]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_mir/src/borrow_check/universal_regions.rs
New upstream version 1.50.0+dfsg1
[rustc.git] / compiler / rustc_mir / src / borrow_check / universal_regions.rs
1 //! Code to extract the universally quantified regions declared on a
2 //! function and the relationships between them. For example:
3 //!
4 //! ```
5 //! fn foo<'a, 'b, 'c: 'b>() { }
6 //! ```
7 //!
8 //! here we would return a map assigning each of `{'a, 'b, 'c}`
9 //! to an index, as well as the `FreeRegionMap` which can compute
10 //! relationships between them.
11 //!
12 //! The code in this file doesn't *do anything* with those results; it
13 //! just returns them for other code to use.
14
15 use either::Either;
16 use rustc_data_structures::fx::FxHashMap;
17 use rustc_errors::DiagnosticBuilder;
18 use rustc_hir as hir;
19 use rustc_hir::def_id::{DefId, LocalDefId};
20 use rustc_hir::lang_items::LangItem;
21 use rustc_hir::{BodyOwnerKind, HirId};
22 use rustc_index::vec::{Idx, IndexVec};
23 use rustc_infer::infer::{InferCtxt, NLLRegionVariableOrigin};
24 use rustc_middle::ty::fold::TypeFoldable;
25 use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
26 use rustc_middle::ty::{self, RegionVid, Ty, TyCtxt};
27 use std::iter;
28
29 use crate::borrow_check::nll::ToRegionVid;
30
31 #[derive(Debug)]
32 pub struct UniversalRegions<'tcx> {
33 indices: UniversalRegionIndices<'tcx>,
34
35 /// The vid assigned to `'static`
36 pub fr_static: RegionVid,
37
38 /// A special region vid created to represent the current MIR fn
39 /// body. It will outlive the entire CFG but it will not outlive
40 /// any other universal regions.
41 pub fr_fn_body: RegionVid,
42
43 /// We create region variables such that they are ordered by their
44 /// `RegionClassification`. The first block are globals, then
45 /// externals, then locals. So, things from:
46 /// - `FIRST_GLOBAL_INDEX..first_extern_index` are global,
47 /// - `first_extern_index..first_local_index` are external,
48 /// - `first_local_index..num_universals` are local.
49 first_extern_index: usize,
50
51 /// See `first_extern_index`.
52 first_local_index: usize,
53
54 /// The total number of universal region variables instantiated.
55 num_universals: usize,
56
57 /// A special region variable created for the `'empty(U0)` region.
58 /// Note that this is **not** a "universal" region, as it doesn't
59 /// represent a universally bound placeholder or any such thing.
60 /// But we do create it here in this type because it's a useful region
61 /// to have around in a few limited cases.
62 pub root_empty: RegionVid,
63
64 /// The "defining" type for this function, with all universal
65 /// regions instantiated. For a closure or generator, this is the
66 /// closure type, but for a top-level function it's the `FnDef`.
67 pub defining_ty: DefiningTy<'tcx>,
68
69 /// The return type of this function, with all regions replaced by
70 /// their universal `RegionVid` equivalents.
71 ///
72 /// N.B., associated types in this type have not been normalized,
73 /// as the name suggests. =)
74 pub unnormalized_output_ty: Ty<'tcx>,
75
76 /// The fully liberated input types of this function, with all
77 /// regions replaced by their universal `RegionVid` equivalents.
78 ///
79 /// N.B., associated types in these types have not been normalized,
80 /// as the name suggests. =)
81 pub unnormalized_input_tys: &'tcx [Ty<'tcx>],
82
83 pub yield_ty: Option<Ty<'tcx>>,
84 }
85
86 /// The "defining type" for this MIR. The key feature of the "defining
87 /// type" is that it contains the information needed to derive all the
88 /// universal regions that are in scope as well as the types of the
89 /// inputs/output from the MIR. In general, early-bound universal
90 /// regions appear free in the defining type and late-bound regions
91 /// appear bound in the signature.
92 #[derive(Copy, Clone, Debug)]
93 pub enum DefiningTy<'tcx> {
94 /// The MIR is a closure. The signature is found via
95 /// `ClosureSubsts::closure_sig_ty`.
96 Closure(DefId, SubstsRef<'tcx>),
97
98 /// The MIR is a generator. The signature is that generators take
99 /// no parameters and return the result of
100 /// `ClosureSubsts::generator_return_ty`.
101 Generator(DefId, SubstsRef<'tcx>, hir::Movability),
102
103 /// The MIR is a fn item with the given `DefId` and substs. The signature
104 /// of the function can be bound then with the `fn_sig` query.
105 FnDef(DefId, SubstsRef<'tcx>),
106
107 /// The MIR represents some form of constant. The signature then
108 /// is that it has no inputs and a single return value, which is
109 /// the value of the constant.
110 Const(DefId, SubstsRef<'tcx>),
111 }
112
113 impl<'tcx> DefiningTy<'tcx> {
114 /// Returns a list of all the upvar types for this MIR. If this is
115 /// not a closure or generator, there are no upvars, and hence it
116 /// will be an empty list. The order of types in this list will
117 /// match up with the upvar order in the HIR, typesystem, and MIR.
118 pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
119 match self {
120 DefiningTy::Closure(_, substs) => Either::Left(substs.as_closure().upvar_tys()),
121 DefiningTy::Generator(_, substs, _) => {
122 Either::Right(Either::Left(substs.as_generator().upvar_tys()))
123 }
124 DefiningTy::FnDef(..) | DefiningTy::Const(..) => {
125 Either::Right(Either::Right(iter::empty()))
126 }
127 }
128 }
129
130 /// Number of implicit inputs -- notably the "environment"
131 /// parameter for closures -- that appear in MIR but not in the
132 /// user's code.
133 pub fn implicit_inputs(self) -> usize {
134 match self {
135 DefiningTy::Closure(..) | DefiningTy::Generator(..) => 1,
136 DefiningTy::FnDef(..) | DefiningTy::Const(..) => 0,
137 }
138 }
139
140 pub fn is_fn_def(&self) -> bool {
141 match *self {
142 DefiningTy::FnDef(..) => true,
143 _ => false,
144 }
145 }
146
147 pub fn is_const(&self) -> bool {
148 match *self {
149 DefiningTy::Const(..) => true,
150 _ => false,
151 }
152 }
153
154 pub fn def_id(&self) -> DefId {
155 match *self {
156 DefiningTy::Closure(def_id, ..)
157 | DefiningTy::Generator(def_id, ..)
158 | DefiningTy::FnDef(def_id, ..)
159 | DefiningTy::Const(def_id, ..) => def_id,
160 }
161 }
162 }
163
164 #[derive(Debug)]
165 struct UniversalRegionIndices<'tcx> {
166 /// For those regions that may appear in the parameter environment
167 /// ('static and early-bound regions), we maintain a map from the
168 /// `ty::Region` to the internal `RegionVid` we are using. This is
169 /// used because trait matching and type-checking will feed us
170 /// region constraints that reference those regions and we need to
171 /// be able to map them our internal `RegionVid`. This is
172 /// basically equivalent to a `InternalSubsts`, except that it also
173 /// contains an entry for `ReStatic` -- it might be nice to just
174 /// use a substs, and then handle `ReStatic` another way.
175 indices: FxHashMap<ty::Region<'tcx>, RegionVid>,
176 }
177
178 #[derive(Debug, PartialEq)]
179 pub enum RegionClassification {
180 /// A **global** region is one that can be named from
181 /// anywhere. There is only one, `'static`.
182 Global,
183
184 /// An **external** region is only relevant for closures. In that
185 /// case, it refers to regions that are free in the closure type
186 /// -- basically, something bound in the surrounding context.
187 ///
188 /// Consider this example:
189 ///
190 /// ```
191 /// fn foo<'a, 'b>(a: &'a u32, b: &'b u32, c: &'static u32) {
192 /// let closure = for<'x> |x: &'x u32| { .. };
193 /// ^^^^^^^ pretend this were legal syntax
194 /// for declaring a late-bound region in
195 /// a closure signature
196 /// }
197 /// ```
198 ///
199 /// Here, the lifetimes `'a` and `'b` would be **external** to the
200 /// closure.
201 ///
202 /// If we are not analyzing a closure, there are no external
203 /// lifetimes.
204 External,
205
206 /// A **local** lifetime is one about which we know the full set
207 /// of relevant constraints (that is, relationships to other named
208 /// regions). For a closure, this includes any region bound in
209 /// the closure's signature. For a fn item, this includes all
210 /// regions other than global ones.
211 ///
212 /// Continuing with the example from `External`, if we were
213 /// analyzing the closure, then `'x` would be local (and `'a` and
214 /// `'b` are external). If we are analyzing the function item
215 /// `foo`, then `'a` and `'b` are local (and `'x` is not in
216 /// scope).
217 Local,
218 }
219
220 const FIRST_GLOBAL_INDEX: usize = 0;
221
222 impl<'tcx> UniversalRegions<'tcx> {
223 /// Creates a new and fully initialized `UniversalRegions` that
224 /// contains indices for all the free regions found in the given
225 /// MIR -- that is, all the regions that appear in the function's
226 /// signature. This will also compute the relationships that are
227 /// known between those regions.
228 pub fn new(
229 infcx: &InferCtxt<'_, 'tcx>,
230 mir_def: ty::WithOptConstParam<LocalDefId>,
231 param_env: ty::ParamEnv<'tcx>,
232 ) -> Self {
233 let tcx = infcx.tcx;
234 let mir_hir_id = tcx.hir().local_def_id_to_hir_id(mir_def.did);
235 UniversalRegionsBuilder { infcx, mir_def, mir_hir_id, param_env }.build()
236 }
237
238 /// Given a reference to a closure type, extracts all the values
239 /// from its free regions and returns a vector with them. This is
240 /// used when the closure's creator checks that the
241 /// `ClosureRegionRequirements` are met. The requirements from
242 /// `ClosureRegionRequirements` are expressed in terms of
243 /// `RegionVid` entries that map into the returned vector `V`: so
244 /// if the `ClosureRegionRequirements` contains something like
245 /// `'1: '2`, then the caller would impose the constraint that
246 /// `V[1]: V[2]`.
247 pub fn closure_mapping(
248 tcx: TyCtxt<'tcx>,
249 closure_substs: SubstsRef<'tcx>,
250 expected_num_vars: usize,
251 closure_base_def_id: DefId,
252 ) -> IndexVec<RegionVid, ty::Region<'tcx>> {
253 let mut region_mapping = IndexVec::with_capacity(expected_num_vars);
254 region_mapping.push(tcx.lifetimes.re_static);
255 tcx.for_each_free_region(&closure_substs, |fr| {
256 region_mapping.push(fr);
257 });
258
259 for_each_late_bound_region_defined_on(tcx, closure_base_def_id, |r| {
260 region_mapping.push(r);
261 });
262
263 assert_eq!(
264 region_mapping.len(),
265 expected_num_vars,
266 "index vec had unexpected number of variables"
267 );
268
269 region_mapping
270 }
271
272 /// Returns `true` if `r` is a member of this set of universal regions.
273 pub fn is_universal_region(&self, r: RegionVid) -> bool {
274 (FIRST_GLOBAL_INDEX..self.num_universals).contains(&r.index())
275 }
276
277 /// Classifies `r` as a universal region, returning `None` if this
278 /// is not a member of this set of universal regions.
279 pub fn region_classification(&self, r: RegionVid) -> Option<RegionClassification> {
280 let index = r.index();
281 if (FIRST_GLOBAL_INDEX..self.first_extern_index).contains(&index) {
282 Some(RegionClassification::Global)
283 } else if (self.first_extern_index..self.first_local_index).contains(&index) {
284 Some(RegionClassification::External)
285 } else if (self.first_local_index..self.num_universals).contains(&index) {
286 Some(RegionClassification::Local)
287 } else {
288 None
289 }
290 }
291
292 /// Returns an iterator over all the RegionVids corresponding to
293 /// universally quantified free regions.
294 pub fn universal_regions(&self) -> impl Iterator<Item = RegionVid> {
295 (FIRST_GLOBAL_INDEX..self.num_universals).map(RegionVid::new)
296 }
297
298 /// Returns `true` if `r` is classified as an local region.
299 pub fn is_local_free_region(&self, r: RegionVid) -> bool {
300 self.region_classification(r) == Some(RegionClassification::Local)
301 }
302
303 /// Returns the number of universal regions created in any category.
304 pub fn len(&self) -> usize {
305 self.num_universals
306 }
307
308 /// Returns the number of global plus external universal regions.
309 /// For closures, these are the regions that appear free in the
310 /// closure type (versus those bound in the closure
311 /// signature). They are therefore the regions between which the
312 /// closure may impose constraints that its creator must verify.
313 pub fn num_global_and_external_regions(&self) -> usize {
314 self.first_local_index
315 }
316
317 /// Gets an iterator over all the early-bound regions that have names.
318 pub fn named_universal_regions<'s>(
319 &'s self,
320 ) -> impl Iterator<Item = (ty::Region<'tcx>, ty::RegionVid)> + 's {
321 self.indices.indices.iter().map(|(&r, &v)| (r, v))
322 }
323
324 /// See `UniversalRegionIndices::to_region_vid`.
325 pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
326 if let ty::ReEmpty(ty::UniverseIndex::ROOT) = r {
327 self.root_empty
328 } else {
329 self.indices.to_region_vid(r)
330 }
331 }
332
333 /// As part of the NLL unit tests, you can annotate a function with
334 /// `#[rustc_regions]`, and we will emit information about the region
335 /// inference context and -- in particular -- the external constraints
336 /// that this region imposes on others. The methods in this file
337 /// handle the part about dumping the inference context internal
338 /// state.
339 crate fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut DiagnosticBuilder<'_>) {
340 match self.defining_ty {
341 DefiningTy::Closure(def_id, substs) => {
342 err.note(&format!(
343 "defining type: {} with closure substs {:#?}",
344 tcx.def_path_str_with_substs(def_id, substs),
345 &substs[tcx.generics_of(def_id).parent_count..],
346 ));
347
348 // FIXME: It'd be nice to print the late-bound regions
349 // here, but unfortunately these wind up stored into
350 // tests, and the resulting print-outs include def-ids
351 // and other things that are not stable across tests!
352 // So we just include the region-vid. Annoying.
353 let closure_base_def_id = tcx.closure_base_def_id(def_id);
354 for_each_late_bound_region_defined_on(tcx, closure_base_def_id, |r| {
355 err.note(&format!("late-bound region is {:?}", self.to_region_vid(r),));
356 });
357 }
358 DefiningTy::Generator(def_id, substs, _) => {
359 err.note(&format!(
360 "defining type: {} with generator substs {:#?}",
361 tcx.def_path_str_with_substs(def_id, substs),
362 &substs[tcx.generics_of(def_id).parent_count..],
363 ));
364
365 // FIXME: As above, we'd like to print out the region
366 // `r` but doing so is not stable across architectures
367 // and so forth.
368 let closure_base_def_id = tcx.closure_base_def_id(def_id);
369 for_each_late_bound_region_defined_on(tcx, closure_base_def_id, |r| {
370 err.note(&format!("late-bound region is {:?}", self.to_region_vid(r),));
371 });
372 }
373 DefiningTy::FnDef(def_id, substs) => {
374 err.note(&format!(
375 "defining type: {}",
376 tcx.def_path_str_with_substs(def_id, substs),
377 ));
378 }
379 DefiningTy::Const(def_id, substs) => {
380 err.note(&format!(
381 "defining constant type: {}",
382 tcx.def_path_str_with_substs(def_id, substs),
383 ));
384 }
385 }
386 }
387 }
388
389 struct UniversalRegionsBuilder<'cx, 'tcx> {
390 infcx: &'cx InferCtxt<'cx, 'tcx>,
391 mir_def: ty::WithOptConstParam<LocalDefId>,
392 mir_hir_id: HirId,
393 param_env: ty::ParamEnv<'tcx>,
394 }
395
396 const FR: NLLRegionVariableOrigin = NLLRegionVariableOrigin::FreeRegion;
397
398 impl<'cx, 'tcx> UniversalRegionsBuilder<'cx, 'tcx> {
399 fn build(self) -> UniversalRegions<'tcx> {
400 debug!("build(mir_def={:?})", self.mir_def);
401
402 let param_env = self.param_env;
403 debug!("build: param_env={:?}", param_env);
404
405 assert_eq!(FIRST_GLOBAL_INDEX, self.infcx.num_region_vars());
406
407 // Create the "global" region that is always free in all contexts: 'static.
408 let fr_static = self.infcx.next_nll_region_var(FR).to_region_vid();
409
410 // We've now added all the global regions. The next ones we
411 // add will be external.
412 let first_extern_index = self.infcx.num_region_vars();
413
414 let defining_ty = self.defining_ty();
415 debug!("build: defining_ty={:?}", defining_ty);
416
417 let mut indices = self.compute_indices(fr_static, defining_ty);
418 debug!("build: indices={:?}", indices);
419
420 let closure_base_def_id = self.infcx.tcx.closure_base_def_id(self.mir_def.did.to_def_id());
421
422 // If this is a closure or generator, then the late-bound regions from the enclosing
423 // function are actually external regions to us. For example, here, 'a is not local
424 // to the closure c (although it is local to the fn foo):
425 // fn foo<'a>() {
426 // let c = || { let x: &'a u32 = ...; }
427 // }
428 if self.mir_def.did.to_def_id() != closure_base_def_id {
429 self.infcx
430 .replace_late_bound_regions_with_nll_infer_vars(self.mir_def.did, &mut indices)
431 }
432
433 let bound_inputs_and_output = self.compute_inputs_and_output(&indices, defining_ty);
434
435 // "Liberate" the late-bound regions. These correspond to
436 // "local" free regions.
437 let first_local_index = self.infcx.num_region_vars();
438 let inputs_and_output = self.infcx.replace_bound_regions_with_nll_infer_vars(
439 FR,
440 self.mir_def.did,
441 bound_inputs_and_output,
442 &mut indices,
443 );
444 // Converse of above, if this is a function then the late-bound regions declared on its
445 // signature are local to the fn.
446 if self.mir_def.did.to_def_id() == closure_base_def_id {
447 self.infcx
448 .replace_late_bound_regions_with_nll_infer_vars(self.mir_def.did, &mut indices);
449 }
450
451 let (unnormalized_output_ty, mut unnormalized_input_tys) =
452 inputs_and_output.split_last().unwrap();
453
454 // C-variadic fns also have a `VaList` input that's not listed in the signature
455 // (as it's created inside the body itself, not passed in from outside).
456 if let DefiningTy::FnDef(def_id, _) = defining_ty {
457 if self.infcx.tcx.fn_sig(def_id).c_variadic() {
458 let va_list_did = self.infcx.tcx.require_lang_item(
459 LangItem::VaList,
460 Some(self.infcx.tcx.def_span(self.mir_def.did)),
461 );
462 let region = self
463 .infcx
464 .tcx
465 .mk_region(ty::ReVar(self.infcx.next_nll_region_var(FR).to_region_vid()));
466 let va_list_ty =
467 self.infcx.tcx.type_of(va_list_did).subst(self.infcx.tcx, &[region.into()]);
468
469 unnormalized_input_tys = self.infcx.tcx.mk_type_list(
470 unnormalized_input_tys.iter().copied().chain(iter::once(va_list_ty)),
471 );
472 }
473 }
474
475 let fr_fn_body = self.infcx.next_nll_region_var(FR).to_region_vid();
476 let num_universals = self.infcx.num_region_vars();
477
478 debug!("build: global regions = {}..{}", FIRST_GLOBAL_INDEX, first_extern_index);
479 debug!("build: extern regions = {}..{}", first_extern_index, first_local_index);
480 debug!("build: local regions = {}..{}", first_local_index, num_universals);
481
482 let yield_ty = match defining_ty {
483 DefiningTy::Generator(_, substs, _) => Some(substs.as_generator().yield_ty()),
484 _ => None,
485 };
486
487 let root_empty = self
488 .infcx
489 .next_nll_region_var(NLLRegionVariableOrigin::RootEmptyRegion)
490 .to_region_vid();
491
492 UniversalRegions {
493 indices,
494 fr_static,
495 fr_fn_body,
496 root_empty,
497 first_extern_index,
498 first_local_index,
499 num_universals,
500 defining_ty,
501 unnormalized_output_ty,
502 unnormalized_input_tys,
503 yield_ty,
504 }
505 }
506
507 /// Returns the "defining type" of the current MIR;
508 /// see `DefiningTy` for details.
509 fn defining_ty(&self) -> DefiningTy<'tcx> {
510 let tcx = self.infcx.tcx;
511 let closure_base_def_id = tcx.closure_base_def_id(self.mir_def.did.to_def_id());
512
513 match tcx.hir().body_owner_kind(self.mir_hir_id) {
514 BodyOwnerKind::Closure | BodyOwnerKind::Fn => {
515 let defining_ty = if self.mir_def.did.to_def_id() == closure_base_def_id {
516 tcx.type_of(closure_base_def_id)
517 } else {
518 let tables = tcx.typeck(self.mir_def.did);
519 tables.node_type(self.mir_hir_id)
520 };
521
522 debug!("defining_ty (pre-replacement): {:?}", defining_ty);
523
524 let defining_ty =
525 self.infcx.replace_free_regions_with_nll_infer_vars(FR, defining_ty);
526
527 match *defining_ty.kind() {
528 ty::Closure(def_id, substs) => DefiningTy::Closure(def_id, substs),
529 ty::Generator(def_id, substs, movability) => {
530 DefiningTy::Generator(def_id, substs, movability)
531 }
532 ty::FnDef(def_id, substs) => DefiningTy::FnDef(def_id, substs),
533 _ => span_bug!(
534 tcx.def_span(self.mir_def.did),
535 "expected defining type for `{:?}`: `{:?}`",
536 self.mir_def.did,
537 defining_ty
538 ),
539 }
540 }
541
542 BodyOwnerKind::Const | BodyOwnerKind::Static(..) => {
543 assert_eq!(self.mir_def.did.to_def_id(), closure_base_def_id);
544 let identity_substs = InternalSubsts::identity_for_item(tcx, closure_base_def_id);
545 let substs =
546 self.infcx.replace_free_regions_with_nll_infer_vars(FR, identity_substs);
547 DefiningTy::Const(self.mir_def.did.to_def_id(), substs)
548 }
549 }
550 }
551
552 /// Builds a hashmap that maps from the universal regions that are
553 /// in scope (as a `ty::Region<'tcx>`) to their indices (as a
554 /// `RegionVid`). The map returned by this function contains only
555 /// the early-bound regions.
556 fn compute_indices(
557 &self,
558 fr_static: RegionVid,
559 defining_ty: DefiningTy<'tcx>,
560 ) -> UniversalRegionIndices<'tcx> {
561 let tcx = self.infcx.tcx;
562 let closure_base_def_id = tcx.closure_base_def_id(self.mir_def.did.to_def_id());
563 let identity_substs = InternalSubsts::identity_for_item(tcx, closure_base_def_id);
564 let fr_substs = match defining_ty {
565 DefiningTy::Closure(_, ref substs) | DefiningTy::Generator(_, ref substs, _) => {
566 // In the case of closures, we rely on the fact that
567 // the first N elements in the ClosureSubsts are
568 // inherited from the `closure_base_def_id`.
569 // Therefore, when we zip together (below) with
570 // `identity_substs`, we will get only those regions
571 // that correspond to early-bound regions declared on
572 // the `closure_base_def_id`.
573 assert!(substs.len() >= identity_substs.len());
574 assert_eq!(substs.regions().count(), identity_substs.regions().count());
575 substs
576 }
577
578 DefiningTy::FnDef(_, substs) | DefiningTy::Const(_, substs) => substs,
579 };
580
581 let global_mapping = iter::once((tcx.lifetimes.re_static, fr_static));
582 let subst_mapping =
583 identity_substs.regions().zip(fr_substs.regions().map(|r| r.to_region_vid()));
584
585 UniversalRegionIndices { indices: global_mapping.chain(subst_mapping).collect() }
586 }
587
588 fn compute_inputs_and_output(
589 &self,
590 indices: &UniversalRegionIndices<'tcx>,
591 defining_ty: DefiningTy<'tcx>,
592 ) -> ty::Binder<&'tcx ty::List<Ty<'tcx>>> {
593 let tcx = self.infcx.tcx;
594 match defining_ty {
595 DefiningTy::Closure(def_id, substs) => {
596 assert_eq!(self.mir_def.did.to_def_id(), def_id);
597 let closure_sig = substs.as_closure().sig();
598 let inputs_and_output = closure_sig.inputs_and_output();
599 let closure_ty = tcx.closure_env_ty(def_id, substs).unwrap();
600 ty::Binder::fuse(closure_ty, inputs_and_output, |closure_ty, inputs_and_output| {
601 // The "inputs" of the closure in the
602 // signature appear as a tuple. The MIR side
603 // flattens this tuple.
604 let (&output, tuplized_inputs) = inputs_and_output.split_last().unwrap();
605 assert_eq!(tuplized_inputs.len(), 1, "multiple closure inputs");
606 let inputs = match tuplized_inputs[0].kind() {
607 ty::Tuple(inputs) => inputs,
608 _ => bug!("closure inputs not a tuple: {:?}", tuplized_inputs[0]),
609 };
610
611 tcx.mk_type_list(
612 iter::once(closure_ty)
613 .chain(inputs.iter().map(|k| k.expect_ty()))
614 .chain(iter::once(output)),
615 )
616 })
617 }
618
619 DefiningTy::Generator(def_id, substs, movability) => {
620 assert_eq!(self.mir_def.did.to_def_id(), def_id);
621 let resume_ty = substs.as_generator().resume_ty();
622 let output = substs.as_generator().return_ty();
623 let generator_ty = tcx.mk_generator(def_id, substs, movability);
624 let inputs_and_output =
625 self.infcx.tcx.intern_type_list(&[generator_ty, resume_ty, output]);
626 ty::Binder::dummy(inputs_and_output)
627 }
628
629 DefiningTy::FnDef(def_id, _) => {
630 let sig = tcx.fn_sig(def_id);
631 let sig = indices.fold_to_region_vids(tcx, sig);
632 sig.inputs_and_output()
633 }
634
635 DefiningTy::Const(def_id, _) => {
636 // For a constant body, there are no inputs, and one
637 // "output" (the type of the constant).
638 assert_eq!(self.mir_def.did.to_def_id(), def_id);
639 let ty = tcx.type_of(self.mir_def.def_id_for_type_of());
640 let ty = indices.fold_to_region_vids(tcx, ty);
641 ty::Binder::dummy(tcx.intern_type_list(&[ty]))
642 }
643 }
644 }
645 }
646
647 trait InferCtxtExt<'tcx> {
648 fn replace_free_regions_with_nll_infer_vars<T>(
649 &self,
650 origin: NLLRegionVariableOrigin,
651 value: T,
652 ) -> T
653 where
654 T: TypeFoldable<'tcx>;
655
656 fn replace_bound_regions_with_nll_infer_vars<T>(
657 &self,
658 origin: NLLRegionVariableOrigin,
659 all_outlive_scope: LocalDefId,
660 value: ty::Binder<T>,
661 indices: &mut UniversalRegionIndices<'tcx>,
662 ) -> T
663 where
664 T: TypeFoldable<'tcx>;
665
666 fn replace_late_bound_regions_with_nll_infer_vars(
667 &self,
668 mir_def_id: LocalDefId,
669 indices: &mut UniversalRegionIndices<'tcx>,
670 );
671 }
672
673 impl<'cx, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'cx, 'tcx> {
674 fn replace_free_regions_with_nll_infer_vars<T>(
675 &self,
676 origin: NLLRegionVariableOrigin,
677 value: T,
678 ) -> T
679 where
680 T: TypeFoldable<'tcx>,
681 {
682 self.tcx.fold_regions(value, &mut false, |_region, _depth| self.next_nll_region_var(origin))
683 }
684
685 fn replace_bound_regions_with_nll_infer_vars<T>(
686 &self,
687 origin: NLLRegionVariableOrigin,
688 all_outlive_scope: LocalDefId,
689 value: ty::Binder<T>,
690 indices: &mut UniversalRegionIndices<'tcx>,
691 ) -> T
692 where
693 T: TypeFoldable<'tcx>,
694 {
695 debug!(
696 "replace_bound_regions_with_nll_infer_vars(value={:?}, all_outlive_scope={:?})",
697 value, all_outlive_scope,
698 );
699 let (value, _map) = self.tcx.replace_late_bound_regions(value, |br| {
700 debug!("replace_bound_regions_with_nll_infer_vars: br={:?}", br);
701 let liberated_region = self.tcx.mk_region(ty::ReFree(ty::FreeRegion {
702 scope: all_outlive_scope.to_def_id(),
703 bound_region: br.kind,
704 }));
705 let region_vid = self.next_nll_region_var(origin);
706 indices.insert_late_bound_region(liberated_region, region_vid.to_region_vid());
707 debug!(
708 "replace_bound_regions_with_nll_infer_vars: liberated_region={:?} => {:?}",
709 liberated_region, region_vid
710 );
711 region_vid
712 });
713 value
714 }
715
716 /// Finds late-bound regions that do not appear in the parameter listing and adds them to the
717 /// indices vector. Typically, we identify late-bound regions as we process the inputs and
718 /// outputs of the closure/function. However, sometimes there are late-bound regions which do
719 /// not appear in the fn parameters but which are nonetheless in scope. The simplest case of
720 /// this are unused functions, like fn foo<'a>() { } (see e.g., #51351). Despite not being used,
721 /// users can still reference these regions (e.g., let x: &'a u32 = &22;), so we need to create
722 /// entries for them and store them in the indices map. This code iterates over the complete
723 /// set of late-bound regions and checks for any that we have not yet seen, adding them to the
724 /// inputs vector.
725 fn replace_late_bound_regions_with_nll_infer_vars(
726 &self,
727 mir_def_id: LocalDefId,
728 indices: &mut UniversalRegionIndices<'tcx>,
729 ) {
730 debug!("replace_late_bound_regions_with_nll_infer_vars(mir_def_id={:?})", mir_def_id);
731 let closure_base_def_id = self.tcx.closure_base_def_id(mir_def_id.to_def_id());
732 for_each_late_bound_region_defined_on(self.tcx, closure_base_def_id, |r| {
733 debug!("replace_late_bound_regions_with_nll_infer_vars: r={:?}", r);
734 if !indices.indices.contains_key(&r) {
735 let region_vid = self.next_nll_region_var(FR);
736 indices.insert_late_bound_region(r, region_vid.to_region_vid());
737 }
738 });
739 }
740 }
741
742 impl<'tcx> UniversalRegionIndices<'tcx> {
743 /// Initially, the `UniversalRegionIndices` map contains only the
744 /// early-bound regions in scope. Once that is all setup, we come
745 /// in later and instantiate the late-bound regions, and then we
746 /// insert the `ReFree` version of those into the map as
747 /// well. These are used for error reporting.
748 fn insert_late_bound_region(&mut self, r: ty::Region<'tcx>, vid: ty::RegionVid) {
749 debug!("insert_late_bound_region({:?}, {:?})", r, vid);
750 self.indices.insert(r, vid);
751 }
752
753 /// Converts `r` into a local inference variable: `r` can either
754 /// by a `ReVar` (i.e., already a reference to an inference
755 /// variable) or it can be `'static` or some early-bound
756 /// region. This is useful when taking the results from
757 /// type-checking and trait-matching, which may sometimes
758 /// reference those regions from the `ParamEnv`. It is also used
759 /// during initialization. Relies on the `indices` map having been
760 /// fully initialized.
761 pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
762 if let ty::ReVar(..) = r {
763 r.to_region_vid()
764 } else {
765 *self
766 .indices
767 .get(&r)
768 .unwrap_or_else(|| bug!("cannot convert `{:?}` to a region vid", r))
769 }
770 }
771
772 /// Replaces all free regions in `value` with region vids, as
773 /// returned by `to_region_vid`.
774 pub fn fold_to_region_vids<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T
775 where
776 T: TypeFoldable<'tcx>,
777 {
778 tcx.fold_regions(value, &mut false, |region, _| {
779 tcx.mk_region(ty::ReVar(self.to_region_vid(region)))
780 })
781 }
782 }
783
784 /// Iterates over the late-bound regions defined on fn_def_id and
785 /// invokes `f` with the liberated form of each one.
786 fn for_each_late_bound_region_defined_on<'tcx>(
787 tcx: TyCtxt<'tcx>,
788 fn_def_id: DefId,
789 mut f: impl FnMut(ty::Region<'tcx>),
790 ) {
791 if let Some(late_bounds) = tcx.is_late_bound_map(fn_def_id.expect_local()) {
792 for late_bound in late_bounds.iter() {
793 let hir_id = HirId { owner: fn_def_id.expect_local(), local_id: *late_bound };
794 let name = tcx.hir().name(hir_id);
795 let region_def_id = tcx.hir().local_def_id(hir_id);
796 let liberated_region = tcx.mk_region(ty::ReFree(ty::FreeRegion {
797 scope: fn_def_id,
798 bound_region: ty::BoundRegionKind::BrNamed(region_def_id.to_def_id(), name),
799 }));
800 f(liberated_region);
801 }
802 }
803 }