]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_passes/src/liveness.rs
Merge branch 'mr/1.60.0-1' into 'debian/sid'
[rustc.git] / compiler / rustc_passes / src / liveness.rs
1 //! A classic liveness analysis based on dataflow over the AST. Computes,
2 //! for each local variable in a function, whether that variable is live
3 //! at a given point. Program execution points are identified by their
4 //! IDs.
5 //!
6 //! # Basic idea
7 //!
8 //! The basic model is that each local variable is assigned an index. We
9 //! represent sets of local variables using a vector indexed by this
10 //! index. The value in the vector is either 0, indicating the variable
11 //! is dead, or the ID of an expression that uses the variable.
12 //!
13 //! We conceptually walk over the AST in reverse execution order. If we
14 //! find a use of a variable, we add it to the set of live variables. If
15 //! we find an assignment to a variable, we remove it from the set of live
16 //! variables. When we have to merge two flows, we take the union of
17 //! those two flows -- if the variable is live on both paths, we simply
18 //! pick one ID. In the event of loops, we continue doing this until a
19 //! fixed point is reached.
20 //!
21 //! ## Checking initialization
22 //!
23 //! At the function entry point, all variables must be dead. If this is
24 //! not the case, we can report an error using the ID found in the set of
25 //! live variables, which identifies a use of the variable which is not
26 //! dominated by an assignment.
27 //!
28 //! ## Checking moves
29 //!
30 //! After each explicit move, the variable must be dead.
31 //!
32 //! ## Computing last uses
33 //!
34 //! Any use of the variable where the variable is dead afterwards is a
35 //! last use.
36 //!
37 //! # Implementation details
38 //!
39 //! The actual implementation contains two (nested) walks over the AST.
40 //! The outer walk has the job of building up the ir_maps instance for the
41 //! enclosing function. On the way down the tree, it identifies those AST
42 //! nodes and variable IDs that will be needed for the liveness analysis
43 //! and assigns them contiguous IDs. The liveness ID for an AST node is
44 //! called a `live_node` (it's a newtype'd `u32`) and the ID for a variable
45 //! is called a `variable` (another newtype'd `u32`).
46 //!
47 //! On the way back up the tree, as we are about to exit from a function
48 //! declaration we allocate a `liveness` instance. Now that we know
49 //! precisely how many nodes and variables we need, we can allocate all
50 //! the various arrays that we will need to precisely the right size. We then
51 //! perform the actual propagation on the `liveness` instance.
52 //!
53 //! This propagation is encoded in the various `propagate_through_*()`
54 //! methods. It effectively does a reverse walk of the AST; whenever we
55 //! reach a loop node, we iterate until a fixed point is reached.
56 //!
57 //! ## The `RWU` struct
58 //!
59 //! At each live node `N`, we track three pieces of information for each
60 //! variable `V` (these are encapsulated in the `RWU` struct):
61 //!
62 //! - `reader`: the `LiveNode` ID of some node which will read the value
63 //! that `V` holds on entry to `N`. Formally: a node `M` such
64 //! that there exists a path `P` from `N` to `M` where `P` does not
65 //! write `V`. If the `reader` is `None`, then the current
66 //! value will never be read (the variable is dead, essentially).
67 //!
68 //! - `writer`: the `LiveNode` ID of some node which will write the
69 //! variable `V` and which is reachable from `N`. Formally: a node `M`
70 //! such that there exists a path `P` from `N` to `M` and `M` writes
71 //! `V`. If the `writer` is `None`, then there is no writer
72 //! of `V` that follows `N`.
73 //!
74 //! - `used`: a boolean value indicating whether `V` is *used*. We
75 //! distinguish a *read* from a *use* in that a *use* is some read that
76 //! is not just used to generate a new value. For example, `x += 1` is
77 //! a read but not a use. This is used to generate better warnings.
78 //!
79 //! ## Special nodes and variables
80 //!
81 //! We generate various special nodes for various, well, special purposes.
82 //! These are described in the `Liveness` struct.
83
84 use self::LiveNodeKind::*;
85 use self::VarKind::*;
86
87 use rustc_ast::InlineAsmOptions;
88 use rustc_data_structures::fx::FxIndexMap;
89 use rustc_errors::Applicability;
90 use rustc_hir as hir;
91 use rustc_hir::def::*;
92 use rustc_hir::def_id::LocalDefId;
93 use rustc_hir::intravisit::{self, Visitor};
94 use rustc_hir::{Expr, HirId, HirIdMap, HirIdSet};
95 use rustc_index::vec::IndexVec;
96 use rustc_middle::hir::nested_filter;
97 use rustc_middle::ty::query::Providers;
98 use rustc_middle::ty::{self, DefIdTree, RootVariableMinCaptureList, Ty, TyCtxt};
99 use rustc_session::lint;
100 use rustc_span::symbol::{kw, sym, Symbol};
101 use rustc_span::Span;
102
103 use std::collections::VecDeque;
104 use std::io;
105 use std::io::prelude::*;
106 use std::rc::Rc;
107
108 mod rwu_table;
109
110 rustc_index::newtype_index! {
111 pub struct Variable {
112 DEBUG_FORMAT = "v({})",
113 }
114 }
115
116 rustc_index::newtype_index! {
117 pub struct LiveNode {
118 DEBUG_FORMAT = "ln({})",
119 }
120 }
121
122 #[derive(Copy, Clone, PartialEq, Debug)]
123 enum LiveNodeKind {
124 UpvarNode(Span),
125 ExprNode(Span, HirId),
126 VarDefNode(Span, HirId),
127 ClosureNode,
128 ExitNode,
129 }
130
131 fn live_node_kind_to_string(lnk: LiveNodeKind, tcx: TyCtxt<'_>) -> String {
132 let sm = tcx.sess.source_map();
133 match lnk {
134 UpvarNode(s) => format!("Upvar node [{}]", sm.span_to_diagnostic_string(s)),
135 ExprNode(s, _) => format!("Expr node [{}]", sm.span_to_diagnostic_string(s)),
136 VarDefNode(s, _) => format!("Var def node [{}]", sm.span_to_diagnostic_string(s)),
137 ClosureNode => "Closure node".to_owned(),
138 ExitNode => "Exit node".to_owned(),
139 }
140 }
141
142 fn check_mod_liveness(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
143 tcx.hir().visit_item_likes_in_module(module_def_id, &mut IrMaps::new(tcx).as_deep_visitor());
144 }
145
146 pub fn provide(providers: &mut Providers) {
147 *providers = Providers { check_mod_liveness, ..*providers };
148 }
149
150 // ______________________________________________________________________
151 // Creating ir_maps
152 //
153 // This is the first pass and the one that drives the main
154 // computation. It walks up and down the IR once. On the way down,
155 // we count for each function the number of variables as well as
156 // liveness nodes. A liveness node is basically an expression or
157 // capture clause that does something of interest: either it has
158 // interesting control flow or it uses/defines a local variable.
159 //
160 // On the way back up, at each function node we create liveness sets
161 // (we now know precisely how big to make our various vectors and so
162 // forth) and then do the data-flow propagation to compute the set
163 // of live variables at each program point.
164 //
165 // Finally, we run back over the IR one last time and, using the
166 // computed liveness, check various safety conditions. For example,
167 // there must be no live nodes at the definition site for a variable
168 // unless it has an initializer. Similarly, each non-mutable local
169 // variable must not be assigned if there is some successor
170 // assignment. And so forth.
171
172 struct CaptureInfo {
173 ln: LiveNode,
174 var_hid: HirId,
175 }
176
177 #[derive(Copy, Clone, Debug)]
178 struct LocalInfo {
179 id: HirId,
180 name: Symbol,
181 is_shorthand: bool,
182 }
183
184 #[derive(Copy, Clone, Debug)]
185 enum VarKind {
186 Param(HirId, Symbol),
187 Local(LocalInfo),
188 Upvar(HirId, Symbol),
189 }
190
191 struct IrMaps<'tcx> {
192 tcx: TyCtxt<'tcx>,
193 live_node_map: HirIdMap<LiveNode>,
194 variable_map: HirIdMap<Variable>,
195 capture_info_map: HirIdMap<Rc<Vec<CaptureInfo>>>,
196 var_kinds: IndexVec<Variable, VarKind>,
197 lnks: IndexVec<LiveNode, LiveNodeKind>,
198 }
199
200 impl<'tcx> IrMaps<'tcx> {
201 fn new(tcx: TyCtxt<'tcx>) -> IrMaps<'tcx> {
202 IrMaps {
203 tcx,
204 live_node_map: HirIdMap::default(),
205 variable_map: HirIdMap::default(),
206 capture_info_map: Default::default(),
207 var_kinds: IndexVec::new(),
208 lnks: IndexVec::new(),
209 }
210 }
211
212 fn add_live_node(&mut self, lnk: LiveNodeKind) -> LiveNode {
213 let ln = self.lnks.push(lnk);
214
215 debug!("{:?} is of kind {}", ln, live_node_kind_to_string(lnk, self.tcx));
216
217 ln
218 }
219
220 fn add_live_node_for_node(&mut self, hir_id: HirId, lnk: LiveNodeKind) {
221 let ln = self.add_live_node(lnk);
222 self.live_node_map.insert(hir_id, ln);
223
224 debug!("{:?} is node {:?}", ln, hir_id);
225 }
226
227 fn add_variable(&mut self, vk: VarKind) -> Variable {
228 let v = self.var_kinds.push(vk);
229
230 match vk {
231 Local(LocalInfo { id: node_id, .. }) | Param(node_id, _) | Upvar(node_id, _) => {
232 self.variable_map.insert(node_id, v);
233 }
234 }
235
236 debug!("{:?} is {:?}", v, vk);
237
238 v
239 }
240
241 fn variable(&self, hir_id: HirId, span: Span) -> Variable {
242 match self.variable_map.get(&hir_id) {
243 Some(&var) => var,
244 None => {
245 span_bug!(span, "no variable registered for id {:?}", hir_id);
246 }
247 }
248 }
249
250 fn variable_name(&self, var: Variable) -> Symbol {
251 match self.var_kinds[var] {
252 Local(LocalInfo { name, .. }) | Param(_, name) | Upvar(_, name) => name,
253 }
254 }
255
256 fn variable_is_shorthand(&self, var: Variable) -> bool {
257 match self.var_kinds[var] {
258 Local(LocalInfo { is_shorthand, .. }) => is_shorthand,
259 Param(..) | Upvar(..) => false,
260 }
261 }
262
263 fn set_captures(&mut self, hir_id: HirId, cs: Vec<CaptureInfo>) {
264 self.capture_info_map.insert(hir_id, Rc::new(cs));
265 }
266
267 fn collect_shorthand_field_ids(&self, pat: &hir::Pat<'tcx>) -> HirIdSet {
268 // For struct patterns, take note of which fields used shorthand
269 // (`x` rather than `x: x`).
270 let mut shorthand_field_ids = HirIdSet::default();
271 let mut pats = VecDeque::new();
272 pats.push_back(pat);
273
274 while let Some(pat) = pats.pop_front() {
275 use rustc_hir::PatKind::*;
276 match &pat.kind {
277 Binding(.., inner_pat) => {
278 pats.extend(inner_pat.iter());
279 }
280 Struct(_, fields, _) => {
281 let (short, not_short): (Vec<&_>, Vec<&_>) =
282 fields.iter().partition(|f| f.is_shorthand);
283 shorthand_field_ids.extend(short.iter().map(|f| f.pat.hir_id));
284 pats.extend(not_short.iter().map(|f| f.pat));
285 }
286 Ref(inner_pat, _) | Box(inner_pat) => {
287 pats.push_back(inner_pat);
288 }
289 TupleStruct(_, inner_pats, _) | Tuple(inner_pats, _) | Or(inner_pats) => {
290 pats.extend(inner_pats.iter());
291 }
292 Slice(pre_pats, inner_pat, post_pats) => {
293 pats.extend(pre_pats.iter());
294 pats.extend(inner_pat.iter());
295 pats.extend(post_pats.iter());
296 }
297 _ => {}
298 }
299 }
300
301 return shorthand_field_ids;
302 }
303
304 fn add_from_pat(&mut self, pat: &hir::Pat<'tcx>) {
305 let shorthand_field_ids = self.collect_shorthand_field_ids(pat);
306
307 pat.each_binding(|_, hir_id, _, ident| {
308 self.add_live_node_for_node(hir_id, VarDefNode(ident.span, hir_id));
309 self.add_variable(Local(LocalInfo {
310 id: hir_id,
311 name: ident.name,
312 is_shorthand: shorthand_field_ids.contains(&hir_id),
313 }));
314 });
315 }
316 }
317
318 impl<'tcx> Visitor<'tcx> for IrMaps<'tcx> {
319 type NestedFilter = nested_filter::OnlyBodies;
320
321 fn nested_visit_map(&mut self) -> Self::Map {
322 self.tcx.hir()
323 }
324
325 fn visit_body(&mut self, body: &'tcx hir::Body<'tcx>) {
326 debug!("visit_body {:?}", body.id());
327
328 // swap in a new set of IR maps for this body
329 let mut maps = IrMaps::new(self.tcx);
330 let hir_id = maps.tcx.hir().body_owner(body.id());
331 let local_def_id = maps.tcx.hir().local_def_id(hir_id);
332 let def_id = local_def_id.to_def_id();
333
334 // Don't run unused pass for #[derive()]
335 if let Some(parent) = self.tcx.parent(def_id) {
336 if let DefKind::Impl = self.tcx.def_kind(parent.expect_local()) {
337 if self.tcx.has_attr(parent, sym::automatically_derived) {
338 return;
339 }
340 }
341 }
342
343 // Don't run unused pass for #[naked]
344 if self.tcx.has_attr(def_id, sym::naked) {
345 return;
346 }
347
348 if let Some(upvars) = maps.tcx.upvars_mentioned(def_id) {
349 for &var_hir_id in upvars.keys() {
350 let var_name = maps.tcx.hir().name(var_hir_id);
351 maps.add_variable(Upvar(var_hir_id, var_name));
352 }
353 }
354
355 // gather up the various local variables, significant expressions,
356 // and so forth:
357 intravisit::walk_body(&mut maps, body);
358
359 // compute liveness
360 let mut lsets = Liveness::new(&mut maps, local_def_id);
361 let entry_ln = lsets.compute(&body, hir_id);
362 lsets.log_liveness(entry_ln, body.id().hir_id);
363
364 // check for various error conditions
365 lsets.visit_body(body);
366 lsets.warn_about_unused_upvars(entry_ln);
367 lsets.warn_about_unused_args(body, entry_ln);
368 }
369
370 fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
371 self.add_from_pat(&local.pat);
372 intravisit::walk_local(self, local);
373 }
374
375 fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) {
376 self.add_from_pat(&arm.pat);
377 if let Some(hir::Guard::IfLet(ref pat, _)) = arm.guard {
378 self.add_from_pat(pat);
379 }
380 intravisit::walk_arm(self, arm);
381 }
382
383 fn visit_param(&mut self, param: &'tcx hir::Param<'tcx>) {
384 let shorthand_field_ids = self.collect_shorthand_field_ids(param.pat);
385 param.pat.each_binding(|_bm, hir_id, _x, ident| {
386 let var = match param.pat.kind {
387 rustc_hir::PatKind::Struct(..) => Local(LocalInfo {
388 id: hir_id,
389 name: ident.name,
390 is_shorthand: shorthand_field_ids.contains(&hir_id),
391 }),
392 _ => Param(hir_id, ident.name),
393 };
394 self.add_variable(var);
395 });
396 intravisit::walk_param(self, param);
397 }
398
399 fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
400 match expr.kind {
401 // live nodes required for uses or definitions of variables:
402 hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
403 debug!("expr {}: path that leads to {:?}", expr.hir_id, path.res);
404 if let Res::Local(_var_hir_id) = path.res {
405 self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
406 }
407 intravisit::walk_expr(self, expr);
408 }
409 hir::ExprKind::Closure(..) => {
410 // Interesting control flow (for loops can contain labeled
411 // breaks or continues)
412 self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
413
414 // Make a live_node for each mentioned variable, with the span
415 // being the location that the variable is used. This results
416 // in better error messages than just pointing at the closure
417 // construction site.
418 let mut call_caps = Vec::new();
419 let closure_def_id = self.tcx.hir().local_def_id(expr.hir_id);
420 if let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) {
421 call_caps.extend(upvars.keys().map(|var_id| {
422 let upvar = upvars[var_id];
423 let upvar_ln = self.add_live_node(UpvarNode(upvar.span));
424 CaptureInfo { ln: upvar_ln, var_hid: *var_id }
425 }));
426 }
427 self.set_captures(expr.hir_id, call_caps);
428 intravisit::walk_expr(self, expr);
429 }
430
431 hir::ExprKind::Let(let_expr) => {
432 self.add_from_pat(let_expr.pat);
433 intravisit::walk_expr(self, expr);
434 }
435
436 // live nodes required for interesting control flow:
437 hir::ExprKind::If(..)
438 | hir::ExprKind::Match(..)
439 | hir::ExprKind::Loop(..)
440 | hir::ExprKind::Yield(..) => {
441 self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
442 intravisit::walk_expr(self, expr);
443 }
444 hir::ExprKind::Binary(op, ..) if op.node.is_lazy() => {
445 self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
446 intravisit::walk_expr(self, expr);
447 }
448
449 // otherwise, live nodes are not required:
450 hir::ExprKind::Index(..)
451 | hir::ExprKind::Field(..)
452 | hir::ExprKind::Array(..)
453 | hir::ExprKind::Call(..)
454 | hir::ExprKind::MethodCall(..)
455 | hir::ExprKind::Tup(..)
456 | hir::ExprKind::Binary(..)
457 | hir::ExprKind::AddrOf(..)
458 | hir::ExprKind::Cast(..)
459 | hir::ExprKind::DropTemps(..)
460 | hir::ExprKind::Unary(..)
461 | hir::ExprKind::Break(..)
462 | hir::ExprKind::Continue(_)
463 | hir::ExprKind::Lit(_)
464 | hir::ExprKind::ConstBlock(..)
465 | hir::ExprKind::Ret(..)
466 | hir::ExprKind::Block(..)
467 | hir::ExprKind::Assign(..)
468 | hir::ExprKind::AssignOp(..)
469 | hir::ExprKind::Struct(..)
470 | hir::ExprKind::Repeat(..)
471 | hir::ExprKind::InlineAsm(..)
472 | hir::ExprKind::Box(..)
473 | hir::ExprKind::Type(..)
474 | hir::ExprKind::Err
475 | hir::ExprKind::Path(hir::QPath::TypeRelative(..))
476 | hir::ExprKind::Path(hir::QPath::LangItem(..)) => {
477 intravisit::walk_expr(self, expr);
478 }
479 }
480 }
481 }
482
483 // ______________________________________________________________________
484 // Computing liveness sets
485 //
486 // Actually we compute just a bit more than just liveness, but we use
487 // the same basic propagation framework in all cases.
488
489 const ACC_READ: u32 = 1;
490 const ACC_WRITE: u32 = 2;
491 const ACC_USE: u32 = 4;
492
493 struct Liveness<'a, 'tcx> {
494 ir: &'a mut IrMaps<'tcx>,
495 typeck_results: &'a ty::TypeckResults<'tcx>,
496 param_env: ty::ParamEnv<'tcx>,
497 closure_min_captures: Option<&'tcx RootVariableMinCaptureList<'tcx>>,
498 successors: IndexVec<LiveNode, Option<LiveNode>>,
499 rwu_table: rwu_table::RWUTable,
500
501 /// A live node representing a point of execution before closure entry &
502 /// after closure exit. Used to calculate liveness of captured variables
503 /// through calls to the same closure. Used for Fn & FnMut closures only.
504 closure_ln: LiveNode,
505 /// A live node representing every 'exit' from the function, whether it be
506 /// by explicit return, panic, or other means.
507 exit_ln: LiveNode,
508
509 // mappings from loop node ID to LiveNode
510 // ("break" label should map to loop node ID,
511 // it probably doesn't now)
512 break_ln: HirIdMap<LiveNode>,
513 cont_ln: HirIdMap<LiveNode>,
514 }
515
516 impl<'a, 'tcx> Liveness<'a, 'tcx> {
517 fn new(ir: &'a mut IrMaps<'tcx>, body_owner: LocalDefId) -> Liveness<'a, 'tcx> {
518 let typeck_results = ir.tcx.typeck(body_owner);
519 let param_env = ir.tcx.param_env(body_owner);
520 let closure_min_captures = typeck_results.closure_min_captures.get(&body_owner.to_def_id());
521 let closure_ln = ir.add_live_node(ClosureNode);
522 let exit_ln = ir.add_live_node(ExitNode);
523
524 let num_live_nodes = ir.lnks.len();
525 let num_vars = ir.var_kinds.len();
526
527 Liveness {
528 ir,
529 typeck_results,
530 param_env,
531 closure_min_captures,
532 successors: IndexVec::from_elem_n(None, num_live_nodes),
533 rwu_table: rwu_table::RWUTable::new(num_live_nodes, num_vars),
534 closure_ln,
535 exit_ln,
536 break_ln: Default::default(),
537 cont_ln: Default::default(),
538 }
539 }
540
541 fn live_node(&self, hir_id: HirId, span: Span) -> LiveNode {
542 match self.ir.live_node_map.get(&hir_id) {
543 Some(&ln) => ln,
544 None => {
545 // This must be a mismatch between the ir_map construction
546 // above and the propagation code below; the two sets of
547 // code have to agree about which AST nodes are worth
548 // creating liveness nodes for.
549 span_bug!(span, "no live node registered for node {:?}", hir_id);
550 }
551 }
552 }
553
554 fn variable(&self, hir_id: HirId, span: Span) -> Variable {
555 self.ir.variable(hir_id, span)
556 }
557
558 fn define_bindings_in_pat(&mut self, pat: &hir::Pat<'_>, mut succ: LiveNode) -> LiveNode {
559 // In an or-pattern, only consider the first pattern; any later patterns
560 // must have the same bindings, and we also consider the first pattern
561 // to be the "authoritative" set of ids.
562 pat.each_binding_or_first(&mut |_, hir_id, pat_sp, ident| {
563 let ln = self.live_node(hir_id, pat_sp);
564 let var = self.variable(hir_id, ident.span);
565 self.init_from_succ(ln, succ);
566 self.define(ln, var);
567 succ = ln;
568 });
569 succ
570 }
571
572 fn live_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
573 self.rwu_table.get_reader(ln, var)
574 }
575
576 // Is this variable live on entry to any of its successor nodes?
577 fn live_on_exit(&self, ln: LiveNode, var: Variable) -> bool {
578 let successor = self.successors[ln].unwrap();
579 self.live_on_entry(successor, var)
580 }
581
582 fn used_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
583 self.rwu_table.get_used(ln, var)
584 }
585
586 fn assigned_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
587 self.rwu_table.get_writer(ln, var)
588 }
589
590 fn assigned_on_exit(&self, ln: LiveNode, var: Variable) -> bool {
591 let successor = self.successors[ln].unwrap();
592 self.assigned_on_entry(successor, var)
593 }
594
595 fn write_vars<F>(&self, wr: &mut dyn Write, mut test: F) -> io::Result<()>
596 where
597 F: FnMut(Variable) -> bool,
598 {
599 for var_idx in 0..self.ir.var_kinds.len() {
600 let var = Variable::from(var_idx);
601 if test(var) {
602 write!(wr, " {:?}", var)?;
603 }
604 }
605 Ok(())
606 }
607
608 #[allow(unused_must_use)]
609 fn ln_str(&self, ln: LiveNode) -> String {
610 let mut wr = Vec::new();
611 {
612 let wr = &mut wr as &mut dyn Write;
613 write!(wr, "[{:?} of kind {:?} reads", ln, self.ir.lnks[ln]);
614 self.write_vars(wr, |var| self.rwu_table.get_reader(ln, var));
615 write!(wr, " writes");
616 self.write_vars(wr, |var| self.rwu_table.get_writer(ln, var));
617 write!(wr, " uses");
618 self.write_vars(wr, |var| self.rwu_table.get_used(ln, var));
619
620 write!(wr, " precedes {:?}]", self.successors[ln]);
621 }
622 String::from_utf8(wr).unwrap()
623 }
624
625 fn log_liveness(&self, entry_ln: LiveNode, hir_id: hir::HirId) {
626 // hack to skip the loop unless debug! is enabled:
627 debug!(
628 "^^ liveness computation results for body {} (entry={:?})",
629 {
630 for ln_idx in 0..self.ir.lnks.len() {
631 debug!("{:?}", self.ln_str(LiveNode::from(ln_idx)));
632 }
633 hir_id
634 },
635 entry_ln
636 );
637 }
638
639 fn init_empty(&mut self, ln: LiveNode, succ_ln: LiveNode) {
640 self.successors[ln] = Some(succ_ln);
641
642 // It is not necessary to initialize the RWUs here because they are all
643 // empty when created, and the sets only grow during iterations.
644 }
645
646 fn init_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) {
647 // more efficient version of init_empty() / merge_from_succ()
648 self.successors[ln] = Some(succ_ln);
649 self.rwu_table.copy(ln, succ_ln);
650 debug!("init_from_succ(ln={}, succ={})", self.ln_str(ln), self.ln_str(succ_ln));
651 }
652
653 fn merge_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) -> bool {
654 if ln == succ_ln {
655 return false;
656 }
657
658 let changed = self.rwu_table.union(ln, succ_ln);
659 debug!("merge_from_succ(ln={:?}, succ={}, changed={})", ln, self.ln_str(succ_ln), changed);
660 changed
661 }
662
663 // Indicates that a local variable was *defined*; we know that no
664 // uses of the variable can precede the definition (resolve checks
665 // this) so we just clear out all the data.
666 fn define(&mut self, writer: LiveNode, var: Variable) {
667 let used = self.rwu_table.get_used(writer, var);
668 self.rwu_table.set(writer, var, rwu_table::RWU { reader: false, writer: false, used });
669 debug!("{:?} defines {:?}: {}", writer, var, self.ln_str(writer));
670 }
671
672 // Either read, write, or both depending on the acc bitset
673 fn acc(&mut self, ln: LiveNode, var: Variable, acc: u32) {
674 debug!("{:?} accesses[{:x}] {:?}: {}", ln, acc, var, self.ln_str(ln));
675
676 let mut rwu = self.rwu_table.get(ln, var);
677
678 if (acc & ACC_WRITE) != 0 {
679 rwu.reader = false;
680 rwu.writer = true;
681 }
682
683 // Important: if we both read/write, must do read second
684 // or else the write will override.
685 if (acc & ACC_READ) != 0 {
686 rwu.reader = true;
687 }
688
689 if (acc & ACC_USE) != 0 {
690 rwu.used = true;
691 }
692
693 self.rwu_table.set(ln, var, rwu);
694 }
695
696 fn compute(&mut self, body: &hir::Body<'_>, hir_id: HirId) -> LiveNode {
697 debug!("compute: for body {:?}", body.id().hir_id);
698
699 // # Liveness of captured variables
700 //
701 // When computing the liveness for captured variables we take into
702 // account how variable is captured (ByRef vs ByValue) and what is the
703 // closure kind (Generator / FnOnce vs Fn / FnMut).
704 //
705 // Variables captured by reference are assumed to be used on the exit
706 // from the closure.
707 //
708 // In FnOnce closures, variables captured by value are known to be dead
709 // on exit since it is impossible to call the closure again.
710 //
711 // In Fn / FnMut closures, variables captured by value are live on exit
712 // if they are live on the entry to the closure, since only the closure
713 // itself can access them on subsequent calls.
714
715 if let Some(closure_min_captures) = self.closure_min_captures {
716 // Mark upvars captured by reference as used after closure exits.
717 for (&var_hir_id, min_capture_list) in closure_min_captures {
718 for captured_place in min_capture_list {
719 match captured_place.info.capture_kind {
720 ty::UpvarCapture::ByRef(_) => {
721 let var = self.variable(
722 var_hir_id,
723 captured_place.get_capture_kind_span(self.ir.tcx),
724 );
725 self.acc(self.exit_ln, var, ACC_READ | ACC_USE);
726 }
727 ty::UpvarCapture::ByValue => {}
728 }
729 }
730 }
731 }
732
733 let succ = self.propagate_through_expr(&body.value, self.exit_ln);
734
735 if self.closure_min_captures.is_none() {
736 // Either not a closure, or closure without any captured variables.
737 // No need to determine liveness of captured variables, since there
738 // are none.
739 return succ;
740 }
741
742 let ty = self.typeck_results.node_type(hir_id);
743 match ty.kind() {
744 ty::Closure(_def_id, substs) => match substs.as_closure().kind() {
745 ty::ClosureKind::Fn => {}
746 ty::ClosureKind::FnMut => {}
747 ty::ClosureKind::FnOnce => return succ,
748 },
749 ty::Generator(..) => return succ,
750 _ => {
751 span_bug!(
752 body.value.span,
753 "{} has upvars so it should have a closure type: {:?}",
754 hir_id,
755 ty
756 );
757 }
758 };
759
760 // Propagate through calls to the closure.
761 loop {
762 self.init_from_succ(self.closure_ln, succ);
763 for param in body.params {
764 param.pat.each_binding(|_bm, hir_id, _x, ident| {
765 let var = self.variable(hir_id, ident.span);
766 self.define(self.closure_ln, var);
767 })
768 }
769
770 if !self.merge_from_succ(self.exit_ln, self.closure_ln) {
771 break;
772 }
773 assert_eq!(succ, self.propagate_through_expr(&body.value, self.exit_ln));
774 }
775
776 succ
777 }
778
779 fn propagate_through_block(&mut self, blk: &hir::Block<'_>, succ: LiveNode) -> LiveNode {
780 if blk.targeted_by_break {
781 self.break_ln.insert(blk.hir_id, succ);
782 }
783 let succ = self.propagate_through_opt_expr(blk.expr, succ);
784 blk.stmts.iter().rev().fold(succ, |succ, stmt| self.propagate_through_stmt(stmt, succ))
785 }
786
787 fn propagate_through_stmt(&mut self, stmt: &hir::Stmt<'_>, succ: LiveNode) -> LiveNode {
788 match stmt.kind {
789 hir::StmtKind::Local(ref local) => {
790 // Note: we mark the variable as defined regardless of whether
791 // there is an initializer. Initially I had thought to only mark
792 // the live variable as defined if it was initialized, and then we
793 // could check for uninit variables just by scanning what is live
794 // at the start of the function. But that doesn't work so well for
795 // immutable variables defined in a loop:
796 // loop { let x; x = 5; }
797 // because the "assignment" loops back around and generates an error.
798 //
799 // So now we just check that variables defined w/o an
800 // initializer are not live at the point of their
801 // initialization, which is mildly more complex than checking
802 // once at the func header but otherwise equivalent.
803
804 let succ = self.propagate_through_opt_expr(local.init, succ);
805 self.define_bindings_in_pat(&local.pat, succ)
806 }
807 hir::StmtKind::Item(..) => succ,
808 hir::StmtKind::Expr(ref expr) | hir::StmtKind::Semi(ref expr) => {
809 self.propagate_through_expr(&expr, succ)
810 }
811 }
812 }
813
814 fn propagate_through_exprs(&mut self, exprs: &[Expr<'_>], succ: LiveNode) -> LiveNode {
815 exprs.iter().rev().fold(succ, |succ, expr| self.propagate_through_expr(&expr, succ))
816 }
817
818 fn propagate_through_opt_expr(
819 &mut self,
820 opt_expr: Option<&Expr<'_>>,
821 succ: LiveNode,
822 ) -> LiveNode {
823 opt_expr.map_or(succ, |expr| self.propagate_through_expr(expr, succ))
824 }
825
826 fn propagate_through_expr(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
827 debug!("propagate_through_expr: {:?}", expr);
828
829 match expr.kind {
830 // Interesting cases with control flow or which gen/kill
831 hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
832 self.access_path(expr.hir_id, path, succ, ACC_READ | ACC_USE)
833 }
834
835 hir::ExprKind::Field(ref e, _) => self.propagate_through_expr(&e, succ),
836
837 hir::ExprKind::Closure(..) => {
838 debug!("{:?} is an ExprKind::Closure", expr);
839
840 // the construction of a closure itself is not important,
841 // but we have to consider the closed over variables.
842 let caps = self
843 .ir
844 .capture_info_map
845 .get(&expr.hir_id)
846 .cloned()
847 .unwrap_or_else(|| span_bug!(expr.span, "no registered caps"));
848
849 caps.iter().rev().fold(succ, |succ, cap| {
850 self.init_from_succ(cap.ln, succ);
851 let var = self.variable(cap.var_hid, expr.span);
852 self.acc(cap.ln, var, ACC_READ | ACC_USE);
853 cap.ln
854 })
855 }
856
857 hir::ExprKind::Let(let_expr) => {
858 let succ = self.propagate_through_expr(let_expr.init, succ);
859 self.define_bindings_in_pat(let_expr.pat, succ)
860 }
861
862 // Note that labels have been resolved, so we don't need to look
863 // at the label ident
864 hir::ExprKind::Loop(ref blk, ..) => self.propagate_through_loop(expr, &blk, succ),
865
866 hir::ExprKind::Yield(ref e, ..) => {
867 let yield_ln = self.live_node(expr.hir_id, expr.span);
868 self.init_from_succ(yield_ln, succ);
869 self.merge_from_succ(yield_ln, self.exit_ln);
870 self.propagate_through_expr(e, yield_ln)
871 }
872
873 hir::ExprKind::If(ref cond, ref then, ref else_opt) => {
874 //
875 // (cond)
876 // |
877 // v
878 // (expr)
879 // / \
880 // | |
881 // v v
882 // (then)(els)
883 // | |
884 // v v
885 // ( succ )
886 //
887 let else_ln =
888 self.propagate_through_opt_expr(else_opt.as_ref().map(|e| &**e), succ);
889 let then_ln = self.propagate_through_expr(&then, succ);
890 let ln = self.live_node(expr.hir_id, expr.span);
891 self.init_from_succ(ln, else_ln);
892 self.merge_from_succ(ln, then_ln);
893 self.propagate_through_expr(&cond, ln)
894 }
895
896 hir::ExprKind::Match(ref e, arms, _) => {
897 //
898 // (e)
899 // |
900 // v
901 // (expr)
902 // / | \
903 // | | |
904 // v v v
905 // (..arms..)
906 // | | |
907 // v v v
908 // ( succ )
909 //
910 //
911 let ln = self.live_node(expr.hir_id, expr.span);
912 self.init_empty(ln, succ);
913 for arm in arms {
914 let body_succ = self.propagate_through_expr(&arm.body, succ);
915
916 let guard_succ = arm.guard.as_ref().map_or(body_succ, |g| match g {
917 hir::Guard::If(e) => self.propagate_through_expr(e, body_succ),
918 hir::Guard::IfLet(pat, e) => {
919 let let_bind = self.define_bindings_in_pat(pat, body_succ);
920 self.propagate_through_expr(e, let_bind)
921 }
922 });
923 let arm_succ = self.define_bindings_in_pat(&arm.pat, guard_succ);
924 self.merge_from_succ(ln, arm_succ);
925 }
926 self.propagate_through_expr(&e, ln)
927 }
928
929 hir::ExprKind::Ret(ref o_e) => {
930 // Ignore succ and subst exit_ln.
931 self.propagate_through_opt_expr(o_e.as_ref().map(|e| &**e), self.exit_ln)
932 }
933
934 hir::ExprKind::Break(label, ref opt_expr) => {
935 // Find which label this break jumps to
936 let target = match label.target_id {
937 Ok(hir_id) => self.break_ln.get(&hir_id),
938 Err(err) => span_bug!(expr.span, "loop scope error: {}", err),
939 }
940 .cloned();
941
942 // Now that we know the label we're going to,
943 // look it up in the break loop nodes table
944
945 match target {
946 Some(b) => self.propagate_through_opt_expr(opt_expr.as_ref().map(|e| &**e), b),
947 None => span_bug!(expr.span, "`break` to unknown label"),
948 }
949 }
950
951 hir::ExprKind::Continue(label) => {
952 // Find which label this expr continues to
953 let sc = label
954 .target_id
955 .unwrap_or_else(|err| span_bug!(expr.span, "loop scope error: {}", err));
956
957 // Now that we know the label we're going to,
958 // look it up in the continue loop nodes table
959 self.cont_ln
960 .get(&sc)
961 .cloned()
962 .unwrap_or_else(|| span_bug!(expr.span, "continue to unknown label"))
963 }
964
965 hir::ExprKind::Assign(ref l, ref r, _) => {
966 // see comment on places in
967 // propagate_through_place_components()
968 let succ = self.write_place(&l, succ, ACC_WRITE);
969 let succ = self.propagate_through_place_components(&l, succ);
970 self.propagate_through_expr(&r, succ)
971 }
972
973 hir::ExprKind::AssignOp(_, ref l, ref r) => {
974 // an overloaded assign op is like a method call
975 if self.typeck_results.is_method_call(expr) {
976 let succ = self.propagate_through_expr(&l, succ);
977 self.propagate_through_expr(&r, succ)
978 } else {
979 // see comment on places in
980 // propagate_through_place_components()
981 let succ = self.write_place(&l, succ, ACC_WRITE | ACC_READ);
982 let succ = self.propagate_through_expr(&r, succ);
983 self.propagate_through_place_components(&l, succ)
984 }
985 }
986
987 // Uninteresting cases: just propagate in rev exec order
988 hir::ExprKind::Array(ref exprs) => self.propagate_through_exprs(exprs, succ),
989
990 hir::ExprKind::Struct(_, ref fields, ref with_expr) => {
991 let succ = self.propagate_through_opt_expr(with_expr.as_ref().map(|e| &**e), succ);
992 fields
993 .iter()
994 .rev()
995 .fold(succ, |succ, field| self.propagate_through_expr(&field.expr, succ))
996 }
997
998 hir::ExprKind::Call(ref f, ref args) => {
999 let succ = self.check_is_ty_uninhabited(expr, succ);
1000 let succ = self.propagate_through_exprs(args, succ);
1001 self.propagate_through_expr(&f, succ)
1002 }
1003
1004 hir::ExprKind::MethodCall(.., ref args, _) => {
1005 let succ = self.check_is_ty_uninhabited(expr, succ);
1006 self.propagate_through_exprs(args, succ)
1007 }
1008
1009 hir::ExprKind::Tup(ref exprs) => self.propagate_through_exprs(exprs, succ),
1010
1011 hir::ExprKind::Binary(op, ref l, ref r) if op.node.is_lazy() => {
1012 let r_succ = self.propagate_through_expr(&r, succ);
1013
1014 let ln = self.live_node(expr.hir_id, expr.span);
1015 self.init_from_succ(ln, succ);
1016 self.merge_from_succ(ln, r_succ);
1017
1018 self.propagate_through_expr(&l, ln)
1019 }
1020
1021 hir::ExprKind::Index(ref l, ref r) | hir::ExprKind::Binary(_, ref l, ref r) => {
1022 let r_succ = self.propagate_through_expr(&r, succ);
1023 self.propagate_through_expr(&l, r_succ)
1024 }
1025
1026 hir::ExprKind::Box(ref e)
1027 | hir::ExprKind::AddrOf(_, _, ref e)
1028 | hir::ExprKind::Cast(ref e, _)
1029 | hir::ExprKind::Type(ref e, _)
1030 | hir::ExprKind::DropTemps(ref e)
1031 | hir::ExprKind::Unary(_, ref e)
1032 | hir::ExprKind::Repeat(ref e, _) => self.propagate_through_expr(&e, succ),
1033
1034 hir::ExprKind::InlineAsm(ref asm) => {
1035 // Handle non-returning asm
1036 let mut succ = if asm.options.contains(InlineAsmOptions::NORETURN) {
1037 self.exit_ln
1038 } else {
1039 succ
1040 };
1041
1042 // Do a first pass for writing outputs only
1043 for (op, _op_sp) in asm.operands.iter().rev() {
1044 match op {
1045 hir::InlineAsmOperand::In { .. }
1046 | hir::InlineAsmOperand::Const { .. }
1047 | hir::InlineAsmOperand::Sym { .. } => {}
1048 hir::InlineAsmOperand::Out { expr, .. } => {
1049 if let Some(expr) = expr {
1050 succ = self.write_place(expr, succ, ACC_WRITE);
1051 }
1052 }
1053 hir::InlineAsmOperand::InOut { expr, .. } => {
1054 succ = self.write_place(expr, succ, ACC_READ | ACC_WRITE | ACC_USE);
1055 }
1056 hir::InlineAsmOperand::SplitInOut { out_expr, .. } => {
1057 if let Some(expr) = out_expr {
1058 succ = self.write_place(expr, succ, ACC_WRITE);
1059 }
1060 }
1061 }
1062 }
1063
1064 // Then do a second pass for inputs
1065 let mut succ = succ;
1066 for (op, _op_sp) in asm.operands.iter().rev() {
1067 match op {
1068 hir::InlineAsmOperand::In { expr, .. }
1069 | hir::InlineAsmOperand::Sym { expr, .. } => {
1070 succ = self.propagate_through_expr(expr, succ)
1071 }
1072 hir::InlineAsmOperand::Out { expr, .. } => {
1073 if let Some(expr) = expr {
1074 succ = self.propagate_through_place_components(expr, succ);
1075 }
1076 }
1077 hir::InlineAsmOperand::InOut { expr, .. } => {
1078 succ = self.propagate_through_place_components(expr, succ);
1079 }
1080 hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
1081 if let Some(expr) = out_expr {
1082 succ = self.propagate_through_place_components(expr, succ);
1083 }
1084 succ = self.propagate_through_expr(in_expr, succ);
1085 }
1086 hir::InlineAsmOperand::Const { .. } => {}
1087 }
1088 }
1089 succ
1090 }
1091
1092 hir::ExprKind::Lit(..)
1093 | hir::ExprKind::ConstBlock(..)
1094 | hir::ExprKind::Err
1095 | hir::ExprKind::Path(hir::QPath::TypeRelative(..))
1096 | hir::ExprKind::Path(hir::QPath::LangItem(..)) => succ,
1097
1098 // Note that labels have been resolved, so we don't need to look
1099 // at the label ident
1100 hir::ExprKind::Block(ref blk, _) => self.propagate_through_block(&blk, succ),
1101 }
1102 }
1103
1104 fn propagate_through_place_components(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
1105 // # Places
1106 //
1107 // In general, the full flow graph structure for an
1108 // assignment/move/etc can be handled in one of two ways,
1109 // depending on whether what is being assigned is a "tracked
1110 // value" or not. A tracked value is basically a local
1111 // variable or argument.
1112 //
1113 // The two kinds of graphs are:
1114 //
1115 // Tracked place Untracked place
1116 // ----------------------++-----------------------
1117 // ||
1118 // | || |
1119 // v || v
1120 // (rvalue) || (rvalue)
1121 // | || |
1122 // v || v
1123 // (write of place) || (place components)
1124 // | || |
1125 // v || v
1126 // (succ) || (succ)
1127 // ||
1128 // ----------------------++-----------------------
1129 //
1130 // I will cover the two cases in turn:
1131 //
1132 // # Tracked places
1133 //
1134 // A tracked place is a local variable/argument `x`. In
1135 // these cases, the link_node where the write occurs is linked
1136 // to node id of `x`. The `write_place()` routine generates
1137 // the contents of this node. There are no subcomponents to
1138 // consider.
1139 //
1140 // # Non-tracked places
1141 //
1142 // These are places like `x[5]` or `x.f`. In that case, we
1143 // basically ignore the value which is written to but generate
1144 // reads for the components---`x` in these two examples. The
1145 // components reads are generated by
1146 // `propagate_through_place_components()` (this fn).
1147 //
1148 // # Illegal places
1149 //
1150 // It is still possible to observe assignments to non-places;
1151 // these errors are detected in the later pass borrowck. We
1152 // just ignore such cases and treat them as reads.
1153
1154 match expr.kind {
1155 hir::ExprKind::Path(_) => succ,
1156 hir::ExprKind::Field(ref e, _) => self.propagate_through_expr(&e, succ),
1157 _ => self.propagate_through_expr(expr, succ),
1158 }
1159 }
1160
1161 // see comment on propagate_through_place()
1162 fn write_place(&mut self, expr: &Expr<'_>, succ: LiveNode, acc: u32) -> LiveNode {
1163 match expr.kind {
1164 hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
1165 self.access_path(expr.hir_id, path, succ, acc)
1166 }
1167
1168 // We do not track other places, so just propagate through
1169 // to their subcomponents. Also, it may happen that
1170 // non-places occur here, because those are detected in the
1171 // later pass borrowck.
1172 _ => succ,
1173 }
1174 }
1175
1176 fn access_var(
1177 &mut self,
1178 hir_id: HirId,
1179 var_hid: HirId,
1180 succ: LiveNode,
1181 acc: u32,
1182 span: Span,
1183 ) -> LiveNode {
1184 let ln = self.live_node(hir_id, span);
1185 if acc != 0 {
1186 self.init_from_succ(ln, succ);
1187 let var = self.variable(var_hid, span);
1188 self.acc(ln, var, acc);
1189 }
1190 ln
1191 }
1192
1193 fn access_path(
1194 &mut self,
1195 hir_id: HirId,
1196 path: &hir::Path<'_>,
1197 succ: LiveNode,
1198 acc: u32,
1199 ) -> LiveNode {
1200 match path.res {
1201 Res::Local(hid) => self.access_var(hir_id, hid, succ, acc, path.span),
1202 _ => succ,
1203 }
1204 }
1205
1206 fn propagate_through_loop(
1207 &mut self,
1208 expr: &Expr<'_>,
1209 body: &hir::Block<'_>,
1210 succ: LiveNode,
1211 ) -> LiveNode {
1212 /*
1213 We model control flow like this:
1214
1215 (expr) <-+
1216 | |
1217 v |
1218 (body) --+
1219
1220 Note that a `continue` expression targeting the `loop` will have a successor of `expr`.
1221 Meanwhile, a `break` expression will have a successor of `succ`.
1222 */
1223
1224 // first iteration:
1225 let ln = self.live_node(expr.hir_id, expr.span);
1226 self.init_empty(ln, succ);
1227 debug!("propagate_through_loop: using id for loop body {} {:?}", expr.hir_id, body);
1228
1229 self.break_ln.insert(expr.hir_id, succ);
1230
1231 self.cont_ln.insert(expr.hir_id, ln);
1232
1233 let body_ln = self.propagate_through_block(body, ln);
1234
1235 // repeat until fixed point is reached:
1236 while self.merge_from_succ(ln, body_ln) {
1237 assert_eq!(body_ln, self.propagate_through_block(body, ln));
1238 }
1239
1240 ln
1241 }
1242
1243 fn check_is_ty_uninhabited(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
1244 let ty = self.typeck_results.expr_ty(expr);
1245 let m = self.ir.tcx.parent_module(expr.hir_id).to_def_id();
1246 if self.ir.tcx.is_ty_uninhabited_from(m, ty, self.param_env) {
1247 match self.ir.lnks[succ] {
1248 LiveNodeKind::ExprNode(succ_span, succ_id) => {
1249 self.warn_about_unreachable(expr.span, ty, succ_span, succ_id, "expression");
1250 }
1251 LiveNodeKind::VarDefNode(succ_span, succ_id) => {
1252 self.warn_about_unreachable(expr.span, ty, succ_span, succ_id, "definition");
1253 }
1254 _ => {}
1255 };
1256 self.exit_ln
1257 } else {
1258 succ
1259 }
1260 }
1261
1262 fn warn_about_unreachable(
1263 &mut self,
1264 orig_span: Span,
1265 orig_ty: Ty<'tcx>,
1266 expr_span: Span,
1267 expr_id: HirId,
1268 descr: &str,
1269 ) {
1270 if !orig_ty.is_never() {
1271 // Unreachable code warnings are already emitted during type checking.
1272 // However, during type checking, full type information is being
1273 // calculated but not yet available, so the check for diverging
1274 // expressions due to uninhabited result types is pretty crude and
1275 // only checks whether ty.is_never(). Here, we have full type
1276 // information available and can issue warnings for less obviously
1277 // uninhabited types (e.g. empty enums). The check above is used so
1278 // that we do not emit the same warning twice if the uninhabited type
1279 // is indeed `!`.
1280
1281 self.ir.tcx.struct_span_lint_hir(
1282 lint::builtin::UNREACHABLE_CODE,
1283 expr_id,
1284 expr_span,
1285 |lint| {
1286 let msg = format!("unreachable {}", descr);
1287 lint.build(&msg)
1288 .span_label(expr_span, &msg)
1289 .span_label(orig_span, "any code following this expression is unreachable")
1290 .span_note(
1291 orig_span,
1292 &format!(
1293 "this expression has type `{}`, which is uninhabited",
1294 orig_ty
1295 ),
1296 )
1297 .emit();
1298 },
1299 );
1300 }
1301 }
1302 }
1303
1304 // _______________________________________________________________________
1305 // Checking for error conditions
1306
1307 impl<'a, 'tcx> Visitor<'tcx> for Liveness<'a, 'tcx> {
1308 fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
1309 self.check_unused_vars_in_pat(&local.pat, None, |spans, hir_id, ln, var| {
1310 if local.init.is_some() {
1311 self.warn_about_dead_assign(spans, hir_id, ln, var);
1312 }
1313 });
1314
1315 intravisit::walk_local(self, local);
1316 }
1317
1318 fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
1319 check_expr(self, ex);
1320 intravisit::walk_expr(self, ex);
1321 }
1322
1323 fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) {
1324 self.check_unused_vars_in_pat(&arm.pat, None, |_, _, _, _| {});
1325 intravisit::walk_arm(self, arm);
1326 }
1327 }
1328
1329 fn check_expr<'tcx>(this: &mut Liveness<'_, 'tcx>, expr: &'tcx Expr<'tcx>) {
1330 match expr.kind {
1331 hir::ExprKind::Assign(ref l, ..) => {
1332 this.check_place(&l);
1333 }
1334
1335 hir::ExprKind::AssignOp(_, ref l, _) => {
1336 if !this.typeck_results.is_method_call(expr) {
1337 this.check_place(&l);
1338 }
1339 }
1340
1341 hir::ExprKind::InlineAsm(ref asm) => {
1342 for (op, _op_sp) in asm.operands {
1343 match op {
1344 hir::InlineAsmOperand::Out { expr, .. } => {
1345 if let Some(expr) = expr {
1346 this.check_place(expr);
1347 }
1348 }
1349 hir::InlineAsmOperand::InOut { expr, .. } => {
1350 this.check_place(expr);
1351 }
1352 hir::InlineAsmOperand::SplitInOut { out_expr, .. } => {
1353 if let Some(out_expr) = out_expr {
1354 this.check_place(out_expr);
1355 }
1356 }
1357 _ => {}
1358 }
1359 }
1360 }
1361
1362 hir::ExprKind::Let(let_expr) => {
1363 this.check_unused_vars_in_pat(let_expr.pat, None, |_, _, _, _| {});
1364 }
1365
1366 // no correctness conditions related to liveness
1367 hir::ExprKind::Call(..)
1368 | hir::ExprKind::MethodCall(..)
1369 | hir::ExprKind::Match(..)
1370 | hir::ExprKind::Loop(..)
1371 | hir::ExprKind::Index(..)
1372 | hir::ExprKind::Field(..)
1373 | hir::ExprKind::Array(..)
1374 | hir::ExprKind::Tup(..)
1375 | hir::ExprKind::Binary(..)
1376 | hir::ExprKind::Cast(..)
1377 | hir::ExprKind::If(..)
1378 | hir::ExprKind::DropTemps(..)
1379 | hir::ExprKind::Unary(..)
1380 | hir::ExprKind::Ret(..)
1381 | hir::ExprKind::Break(..)
1382 | hir::ExprKind::Continue(..)
1383 | hir::ExprKind::Lit(_)
1384 | hir::ExprKind::ConstBlock(..)
1385 | hir::ExprKind::Block(..)
1386 | hir::ExprKind::AddrOf(..)
1387 | hir::ExprKind::Struct(..)
1388 | hir::ExprKind::Repeat(..)
1389 | hir::ExprKind::Closure(..)
1390 | hir::ExprKind::Path(_)
1391 | hir::ExprKind::Yield(..)
1392 | hir::ExprKind::Box(..)
1393 | hir::ExprKind::Type(..)
1394 | hir::ExprKind::Err => {}
1395 }
1396 }
1397
1398 impl<'tcx> Liveness<'_, 'tcx> {
1399 fn check_place(&mut self, expr: &'tcx Expr<'tcx>) {
1400 match expr.kind {
1401 hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
1402 if let Res::Local(var_hid) = path.res {
1403 // Assignment to an immutable variable or argument: only legal
1404 // if there is no later assignment. If this local is actually
1405 // mutable, then check for a reassignment to flag the mutability
1406 // as being used.
1407 let ln = self.live_node(expr.hir_id, expr.span);
1408 let var = self.variable(var_hid, expr.span);
1409 self.warn_about_dead_assign(vec![expr.span], expr.hir_id, ln, var);
1410 }
1411 }
1412 _ => {
1413 // For other kinds of places, no checks are required,
1414 // and any embedded expressions are actually rvalues
1415 intravisit::walk_expr(self, expr);
1416 }
1417 }
1418 }
1419
1420 fn should_warn(&self, var: Variable) -> Option<String> {
1421 let name = self.ir.variable_name(var);
1422 if name == kw::Empty {
1423 return None;
1424 }
1425 let name = name.as_str();
1426 if name.as_bytes()[0] == b'_' {
1427 return None;
1428 }
1429 Some(name.to_owned())
1430 }
1431
1432 fn warn_about_unused_upvars(&self, entry_ln: LiveNode) {
1433 let closure_min_captures = match self.closure_min_captures {
1434 None => return,
1435 Some(closure_min_captures) => closure_min_captures,
1436 };
1437
1438 // If closure_min_captures is Some(), upvars must be Some() too.
1439 for (&var_hir_id, min_capture_list) in closure_min_captures {
1440 for captured_place in min_capture_list {
1441 match captured_place.info.capture_kind {
1442 ty::UpvarCapture::ByValue => {}
1443 ty::UpvarCapture::ByRef(..) => continue,
1444 };
1445 let span = captured_place.get_capture_kind_span(self.ir.tcx);
1446 let var = self.variable(var_hir_id, span);
1447 if self.used_on_entry(entry_ln, var) {
1448 if !self.live_on_entry(entry_ln, var) {
1449 if let Some(name) = self.should_warn(var) {
1450 self.ir.tcx.struct_span_lint_hir(
1451 lint::builtin::UNUSED_ASSIGNMENTS,
1452 var_hir_id,
1453 vec![span],
1454 |lint| {
1455 lint.build(&format!(
1456 "value captured by `{}` is never read",
1457 name
1458 ))
1459 .help("did you mean to capture by reference instead?")
1460 .emit();
1461 },
1462 );
1463 }
1464 }
1465 } else {
1466 if let Some(name) = self.should_warn(var) {
1467 self.ir.tcx.struct_span_lint_hir(
1468 lint::builtin::UNUSED_VARIABLES,
1469 var_hir_id,
1470 vec![span],
1471 |lint| {
1472 lint.build(&format!("unused variable: `{}`", name))
1473 .help("did you mean to capture by reference instead?")
1474 .emit();
1475 },
1476 );
1477 }
1478 }
1479 }
1480 }
1481 }
1482
1483 fn warn_about_unused_args(&self, body: &hir::Body<'_>, entry_ln: LiveNode) {
1484 for p in body.params {
1485 self.check_unused_vars_in_pat(&p.pat, Some(entry_ln), |spans, hir_id, ln, var| {
1486 if !self.live_on_entry(ln, var) {
1487 self.report_unused_assign(hir_id, spans, var, |name| {
1488 format!("value passed to `{}` is never read", name)
1489 });
1490 }
1491 });
1492 }
1493 }
1494
1495 fn check_unused_vars_in_pat(
1496 &self,
1497 pat: &hir::Pat<'_>,
1498 entry_ln: Option<LiveNode>,
1499 on_used_on_entry: impl Fn(Vec<Span>, HirId, LiveNode, Variable),
1500 ) {
1501 // In an or-pattern, only consider the variable; any later patterns must have the same
1502 // bindings, and we also consider the first pattern to be the "authoritative" set of ids.
1503 // However, we should take the ids and spans of variables with the same name from the later
1504 // patterns so the suggestions to prefix with underscores will apply to those too.
1505 let mut vars: FxIndexMap<Symbol, (LiveNode, Variable, Vec<(HirId, Span, Span)>)> =
1506 <_>::default();
1507
1508 pat.each_binding(|_, hir_id, pat_sp, ident| {
1509 let ln = entry_ln.unwrap_or_else(|| self.live_node(hir_id, pat_sp));
1510 let var = self.variable(hir_id, ident.span);
1511 let id_and_sp = (hir_id, pat_sp, ident.span);
1512 vars.entry(self.ir.variable_name(var))
1513 .and_modify(|(.., hir_ids_and_spans)| hir_ids_and_spans.push(id_and_sp))
1514 .or_insert_with(|| (ln, var, vec![id_and_sp]));
1515 });
1516
1517 for (_, (ln, var, hir_ids_and_spans)) in vars {
1518 if self.used_on_entry(ln, var) {
1519 let id = hir_ids_and_spans[0].0;
1520 let spans =
1521 hir_ids_and_spans.into_iter().map(|(_, _, ident_span)| ident_span).collect();
1522 on_used_on_entry(spans, id, ln, var);
1523 } else {
1524 self.report_unused(hir_ids_and_spans, ln, var);
1525 }
1526 }
1527 }
1528
1529 fn report_unused(
1530 &self,
1531 hir_ids_and_spans: Vec<(HirId, Span, Span)>,
1532 ln: LiveNode,
1533 var: Variable,
1534 ) {
1535 let first_hir_id = hir_ids_and_spans[0].0;
1536
1537 if let Some(name) = self.should_warn(var).filter(|name| name != "self") {
1538 // annoying: for parameters in funcs like `fn(x: i32)
1539 // {ret}`, there is only one node, so asking about
1540 // assigned_on_exit() is not meaningful.
1541 let is_assigned =
1542 if ln == self.exit_ln { false } else { self.assigned_on_exit(ln, var) };
1543
1544 if is_assigned {
1545 self.ir.tcx.struct_span_lint_hir(
1546 lint::builtin::UNUSED_VARIABLES,
1547 first_hir_id,
1548 hir_ids_and_spans
1549 .into_iter()
1550 .map(|(_, _, ident_span)| ident_span)
1551 .collect::<Vec<_>>(),
1552 |lint| {
1553 lint.build(&format!("variable `{}` is assigned to, but never used", name))
1554 .note(&format!("consider using `_{}` instead", name))
1555 .emit();
1556 },
1557 )
1558 } else {
1559 let (shorthands, non_shorthands): (Vec<_>, Vec<_>) =
1560 hir_ids_and_spans.iter().copied().partition(|(hir_id, _, ident_span)| {
1561 let var = self.variable(*hir_id, *ident_span);
1562 self.ir.variable_is_shorthand(var)
1563 });
1564
1565 // If we have both shorthand and non-shorthand, prefer the "try ignoring
1566 // the field" message, and suggest `_` for the non-shorthands. If we only
1567 // have non-shorthand, then prefix with an underscore instead.
1568 if !shorthands.is_empty() {
1569 let shorthands = shorthands
1570 .into_iter()
1571 .map(|(_, pat_span, _)| (pat_span, format!("{}: _", name)))
1572 .chain(
1573 non_shorthands
1574 .into_iter()
1575 .map(|(_, pat_span, _)| (pat_span, "_".to_string())),
1576 )
1577 .collect::<Vec<_>>();
1578
1579 self.ir.tcx.struct_span_lint_hir(
1580 lint::builtin::UNUSED_VARIABLES,
1581 first_hir_id,
1582 hir_ids_and_spans
1583 .iter()
1584 .map(|(_, pat_span, _)| *pat_span)
1585 .collect::<Vec<_>>(),
1586 |lint| {
1587 let mut err = lint.build(&format!("unused variable: `{}`", name));
1588 err.multipart_suggestion(
1589 "try ignoring the field",
1590 shorthands,
1591 Applicability::MachineApplicable,
1592 );
1593 err.emit()
1594 },
1595 );
1596 } else {
1597 let non_shorthands = non_shorthands
1598 .into_iter()
1599 .map(|(_, _, ident_span)| (ident_span, format!("_{}", name)))
1600 .collect::<Vec<_>>();
1601
1602 self.ir.tcx.struct_span_lint_hir(
1603 lint::builtin::UNUSED_VARIABLES,
1604 first_hir_id,
1605 hir_ids_and_spans
1606 .iter()
1607 .map(|(_, _, ident_span)| *ident_span)
1608 .collect::<Vec<_>>(),
1609 |lint| {
1610 let mut err = lint.build(&format!("unused variable: `{}`", name));
1611 err.multipart_suggestion(
1612 "if this is intentional, prefix it with an underscore",
1613 non_shorthands,
1614 Applicability::MachineApplicable,
1615 );
1616 err.emit()
1617 },
1618 );
1619 }
1620 }
1621 }
1622 }
1623
1624 fn warn_about_dead_assign(&self, spans: Vec<Span>, hir_id: HirId, ln: LiveNode, var: Variable) {
1625 if !self.live_on_exit(ln, var) {
1626 self.report_unused_assign(hir_id, spans, var, |name| {
1627 format!("value assigned to `{}` is never read", name)
1628 });
1629 }
1630 }
1631
1632 fn report_unused_assign(
1633 &self,
1634 hir_id: HirId,
1635 spans: Vec<Span>,
1636 var: Variable,
1637 message: impl Fn(&str) -> String,
1638 ) {
1639 if let Some(name) = self.should_warn(var) {
1640 self.ir.tcx.struct_span_lint_hir(
1641 lint::builtin::UNUSED_ASSIGNMENTS,
1642 hir_id,
1643 spans,
1644 |lint| {
1645 lint.build(&message(&name))
1646 .help("maybe it is overwritten before being read?")
1647 .emit();
1648 },
1649 )
1650 }
1651 }
1652 }