]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_span/src/def_id.rs
New upstream version 1.66.0+dfsg1
[rustc.git] / compiler / rustc_span / src / def_id.rs
1 use crate::HashStableContext;
2 use rustc_data_structures::fingerprint::Fingerprint;
3 use rustc_data_structures::stable_hasher::{HashStable, StableHasher, ToStableHashKey};
4 use rustc_data_structures::AtomicRef;
5 use rustc_index::vec::Idx;
6 use rustc_macros::HashStable_Generic;
7 use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
8 use std::borrow::Borrow;
9 use std::fmt;
10 use std::hash::{Hash, Hasher};
11
12 rustc_index::newtype_index! {
13 pub struct CrateNum {
14 ENCODABLE = custom
15 DEBUG_FORMAT = "crate{}"
16 }
17 }
18
19 /// Item definitions in the currently-compiled crate would have the `CrateNum`
20 /// `LOCAL_CRATE` in their `DefId`.
21 pub const LOCAL_CRATE: CrateNum = CrateNum::from_u32(0);
22
23 impl CrateNum {
24 #[inline]
25 pub fn new(x: usize) -> CrateNum {
26 CrateNum::from_usize(x)
27 }
28
29 #[inline]
30 pub fn as_def_id(self) -> DefId {
31 DefId { krate: self, index: CRATE_DEF_INDEX }
32 }
33 }
34
35 impl fmt::Display for CrateNum {
36 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
37 fmt::Display::fmt(&self.private, f)
38 }
39 }
40
41 /// As a local identifier, a `CrateNum` is only meaningful within its context, e.g. within a tcx.
42 /// Therefore, make sure to include the context when encode a `CrateNum`.
43 impl<E: Encoder> Encodable<E> for CrateNum {
44 default fn encode(&self, s: &mut E) {
45 s.emit_u32(self.as_u32());
46 }
47 }
48
49 impl<D: Decoder> Decodable<D> for CrateNum {
50 default fn decode(d: &mut D) -> CrateNum {
51 CrateNum::from_u32(d.read_u32())
52 }
53 }
54
55 /// A `DefPathHash` is a fixed-size representation of a `DefPath` that is
56 /// stable across crate and compilation session boundaries. It consists of two
57 /// separate 64-bit hashes. The first uniquely identifies the crate this
58 /// `DefPathHash` originates from (see [StableCrateId]), and the second
59 /// uniquely identifies the corresponding `DefPath` within that crate. Together
60 /// they form a unique identifier within an entire crate graph.
61 ///
62 /// There is a very small chance of hash collisions, which would mean that two
63 /// different `DefPath`s map to the same `DefPathHash`. Proceeding compilation
64 /// with such a hash collision would very probably lead to an ICE, and in the
65 /// worst case lead to a silent mis-compilation. The compiler therefore actively
66 /// and exhaustively checks for such hash collisions and aborts compilation if
67 /// it finds one.
68 ///
69 /// `DefPathHash` uses 64-bit hashes for both the crate-id part and the
70 /// crate-internal part, even though it is likely that there are many more
71 /// `LocalDefId`s in a single crate than there are individual crates in a crate
72 /// graph. Since we use the same number of bits in both cases, the collision
73 /// probability for the crate-local part will be quite a bit higher (though
74 /// still very small).
75 ///
76 /// This imbalance is not by accident: A hash collision in the
77 /// crate-local part of a `DefPathHash` will be detected and reported while
78 /// compiling the crate in question. Such a collision does not depend on
79 /// outside factors and can be easily fixed by the crate maintainer (e.g. by
80 /// renaming the item in question or by bumping the crate version in a harmless
81 /// way).
82 ///
83 /// A collision between crate-id hashes on the other hand is harder to fix
84 /// because it depends on the set of crates in the entire crate graph of a
85 /// compilation session. Again, using the same crate with a different version
86 /// number would fix the issue with a high probability -- but that might be
87 /// easier said then done if the crates in questions are dependencies of
88 /// third-party crates.
89 ///
90 /// That being said, given a high quality hash function, the collision
91 /// probabilities in question are very small. For example, for a big crate like
92 /// `rustc_middle` (with ~50000 `LocalDefId`s as of the time of writing) there
93 /// is a probability of roughly 1 in 14,750,000,000 of a crate-internal
94 /// collision occurring. For a big crate graph with 1000 crates in it, there is
95 /// a probability of 1 in 36,890,000,000,000 of a `StableCrateId` collision.
96 #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug)]
97 #[derive(HashStable_Generic, Encodable, Decodable)]
98 pub struct DefPathHash(pub Fingerprint);
99
100 impl DefPathHash {
101 /// Returns the [StableCrateId] identifying the crate this [DefPathHash]
102 /// originates from.
103 #[inline]
104 pub fn stable_crate_id(&self) -> StableCrateId {
105 StableCrateId(self.0.as_value().0)
106 }
107
108 /// Returns the crate-local part of the [DefPathHash].
109 ///
110 /// Used for tests.
111 #[inline]
112 pub fn local_hash(&self) -> u64 {
113 self.0.as_value().1
114 }
115
116 /// Builds a new [DefPathHash] with the given [StableCrateId] and
117 /// `local_hash`, where `local_hash` must be unique within its crate.
118 pub fn new(stable_crate_id: StableCrateId, local_hash: u64) -> DefPathHash {
119 DefPathHash(Fingerprint::new(stable_crate_id.0, local_hash))
120 }
121 }
122
123 impl Borrow<Fingerprint> for DefPathHash {
124 #[inline]
125 fn borrow(&self) -> &Fingerprint {
126 &self.0
127 }
128 }
129
130 /// A [`StableCrateId`] is a 64-bit hash of a crate name, together with all
131 /// `-Cmetadata` arguments, and some other data. It is to [`CrateNum`] what [`DefPathHash`] is to
132 /// [`DefId`]. It is stable across compilation sessions.
133 ///
134 /// Since the ID is a hash value, there is a small chance that two crates
135 /// end up with the same [`StableCrateId`]. The compiler will check for such
136 /// collisions when loading crates and abort compilation in order to avoid
137 /// further trouble.
138 ///
139 /// For more information on the possibility of hash collisions in rustc,
140 /// see the discussion in [`DefId`].
141 #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug)]
142 #[derive(HashStable_Generic, Encodable, Decodable)]
143 pub struct StableCrateId(pub(crate) u64);
144
145 impl StableCrateId {
146 pub fn to_u64(self) -> u64 {
147 self.0
148 }
149
150 /// Computes the stable ID for a crate with the given name and
151 /// `-Cmetadata` arguments.
152 pub fn new(crate_name: &str, is_exe: bool, mut metadata: Vec<String>) -> StableCrateId {
153 let mut hasher = StableHasher::new();
154 crate_name.hash(&mut hasher);
155
156 // We don't want the stable crate ID to depend on the order of
157 // -C metadata arguments, so sort them:
158 metadata.sort();
159 // Every distinct -C metadata value is only incorporated once:
160 metadata.dedup();
161
162 hasher.write(b"metadata");
163 for s in &metadata {
164 // Also incorporate the length of a metadata string, so that we generate
165 // different values for `-Cmetadata=ab -Cmetadata=c` and
166 // `-Cmetadata=a -Cmetadata=bc`
167 hasher.write_usize(s.len());
168 hasher.write(s.as_bytes());
169 }
170
171 // Also incorporate crate type, so that we don't get symbol conflicts when
172 // linking against a library of the same name, if this is an executable.
173 hasher.write(if is_exe { b"exe" } else { b"lib" });
174
175 // Also incorporate the rustc version. Otherwise, with -Zsymbol-mangling-version=v0
176 // and no -Cmetadata, symbols from the same crate compiled with different versions of
177 // rustc are named the same.
178 //
179 // RUSTC_FORCE_RUSTC_VERSION is used to inject rustc version information
180 // during testing.
181 if let Some(val) = std::env::var_os("RUSTC_FORCE_RUSTC_VERSION") {
182 hasher.write(val.to_string_lossy().into_owned().as_bytes())
183 } else {
184 hasher.write(option_env!("CFG_VERSION").unwrap_or("unknown version").as_bytes());
185 }
186
187 StableCrateId(hasher.finish())
188 }
189 }
190
191 rustc_index::newtype_index! {
192 /// A DefIndex is an index into the hir-map for a crate, identifying a
193 /// particular definition. It should really be considered an interned
194 /// shorthand for a particular DefPath.
195 pub struct DefIndex {
196 ENCODABLE = custom // (only encodable in metadata)
197
198 DEBUG_FORMAT = "DefIndex({})",
199 /// The crate root is always assigned index 0 by the AST Map code,
200 /// thanks to `NodeCollector::new`.
201 const CRATE_DEF_INDEX = 0,
202 }
203 }
204
205 impl<E: Encoder> Encodable<E> for DefIndex {
206 default fn encode(&self, _: &mut E) {
207 panic!("cannot encode `DefIndex` with `{}`", std::any::type_name::<E>());
208 }
209 }
210
211 impl<D: Decoder> Decodable<D> for DefIndex {
212 default fn decode(_: &mut D) -> DefIndex {
213 panic!("cannot decode `DefIndex` with `{}`", std::any::type_name::<D>());
214 }
215 }
216
217 /// A `DefId` identifies a particular *definition*, by combining a crate
218 /// index and a def index.
219 ///
220 /// You can create a `DefId` from a `LocalDefId` using `local_def_id.to_def_id()`.
221 #[derive(Clone, PartialEq, Eq, Copy)]
222 // Don't derive order on 64-bit big-endian, so we can be consistent regardless of field order.
223 #[cfg_attr(not(all(target_pointer_width = "64", target_endian = "big")), derive(PartialOrd, Ord))]
224 // On below-64 bit systems we can simply use the derived `Hash` impl
225 #[cfg_attr(not(target_pointer_width = "64"), derive(Hash))]
226 #[repr(C)]
227 #[rustc_pass_by_value]
228 // We guarantee field order. Note that the order is essential here, see below why.
229 pub struct DefId {
230 // cfg-ing the order of fields so that the `DefIndex` which is high entropy always ends up in
231 // the lower bits no matter the endianness. This allows the compiler to turn that `Hash` impl
232 // into a direct call to 'u64::hash(_)`.
233 #[cfg(not(all(target_pointer_width = "64", target_endian = "big")))]
234 pub index: DefIndex,
235 pub krate: CrateNum,
236 #[cfg(all(target_pointer_width = "64", target_endian = "big"))]
237 pub index: DefIndex,
238 }
239
240 // On 64-bit systems, we can hash the whole `DefId` as one `u64` instead of two `u32`s. This
241 // improves performance without impairing `FxHash` quality. So the below code gets compiled to a
242 // noop on little endian systems because the memory layout of `DefId` is as follows:
243 //
244 // ```
245 // +-1--------------31-+-32-------------63-+
246 // ! index ! krate !
247 // +-------------------+-------------------+
248 // ```
249 //
250 // The order here has direct impact on `FxHash` quality because we have far more `DefIndex` per
251 // crate than we have `Crate`s within one compilation. Or in other words, this arrangement puts
252 // more entropy in the low bits than the high bits. The reason this matters is that `FxHash`, which
253 // is used throughout rustc, has problems distributing the entropy from the high bits, so reversing
254 // the order would lead to a large number of collisions and thus far worse performance.
255 //
256 // On 64-bit big-endian systems, this compiles to a 64-bit rotation by 32 bits, which is still
257 // faster than another `FxHash` round.
258 #[cfg(target_pointer_width = "64")]
259 impl Hash for DefId {
260 fn hash<H: Hasher>(&self, h: &mut H) {
261 (((self.krate.as_u32() as u64) << 32) | (self.index.as_u32() as u64)).hash(h)
262 }
263 }
264
265 // Implement the same comparison as derived with the other field order.
266 #[cfg(all(target_pointer_width = "64", target_endian = "big"))]
267 impl Ord for DefId {
268 #[inline]
269 fn cmp(&self, other: &DefId) -> std::cmp::Ordering {
270 Ord::cmp(&(self.index, self.krate), &(other.index, other.krate))
271 }
272 }
273 #[cfg(all(target_pointer_width = "64", target_endian = "big"))]
274 impl PartialOrd for DefId {
275 #[inline]
276 fn partial_cmp(&self, other: &DefId) -> Option<std::cmp::Ordering> {
277 Some(Ord::cmp(self, other))
278 }
279 }
280
281 impl DefId {
282 /// Makes a local `DefId` from the given `DefIndex`.
283 #[inline]
284 pub fn local(index: DefIndex) -> DefId {
285 DefId { krate: LOCAL_CRATE, index }
286 }
287
288 /// Returns whether the item is defined in the crate currently being compiled.
289 #[inline]
290 pub fn is_local(self) -> bool {
291 self.krate == LOCAL_CRATE
292 }
293
294 #[inline]
295 pub fn as_local(self) -> Option<LocalDefId> {
296 if self.is_local() { Some(LocalDefId { local_def_index: self.index }) } else { None }
297 }
298
299 #[inline]
300 #[track_caller]
301 pub fn expect_local(self) -> LocalDefId {
302 // NOTE: `match` below is required to apply `#[track_caller]`,
303 // i.e. don't use closures.
304 match self.as_local() {
305 Some(local_def_id) => local_def_id,
306 None => panic!("DefId::expect_local: `{:?}` isn't local", self),
307 }
308 }
309
310 #[inline]
311 pub fn is_crate_root(self) -> bool {
312 self.index == CRATE_DEF_INDEX
313 }
314
315 #[inline]
316 pub fn as_crate_root(self) -> Option<CrateNum> {
317 if self.is_crate_root() { Some(self.krate) } else { None }
318 }
319
320 #[inline]
321 pub fn is_top_level_module(self) -> bool {
322 self.is_local() && self.is_crate_root()
323 }
324 }
325
326 impl From<LocalDefId> for DefId {
327 fn from(local: LocalDefId) -> DefId {
328 local.to_def_id()
329 }
330 }
331
332 impl<E: Encoder> Encodable<E> for DefId {
333 default fn encode(&self, s: &mut E) {
334 self.krate.encode(s);
335 self.index.encode(s);
336 }
337 }
338
339 impl<D: Decoder> Decodable<D> for DefId {
340 default fn decode(d: &mut D) -> DefId {
341 DefId { krate: Decodable::decode(d), index: Decodable::decode(d) }
342 }
343 }
344
345 pub fn default_def_id_debug(def_id: DefId, f: &mut fmt::Formatter<'_>) -> fmt::Result {
346 f.debug_struct("DefId").field("krate", &def_id.krate).field("index", &def_id.index).finish()
347 }
348
349 pub static DEF_ID_DEBUG: AtomicRef<fn(DefId, &mut fmt::Formatter<'_>) -> fmt::Result> =
350 AtomicRef::new(&(default_def_id_debug as fn(_, &mut fmt::Formatter<'_>) -> _));
351
352 impl fmt::Debug for DefId {
353 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
354 (*DEF_ID_DEBUG)(*self, f)
355 }
356 }
357
358 rustc_data_structures::define_id_collections!(DefIdMap, DefIdSet, DefIdMapEntry, DefId);
359
360 /// A `LocalDefId` is equivalent to a `DefId` with `krate == LOCAL_CRATE`. Since
361 /// we encode this information in the type, we can ensure at compile time that
362 /// no `DefId`s from upstream crates get thrown into the mix. There are quite a
363 /// few cases where we know that only `DefId`s from the local crate are expected;
364 /// a `DefId` from a different crate would signify a bug somewhere. This
365 /// is when `LocalDefId` comes in handy.
366 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
367 pub struct LocalDefId {
368 pub local_def_index: DefIndex,
369 }
370
371 // To ensure correctness of incremental compilation,
372 // `LocalDefId` must not implement `Ord` or `PartialOrd`.
373 // See https://github.com/rust-lang/rust/issues/90317.
374 impl !Ord for LocalDefId {}
375 impl !PartialOrd for LocalDefId {}
376
377 pub const CRATE_DEF_ID: LocalDefId = LocalDefId { local_def_index: CRATE_DEF_INDEX };
378
379 impl Idx for LocalDefId {
380 #[inline]
381 fn new(idx: usize) -> Self {
382 LocalDefId { local_def_index: Idx::new(idx) }
383 }
384 #[inline]
385 fn index(self) -> usize {
386 self.local_def_index.index()
387 }
388 }
389
390 impl LocalDefId {
391 #[inline]
392 pub fn to_def_id(self) -> DefId {
393 DefId { krate: LOCAL_CRATE, index: self.local_def_index }
394 }
395
396 #[inline]
397 pub fn is_top_level_module(self) -> bool {
398 self == CRATE_DEF_ID
399 }
400 }
401
402 impl fmt::Debug for LocalDefId {
403 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
404 self.to_def_id().fmt(f)
405 }
406 }
407
408 impl<E: Encoder> Encodable<E> for LocalDefId {
409 fn encode(&self, s: &mut E) {
410 self.to_def_id().encode(s);
411 }
412 }
413
414 impl<D: Decoder> Decodable<D> for LocalDefId {
415 fn decode(d: &mut D) -> LocalDefId {
416 DefId::decode(d).expect_local()
417 }
418 }
419
420 rustc_data_structures::define_id_collections!(
421 LocalDefIdMap,
422 LocalDefIdSet,
423 LocalDefIdMapEntry,
424 LocalDefId
425 );
426
427 impl<CTX: HashStableContext> HashStable<CTX> for DefId {
428 #[inline]
429 fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
430 self.to_stable_hash_key(hcx).hash_stable(hcx, hasher);
431 }
432 }
433
434 impl<CTX: HashStableContext> HashStable<CTX> for LocalDefId {
435 #[inline]
436 fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
437 self.to_stable_hash_key(hcx).hash_stable(hcx, hasher);
438 }
439 }
440
441 impl<CTX: HashStableContext> HashStable<CTX> for CrateNum {
442 #[inline]
443 fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
444 self.to_stable_hash_key(hcx).hash_stable(hcx, hasher);
445 }
446 }
447
448 impl<CTX: HashStableContext> ToStableHashKey<CTX> for DefId {
449 type KeyType = DefPathHash;
450
451 #[inline]
452 fn to_stable_hash_key(&self, hcx: &CTX) -> DefPathHash {
453 hcx.def_path_hash(*self)
454 }
455 }
456
457 impl<CTX: HashStableContext> ToStableHashKey<CTX> for LocalDefId {
458 type KeyType = DefPathHash;
459
460 #[inline]
461 fn to_stable_hash_key(&self, hcx: &CTX) -> DefPathHash {
462 hcx.def_path_hash(self.to_def_id())
463 }
464 }
465
466 impl<CTX: HashStableContext> ToStableHashKey<CTX> for CrateNum {
467 type KeyType = DefPathHash;
468
469 #[inline]
470 fn to_stable_hash_key(&self, hcx: &CTX) -> DefPathHash {
471 self.as_def_id().to_stable_hash_key(hcx)
472 }
473 }