]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_mir_build/src/build/matches/test.rs
New upstream version 1.65.0+dfsg1
[rustc.git] / compiler / rustc_mir_build / src / build / matches / test.rs
1 // Testing candidates
2 //
3 // After candidates have been simplified, the only match pairs that
4 // remain are those that require some sort of test. The functions here
5 // identify what tests are needed, perform the tests, and then filter
6 // the candidates based on the result.
7
8 use crate::build::expr::as_place::PlaceBuilder;
9 use crate::build::matches::{Candidate, MatchPair, Test, TestKind};
10 use crate::build::Builder;
11 use crate::thir::pattern::compare_const_vals;
12 use rustc_data_structures::fx::FxIndexMap;
13 use rustc_hir::{LangItem, RangeEnd};
14 use rustc_index::bit_set::BitSet;
15 use rustc_middle::mir::*;
16 use rustc_middle::thir::*;
17 use rustc_middle::ty::subst::{GenericArg, Subst};
18 use rustc_middle::ty::util::IntTypeExt;
19 use rustc_middle::ty::{self, adjustment::PointerCast, Ty, TyCtxt};
20 use rustc_span::def_id::DefId;
21 use rustc_span::symbol::{sym, Symbol};
22 use rustc_span::Span;
23 use rustc_target::abi::VariantIdx;
24
25 use std::cmp::Ordering;
26
27 impl<'a, 'tcx> Builder<'a, 'tcx> {
28 /// Identifies what test is needed to decide if `match_pair` is applicable.
29 ///
30 /// It is a bug to call this with a not-fully-simplified pattern.
31 pub(super) fn test<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> Test<'tcx> {
32 match match_pair.pattern.kind {
33 PatKind::Variant { adt_def, substs: _, variant_index: _, subpatterns: _ } => Test {
34 span: match_pair.pattern.span,
35 kind: TestKind::Switch {
36 adt_def,
37 variants: BitSet::new_empty(adt_def.variants().len()),
38 },
39 },
40
41 PatKind::Constant { .. } if is_switch_ty(match_pair.pattern.ty) => {
42 // For integers, we use a `SwitchInt` match, which allows
43 // us to handle more cases.
44 Test {
45 span: match_pair.pattern.span,
46 kind: TestKind::SwitchInt {
47 switch_ty: match_pair.pattern.ty,
48
49 // these maps are empty to start; cases are
50 // added below in add_cases_to_switch
51 options: Default::default(),
52 },
53 }
54 }
55
56 PatKind::Constant { value } => Test {
57 span: match_pair.pattern.span,
58 kind: TestKind::Eq { value, ty: match_pair.pattern.ty },
59 },
60
61 PatKind::Range(ref range) => {
62 assert_eq!(range.lo.ty(), match_pair.pattern.ty);
63 assert_eq!(range.hi.ty(), match_pair.pattern.ty);
64 Test { span: match_pair.pattern.span, kind: TestKind::Range(range.clone()) }
65 }
66
67 PatKind::Slice { ref prefix, ref slice, ref suffix } => {
68 let len = prefix.len() + suffix.len();
69 let op = if slice.is_some() { BinOp::Ge } else { BinOp::Eq };
70 Test { span: match_pair.pattern.span, kind: TestKind::Len { len: len as u64, op } }
71 }
72
73 PatKind::Or { .. } => bug!("or-patterns should have already been handled"),
74
75 PatKind::AscribeUserType { .. }
76 | PatKind::Array { .. }
77 | PatKind::Wild
78 | PatKind::Binding { .. }
79 | PatKind::Leaf { .. }
80 | PatKind::Deref { .. } => self.error_simplifyable(match_pair),
81 }
82 }
83
84 pub(super) fn add_cases_to_switch<'pat>(
85 &mut self,
86 test_place: &PlaceBuilder<'tcx>,
87 candidate: &Candidate<'pat, 'tcx>,
88 switch_ty: Ty<'tcx>,
89 options: &mut FxIndexMap<ConstantKind<'tcx>, u128>,
90 ) -> bool {
91 let Some(match_pair) = candidate.match_pairs.iter().find(|mp| mp.place == *test_place) else {
92 return false;
93 };
94
95 match match_pair.pattern.kind {
96 PatKind::Constant { value } => {
97 options
98 .entry(value)
99 .or_insert_with(|| value.eval_bits(self.tcx, self.param_env, switch_ty));
100 true
101 }
102 PatKind::Variant { .. } => {
103 panic!("you should have called add_variants_to_switch instead!");
104 }
105 PatKind::Range(ref range) => {
106 // Check that none of the switch values are in the range.
107 self.values_not_contained_in_range(&*range, options).unwrap_or(false)
108 }
109 PatKind::Slice { .. }
110 | PatKind::Array { .. }
111 | PatKind::Wild
112 | PatKind::Or { .. }
113 | PatKind::Binding { .. }
114 | PatKind::AscribeUserType { .. }
115 | PatKind::Leaf { .. }
116 | PatKind::Deref { .. } => {
117 // don't know how to add these patterns to a switch
118 false
119 }
120 }
121 }
122
123 pub(super) fn add_variants_to_switch<'pat>(
124 &mut self,
125 test_place: &PlaceBuilder<'tcx>,
126 candidate: &Candidate<'pat, 'tcx>,
127 variants: &mut BitSet<VariantIdx>,
128 ) -> bool {
129 let Some(match_pair) = candidate.match_pairs.iter().find(|mp| mp.place == *test_place) else {
130 return false;
131 };
132
133 match match_pair.pattern.kind {
134 PatKind::Variant { adt_def: _, variant_index, .. } => {
135 // We have a pattern testing for variant `variant_index`
136 // set the corresponding index to true
137 variants.insert(variant_index);
138 true
139 }
140 _ => {
141 // don't know how to add these patterns to a switch
142 false
143 }
144 }
145 }
146
147 pub(super) fn perform_test(
148 &mut self,
149 match_start_span: Span,
150 scrutinee_span: Span,
151 block: BasicBlock,
152 place_builder: PlaceBuilder<'tcx>,
153 test: &Test<'tcx>,
154 make_target_blocks: impl FnOnce(&mut Self) -> Vec<BasicBlock>,
155 ) {
156 let place: Place<'tcx>;
157 if let Ok(test_place_builder) = place_builder.try_upvars_resolved(self.tcx, &self.upvars) {
158 place = test_place_builder.into_place(self.tcx, &self.upvars);
159 } else {
160 return;
161 }
162 debug!(
163 "perform_test({:?}, {:?}: {:?}, {:?})",
164 block,
165 place,
166 place.ty(&self.local_decls, self.tcx),
167 test
168 );
169
170 let source_info = self.source_info(test.span);
171 match test.kind {
172 TestKind::Switch { adt_def, ref variants } => {
173 let target_blocks = make_target_blocks(self);
174 // Variants is a BitVec of indexes into adt_def.variants.
175 let num_enum_variants = adt_def.variants().len();
176 debug_assert_eq!(target_blocks.len(), num_enum_variants + 1);
177 let otherwise_block = *target_blocks.last().unwrap();
178 let tcx = self.tcx;
179 let switch_targets = SwitchTargets::new(
180 adt_def.discriminants(tcx).filter_map(|(idx, discr)| {
181 if variants.contains(idx) {
182 debug_assert_ne!(
183 target_blocks[idx.index()],
184 otherwise_block,
185 "no canididates for tested discriminant: {:?}",
186 discr,
187 );
188 Some((discr.val, target_blocks[idx.index()]))
189 } else {
190 debug_assert_eq!(
191 target_blocks[idx.index()],
192 otherwise_block,
193 "found canididates for untested discriminant: {:?}",
194 discr,
195 );
196 None
197 }
198 }),
199 otherwise_block,
200 );
201 debug!("num_enum_variants: {}, variants: {:?}", num_enum_variants, variants);
202 let discr_ty = adt_def.repr().discr_type().to_ty(tcx);
203 let discr = self.temp(discr_ty, test.span);
204 self.cfg.push_assign(
205 block,
206 self.source_info(scrutinee_span),
207 discr,
208 Rvalue::Discriminant(place),
209 );
210 self.cfg.terminate(
211 block,
212 self.source_info(match_start_span),
213 TerminatorKind::SwitchInt {
214 discr: Operand::Move(discr),
215 switch_ty: discr_ty,
216 targets: switch_targets,
217 },
218 );
219 }
220
221 TestKind::SwitchInt { switch_ty, ref options } => {
222 let target_blocks = make_target_blocks(self);
223 let terminator = if *switch_ty.kind() == ty::Bool {
224 assert!(!options.is_empty() && options.len() <= 2);
225 let [first_bb, second_bb] = *target_blocks else {
226 bug!("`TestKind::SwitchInt` on `bool` should have two targets")
227 };
228 let (true_bb, false_bb) = match options[0] {
229 1 => (first_bb, second_bb),
230 0 => (second_bb, first_bb),
231 v => span_bug!(test.span, "expected boolean value but got {:?}", v),
232 };
233 TerminatorKind::if_(self.tcx, Operand::Copy(place), true_bb, false_bb)
234 } else {
235 // The switch may be inexhaustive so we have a catch all block
236 debug_assert_eq!(options.len() + 1, target_blocks.len());
237 let otherwise_block = *target_blocks.last().unwrap();
238 let switch_targets = SwitchTargets::new(
239 options.values().copied().zip(target_blocks),
240 otherwise_block,
241 );
242 TerminatorKind::SwitchInt {
243 discr: Operand::Copy(place),
244 switch_ty,
245 targets: switch_targets,
246 }
247 };
248 self.cfg.terminate(block, self.source_info(match_start_span), terminator);
249 }
250
251 TestKind::Eq { value, ty } => {
252 if !ty.is_scalar() {
253 // Use `PartialEq::eq` instead of `BinOp::Eq`
254 // (the binop can only handle primitives)
255 self.non_scalar_compare(
256 block,
257 make_target_blocks,
258 source_info,
259 value,
260 place,
261 ty,
262 );
263 } else if let [success, fail] = *make_target_blocks(self) {
264 assert_eq!(value.ty(), ty);
265 let expect = self.literal_operand(test.span, value);
266 let val = Operand::Copy(place);
267 self.compare(block, success, fail, source_info, BinOp::Eq, expect, val);
268 } else {
269 bug!("`TestKind::Eq` should have two target blocks");
270 }
271 }
272
273 TestKind::Range(box PatRange { lo, hi, ref end }) => {
274 let lower_bound_success = self.cfg.start_new_block();
275 let target_blocks = make_target_blocks(self);
276
277 // Test `val` by computing `lo <= val && val <= hi`, using primitive comparisons.
278 let lo = self.literal_operand(test.span, lo);
279 let hi = self.literal_operand(test.span, hi);
280 let val = Operand::Copy(place);
281
282 let [success, fail] = *target_blocks else {
283 bug!("`TestKind::Range` should have two target blocks");
284 };
285 self.compare(
286 block,
287 lower_bound_success,
288 fail,
289 source_info,
290 BinOp::Le,
291 lo,
292 val.clone(),
293 );
294 let op = match *end {
295 RangeEnd::Included => BinOp::Le,
296 RangeEnd::Excluded => BinOp::Lt,
297 };
298 self.compare(lower_bound_success, success, fail, source_info, op, val, hi);
299 }
300
301 TestKind::Len { len, op } => {
302 let target_blocks = make_target_blocks(self);
303
304 let usize_ty = self.tcx.types.usize;
305 let actual = self.temp(usize_ty, test.span);
306
307 // actual = len(place)
308 self.cfg.push_assign(block, source_info, actual, Rvalue::Len(place));
309
310 // expected = <N>
311 let expected = self.push_usize(block, source_info, len);
312
313 let [true_bb, false_bb] = *target_blocks else {
314 bug!("`TestKind::Len` should have two target blocks");
315 };
316 // result = actual == expected OR result = actual < expected
317 // branch based on result
318 self.compare(
319 block,
320 true_bb,
321 false_bb,
322 source_info,
323 op,
324 Operand::Move(actual),
325 Operand::Move(expected),
326 );
327 }
328 }
329 }
330
331 /// Compare using the provided built-in comparison operator
332 fn compare(
333 &mut self,
334 block: BasicBlock,
335 success_block: BasicBlock,
336 fail_block: BasicBlock,
337 source_info: SourceInfo,
338 op: BinOp,
339 left: Operand<'tcx>,
340 right: Operand<'tcx>,
341 ) {
342 let bool_ty = self.tcx.types.bool;
343 let result = self.temp(bool_ty, source_info.span);
344
345 // result = op(left, right)
346 self.cfg.push_assign(
347 block,
348 source_info,
349 result,
350 Rvalue::BinaryOp(op, Box::new((left, right))),
351 );
352
353 // branch based on result
354 self.cfg.terminate(
355 block,
356 source_info,
357 TerminatorKind::if_(self.tcx, Operand::Move(result), success_block, fail_block),
358 );
359 }
360
361 /// Compare two `&T` values using `<T as std::compare::PartialEq>::eq`
362 fn non_scalar_compare(
363 &mut self,
364 block: BasicBlock,
365 make_target_blocks: impl FnOnce(&mut Self) -> Vec<BasicBlock>,
366 source_info: SourceInfo,
367 value: ConstantKind<'tcx>,
368 place: Place<'tcx>,
369 mut ty: Ty<'tcx>,
370 ) {
371 let mut expect = self.literal_operand(source_info.span, value);
372 let mut val = Operand::Copy(place);
373
374 // If we're using `b"..."` as a pattern, we need to insert an
375 // unsizing coercion, as the byte string has the type `&[u8; N]`.
376 //
377 // We want to do this even when the scrutinee is a reference to an
378 // array, so we can call `<[u8]>::eq` rather than having to find an
379 // `<[u8; N]>::eq`.
380 let unsize = |ty: Ty<'tcx>| match ty.kind() {
381 ty::Ref(region, rty, _) => match rty.kind() {
382 ty::Array(inner_ty, n) => Some((region, inner_ty, n)),
383 _ => None,
384 },
385 _ => None,
386 };
387 let opt_ref_ty = unsize(ty);
388 let opt_ref_test_ty = unsize(value.ty());
389 match (opt_ref_ty, opt_ref_test_ty) {
390 // nothing to do, neither is an array
391 (None, None) => {}
392 (Some((region, elem_ty, _)), _) | (None, Some((region, elem_ty, _))) => {
393 let tcx = self.tcx;
394 // make both a slice
395 ty = tcx.mk_imm_ref(*region, tcx.mk_slice(*elem_ty));
396 if opt_ref_ty.is_some() {
397 let temp = self.temp(ty, source_info.span);
398 self.cfg.push_assign(
399 block,
400 source_info,
401 temp,
402 Rvalue::Cast(CastKind::Pointer(PointerCast::Unsize), val, ty),
403 );
404 val = Operand::Move(temp);
405 }
406 if opt_ref_test_ty.is_some() {
407 let slice = self.temp(ty, source_info.span);
408 self.cfg.push_assign(
409 block,
410 source_info,
411 slice,
412 Rvalue::Cast(CastKind::Pointer(PointerCast::Unsize), expect, ty),
413 );
414 expect = Operand::Move(slice);
415 }
416 }
417 }
418
419 let ty::Ref(_, deref_ty, _) = *ty.kind() else {
420 bug!("non_scalar_compare called on non-reference type: {}", ty);
421 };
422
423 let eq_def_id = self.tcx.require_lang_item(LangItem::PartialEq, None);
424 let method = trait_method(self.tcx, eq_def_id, sym::eq, deref_ty, &[deref_ty.into()]);
425
426 let bool_ty = self.tcx.types.bool;
427 let eq_result = self.temp(bool_ty, source_info.span);
428 let eq_block = self.cfg.start_new_block();
429 self.cfg.terminate(
430 block,
431 source_info,
432 TerminatorKind::Call {
433 func: Operand::Constant(Box::new(Constant {
434 span: source_info.span,
435
436 // FIXME(#54571): This constant comes from user input (a
437 // constant in a pattern). Are there forms where users can add
438 // type annotations here? For example, an associated constant?
439 // Need to experiment.
440 user_ty: None,
441
442 literal: method,
443 })),
444 args: vec![val, expect],
445 destination: eq_result,
446 target: Some(eq_block),
447 cleanup: None,
448 from_hir_call: false,
449 fn_span: source_info.span,
450 },
451 );
452 self.diverge_from(block);
453
454 let [success_block, fail_block] = *make_target_blocks(self) else {
455 bug!("`TestKind::Eq` should have two target blocks")
456 };
457 // check the result
458 self.cfg.terminate(
459 eq_block,
460 source_info,
461 TerminatorKind::if_(self.tcx, Operand::Move(eq_result), success_block, fail_block),
462 );
463 }
464
465 /// Given that we are performing `test` against `test_place`, this job
466 /// sorts out what the status of `candidate` will be after the test. See
467 /// `test_candidates` for the usage of this function. The returned index is
468 /// the index that this candidate should be placed in the
469 /// `target_candidates` vec. The candidate may be modified to update its
470 /// `match_pairs`.
471 ///
472 /// So, for example, if this candidate is `x @ Some(P0)` and the `Test` is
473 /// a variant test, then we would modify the candidate to be `(x as
474 /// Option).0 @ P0` and return the index corresponding to the variant
475 /// `Some`.
476 ///
477 /// However, in some cases, the test may just not be relevant to candidate.
478 /// For example, suppose we are testing whether `foo.x == 22`, but in one
479 /// match arm we have `Foo { x: _, ... }`... in that case, the test for
480 /// what value `x` has has no particular relevance to this candidate. In
481 /// such cases, this function just returns None without doing anything.
482 /// This is used by the overall `match_candidates` algorithm to structure
483 /// the match as a whole. See `match_candidates` for more details.
484 ///
485 /// FIXME(#29623). In some cases, we have some tricky choices to make. for
486 /// example, if we are testing that `x == 22`, but the candidate is `x @
487 /// 13..55`, what should we do? In the event that the test is true, we know
488 /// that the candidate applies, but in the event of false, we don't know
489 /// that it *doesn't* apply. For now, we return false, indicate that the
490 /// test does not apply to this candidate, but it might be we can get
491 /// tighter match code if we do something a bit different.
492 pub(super) fn sort_candidate<'pat>(
493 &mut self,
494 test_place: &PlaceBuilder<'tcx>,
495 test: &Test<'tcx>,
496 candidate: &mut Candidate<'pat, 'tcx>,
497 ) -> Option<usize> {
498 // Find the match_pair for this place (if any). At present,
499 // afaik, there can be at most one. (In the future, if we
500 // adopted a more general `@` operator, there might be more
501 // than one, but it'd be very unusual to have two sides that
502 // both require tests; you'd expect one side to be simplified
503 // away.)
504 let (match_pair_index, match_pair) =
505 candidate.match_pairs.iter().enumerate().find(|&(_, mp)| mp.place == *test_place)?;
506
507 match (&test.kind, &match_pair.pattern.kind) {
508 // If we are performing a variant switch, then this
509 // informs variant patterns, but nothing else.
510 (
511 &TestKind::Switch { adt_def: tested_adt_def, .. },
512 &PatKind::Variant { adt_def, variant_index, ref subpatterns, .. },
513 ) => {
514 assert_eq!(adt_def, tested_adt_def);
515 self.candidate_after_variant_switch(
516 match_pair_index,
517 adt_def,
518 variant_index,
519 subpatterns,
520 candidate,
521 );
522 Some(variant_index.as_usize())
523 }
524
525 (&TestKind::Switch { .. }, _) => None,
526
527 // If we are performing a switch over integers, then this informs integer
528 // equality, but nothing else.
529 //
530 // FIXME(#29623) we could use PatKind::Range to rule
531 // things out here, in some cases.
532 (
533 &TestKind::SwitchInt { switch_ty: _, ref options },
534 &PatKind::Constant { ref value },
535 ) if is_switch_ty(match_pair.pattern.ty) => {
536 let index = options.get_index_of(value).unwrap();
537 self.candidate_without_match_pair(match_pair_index, candidate);
538 Some(index)
539 }
540
541 (&TestKind::SwitchInt { switch_ty: _, ref options }, &PatKind::Range(ref range)) => {
542 let not_contained =
543 self.values_not_contained_in_range(&*range, options).unwrap_or(false);
544
545 if not_contained {
546 // No switch values are contained in the pattern range,
547 // so the pattern can be matched only if this test fails.
548 let otherwise = options.len();
549 Some(otherwise)
550 } else {
551 None
552 }
553 }
554
555 (&TestKind::SwitchInt { .. }, _) => None,
556
557 (
558 &TestKind::Len { len: test_len, op: BinOp::Eq },
559 &PatKind::Slice { ref prefix, ref slice, ref suffix },
560 ) => {
561 let pat_len = (prefix.len() + suffix.len()) as u64;
562 match (test_len.cmp(&pat_len), slice) {
563 (Ordering::Equal, &None) => {
564 // on true, min_len = len = $actual_length,
565 // on false, len != $actual_length
566 self.candidate_after_slice_test(
567 match_pair_index,
568 candidate,
569 prefix,
570 slice,
571 suffix,
572 );
573 Some(0)
574 }
575 (Ordering::Less, _) => {
576 // test_len < pat_len. If $actual_len = test_len,
577 // then $actual_len < pat_len and we don't have
578 // enough elements.
579 Some(1)
580 }
581 (Ordering::Equal | Ordering::Greater, &Some(_)) => {
582 // This can match both if $actual_len = test_len >= pat_len,
583 // and if $actual_len > test_len. We can't advance.
584 None
585 }
586 (Ordering::Greater, &None) => {
587 // test_len != pat_len, so if $actual_len = test_len, then
588 // $actual_len != pat_len.
589 Some(1)
590 }
591 }
592 }
593
594 (
595 &TestKind::Len { len: test_len, op: BinOp::Ge },
596 &PatKind::Slice { ref prefix, ref slice, ref suffix },
597 ) => {
598 // the test is `$actual_len >= test_len`
599 let pat_len = (prefix.len() + suffix.len()) as u64;
600 match (test_len.cmp(&pat_len), slice) {
601 (Ordering::Equal, &Some(_)) => {
602 // $actual_len >= test_len = pat_len,
603 // so we can match.
604 self.candidate_after_slice_test(
605 match_pair_index,
606 candidate,
607 prefix,
608 slice,
609 suffix,
610 );
611 Some(0)
612 }
613 (Ordering::Less, _) | (Ordering::Equal, &None) => {
614 // test_len <= pat_len. If $actual_len < test_len,
615 // then it is also < pat_len, so the test passing is
616 // necessary (but insufficient).
617 Some(0)
618 }
619 (Ordering::Greater, &None) => {
620 // test_len > pat_len. If $actual_len >= test_len > pat_len,
621 // then we know we won't have a match.
622 Some(1)
623 }
624 (Ordering::Greater, &Some(_)) => {
625 // test_len < pat_len, and is therefore less
626 // strict. This can still go both ways.
627 None
628 }
629 }
630 }
631
632 (&TestKind::Range(ref test), &PatKind::Range(ref pat)) => {
633 use std::cmp::Ordering::*;
634
635 if test == pat {
636 self.candidate_without_match_pair(match_pair_index, candidate);
637 return Some(0);
638 }
639
640 // For performance, it's important to only do the second
641 // `compare_const_vals` if necessary.
642 let no_overlap = if matches!(
643 (compare_const_vals(self.tcx, test.hi, pat.lo, self.param_env)?, test.end),
644 (Less, _) | (Equal, RangeEnd::Excluded) // test < pat
645 ) || matches!(
646 (compare_const_vals(self.tcx, test.lo, pat.hi, self.param_env)?, pat.end),
647 (Greater, _) | (Equal, RangeEnd::Excluded) // test > pat
648 ) {
649 Some(1)
650 } else {
651 None
652 };
653
654 // If the testing range does not overlap with pattern range,
655 // the pattern can be matched only if this test fails.
656 no_overlap
657 }
658
659 (&TestKind::Range(ref range), &PatKind::Constant { value }) => {
660 if let Some(false) = self.const_range_contains(&*range, value) {
661 // `value` is not contained in the testing range,
662 // so `value` can be matched only if this test fails.
663 Some(1)
664 } else {
665 None
666 }
667 }
668
669 (&TestKind::Range { .. }, _) => None,
670
671 (&TestKind::Eq { .. } | &TestKind::Len { .. }, _) => {
672 // The call to `self.test(&match_pair)` below is not actually used to generate any
673 // MIR. Instead, we just want to compare with `test` (the parameter of the method)
674 // to see if it is the same.
675 //
676 // However, at this point we can still encounter or-patterns that were extracted
677 // from previous calls to `sort_candidate`, so we need to manually address that
678 // case to avoid panicking in `self.test()`.
679 if let PatKind::Or { .. } = &match_pair.pattern.kind {
680 return None;
681 }
682
683 // These are all binary tests.
684 //
685 // FIXME(#29623) we can be more clever here
686 let pattern_test = self.test(&match_pair);
687 if pattern_test.kind == test.kind {
688 self.candidate_without_match_pair(match_pair_index, candidate);
689 Some(0)
690 } else {
691 None
692 }
693 }
694 }
695 }
696
697 fn candidate_without_match_pair(
698 &mut self,
699 match_pair_index: usize,
700 candidate: &mut Candidate<'_, 'tcx>,
701 ) {
702 candidate.match_pairs.remove(match_pair_index);
703 }
704
705 fn candidate_after_slice_test<'pat>(
706 &mut self,
707 match_pair_index: usize,
708 candidate: &mut Candidate<'pat, 'tcx>,
709 prefix: &'pat [Box<Pat<'tcx>>],
710 opt_slice: &'pat Option<Box<Pat<'tcx>>>,
711 suffix: &'pat [Box<Pat<'tcx>>],
712 ) {
713 let removed_place = candidate.match_pairs.remove(match_pair_index).place;
714 self.prefix_slice_suffix(
715 &mut candidate.match_pairs,
716 &removed_place,
717 prefix,
718 opt_slice,
719 suffix,
720 );
721 }
722
723 fn candidate_after_variant_switch<'pat>(
724 &mut self,
725 match_pair_index: usize,
726 adt_def: ty::AdtDef<'tcx>,
727 variant_index: VariantIdx,
728 subpatterns: &'pat [FieldPat<'tcx>],
729 candidate: &mut Candidate<'pat, 'tcx>,
730 ) {
731 let match_pair = candidate.match_pairs.remove(match_pair_index);
732
733 // So, if we have a match-pattern like `x @ Enum::Variant(P1, P2)`,
734 // we want to create a set of derived match-patterns like
735 // `(x as Variant).0 @ P1` and `(x as Variant).1 @ P1`.
736 let elem =
737 ProjectionElem::Downcast(Some(adt_def.variant(variant_index).name), variant_index);
738 let downcast_place = match_pair.place.project(elem); // `(x as Variant)`
739 let consequent_match_pairs = subpatterns.iter().map(|subpattern| {
740 // e.g., `(x as Variant).0`
741 let place = downcast_place.clone().field(subpattern.field, subpattern.pattern.ty);
742 // e.g., `(x as Variant).0 @ P1`
743 MatchPair::new(place, &subpattern.pattern)
744 });
745
746 candidate.match_pairs.extend(consequent_match_pairs);
747 }
748
749 fn error_simplifyable<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> ! {
750 span_bug!(match_pair.pattern.span, "simplifyable pattern found: {:?}", match_pair.pattern)
751 }
752
753 fn const_range_contains(
754 &self,
755 range: &PatRange<'tcx>,
756 value: ConstantKind<'tcx>,
757 ) -> Option<bool> {
758 use std::cmp::Ordering::*;
759
760 // For performance, it's important to only do the second
761 // `compare_const_vals` if necessary.
762 Some(
763 matches!(compare_const_vals(self.tcx, range.lo, value, self.param_env)?, Less | Equal)
764 && matches!(
765 (compare_const_vals(self.tcx, value, range.hi, self.param_env)?, range.end),
766 (Less, _) | (Equal, RangeEnd::Included)
767 ),
768 )
769 }
770
771 fn values_not_contained_in_range(
772 &self,
773 range: &PatRange<'tcx>,
774 options: &FxIndexMap<ConstantKind<'tcx>, u128>,
775 ) -> Option<bool> {
776 for &val in options.keys() {
777 if self.const_range_contains(range, val)? {
778 return Some(false);
779 }
780 }
781
782 Some(true)
783 }
784 }
785
786 impl Test<'_> {
787 pub(super) fn targets(&self) -> usize {
788 match self.kind {
789 TestKind::Eq { .. } | TestKind::Range(_) | TestKind::Len { .. } => 2,
790 TestKind::Switch { adt_def, .. } => {
791 // While the switch that we generate doesn't test for all
792 // variants, we have a target for each variant and the
793 // otherwise case, and we make sure that all of the cases not
794 // specified have the same block.
795 adt_def.variants().len() + 1
796 }
797 TestKind::SwitchInt { switch_ty, ref options, .. } => {
798 if switch_ty.is_bool() {
799 // `bool` is special cased in `perform_test` to always
800 // branch to two blocks.
801 2
802 } else {
803 options.len() + 1
804 }
805 }
806 }
807 }
808 }
809
810 fn is_switch_ty(ty: Ty<'_>) -> bool {
811 ty.is_integral() || ty.is_char() || ty.is_bool()
812 }
813
814 fn trait_method<'tcx>(
815 tcx: TyCtxt<'tcx>,
816 trait_def_id: DefId,
817 method_name: Symbol,
818 self_ty: Ty<'tcx>,
819 params: &[GenericArg<'tcx>],
820 ) -> ConstantKind<'tcx> {
821 let substs = tcx.mk_substs_trait(self_ty, params);
822
823 // The unhygienic comparison here is acceptable because this is only
824 // used on known traits.
825 let item = tcx
826 .associated_items(trait_def_id)
827 .filter_by_name_unhygienic(method_name)
828 .find(|item| item.kind == ty::AssocKind::Fn)
829 .expect("trait method not found");
830
831 let method_ty = tcx.bound_type_of(item.def_id);
832 let method_ty = method_ty.subst(tcx, substs);
833
834 ConstantKind::zero_sized(method_ty)
835 }