // We still don't want relocations on the *edges*.
216 self.check_relocation_edges(cx, ptr, size)?;
217 }
218
219 AllocationExtra::memory_read(self, ptr, size)?;
220
221 Ok(&self.bytes[range])
222 }
223
224 /// Checks that these bytes are initialized and not pointer bytes, and then return them
225 /// as a slice.
226 ///
227 /// It is the caller's responsibility to check bounds and alignment beforehand.
228 /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods
229 /// on `InterpCx` instead.
230 #[inline]
231 pub fn get_bytes(
232 &self,
233 cx: &impl HasDataLayout,
234 ptr: Pointer<Tag>,
235 size: Size,
236 ) -> InterpResult<'tcx, &[u8]> {
237 self.get_bytes_internal(cx, ptr, size, true)
238 }
239
240 /// It is the caller's responsibility to handle uninitialized and pointer bytes.
241 /// However, this still checks that there are no relocations on the *edges*.
242 ///
243 /// It is the caller's responsibility to check bounds and alignment beforehand.
244 #[inline]
245 pub fn get_bytes_with_uninit_and_ptr(
246 &self,
247 cx: &impl HasDataLayout,
248 ptr: Pointer<Tag>,
249 size: Size,
250 ) -> InterpResult<'tcx, &[u8]> {
251 self.get_bytes_internal(cx, ptr, size, false)
252 }
253
254 /// Just calling this already marks everything as defined and removes relocations,
255 /// so be sure to actually put data there!
256 ///
257 /// It is the caller's responsibility to check bounds and alignment beforehand.
258 /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods
259 /// on `InterpCx` instead.
260 pub fn get_bytes_mut(
261 &mut self,
262 cx: &impl HasDataLayout,
263 ptr: Pointer<Tag>,
264 size: Size,
265 ) -> InterpResult<'tcx, &mut [u8]> {
266 let range = self.check_bounds(ptr.offset, size);
267
268 self.mark_init(ptr, size, true);
269 self.clear_relocations(cx, ptr, size);
270
271 AllocationExtra::memory_written(self, ptr, size)?;
272
273 Ok(&mut self.bytes[range])
274 }
275 }
276
277 /// Reading and writing.
278 impl<'tcx, Tag: Copy, Extra: AllocationExtra<Tag>> Allocation<Tag, Extra> {
279 /// Reads bytes until a `0` is encountered. Will error if the end of the allocation is reached
280 /// before a `0` is found.
281 ///
282 /// Most likely, you want to call `Memory::read_c_str` instead of this method.
283 pub fn read_c_str(
284 &self,
285 cx: &impl HasDataLayout,
286 ptr: Pointer<Tag>,
287 ) -> InterpResult<'tcx, &[u8]> {
288 let offset = ptr.offset.bytes_usize();
289 Ok(match self.bytes[offset..].iter().position(|&c| c == 0) {
290 Some(size) => {
291 let size_with_null = Size::from_bytes(size) + Size::from_bytes(1);
292 // Go through `get_bytes` for checks and AllocationExtra hooks.
293 // We read the null, so we include it in the request, but we want it removed
294 // from the result, so we do subslicing.
295 &self.get_bytes(cx, ptr, size_with_null)?[..size]
296 }
297 // This includes the case where `offset` is out-of-bounds to begin with.
298 None => throw_ub!(UnterminatedCString(ptr.erase_tag())),
299 })
300 }
301
302 /// Validates that `ptr.offset` and `ptr.offset + size` do not point to the middle of a
303 /// relocation. If `allow_uninit_and_ptr` is `false`, also enforces that the memory in the
304 /// given range contains neither relocations nor uninitialized bytes.
305 pub fn check_bytes(
306 &self,
307 cx: &impl HasDataLayout,
308 ptr: Pointer<Tag>,
309 size: Size,
310 allow_uninit_and_ptr: bool,
311 ) -> InterpResult<'tcx> {
312 // Check bounds and relocations on the edges.
313 self.get_bytes_with_uninit_and_ptr(cx, ptr, size)?;
314 // Check uninit and ptr.
315 if !allow_uninit_and_ptr {
316 self.check_init(ptr, size)?;
317 self.check_relocations(cx, ptr, size)?;
318 }
319 Ok(())
320 }
321
322 /// Writes `src` to the memory starting at `ptr.offset`.
323 ///
324 /// It is the caller's responsibility to check bounds and alignment beforehand.
325 /// Most likely, you want to call `Memory::write_bytes` instead of this method.
326 pub fn write_bytes(
327 &mut self,
328 cx: &impl HasDataLayout,
329 ptr: Pointer<Tag>,
330 src: impl IntoIterator<Item = u8>,
331 ) -> InterpResult<'tcx> {
332 let mut src = src.into_iter();
333 let (lower, upper) = src.size_hint();
334 let len = upper.expect("can only write bounded iterators");
335 assert_eq!(lower, len, "can only write iterators with a precise length");
336 let bytes = self.get_bytes_mut(cx, ptr, Size::from_bytes(len))?;
337 // `zip` would stop when the first iterator ends; we want to definitely
338 // cover all of `bytes`.
339 for dest in bytes {
340 *dest = src.next().expect("iterator was shorter than it said it would be");
341 }
342 assert_matches!(src.next(), None, "iterator was longer than it said it would be");
343 Ok(())
344 }
345
346 /// Reads a *non-ZST* scalar.
347 ///
348 /// ZSTs can't be read because in order to obtain a `Pointer`, we need to check
349 /// for ZSTness anyway due to integer pointers being valid for ZSTs.
350 ///
351 /// It is the caller's responsibility to check bounds and alignment beforehand.
352 /// Most likely, you want to call `InterpCx::read_scalar` instead of this method.
353 pub fn read_scalar(
354 &self,
355 cx: &impl HasDataLayout,
356 ptr: Pointer<Tag>,
357 size: Size,
358 ) -> InterpResult<'tcx, ScalarMaybeUninit<Tag>> {
359 // `get_bytes_unchecked` tests relocation edges.
360 let bytes = self.get_bytes_with_uninit_and_ptr(cx, ptr, size)?;
361 // Uninit check happens *after* we established that the alignment is correct.
362 // We must not return `Ok()` for unaligned pointers!
363 if self.is_init(ptr, size).is_err() {
364 // This inflates uninitialized bytes to the entire scalar, even if only a few
365 // bytes are uninitialized.
366 return Ok(ScalarMaybeUninit::Uninit);
367 }
368 // Now we do the actual reading.
369 let bits = read_target_uint(cx.data_layout().endian, bytes).unwrap();
370 // See if we got a pointer.
371 if size != cx.data_layout().pointer_size {
372 // *Now*, we better make sure that the inside is free of relocations too.
373 self.check_relocations(cx, ptr, size)?;
374 } else {
375 if let Some(&(tag, alloc_id)) = self.relocations.get(&ptr.offset) {
376 let ptr = Pointer::new_with_tag(alloc_id, Size::from_bytes(bits), tag);
377 return Ok(ScalarMaybeUninit::Scalar(ptr.into()));
378 }
379 }
380 // We don't. Just return the bits.
381 Ok(ScalarMaybeUninit::Scalar(Scalar::from_uint(bits, size)))
382 }
383
384 /// Reads a pointer-sized scalar.
385 ///
386 /// It is the caller's responsibility to check bounds and alignment beforehand.
387 /// Most likely, you want to call `InterpCx::read_scalar` instead of this method.
388 pub fn read_ptr_sized(
389 &self,
390 cx: &impl HasDataLayout,
391 ptr: Pointer<Tag>,
392 ) -> InterpResult<'tcx, ScalarMaybeUninit<Tag>> {
393 self.read_scalar(cx, ptr, cx.data_layout().pointer_size)
394 }
395
396 /// Writes a *non-ZST* scalar.
397 ///
398 /// ZSTs can't be read because in order to obtain a `Pointer`, we need to check
399 /// for ZSTness anyway due to integer pointers being valid for ZSTs.
400 ///
401 /// It is the caller's responsibility to check bounds and alignment beforehand.
402 /// Most likely, you want to call `InterpCx::write_scalar` instead of this method.
403 pub fn write_scalar(
404 &mut self,
405 cx: &impl HasDataLayout,
406 ptr: Pointer<Tag>,
407 val: ScalarMaybeUninit<Tag>,
408 type_size: Size,
409 ) -> InterpResult<'tcx> {
410 let val = match val {
411 ScalarMaybeUninit::Scalar(scalar) => scalar,
412 ScalarMaybeUninit::Uninit => {
413 self.mark_init(ptr, type_size, false);
414 return Ok(());
415 }
416 };
417
418 let bytes = match val.to_bits_or_ptr(type_size, cx) {
419 Err(val) => u128::from(val.offset.bytes()),
420 Ok(data) => data,
421 };
422
423 let endian = cx.data_layout().endian;
424 let dst = self.get_bytes_mut(cx, ptr, type_size)?;
425 write_target_uint(endian, dst, bytes).unwrap();
426
427 // See if we have to also write a relocation.
428 if let Scalar::Ptr(val) = val {
429 self.relocations.insert(ptr.offset, (val.tag, val.alloc_id));
430 }
431
432 Ok(())
433 }
434
435 /// Writes a pointer-sized scalar.
436 ///
437 /// It is the caller's responsibility to check bounds and alignment beforehand.
438 /// Most likely, you want to call `InterpCx::write_scalar` instead of this method.
439 pub fn write_ptr_sized(
440 &mut self,
441 cx: &impl HasDataLayout,
442 ptr: Pointer<Tag>,
443 val: ScalarMaybeUninit<Tag>,
444 ) -> InterpResult<'tcx> {
445 let ptr_size = cx.data_layout().pointer_size;
446 self.write_scalar(cx, ptr, val, ptr_size)
447 }
448 }
449
450 /// Relocations.
451 impl<'tcx, Tag: Copy, Extra> Allocation<Tag, Extra> {
452 /// Returns all relocations overlapping with the given pointer-offset pair.
453 pub fn get_relocations(
454 &self,
455 cx: &impl HasDataLayout,
456 ptr: Pointer<Tag>,
457 size: Size,
458 ) -> &[(Size, (Tag, AllocId))] {
459 // We have to go back `pointer_size - 1` bytes, as that one would still overlap with
460 // the beginning of this range.
461 let start = ptr.offset.bytes().saturating_sub(cx.data_layout().pointer_size.bytes() - 1);
462 let end = ptr.offset + size; // This does overflow checking.
463 self.relocations.range(Size::from_bytes(start)..end)
464 }
465
466 /// Checks that there are no relocations overlapping with the given range.
467 #[inline(always)]
468 fn check_relocations(
469 &self,
470 cx: &impl HasDataLayout,
471 ptr: Pointer<Tag>,
472 size: Size,
473 ) -> InterpResult<'tcx> {
474 if self.get_relocations(cx, ptr, size).is_empty() {
475 Ok(())
476 } else {
477 throw_unsup!(ReadPointerAsBytes)
478 }
479 }
480
481 /// Removes all relocations inside the given range.
482 /// If there are relocations overlapping with the edges, they
483 /// are removed as well *and* the bytes they cover are marked as
484 /// uninitialized. This is a somewhat odd "spooky action at a distance",
485 /// but it allows strictly more code to run than if we would just error
486 /// immediately in that case.
487 fn clear_relocations(&mut self, cx: &impl HasDataLayout, ptr: Pointer<Tag>, size: Size) {
488 // Find the start and end of the given range and its outermost relocations.
489 let (first, last) = {
490 // Find all relocations overlapping the given range.
491 let relocations = self.get_relocations(cx, ptr, size);
492 if relocations.is_empty() {
493 return;
494 }
495
496 (
497 relocations.first().unwrap().0,
498 relocations.last().unwrap().0 + cx.data_layout().pointer_size,
499 )
500 };
501 let start = ptr.offset;
502 let end = start + size; // `Size` addition
503
504 // Mark parts of the outermost relocations as uninitialized if they partially fall outside the
505 // given range.
506 if first < start {
507 self.init_mask.set_range(first, start, false);
508 }
509 if last > end {
510 self.init_mask.set_range(end, last, false);
511 }
512
513 // Forget all the relocations.
514 self.relocations.remove_range(first..last);
515 }
516
517 /// Errors if there are relocations overlapping with the edges of the
518 /// given memory range.
519 #[inline]
520 fn check_relocation_edges(
521 &self,
522 cx: &impl HasDataLayout,
523 ptr: Pointer<Tag>,
524 size: Size,
525 ) -> InterpResult<'tcx> {
526 self.check_relocations(cx, ptr, Size::ZERO)?;
527 self.check_relocations(cx, ptr.offset(size, cx)?, Size::ZERO)?;
528 Ok(())
529 }
530 }
531
532 /// Uninitialized bytes.
533 impl<'tcx, Tag: Copy, Extra> Allocation<Tag, Extra> {
534 /// Checks whether the given range is entirely initialized.
535 ///
536 /// Returns `Ok(())` if it's initialized. Otherwise returns the range of byte
537 /// indexes of the first contiguous uninitialized access.
538 fn is_init(&self, ptr: Pointer<Tag>, size: Size) -> Result<(), Range<Size>> {
539 self.init_mask.is_range_initialized(ptr.offset, ptr.offset + size) // `Size` addition
540 }
541
542 /// Checks that a range of bytes is initialized. If not, returns the `InvalidUninitBytes`
543 /// error which will report the first range of bytes which is uninitialized.
544 fn check_init(&self, ptr: Pointer<Tag>, size: Size) -> InterpResult<'tcx> {
545 self.is_init(ptr, size).or_else(|idx_range| {
546 throw_ub!(InvalidUninitBytes(Some(UninitBytesAccess {
547 access_ptr: ptr.erase_tag(),
548 access_size: size,
549 uninit_ptr: Pointer::new(ptr.alloc_id, idx_range.start),
550 uninit_size: idx_range.end - idx_range.start, // `Size` subtraction
551 })))
552 })
553 }
554
555 pub fn mark_init(&mut self, ptr: Pointer<Tag>, size: Size, is_init: bool) {
556 if size.bytes() == 0 {
557 return;
558 }
559 self.init_mask.set_range(ptr.offset, ptr.offset + size, is_init);
560 }
561 }
562
563 /// Run-length encoding of the uninit mask.
564 /// Used to copy parts of a mask multiple times to another allocation.
565 pub struct InitMaskCompressed {
566 /// Whether the first range is initialized.
567 initial: bool,
568 /// The lengths of ranges that are run-length encoded.
569 /// The initialization state of the ranges alternate starting with `initial`.
570 ranges: smallvec::SmallVec<[u64; 1]>,
571 }
572
573 impl InitMaskCompressed {
574 pub fn no_bytes_init(&self) -> bool {
575 // The `ranges` are run-length encoded and of alternating initialization state.
576 // So if `ranges.len() > 1` then the second block is an initialized range.
577 !self.initial && self.ranges.len() == 1
578 }
579 }
580
581 /// Transferring the initialization mask to other allocations.
582 impl<Tag, Extra> Allocation<Tag, Extra> {
583 /// Creates a run-length encoding of the initialization mask.
584 pub fn compress_uninit_range(&self, src: Pointer<Tag>, size: Size) -> InitMaskCompressed {
585 // Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
586 // a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from
587 // the source and write it to the destination. Even if we optimized the memory accesses,
588 // we'd be doing all of this `repeat` times.
589 // Therefore we precompute a compressed version of the initialization mask of the source value and
590 // then write it back `repeat` times without computing any more information from the source.
591
592 // A precomputed cache for ranges of initialized / uninitialized bits
593 // 0000010010001110 will become
594 // `[5, 1, 2, 1, 3, 3, 1]`,
595 // where each element toggles the state.
596
597 let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();
598 let initial = self.init_mask.get(src.offset);
599 let mut cur_len = 1;
600 let mut cur = initial;
601
602 for i in 1..size.bytes() {
603 // FIXME: optimize to bitshift the current uninitialized block's bits and read the top bit.
604 if self.init_mask.get(src.offset + Size::from_bytes(i)) == cur {
605 cur_len += 1;
606 } else {
607 ranges.push(cur_len);
608 cur_len = 1;
609 cur = !cur;
610 }
611 }
612
613 ranges.push(cur_len);
614
615 InitMaskCompressed { ranges, initial }
616 }
617
618 /// Applies multiple instances of the run-length encoding to the initialization mask.
619 pub fn mark_compressed_init_range(
620 &mut self,
621 defined: &InitMaskCompressed,
622 dest: Pointer<Tag>,
623 size: Size,
624 repeat: u64,
625 ) {
626 // An optimization where we can just overwrite an entire range of initialization
627 // bits if they are going to be uniformly `1` or `0`.
628 if defined.ranges.len() <= 1 {
629 self.init_mask.set_range_inbounds(
630 dest.offset,
631 dest.offset + size * repeat, // `Size` operations
632 defined.initial,
633 );
634 return;
635 }
636
637 for mut j in 0..repeat {
638 j *= size.bytes();
639 j += dest.offset.bytes();
640 let mut cur = defined.initial;
641 for range in &defined.ranges {
642 let old_j = j;
643 j += range;
644 self.init_mask.set_range_inbounds(
645 Size::from_bytes(old_j),
646 Size::from_bytes(j),
647 cur,
648 );
649 cur = !cur;
650 }
651 }
652 }
653 }
654
655 /// Relocations.
656 #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
657 pub struct Relocations<Tag = (), Id = AllocId>(SortedMap<Size, (Tag, Id)>);
658
659 impl<Tag, Id> Relocations<Tag, Id> {
660 pub fn new() -> Self {
661 Relocations(SortedMap::new())
662 }
663
664 // The caller must guarantee that the given relocations are already sorted
665 // by address and contain no duplicates.
666 pub fn from_presorted(r: Vec<(Size, (Tag, Id))>) -> Self {
667 Relocations(SortedMap::from_presorted_elements(r))
668 }
669 }
670
671 impl<Tag> Deref for Relocations<Tag> {
672 type Target = SortedMap<Size, (Tag, AllocId)>;
673
674 fn deref(&self) -> &Self::Target {
675 &self.0
676 }
677 }
678
679 impl<Tag> DerefMut for Relocations<Tag> {
680 fn deref_mut(&mut self) -> &mut Self::Target {
681 &mut self.0
682 }
683 }
684
685 /// A partial, owned list of relocations to transfer into another allocation.
686 pub struct AllocationRelocations<Tag> {
687 relative_relocations: Vec<(Size, (Tag, AllocId))>,
688 }
689
690 impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
691 pub fn prepare_relocation_copy(
692 &self,
693 cx: &impl HasDataLayout,
694 src: Pointer<Tag>,
695 size: Size,
696 dest: Pointer<Tag>,
697 length: u64,
698 ) -> AllocationRelocations<Tag> {
699 let relocations = self.get_relocations(cx, src, size);
700 if relocations.is_empty() {
701 return AllocationRelocations { relative_relocations: Vec::new() };
702 }
703
704 let mut new_relocations = Vec::with_capacity(relocations.len() * (length as usize));
705
706 for i in 0..length {
707 new_relocations.extend(relocations.iter().map(|&(offset, reloc)| {
708 // compute offset for current repetition
709 let dest_offset = dest.offset + size * i; // `Size` operations
710 (
711 // shift offsets from source allocation to destination allocation
712 (offset + dest_offset) - src.offset, // `Size` operations
713 reloc,
714 )
715 }));
716 }
717
718 AllocationRelocations { relative_relocations: new_relocations }
719 }
720
721 /// Applies a relocation copy.
722 /// The affected range, as defined in the parameters to `prepare_relocation_copy` is expected
723 /// to be clear of relocations.
724 pub fn mark_relocation_range(&mut self, relocations: AllocationRelocations<Tag>) {
725 self.relocations.insert_presorted(relocations.relative_relocations);
726 }
727 }
728
729 ////////////////////////////////////////////////////////////////////////////////
730 // Uninitialized byte tracking
731 ////////////////////////////////////////////////////////////////////////////////
732
733 type Block = u64;
734
735 /// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
736 /// is initialized. If it is `false` the byte is uninitialized.
737 #[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
738 #[derive(HashStable)]
739 pub struct InitMask {
740 blocks: Vec<Block>,
741 len: Size,
742 }
743
744 impl InitMask {
745 pub const BLOCK_SIZE: u64 = 64;
746
747 pub fn new(size: Size, state: bool) -> Self {
748 let mut m = InitMask { blocks: vec![], len: Size::ZERO };
749 m.grow(size, state);
750 m
751 }
752
753 /// Checks whether the range `start..end` (end-exclusive) is entirely initialized.
754 ///
755 /// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
756 /// indexes for the first contiguous span of the uninitialized access.
757 #[inline]
758 pub fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), Range<Size>> {
759 if end > self.len {
760 return Err(self.len..end);
761 }
762
763 // FIXME(oli-obk): optimize this for allocations larger than a block.
764 let idx = (start.bytes()..end.bytes()).map(Size::from_bytes).find(|&i| !self.get(i));
765
766 match idx {
767 Some(idx) => {
768 let uninit_end = (idx.bytes()..end.bytes())
769 .map(Size::from_bytes)
770 .find(|&i| self.get(i))
771 .unwrap_or(end);
772 Err(idx..uninit_end)
773 }
774 None => Ok(()),
775 }
776 }
777
778 pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) {
779 let len = self.len;
780 if end > len {
781 self.grow(end - len, new_state);
782 }
783 self.set_range_inbounds(start, end, new_state);
784 }
785
786 pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
787 let (blocka, bita) = bit_index(start);
788 let (blockb, bitb) = bit_index(end);
789 if blocka == blockb {
790 // First set all bits except the first `bita`,
791 // then unset the last `64 - bitb` bits.
792 let range = if bitb == 0 {
793 u64::MAX << bita
794 } else {
795 (u64::MAX << bita) & (u64::MAX >> (64 - bitb))
796 };
797 if new_state {
798 self.blocks[blocka] |= range;
799 } else {
800 self.blocks[blocka] &= !range;
801 }
802 return;
803 }
804 // across block boundaries
805 if new_state {
806 // Set `bita..64` to `1`.
807 self.blocks[blocka] |= u64::MAX << bita;
808 // Set `0..bitb` to `1`.
809 if bitb != 0 {
810 self.blocks[blockb] |= u64::MAX >> (64 - bitb);
811 }
812 // Fill in all the other blocks (much faster than one bit at a time).
813 for block in (blocka + 1)..blockb {
814 self.blocks[block] = u64::MAX;
815 }
816 } else {
817 // Set `bita..64` to `0`.
818 self.blocks[blocka] &= !(u64::MAX << bita);
819 // Set `0..bitb` to `0`.
820 if bitb != 0 {
821 self.blocks[blockb] &= !(u64::MAX >> (64 - bitb));
822 }
823 // Fill in all the other blocks (much faster than one bit at a time).
824 for block in (blocka + 1)..blockb {
825 self.blocks[block] = 0;
826 }
827 }
828 }
829
830 #[inline]
831 pub fn get(&self, i: Size) -> bool {
832 let (block, bit) = bit_index(i);
833 (self.blocks[block] & (1 << bit)) != 0
834 }
835
836 #[inline]
837 pub fn set(&mut self, i: Size, new_state: bool) {
838 let (block, bit) = bit_index(i);
839 self.set_bit(block, bit, new_state);
840 }
841
842 #[inline]
843 fn set_bit(&mut self, block: usize, bit: usize, new_state: bool) {
844 if new_state {
845 self.blocks[block] |= 1 << bit;
846 } else {
847 self.blocks[block] &= !(1 << bit);
848 }
849 }
850
851 pub fn grow(&mut self, amount: Size, new_state: bool) {
852 if amount.bytes() == 0 {
853 return;
854 }
855 let unused_trailing_bits =
856 u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - self.len.bytes();
857 if amount.bytes() > unused_trailing_bits {
858 let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
859 self.blocks.extend(
860 // FIXME(oli-obk): optimize this by repeating `new_state as Block`.
861 iter::repeat(0).take(usize::try_from(additional_blocks).unwrap()),
862 );
863 }
864 let start = self.len;
865 self.len += amount;
866 self.set_range_inbounds(start, start + amount, new_state); // `Size` operation
867 }
868 }
869
870 #[inline]
871 fn bit_index(bits: Size) -> (usize, usize) {
872 let bits = bits.bytes();
873 let a = bits / InitMask::BLOCK_SIZE;
874 let b = bits % InitMask::BLOCK_SIZE;
875 (usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
876 }