]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_span/src/lib.rs
New upstream version 1.65.0+dfsg1
[rustc.git] / compiler / rustc_span / src / lib.rs
1 //! Source positions and related helper functions.
2 //!
3 //! Important concepts in this module include:
4 //!
5 //! - the *span*, represented by [`SpanData`] and related types;
6 //! - source code as represented by a [`SourceMap`]; and
7 //! - interned strings, represented by [`Symbol`]s, with some common symbols available statically in the [`sym`] module.
8 //!
9 //! Unlike most compilers, the span contains not only the position in the source code, but also various other metadata,
10 //! such as the edition and macro hygiene. This metadata is stored in [`SyntaxContext`] and [`ExpnData`].
11 //!
12 //! ## Note
13 //!
14 //! This API is completely unstable and subject to change.
15
16 #![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
17 #![feature(array_windows)]
18 #![cfg_attr(bootstrap, feature(let_else))]
19 #![feature(if_let_guard)]
20 #![feature(negative_impls)]
21 #![feature(min_specialization)]
22 #![feature(rustc_attrs)]
23 #![deny(rustc::untranslatable_diagnostic)]
24 #![deny(rustc::diagnostic_outside_of_impl)]
25
26 #[macro_use]
27 extern crate rustc_macros;
28
29 #[macro_use]
30 extern crate tracing;
31
32 use rustc_data_structures::AtomicRef;
33 use rustc_macros::HashStable_Generic;
34 use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
35
36 mod caching_source_map_view;
37 pub mod source_map;
38 pub use self::caching_source_map_view::CachingSourceMapView;
39 use source_map::SourceMap;
40
41 pub mod edition;
42 use edition::Edition;
43 pub mod hygiene;
44 use hygiene::Transparency;
45 pub use hygiene::{DesugaringKind, ExpnKind, MacroKind};
46 pub use hygiene::{ExpnData, ExpnHash, ExpnId, LocalExpnId, SyntaxContext};
47 use rustc_data_structures::stable_hasher::HashingControls;
48 pub mod def_id;
49 use def_id::{CrateNum, DefId, DefPathHash, LocalDefId, LOCAL_CRATE};
50 pub mod lev_distance;
51 mod span_encoding;
52 pub use span_encoding::{Span, DUMMY_SP};
53
54 pub mod symbol;
55 pub use symbol::{sym, Symbol};
56
57 mod analyze_source_file;
58 pub mod fatal_error;
59
60 pub mod profiling;
61
62 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
63 use rustc_data_structures::sync::{Lock, Lrc};
64
65 use std::borrow::Cow;
66 use std::cmp::{self, Ordering};
67 use std::fmt;
68 use std::hash::Hash;
69 use std::ops::{Add, Range, Sub};
70 use std::path::{Path, PathBuf};
71 use std::str::FromStr;
72 use std::sync::Arc;
73
74 use md5::Digest;
75 use md5::Md5;
76 use sha1::Sha1;
77 use sha2::Sha256;
78
79 #[cfg(test)]
80 mod tests;
81
82 // Per-session global variables: this struct is stored in thread-local storage
83 // in such a way that it is accessible without any kind of handle to all
84 // threads within the compilation session, but is not accessible outside the
85 // session.
86 pub struct SessionGlobals {
87 symbol_interner: symbol::Interner,
88 span_interner: Lock<span_encoding::SpanInterner>,
89 hygiene_data: Lock<hygiene::HygieneData>,
90 source_map: Lock<Option<Lrc<SourceMap>>>,
91 }
92
93 impl SessionGlobals {
94 pub fn new(edition: Edition) -> SessionGlobals {
95 SessionGlobals {
96 symbol_interner: symbol::Interner::fresh(),
97 span_interner: Lock::new(span_encoding::SpanInterner::default()),
98 hygiene_data: Lock::new(hygiene::HygieneData::new(edition)),
99 source_map: Lock::new(None),
100 }
101 }
102 }
103
104 #[inline]
105 pub fn create_session_globals_then<R>(edition: Edition, f: impl FnOnce() -> R) -> R {
106 assert!(
107 !SESSION_GLOBALS.is_set(),
108 "SESSION_GLOBALS should never be overwritten! \
109 Use another thread if you need another SessionGlobals"
110 );
111 let session_globals = SessionGlobals::new(edition);
112 SESSION_GLOBALS.set(&session_globals, f)
113 }
114
115 #[inline]
116 pub fn set_session_globals_then<R>(session_globals: &SessionGlobals, f: impl FnOnce() -> R) -> R {
117 assert!(
118 !SESSION_GLOBALS.is_set(),
119 "SESSION_GLOBALS should never be overwritten! \
120 Use another thread if you need another SessionGlobals"
121 );
122 SESSION_GLOBALS.set(session_globals, f)
123 }
124
125 #[inline]
126 pub fn create_default_session_if_not_set_then<R, F>(f: F) -> R
127 where
128 F: FnOnce(&SessionGlobals) -> R,
129 {
130 create_session_if_not_set_then(edition::DEFAULT_EDITION, f)
131 }
132
133 #[inline]
134 pub fn create_session_if_not_set_then<R, F>(edition: Edition, f: F) -> R
135 where
136 F: FnOnce(&SessionGlobals) -> R,
137 {
138 if !SESSION_GLOBALS.is_set() {
139 let session_globals = SessionGlobals::new(edition);
140 SESSION_GLOBALS.set(&session_globals, || SESSION_GLOBALS.with(f))
141 } else {
142 SESSION_GLOBALS.with(f)
143 }
144 }
145
146 #[inline]
147 pub fn with_session_globals<R, F>(f: F) -> R
148 where
149 F: FnOnce(&SessionGlobals) -> R,
150 {
151 SESSION_GLOBALS.with(f)
152 }
153
154 #[inline]
155 pub fn create_default_session_globals_then<R>(f: impl FnOnce() -> R) -> R {
156 create_session_globals_then(edition::DEFAULT_EDITION, f)
157 }
158
159 // If this ever becomes non thread-local, `decode_syntax_context`
160 // and `decode_expn_id` will need to be updated to handle concurrent
161 // deserialization.
162 scoped_tls::scoped_thread_local!(static SESSION_GLOBALS: SessionGlobals);
163
164 // FIXME: We should use this enum or something like it to get rid of the
165 // use of magic `/rust/1.x/...` paths across the board.
166 #[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd)]
167 #[derive(Decodable)]
168 pub enum RealFileName {
169 LocalPath(PathBuf),
170 /// For remapped paths (namely paths into libstd that have been mapped
171 /// to the appropriate spot on the local host's file system, and local file
172 /// system paths that have been remapped with `FilePathMapping`),
173 Remapped {
174 /// `local_path` is the (host-dependent) local path to the file. This is
175 /// None if the file was imported from another crate
176 local_path: Option<PathBuf>,
177 /// `virtual_name` is the stable path rustc will store internally within
178 /// build artifacts.
179 virtual_name: PathBuf,
180 },
181 }
182
183 impl Hash for RealFileName {
184 fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
185 // To prevent #70924 from happening again we should only hash the
186 // remapped (virtualized) path if that exists. This is because
187 // virtualized paths to sysroot crates (/rust/$hash or /rust/$version)
188 // remain stable even if the corresponding local_path changes
189 self.remapped_path_if_available().hash(state)
190 }
191 }
192
193 // This is functionally identical to #[derive(Encodable)], with the exception of
194 // an added assert statement
195 impl<S: Encoder> Encodable<S> for RealFileName {
196 fn encode(&self, encoder: &mut S) {
197 match *self {
198 RealFileName::LocalPath(ref local_path) => encoder.emit_enum_variant(0, |encoder| {
199 local_path.encode(encoder);
200 }),
201
202 RealFileName::Remapped { ref local_path, ref virtual_name } => encoder
203 .emit_enum_variant(1, |encoder| {
204 // For privacy and build reproducibility, we must not embed host-dependant path in artifacts
205 // if they have been remapped by --remap-path-prefix
206 assert!(local_path.is_none());
207 local_path.encode(encoder);
208 virtual_name.encode(encoder);
209 }),
210 }
211 }
212 }
213
214 impl RealFileName {
215 /// Returns the path suitable for reading from the file system on the local host,
216 /// if this information exists.
217 /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
218 pub fn local_path(&self) -> Option<&Path> {
219 match self {
220 RealFileName::LocalPath(p) => Some(p),
221 RealFileName::Remapped { local_path: p, virtual_name: _ } => {
222 p.as_ref().map(PathBuf::as_path)
223 }
224 }
225 }
226
227 /// Returns the path suitable for reading from the file system on the local host,
228 /// if this information exists.
229 /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
230 pub fn into_local_path(self) -> Option<PathBuf> {
231 match self {
232 RealFileName::LocalPath(p) => Some(p),
233 RealFileName::Remapped { local_path: p, virtual_name: _ } => p,
234 }
235 }
236
237 /// Returns the path suitable for embedding into build artifacts. This would still
238 /// be a local path if it has not been remapped. A remapped path will not correspond
239 /// to a valid file system path: see `local_path_if_available()` for something that
240 /// is more likely to return paths into the local host file system.
241 pub fn remapped_path_if_available(&self) -> &Path {
242 match self {
243 RealFileName::LocalPath(p)
244 | RealFileName::Remapped { local_path: _, virtual_name: p } => &p,
245 }
246 }
247
248 /// Returns the path suitable for reading from the file system on the local host,
249 /// if this information exists. Otherwise returns the remapped name.
250 /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
251 pub fn local_path_if_available(&self) -> &Path {
252 match self {
253 RealFileName::LocalPath(path)
254 | RealFileName::Remapped { local_path: None, virtual_name: path }
255 | RealFileName::Remapped { local_path: Some(path), virtual_name: _ } => path,
256 }
257 }
258
259 pub fn to_string_lossy(&self, display_pref: FileNameDisplayPreference) -> Cow<'_, str> {
260 match display_pref {
261 FileNameDisplayPreference::Local => self.local_path_if_available().to_string_lossy(),
262 FileNameDisplayPreference::Remapped => {
263 self.remapped_path_if_available().to_string_lossy()
264 }
265 }
266 }
267 }
268
269 /// Differentiates between real files and common virtual files.
270 #[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Hash)]
271 #[derive(Decodable, Encodable)]
272 pub enum FileName {
273 Real(RealFileName),
274 /// Call to `quote!`.
275 QuoteExpansion(u64),
276 /// Command line.
277 Anon(u64),
278 /// Hack in `src/librustc_ast/parse.rs`.
279 // FIXME(jseyfried)
280 MacroExpansion(u64),
281 ProcMacroSourceCode(u64),
282 /// Strings provided as `--cfg [cfgspec]` stored in a `crate_cfg`.
283 CfgSpec(u64),
284 /// Strings provided as crate attributes in the CLI.
285 CliCrateAttr(u64),
286 /// Custom sources for explicit parser calls from plugins and drivers.
287 Custom(String),
288 DocTest(PathBuf, isize),
289 /// Post-substitution inline assembly from LLVM.
290 InlineAsm(u64),
291 }
292
293 impl From<PathBuf> for FileName {
294 fn from(p: PathBuf) -> Self {
295 assert!(!p.to_string_lossy().ends_with('>'));
296 FileName::Real(RealFileName::LocalPath(p))
297 }
298 }
299
300 #[derive(Clone, Copy, Eq, PartialEq, Hash, Debug)]
301 pub enum FileNameDisplayPreference {
302 Remapped,
303 Local,
304 }
305
306 pub struct FileNameDisplay<'a> {
307 inner: &'a FileName,
308 display_pref: FileNameDisplayPreference,
309 }
310
311 impl fmt::Display for FileNameDisplay<'_> {
312 fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
313 use FileName::*;
314 match *self.inner {
315 Real(ref name) => {
316 write!(fmt, "{}", name.to_string_lossy(self.display_pref))
317 }
318 QuoteExpansion(_) => write!(fmt, "<quote expansion>"),
319 MacroExpansion(_) => write!(fmt, "<macro expansion>"),
320 Anon(_) => write!(fmt, "<anon>"),
321 ProcMacroSourceCode(_) => write!(fmt, "<proc-macro source code>"),
322 CfgSpec(_) => write!(fmt, "<cfgspec>"),
323 CliCrateAttr(_) => write!(fmt, "<crate attribute>"),
324 Custom(ref s) => write!(fmt, "<{}>", s),
325 DocTest(ref path, _) => write!(fmt, "{}", path.display()),
326 InlineAsm(_) => write!(fmt, "<inline asm>"),
327 }
328 }
329 }
330
331 impl<'a> FileNameDisplay<'a> {
332 pub fn to_string_lossy(&self) -> Cow<'a, str> {
333 match self.inner {
334 FileName::Real(ref inner) => inner.to_string_lossy(self.display_pref),
335 _ => Cow::from(self.to_string()),
336 }
337 }
338 }
339
340 impl FileName {
341 pub fn is_real(&self) -> bool {
342 use FileName::*;
343 match *self {
344 Real(_) => true,
345 Anon(_)
346 | MacroExpansion(_)
347 | ProcMacroSourceCode(_)
348 | CfgSpec(_)
349 | CliCrateAttr(_)
350 | Custom(_)
351 | QuoteExpansion(_)
352 | DocTest(_, _)
353 | InlineAsm(_) => false,
354 }
355 }
356
357 pub fn prefer_remapped(&self) -> FileNameDisplay<'_> {
358 FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Remapped }
359 }
360
361 // This may include transient local filesystem information.
362 // Must not be embedded in build outputs.
363 pub fn prefer_local(&self) -> FileNameDisplay<'_> {
364 FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Local }
365 }
366
367 pub fn display(&self, display_pref: FileNameDisplayPreference) -> FileNameDisplay<'_> {
368 FileNameDisplay { inner: self, display_pref }
369 }
370
371 pub fn macro_expansion_source_code(src: &str) -> FileName {
372 let mut hasher = StableHasher::new();
373 src.hash(&mut hasher);
374 FileName::MacroExpansion(hasher.finish())
375 }
376
377 pub fn anon_source_code(src: &str) -> FileName {
378 let mut hasher = StableHasher::new();
379 src.hash(&mut hasher);
380 FileName::Anon(hasher.finish())
381 }
382
383 pub fn proc_macro_source_code(src: &str) -> FileName {
384 let mut hasher = StableHasher::new();
385 src.hash(&mut hasher);
386 FileName::ProcMacroSourceCode(hasher.finish())
387 }
388
389 pub fn cfg_spec_source_code(src: &str) -> FileName {
390 let mut hasher = StableHasher::new();
391 src.hash(&mut hasher);
392 FileName::QuoteExpansion(hasher.finish())
393 }
394
395 pub fn cli_crate_attr_source_code(src: &str) -> FileName {
396 let mut hasher = StableHasher::new();
397 src.hash(&mut hasher);
398 FileName::CliCrateAttr(hasher.finish())
399 }
400
401 pub fn doc_test_source_code(path: PathBuf, line: isize) -> FileName {
402 FileName::DocTest(path, line)
403 }
404
405 pub fn inline_asm_source_code(src: &str) -> FileName {
406 let mut hasher = StableHasher::new();
407 src.hash(&mut hasher);
408 FileName::InlineAsm(hasher.finish())
409 }
410 }
411
412 /// Represents a span.
413 ///
414 /// Spans represent a region of code, used for error reporting. Positions in spans
415 /// are *absolute* positions from the beginning of the [`SourceMap`], not positions
416 /// relative to [`SourceFile`]s. Methods on the `SourceMap` can be used to relate spans back
417 /// to the original source.
418 ///
419 /// You must be careful if the span crosses more than one file, since you will not be
420 /// able to use many of the functions on spans in source_map and you cannot assume
421 /// that the length of the span is equal to `span.hi - span.lo`; there may be space in the
422 /// [`BytePos`] range between files.
423 ///
424 /// `SpanData` is public because `Span` uses a thread-local interner and can't be
425 /// sent to other threads, but some pieces of performance infra run in a separate thread.
426 /// Using `Span` is generally preferred.
427 #[derive(Clone, Copy, Hash, PartialEq, Eq)]
428 pub struct SpanData {
429 pub lo: BytePos,
430 pub hi: BytePos,
431 /// Information about where the macro came from, if this piece of
432 /// code was created by a macro expansion.
433 pub ctxt: SyntaxContext,
434 pub parent: Option<LocalDefId>,
435 }
436
437 // Order spans by position in the file.
438 impl Ord for SpanData {
439 fn cmp(&self, other: &Self) -> Ordering {
440 let SpanData {
441 lo: s_lo,
442 hi: s_hi,
443 ctxt: s_ctxt,
444 // `LocalDefId` does not implement `Ord`.
445 // The other fields are enough to determine in-file order.
446 parent: _,
447 } = self;
448 let SpanData {
449 lo: o_lo,
450 hi: o_hi,
451 ctxt: o_ctxt,
452 // `LocalDefId` does not implement `Ord`.
453 // The other fields are enough to determine in-file order.
454 parent: _,
455 } = other;
456
457 (s_lo, s_hi, s_ctxt).cmp(&(o_lo, o_hi, o_ctxt))
458 }
459 }
460
461 impl PartialOrd for SpanData {
462 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
463 Some(self.cmp(other))
464 }
465 }
466
467 impl SpanData {
468 #[inline]
469 pub fn span(&self) -> Span {
470 Span::new(self.lo, self.hi, self.ctxt, self.parent)
471 }
472 #[inline]
473 pub fn with_lo(&self, lo: BytePos) -> Span {
474 Span::new(lo, self.hi, self.ctxt, self.parent)
475 }
476 #[inline]
477 pub fn with_hi(&self, hi: BytePos) -> Span {
478 Span::new(self.lo, hi, self.ctxt, self.parent)
479 }
480 #[inline]
481 pub fn with_ctxt(&self, ctxt: SyntaxContext) -> Span {
482 Span::new(self.lo, self.hi, ctxt, self.parent)
483 }
484 #[inline]
485 pub fn with_parent(&self, parent: Option<LocalDefId>) -> Span {
486 Span::new(self.lo, self.hi, self.ctxt, parent)
487 }
488 /// Returns `true` if this is a dummy span with any hygienic context.
489 #[inline]
490 pub fn is_dummy(self) -> bool {
491 self.lo.0 == 0 && self.hi.0 == 0
492 }
493 /// Returns `true` if `self` fully encloses `other`.
494 pub fn contains(self, other: Self) -> bool {
495 self.lo <= other.lo && other.hi <= self.hi
496 }
497 }
498
499 // The interner is pointed to by a thread local value which is only set on the main thread
500 // with parallelization is disabled. So we don't allow `Span` to transfer between threads
501 // to avoid panics and other errors, even though it would be memory safe to do so.
502 #[cfg(not(parallel_compiler))]
503 impl !Send for Span {}
504 #[cfg(not(parallel_compiler))]
505 impl !Sync for Span {}
506
507 impl PartialOrd for Span {
508 fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
509 PartialOrd::partial_cmp(&self.data(), &rhs.data())
510 }
511 }
512 impl Ord for Span {
513 fn cmp(&self, rhs: &Self) -> Ordering {
514 Ord::cmp(&self.data(), &rhs.data())
515 }
516 }
517
518 impl Span {
519 #[inline]
520 pub fn lo(self) -> BytePos {
521 self.data().lo
522 }
523 #[inline]
524 pub fn with_lo(self, lo: BytePos) -> Span {
525 self.data().with_lo(lo)
526 }
527 #[inline]
528 pub fn hi(self) -> BytePos {
529 self.data().hi
530 }
531 #[inline]
532 pub fn with_hi(self, hi: BytePos) -> Span {
533 self.data().with_hi(hi)
534 }
535 #[inline]
536 pub fn ctxt(self) -> SyntaxContext {
537 self.data_untracked().ctxt
538 }
539 pub fn eq_ctxt(self, other: Span) -> bool {
540 self.data_untracked().ctxt == other.data_untracked().ctxt
541 }
542 #[inline]
543 pub fn with_ctxt(self, ctxt: SyntaxContext) -> Span {
544 self.data_untracked().with_ctxt(ctxt)
545 }
546 #[inline]
547 pub fn parent(self) -> Option<LocalDefId> {
548 self.data().parent
549 }
550 #[inline]
551 pub fn with_parent(self, ctxt: Option<LocalDefId>) -> Span {
552 self.data().with_parent(ctxt)
553 }
554
555 /// Returns `true` if this is a dummy span with any hygienic context.
556 #[inline]
557 pub fn is_dummy(self) -> bool {
558 self.data_untracked().is_dummy()
559 }
560
561 /// Returns `true` if this span comes from any kind of macro, desugaring or inlining.
562 #[inline]
563 pub fn from_expansion(self) -> bool {
564 self.ctxt() != SyntaxContext::root()
565 }
566
567 /// Returns `true` if `span` originates in a macro's expansion where debuginfo should be
568 /// collapsed.
569 pub fn in_macro_expansion_with_collapse_debuginfo(self) -> bool {
570 let outer_expn = self.ctxt().outer_expn_data();
571 matches!(outer_expn.kind, ExpnKind::Macro(..)) && outer_expn.collapse_debuginfo
572 }
573
574 /// Returns `true` if this span comes from MIR inlining.
575 pub fn is_inlined(self) -> bool {
576 let outer_expn = self.ctxt().outer_expn_data();
577 matches!(outer_expn.kind, ExpnKind::Inlined)
578 }
579
580 /// Returns `true` if `span` originates in a derive-macro's expansion.
581 pub fn in_derive_expansion(self) -> bool {
582 matches!(self.ctxt().outer_expn_data().kind, ExpnKind::Macro(MacroKind::Derive, _))
583 }
584
585 /// Gate suggestions that would not be appropriate in a context the user didn't write.
586 pub fn can_be_used_for_suggestions(self) -> bool {
587 !self.from_expansion()
588 // FIXME: If this span comes from a `derive` macro but it points at code the user wrote,
589 // the callsite span and the span will be pointing at different places. It also means that
590 // we can safely provide suggestions on this span.
591 || (matches!(self.ctxt().outer_expn_data().kind, ExpnKind::Macro(MacroKind::Derive, _))
592 && self.parent_callsite().map(|p| (p.lo(), p.hi())) != Some((self.lo(), self.hi())))
593 }
594
595 #[inline]
596 pub fn with_root_ctxt(lo: BytePos, hi: BytePos) -> Span {
597 Span::new(lo, hi, SyntaxContext::root(), None)
598 }
599
600 /// Returns a new span representing an empty span at the beginning of this span.
601 #[inline]
602 pub fn shrink_to_lo(self) -> Span {
603 let span = self.data_untracked();
604 span.with_hi(span.lo)
605 }
606 /// Returns a new span representing an empty span at the end of this span.
607 #[inline]
608 pub fn shrink_to_hi(self) -> Span {
609 let span = self.data_untracked();
610 span.with_lo(span.hi)
611 }
612
613 #[inline]
614 /// Returns `true` if `hi == lo`.
615 pub fn is_empty(self) -> bool {
616 let span = self.data_untracked();
617 span.hi == span.lo
618 }
619
620 /// Returns `self` if `self` is not the dummy span, and `other` otherwise.
621 pub fn substitute_dummy(self, other: Span) -> Span {
622 if self.is_dummy() { other } else { self }
623 }
624
625 /// Returns `true` if `self` fully encloses `other`.
626 pub fn contains(self, other: Span) -> bool {
627 let span = self.data();
628 let other = other.data();
629 span.contains(other)
630 }
631
632 /// Returns `true` if `self` touches `other`.
633 pub fn overlaps(self, other: Span) -> bool {
634 let span = self.data();
635 let other = other.data();
636 span.lo < other.hi && other.lo < span.hi
637 }
638
639 /// Returns `true` if the spans are equal with regards to the source text.
640 ///
641 /// Use this instead of `==` when either span could be generated code,
642 /// and you only care that they point to the same bytes of source text.
643 pub fn source_equal(self, other: Span) -> bool {
644 let span = self.data();
645 let other = other.data();
646 span.lo == other.lo && span.hi == other.hi
647 }
648
649 /// Returns `Some(span)`, where the start is trimmed by the end of `other`.
650 pub fn trim_start(self, other: Span) -> Option<Span> {
651 let span = self.data();
652 let other = other.data();
653 if span.hi > other.hi { Some(span.with_lo(cmp::max(span.lo, other.hi))) } else { None }
654 }
655
656 /// Returns the source span -- this is either the supplied span, or the span for
657 /// the macro callsite that expanded to it.
658 pub fn source_callsite(self) -> Span {
659 let expn_data = self.ctxt().outer_expn_data();
660 if !expn_data.is_root() { expn_data.call_site.source_callsite() } else { self }
661 }
662
663 /// The `Span` for the tokens in the previous macro expansion from which `self` was generated,
664 /// if any.
665 pub fn parent_callsite(self) -> Option<Span> {
666 let expn_data = self.ctxt().outer_expn_data();
667 if !expn_data.is_root() { Some(expn_data.call_site) } else { None }
668 }
669
670 /// Walk down the expansion ancestors to find a span that's contained within `outer`.
671 pub fn find_ancestor_inside(mut self, outer: Span) -> Option<Span> {
672 while !outer.contains(self) {
673 self = self.parent_callsite()?;
674 }
675 Some(self)
676 }
677
678 /// Like `find_ancestor_inside`, but specifically for when spans might not
679 /// overlaps. Take care when using this, and prefer `find_ancestor_inside`
680 /// when you know that the spans are nested (modulo macro expansion).
681 pub fn find_ancestor_in_same_ctxt(mut self, other: Span) -> Option<Span> {
682 while !Span::eq_ctxt(self, other) {
683 self = self.parent_callsite()?;
684 }
685 Some(self)
686 }
687
688 /// Edition of the crate from which this span came.
689 pub fn edition(self) -> edition::Edition {
690 self.ctxt().edition()
691 }
692
693 #[inline]
694 pub fn rust_2015(self) -> bool {
695 self.edition() == edition::Edition::Edition2015
696 }
697
698 #[inline]
699 pub fn rust_2018(self) -> bool {
700 self.edition() >= edition::Edition::Edition2018
701 }
702
703 #[inline]
704 pub fn rust_2021(self) -> bool {
705 self.edition() >= edition::Edition::Edition2021
706 }
707
708 #[inline]
709 pub fn rust_2024(self) -> bool {
710 self.edition() >= edition::Edition::Edition2024
711 }
712
713 /// Returns the source callee.
714 ///
715 /// Returns `None` if the supplied span has no expansion trace,
716 /// else returns the `ExpnData` for the macro definition
717 /// corresponding to the source callsite.
718 pub fn source_callee(self) -> Option<ExpnData> {
719 fn source_callee(expn_data: ExpnData) -> ExpnData {
720 let next_expn_data = expn_data.call_site.ctxt().outer_expn_data();
721 if !next_expn_data.is_root() { source_callee(next_expn_data) } else { expn_data }
722 }
723 let expn_data = self.ctxt().outer_expn_data();
724 if !expn_data.is_root() { Some(source_callee(expn_data)) } else { None }
725 }
726
727 /// Checks if a span is "internal" to a macro in which `#[unstable]`
728 /// items can be used (that is, a macro marked with
729 /// `#[allow_internal_unstable]`).
730 pub fn allows_unstable(self, feature: Symbol) -> bool {
731 self.ctxt()
732 .outer_expn_data()
733 .allow_internal_unstable
734 .map_or(false, |features| features.iter().any(|&f| f == feature))
735 }
736
737 /// Checks if this span arises from a compiler desugaring of kind `kind`.
738 pub fn is_desugaring(self, kind: DesugaringKind) -> bool {
739 match self.ctxt().outer_expn_data().kind {
740 ExpnKind::Desugaring(k) => k == kind,
741 _ => false,
742 }
743 }
744
745 /// Returns the compiler desugaring that created this span, or `None`
746 /// if this span is not from a desugaring.
747 pub fn desugaring_kind(self) -> Option<DesugaringKind> {
748 match self.ctxt().outer_expn_data().kind {
749 ExpnKind::Desugaring(k) => Some(k),
750 _ => None,
751 }
752 }
753
754 /// Checks if a span is "internal" to a macro in which `unsafe`
755 /// can be used without triggering the `unsafe_code` lint.
756 // (that is, a macro marked with `#[allow_internal_unsafe]`).
757 pub fn allows_unsafe(self) -> bool {
758 self.ctxt().outer_expn_data().allow_internal_unsafe
759 }
760
761 pub fn macro_backtrace(mut self) -> impl Iterator<Item = ExpnData> {
762 let mut prev_span = DUMMY_SP;
763 std::iter::from_fn(move || {
764 loop {
765 let expn_data = self.ctxt().outer_expn_data();
766 if expn_data.is_root() {
767 return None;
768 }
769
770 let is_recursive = expn_data.call_site.source_equal(prev_span);
771
772 prev_span = self;
773 self = expn_data.call_site;
774
775 // Don't print recursive invocations.
776 if !is_recursive {
777 return Some(expn_data);
778 }
779 }
780 })
781 }
782
783 /// Returns a `Span` that would enclose both `self` and `end`.
784 ///
785 /// ```text
786 /// ____ ___
787 /// self lorem ipsum end
788 /// ^^^^^^^^^^^^^^^^^^^^
789 /// ```
790 pub fn to(self, end: Span) -> Span {
791 let span_data = self.data();
792 let end_data = end.data();
793 // FIXME(jseyfried): `self.ctxt` should always equal `end.ctxt` here (cf. issue #23480).
794 // Return the macro span on its own to avoid weird diagnostic output. It is preferable to
795 // have an incomplete span than a completely nonsensical one.
796 if span_data.ctxt != end_data.ctxt {
797 if span_data.ctxt == SyntaxContext::root() {
798 return end;
799 } else if end_data.ctxt == SyntaxContext::root() {
800 return self;
801 }
802 // Both spans fall within a macro.
803 // FIXME(estebank): check if it is the *same* macro.
804 }
805 Span::new(
806 cmp::min(span_data.lo, end_data.lo),
807 cmp::max(span_data.hi, end_data.hi),
808 if span_data.ctxt == SyntaxContext::root() { end_data.ctxt } else { span_data.ctxt },
809 if span_data.parent == end_data.parent { span_data.parent } else { None },
810 )
811 }
812
813 /// Returns a `Span` between the end of `self` to the beginning of `end`.
814 ///
815 /// ```text
816 /// ____ ___
817 /// self lorem ipsum end
818 /// ^^^^^^^^^^^^^
819 /// ```
820 pub fn between(self, end: Span) -> Span {
821 let span = self.data();
822 let end = end.data();
823 Span::new(
824 span.hi,
825 end.lo,
826 if end.ctxt == SyntaxContext::root() { end.ctxt } else { span.ctxt },
827 if span.parent == end.parent { span.parent } else { None },
828 )
829 }
830
831 /// Returns a `Span` from the beginning of `self` until the beginning of `end`.
832 ///
833 /// ```text
834 /// ____ ___
835 /// self lorem ipsum end
836 /// ^^^^^^^^^^^^^^^^^
837 /// ```
838 pub fn until(self, end: Span) -> Span {
839 // Most of this function's body is copied from `to`.
840 // We can't just do `self.to(end.shrink_to_lo())`,
841 // because to also does some magic where it uses min/max so
842 // it can handle overlapping spans. Some advanced mis-use of
843 // `until` with different ctxts makes this visible.
844 let span_data = self.data();
845 let end_data = end.data();
846 // FIXME(jseyfried): `self.ctxt` should always equal `end.ctxt` here (cf. issue #23480).
847 // Return the macro span on its own to avoid weird diagnostic output. It is preferable to
848 // have an incomplete span than a completely nonsensical one.
849 if span_data.ctxt != end_data.ctxt {
850 if span_data.ctxt == SyntaxContext::root() {
851 return end;
852 } else if end_data.ctxt == SyntaxContext::root() {
853 return self;
854 }
855 // Both spans fall within a macro.
856 // FIXME(estebank): check if it is the *same* macro.
857 }
858 Span::new(
859 span_data.lo,
860 end_data.lo,
861 if end_data.ctxt == SyntaxContext::root() { end_data.ctxt } else { span_data.ctxt },
862 if span_data.parent == end_data.parent { span_data.parent } else { None },
863 )
864 }
865
866 pub fn from_inner(self, inner: InnerSpan) -> Span {
867 let span = self.data();
868 Span::new(
869 span.lo + BytePos::from_usize(inner.start),
870 span.lo + BytePos::from_usize(inner.end),
871 span.ctxt,
872 span.parent,
873 )
874 }
875
876 /// Equivalent of `Span::def_site` from the proc macro API,
877 /// except that the location is taken from the `self` span.
878 pub fn with_def_site_ctxt(self, expn_id: ExpnId) -> Span {
879 self.with_ctxt_from_mark(expn_id, Transparency::Opaque)
880 }
881
882 /// Equivalent of `Span::call_site` from the proc macro API,
883 /// except that the location is taken from the `self` span.
884 pub fn with_call_site_ctxt(self, expn_id: ExpnId) -> Span {
885 self.with_ctxt_from_mark(expn_id, Transparency::Transparent)
886 }
887
888 /// Equivalent of `Span::mixed_site` from the proc macro API,
889 /// except that the location is taken from the `self` span.
890 pub fn with_mixed_site_ctxt(self, expn_id: ExpnId) -> Span {
891 self.with_ctxt_from_mark(expn_id, Transparency::SemiTransparent)
892 }
893
894 /// Produces a span with the same location as `self` and context produced by a macro with the
895 /// given ID and transparency, assuming that macro was defined directly and not produced by
896 /// some other macro (which is the case for built-in and procedural macros).
897 pub fn with_ctxt_from_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
898 self.with_ctxt(SyntaxContext::root().apply_mark(expn_id, transparency))
899 }
900
901 #[inline]
902 pub fn apply_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
903 let span = self.data();
904 span.with_ctxt(span.ctxt.apply_mark(expn_id, transparency))
905 }
906
907 #[inline]
908 pub fn remove_mark(&mut self) -> ExpnId {
909 let mut span = self.data();
910 let mark = span.ctxt.remove_mark();
911 *self = Span::new(span.lo, span.hi, span.ctxt, span.parent);
912 mark
913 }
914
915 #[inline]
916 pub fn adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
917 let mut span = self.data();
918 let mark = span.ctxt.adjust(expn_id);
919 *self = Span::new(span.lo, span.hi, span.ctxt, span.parent);
920 mark
921 }
922
923 #[inline]
924 pub fn normalize_to_macros_2_0_and_adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
925 let mut span = self.data();
926 let mark = span.ctxt.normalize_to_macros_2_0_and_adjust(expn_id);
927 *self = Span::new(span.lo, span.hi, span.ctxt, span.parent);
928 mark
929 }
930
931 #[inline]
932 pub fn glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span) -> Option<Option<ExpnId>> {
933 let mut span = self.data();
934 let mark = span.ctxt.glob_adjust(expn_id, glob_span);
935 *self = Span::new(span.lo, span.hi, span.ctxt, span.parent);
936 mark
937 }
938
939 #[inline]
940 pub fn reverse_glob_adjust(
941 &mut self,
942 expn_id: ExpnId,
943 glob_span: Span,
944 ) -> Option<Option<ExpnId>> {
945 let mut span = self.data();
946 let mark = span.ctxt.reverse_glob_adjust(expn_id, glob_span);
947 *self = Span::new(span.lo, span.hi, span.ctxt, span.parent);
948 mark
949 }
950
951 #[inline]
952 pub fn normalize_to_macros_2_0(self) -> Span {
953 let span = self.data();
954 span.with_ctxt(span.ctxt.normalize_to_macros_2_0())
955 }
956
957 #[inline]
958 pub fn normalize_to_macro_rules(self) -> Span {
959 let span = self.data();
960 span.with_ctxt(span.ctxt.normalize_to_macro_rules())
961 }
962 }
963
964 impl Default for Span {
965 fn default() -> Self {
966 DUMMY_SP
967 }
968 }
969
970 impl<E: Encoder> Encodable<E> for Span {
971 default fn encode(&self, s: &mut E) {
972 let span = self.data();
973 span.lo.encode(s);
974 span.hi.encode(s);
975 }
976 }
977 impl<D: Decoder> Decodable<D> for Span {
978 default fn decode(s: &mut D) -> Span {
979 let lo = Decodable::decode(s);
980 let hi = Decodable::decode(s);
981
982 Span::new(lo, hi, SyntaxContext::root(), None)
983 }
984 }
985
986 /// Calls the provided closure, using the provided `SourceMap` to format
987 /// any spans that are debug-printed during the closure's execution.
988 ///
989 /// Normally, the global `TyCtxt` is used to retrieve the `SourceMap`
990 /// (see `rustc_interface::callbacks::span_debug1`). However, some parts
991 /// of the compiler (e.g. `rustc_parse`) may debug-print `Span`s before
992 /// a `TyCtxt` is available. In this case, we fall back to
993 /// the `SourceMap` provided to this function. If that is not available,
994 /// we fall back to printing the raw `Span` field values.
995 pub fn with_source_map<T, F: FnOnce() -> T>(source_map: Lrc<SourceMap>, f: F) -> T {
996 with_session_globals(|session_globals| {
997 *session_globals.source_map.borrow_mut() = Some(source_map);
998 });
999 struct ClearSourceMap;
1000 impl Drop for ClearSourceMap {
1001 fn drop(&mut self) {
1002 with_session_globals(|session_globals| {
1003 session_globals.source_map.borrow_mut().take();
1004 });
1005 }
1006 }
1007
1008 let _guard = ClearSourceMap;
1009 f()
1010 }
1011
1012 impl fmt::Debug for Span {
1013 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1014 with_session_globals(|session_globals| {
1015 if let Some(source_map) = &*session_globals.source_map.borrow() {
1016 write!(f, "{} ({:?})", source_map.span_to_diagnostic_string(*self), self.ctxt())
1017 } else {
1018 f.debug_struct("Span")
1019 .field("lo", &self.lo())
1020 .field("hi", &self.hi())
1021 .field("ctxt", &self.ctxt())
1022 .finish()
1023 }
1024 })
1025 }
1026 }
1027
1028 impl fmt::Debug for SpanData {
1029 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1030 fmt::Debug::fmt(&Span::new(self.lo, self.hi, self.ctxt, self.parent), f)
1031 }
1032 }
1033
1034 /// Identifies an offset of a multi-byte character in a `SourceFile`.
1035 #[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug)]
1036 pub struct MultiByteChar {
1037 /// The absolute offset of the character in the `SourceMap`.
1038 pub pos: BytePos,
1039 /// The number of bytes, `>= 2`.
1040 pub bytes: u8,
1041 }
1042
1043 /// Identifies an offset of a non-narrow character in a `SourceFile`.
1044 #[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug)]
1045 pub enum NonNarrowChar {
1046 /// Represents a zero-width character.
1047 ZeroWidth(BytePos),
1048 /// Represents a wide (full-width) character.
1049 Wide(BytePos),
1050 /// Represents a tab character, represented visually with a width of 4 characters.
1051 Tab(BytePos),
1052 }
1053
1054 impl NonNarrowChar {
1055 fn new(pos: BytePos, width: usize) -> Self {
1056 match width {
1057 0 => NonNarrowChar::ZeroWidth(pos),
1058 2 => NonNarrowChar::Wide(pos),
1059 4 => NonNarrowChar::Tab(pos),
1060 _ => panic!("width {} given for non-narrow character", width),
1061 }
1062 }
1063
1064 /// Returns the absolute offset of the character in the `SourceMap`.
1065 pub fn pos(&self) -> BytePos {
1066 match *self {
1067 NonNarrowChar::ZeroWidth(p) | NonNarrowChar::Wide(p) | NonNarrowChar::Tab(p) => p,
1068 }
1069 }
1070
1071 /// Returns the width of the character, 0 (zero-width) or 2 (wide).
1072 pub fn width(&self) -> usize {
1073 match *self {
1074 NonNarrowChar::ZeroWidth(_) => 0,
1075 NonNarrowChar::Wide(_) => 2,
1076 NonNarrowChar::Tab(_) => 4,
1077 }
1078 }
1079 }
1080
1081 impl Add<BytePos> for NonNarrowChar {
1082 type Output = Self;
1083
1084 fn add(self, rhs: BytePos) -> Self {
1085 match self {
1086 NonNarrowChar::ZeroWidth(pos) => NonNarrowChar::ZeroWidth(pos + rhs),
1087 NonNarrowChar::Wide(pos) => NonNarrowChar::Wide(pos + rhs),
1088 NonNarrowChar::Tab(pos) => NonNarrowChar::Tab(pos + rhs),
1089 }
1090 }
1091 }
1092
1093 impl Sub<BytePos> for NonNarrowChar {
1094 type Output = Self;
1095
1096 fn sub(self, rhs: BytePos) -> Self {
1097 match self {
1098 NonNarrowChar::ZeroWidth(pos) => NonNarrowChar::ZeroWidth(pos - rhs),
1099 NonNarrowChar::Wide(pos) => NonNarrowChar::Wide(pos - rhs),
1100 NonNarrowChar::Tab(pos) => NonNarrowChar::Tab(pos - rhs),
1101 }
1102 }
1103 }
1104
1105 /// Identifies an offset of a character that was normalized away from `SourceFile`.
1106 #[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug)]
1107 pub struct NormalizedPos {
1108 /// The absolute offset of the character in the `SourceMap`.
1109 pub pos: BytePos,
1110 /// The difference between original and normalized string at position.
1111 pub diff: u32,
1112 }
1113
1114 #[derive(PartialEq, Eq, Clone, Debug)]
1115 pub enum ExternalSource {
1116 /// No external source has to be loaded, since the `SourceFile` represents a local crate.
1117 Unneeded,
1118 Foreign {
1119 kind: ExternalSourceKind,
1120 /// Index of the file inside metadata.
1121 metadata_index: u32,
1122 },
1123 }
1124
1125 /// The state of the lazy external source loading mechanism of a `SourceFile`.
1126 #[derive(PartialEq, Eq, Clone, Debug)]
1127 pub enum ExternalSourceKind {
1128 /// The external source has been loaded already.
1129 Present(Lrc<String>),
1130 /// No attempt has been made to load the external source.
1131 AbsentOk,
1132 /// A failed attempt has been made to load the external source.
1133 AbsentErr,
1134 Unneeded,
1135 }
1136
1137 impl ExternalSource {
1138 pub fn get_source(&self) -> Option<&Lrc<String>> {
1139 match self {
1140 ExternalSource::Foreign { kind: ExternalSourceKind::Present(ref src), .. } => Some(src),
1141 _ => None,
1142 }
1143 }
1144 }
1145
1146 #[derive(Debug)]
1147 pub struct OffsetOverflowError;
1148
1149 #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
1150 #[derive(HashStable_Generic)]
1151 pub enum SourceFileHashAlgorithm {
1152 Md5,
1153 Sha1,
1154 Sha256,
1155 }
1156
1157 impl FromStr for SourceFileHashAlgorithm {
1158 type Err = ();
1159
1160 fn from_str(s: &str) -> Result<SourceFileHashAlgorithm, ()> {
1161 match s {
1162 "md5" => Ok(SourceFileHashAlgorithm::Md5),
1163 "sha1" => Ok(SourceFileHashAlgorithm::Sha1),
1164 "sha256" => Ok(SourceFileHashAlgorithm::Sha256),
1165 _ => Err(()),
1166 }
1167 }
1168 }
1169
1170 /// The hash of the on-disk source file used for debug info.
1171 #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
1172 #[derive(HashStable_Generic, Encodable, Decodable)]
1173 pub struct SourceFileHash {
1174 pub kind: SourceFileHashAlgorithm,
1175 value: [u8; 32],
1176 }
1177
1178 impl SourceFileHash {
1179 pub fn new(kind: SourceFileHashAlgorithm, src: &str) -> SourceFileHash {
1180 let mut hash = SourceFileHash { kind, value: Default::default() };
1181 let len = hash.hash_len();
1182 let value = &mut hash.value[..len];
1183 let data = src.as_bytes();
1184 match kind {
1185 SourceFileHashAlgorithm::Md5 => {
1186 value.copy_from_slice(&Md5::digest(data));
1187 }
1188 SourceFileHashAlgorithm::Sha1 => {
1189 value.copy_from_slice(&Sha1::digest(data));
1190 }
1191 SourceFileHashAlgorithm::Sha256 => {
1192 value.copy_from_slice(&Sha256::digest(data));
1193 }
1194 }
1195 hash
1196 }
1197
1198 /// Check if the stored hash matches the hash of the string.
1199 pub fn matches(&self, src: &str) -> bool {
1200 Self::new(self.kind, src) == *self
1201 }
1202
1203 /// The bytes of the hash.
1204 pub fn hash_bytes(&self) -> &[u8] {
1205 let len = self.hash_len();
1206 &self.value[..len]
1207 }
1208
1209 fn hash_len(&self) -> usize {
1210 match self.kind {
1211 SourceFileHashAlgorithm::Md5 => 16,
1212 SourceFileHashAlgorithm::Sha1 => 20,
1213 SourceFileHashAlgorithm::Sha256 => 32,
1214 }
1215 }
1216 }
1217
1218 #[derive(HashStable_Generic)]
1219 #[derive(Copy, PartialEq, PartialOrd, Clone, Ord, Eq, Hash, Debug, Encodable, Decodable)]
1220 pub enum DebuggerVisualizerType {
1221 Natvis,
1222 GdbPrettyPrinter,
1223 }
1224
1225 /// A single debugger visualizer file.
1226 #[derive(HashStable_Generic)]
1227 #[derive(Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Encodable, Decodable)]
1228 pub struct DebuggerVisualizerFile {
1229 /// The complete debugger visualizer source.
1230 pub src: Arc<[u8]>,
1231 /// Indicates which visualizer type this targets.
1232 pub visualizer_type: DebuggerVisualizerType,
1233 }
1234
1235 impl DebuggerVisualizerFile {
1236 pub fn new(src: Arc<[u8]>, visualizer_type: DebuggerVisualizerType) -> Self {
1237 DebuggerVisualizerFile { src, visualizer_type }
1238 }
1239 }
1240
1241 #[derive(Clone)]
1242 pub enum SourceFileLines {
1243 /// The source file lines, in decoded (random-access) form.
1244 Lines(Vec<BytePos>),
1245
1246 /// The source file lines, in undecoded difference list form.
1247 Diffs(SourceFileDiffs),
1248 }
1249
1250 impl SourceFileLines {
1251 pub fn is_lines(&self) -> bool {
1252 matches!(self, SourceFileLines::Lines(_))
1253 }
1254 }
1255
1256 /// The source file lines in difference list form. This matches the form
1257 /// used within metadata, which saves space by exploiting the fact that the
1258 /// lines list is sorted and individual lines are usually not that long.
1259 ///
1260 /// We read it directly from metadata and only decode it into `Lines` form
1261 /// when necessary. This is a significant performance win, especially for
1262 /// small crates where very little of `std`'s metadata is used.
1263 #[derive(Clone)]
1264 pub struct SourceFileDiffs {
1265 /// Position of the first line. Note that this is always encoded as a
1266 /// `BytePos` because it is often much larger than any of the
1267 /// differences.
1268 line_start: BytePos,
1269
1270 /// Always 1, 2, or 4. Always as small as possible, while being big
1271 /// enough to hold the length of the longest line in the source file.
1272 /// The 1 case is by far the most common.
1273 bytes_per_diff: usize,
1274
1275 /// The number of diffs encoded in `raw_diffs`. Always one less than
1276 /// the number of lines in the source file.
1277 num_diffs: usize,
1278
1279 /// The diffs in "raw" form. Each segment of `bytes_per_diff` length
1280 /// encodes one little-endian diff. Note that they aren't LEB128
1281 /// encoded. This makes for much faster decoding. Besides, the
1282 /// bytes_per_diff==1 case is by far the most common, and LEB128
1283 /// encoding has no effect on that case.
1284 raw_diffs: Vec<u8>,
1285 }
1286
1287 /// A single source in the [`SourceMap`].
1288 #[derive(Clone)]
1289 pub struct SourceFile {
1290 /// The name of the file that the source came from. Source that doesn't
1291 /// originate from files has names between angle brackets by convention
1292 /// (e.g., `<anon>`).
1293 pub name: FileName,
1294 /// The complete source code.
1295 pub src: Option<Lrc<String>>,
1296 /// The source code's hash.
1297 pub src_hash: SourceFileHash,
1298 /// The external source code (used for external crates, which will have a `None`
1299 /// value as `self.src`.
1300 pub external_src: Lock<ExternalSource>,
1301 /// The start position of this source in the `SourceMap`.
1302 pub start_pos: BytePos,
1303 /// The end position of this source in the `SourceMap`.
1304 pub end_pos: BytePos,
1305 /// Locations of lines beginnings in the source code.
1306 pub lines: Lock<SourceFileLines>,
1307 /// Locations of multi-byte characters in the source code.
1308 pub multibyte_chars: Vec<MultiByteChar>,
1309 /// Width of characters that are not narrow in the source code.
1310 pub non_narrow_chars: Vec<NonNarrowChar>,
1311 /// Locations of characters removed during normalization.
1312 pub normalized_pos: Vec<NormalizedPos>,
1313 /// A hash of the filename, used for speeding up hashing in incremental compilation.
1314 pub name_hash: u128,
1315 /// Indicates which crate this `SourceFile` was imported from.
1316 pub cnum: CrateNum,
1317 }
1318
1319 impl<S: Encoder> Encodable<S> for SourceFile {
1320 fn encode(&self, s: &mut S) {
1321 self.name.encode(s);
1322 self.src_hash.encode(s);
1323 self.start_pos.encode(s);
1324 self.end_pos.encode(s);
1325
1326 // We are always in `Lines` form by the time we reach here.
1327 assert!(self.lines.borrow().is_lines());
1328 self.lines(|lines| {
1329 // Store the length.
1330 s.emit_u32(lines.len() as u32);
1331
1332 // Compute and store the difference list.
1333 if lines.len() != 0 {
1334 let max_line_length = if lines.len() == 1 {
1335 0
1336 } else {
1337 lines
1338 .array_windows()
1339 .map(|&[fst, snd]| snd - fst)
1340 .map(|bp| bp.to_usize())
1341 .max()
1342 .unwrap()
1343 };
1344
1345 let bytes_per_diff: usize = match max_line_length {
1346 0..=0xFF => 1,
1347 0x100..=0xFFFF => 2,
1348 _ => 4,
1349 };
1350
1351 // Encode the number of bytes used per diff.
1352 s.emit_u8(bytes_per_diff as u8);
1353
1354 // Encode the first element.
1355 lines[0].encode(s);
1356
1357 // Encode the difference list.
1358 let diff_iter = lines.array_windows().map(|&[fst, snd]| snd - fst);
1359 let num_diffs = lines.len() - 1;
1360 let mut raw_diffs;
1361 match bytes_per_diff {
1362 1 => {
1363 raw_diffs = Vec::with_capacity(num_diffs);
1364 for diff in diff_iter {
1365 raw_diffs.push(diff.0 as u8);
1366 }
1367 }
1368 2 => {
1369 raw_diffs = Vec::with_capacity(bytes_per_diff * num_diffs);
1370 for diff in diff_iter {
1371 raw_diffs.extend_from_slice(&(diff.0 as u16).to_le_bytes());
1372 }
1373 }
1374 4 => {
1375 raw_diffs = Vec::with_capacity(bytes_per_diff * num_diffs);
1376 for diff in diff_iter {
1377 raw_diffs.extend_from_slice(&(diff.0 as u32).to_le_bytes());
1378 }
1379 }
1380 _ => unreachable!(),
1381 }
1382 s.emit_raw_bytes(&raw_diffs);
1383 }
1384 });
1385
1386 self.multibyte_chars.encode(s);
1387 self.non_narrow_chars.encode(s);
1388 self.name_hash.encode(s);
1389 self.normalized_pos.encode(s);
1390 self.cnum.encode(s);
1391 }
1392 }
1393
1394 impl<D: Decoder> Decodable<D> for SourceFile {
1395 fn decode(d: &mut D) -> SourceFile {
1396 let name: FileName = Decodable::decode(d);
1397 let src_hash: SourceFileHash = Decodable::decode(d);
1398 let start_pos: BytePos = Decodable::decode(d);
1399 let end_pos: BytePos = Decodable::decode(d);
1400 let lines = {
1401 let num_lines: u32 = Decodable::decode(d);
1402 if num_lines > 0 {
1403 // Read the number of bytes used per diff.
1404 let bytes_per_diff = d.read_u8() as usize;
1405
1406 // Read the first element.
1407 let line_start: BytePos = Decodable::decode(d);
1408
1409 // Read the difference list.
1410 let num_diffs = num_lines as usize - 1;
1411 let raw_diffs = d.read_raw_bytes(bytes_per_diff * num_diffs).to_vec();
1412 SourceFileLines::Diffs(SourceFileDiffs {
1413 line_start,
1414 bytes_per_diff,
1415 num_diffs,
1416 raw_diffs,
1417 })
1418 } else {
1419 SourceFileLines::Lines(vec![])
1420 }
1421 };
1422 let multibyte_chars: Vec<MultiByteChar> = Decodable::decode(d);
1423 let non_narrow_chars: Vec<NonNarrowChar> = Decodable::decode(d);
1424 let name_hash: u128 = Decodable::decode(d);
1425 let normalized_pos: Vec<NormalizedPos> = Decodable::decode(d);
1426 let cnum: CrateNum = Decodable::decode(d);
1427 SourceFile {
1428 name,
1429 start_pos,
1430 end_pos,
1431 src: None,
1432 src_hash,
1433 // Unused - the metadata decoder will construct
1434 // a new SourceFile, filling in `external_src` properly
1435 external_src: Lock::new(ExternalSource::Unneeded),
1436 lines: Lock::new(lines),
1437 multibyte_chars,
1438 non_narrow_chars,
1439 normalized_pos,
1440 name_hash,
1441 cnum,
1442 }
1443 }
1444 }
1445
1446 impl fmt::Debug for SourceFile {
1447 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1448 write!(fmt, "SourceFile({:?})", self.name)
1449 }
1450 }
1451
1452 impl SourceFile {
1453 pub fn new(
1454 name: FileName,
1455 mut src: String,
1456 start_pos: BytePos,
1457 hash_kind: SourceFileHashAlgorithm,
1458 ) -> Self {
1459 // Compute the file hash before any normalization.
1460 let src_hash = SourceFileHash::new(hash_kind, &src);
1461 let normalized_pos = normalize_src(&mut src, start_pos);
1462
1463 let name_hash = {
1464 let mut hasher: StableHasher = StableHasher::new();
1465 name.hash(&mut hasher);
1466 hasher.finish::<u128>()
1467 };
1468 let end_pos = start_pos.to_usize() + src.len();
1469 assert!(end_pos <= u32::MAX as usize);
1470
1471 let (lines, multibyte_chars, non_narrow_chars) =
1472 analyze_source_file::analyze_source_file(&src, start_pos);
1473
1474 SourceFile {
1475 name,
1476 src: Some(Lrc::new(src)),
1477 src_hash,
1478 external_src: Lock::new(ExternalSource::Unneeded),
1479 start_pos,
1480 end_pos: Pos::from_usize(end_pos),
1481 lines: Lock::new(SourceFileLines::Lines(lines)),
1482 multibyte_chars,
1483 non_narrow_chars,
1484 normalized_pos,
1485 name_hash,
1486 cnum: LOCAL_CRATE,
1487 }
1488 }
1489
1490 pub fn lines<F, R>(&self, f: F) -> R
1491 where
1492 F: FnOnce(&[BytePos]) -> R,
1493 {
1494 let mut guard = self.lines.borrow_mut();
1495 match &*guard {
1496 SourceFileLines::Lines(lines) => f(lines),
1497 SourceFileLines::Diffs(SourceFileDiffs {
1498 mut line_start,
1499 bytes_per_diff,
1500 num_diffs,
1501 raw_diffs,
1502 }) => {
1503 // Convert from "diffs" form to "lines" form.
1504 let num_lines = num_diffs + 1;
1505 let mut lines = Vec::with_capacity(num_lines);
1506 lines.push(line_start);
1507
1508 assert_eq!(*num_diffs, raw_diffs.len() / bytes_per_diff);
1509 match bytes_per_diff {
1510 1 => {
1511 lines.extend(raw_diffs.into_iter().map(|&diff| {
1512 line_start = line_start + BytePos(diff as u32);
1513 line_start
1514 }));
1515 }
1516 2 => {
1517 lines.extend((0..*num_diffs).map(|i| {
1518 let pos = bytes_per_diff * i;
1519 let bytes = [raw_diffs[pos], raw_diffs[pos + 1]];
1520 let diff = u16::from_le_bytes(bytes);
1521 line_start = line_start + BytePos(diff as u32);
1522 line_start
1523 }));
1524 }
1525 4 => {
1526 lines.extend((0..*num_diffs).map(|i| {
1527 let pos = bytes_per_diff * i;
1528 let bytes = [
1529 raw_diffs[pos],
1530 raw_diffs[pos + 1],
1531 raw_diffs[pos + 2],
1532 raw_diffs[pos + 3],
1533 ];
1534 let diff = u32::from_le_bytes(bytes);
1535 line_start = line_start + BytePos(diff);
1536 line_start
1537 }));
1538 }
1539 _ => unreachable!(),
1540 }
1541 let res = f(&lines);
1542 *guard = SourceFileLines::Lines(lines);
1543 res
1544 }
1545 }
1546 }
1547
1548 /// Returns the `BytePos` of the beginning of the current line.
1549 pub fn line_begin_pos(&self, pos: BytePos) -> BytePos {
1550 let line_index = self.lookup_line(pos).unwrap();
1551 self.lines(|lines| lines[line_index])
1552 }
1553
1554 /// Add externally loaded source.
1555 /// If the hash of the input doesn't match or no input is supplied via None,
1556 /// it is interpreted as an error and the corresponding enum variant is set.
1557 /// The return value signifies whether some kind of source is present.
1558 pub fn add_external_src<F>(&self, get_src: F) -> bool
1559 where
1560 F: FnOnce() -> Option<String>,
1561 {
1562 if matches!(
1563 *self.external_src.borrow(),
1564 ExternalSource::Foreign { kind: ExternalSourceKind::AbsentOk, .. }
1565 ) {
1566 let src = get_src();
1567 let mut external_src = self.external_src.borrow_mut();
1568 // Check that no-one else have provided the source while we were getting it
1569 if let ExternalSource::Foreign {
1570 kind: src_kind @ ExternalSourceKind::AbsentOk, ..
1571 } = &mut *external_src
1572 {
1573 if let Some(mut src) = src {
1574 // The src_hash needs to be computed on the pre-normalized src.
1575 if self.src_hash.matches(&src) {
1576 normalize_src(&mut src, BytePos::from_usize(0));
1577 *src_kind = ExternalSourceKind::Present(Lrc::new(src));
1578 return true;
1579 }
1580 } else {
1581 *src_kind = ExternalSourceKind::AbsentErr;
1582 }
1583
1584 false
1585 } else {
1586 self.src.is_some() || external_src.get_source().is_some()
1587 }
1588 } else {
1589 self.src.is_some() || self.external_src.borrow().get_source().is_some()
1590 }
1591 }
1592
1593 /// Gets a line from the list of pre-computed line-beginnings.
1594 /// The line number here is 0-based.
1595 pub fn get_line(&self, line_number: usize) -> Option<Cow<'_, str>> {
1596 fn get_until_newline(src: &str, begin: usize) -> &str {
1597 // We can't use `lines.get(line_number+1)` because we might
1598 // be parsing when we call this function and thus the current
1599 // line is the last one we have line info for.
1600 let slice = &src[begin..];
1601 match slice.find('\n') {
1602 Some(e) => &slice[..e],
1603 None => slice,
1604 }
1605 }
1606
1607 let begin = {
1608 let line = self.lines(|lines| lines.get(line_number).copied())?;
1609 let begin: BytePos = line - self.start_pos;
1610 begin.to_usize()
1611 };
1612
1613 if let Some(ref src) = self.src {
1614 Some(Cow::from(get_until_newline(src, begin)))
1615 } else if let Some(src) = self.external_src.borrow().get_source() {
1616 Some(Cow::Owned(String::from(get_until_newline(src, begin))))
1617 } else {
1618 None
1619 }
1620 }
1621
1622 pub fn is_real_file(&self) -> bool {
1623 self.name.is_real()
1624 }
1625
1626 #[inline]
1627 pub fn is_imported(&self) -> bool {
1628 self.src.is_none()
1629 }
1630
1631 pub fn count_lines(&self) -> usize {
1632 self.lines(|lines| lines.len())
1633 }
1634
1635 /// Finds the line containing the given position. The return value is the
1636 /// index into the `lines` array of this `SourceFile`, not the 1-based line
1637 /// number. If the source_file is empty or the position is located before the
1638 /// first line, `None` is returned.
1639 pub fn lookup_line(&self, pos: BytePos) -> Option<usize> {
1640 self.lines(|lines| match lines.binary_search(&pos) {
1641 Ok(idx) => Some(idx),
1642 Err(0) => None,
1643 Err(idx) => Some(idx - 1),
1644 })
1645 }
1646
1647 pub fn line_bounds(&self, line_index: usize) -> Range<BytePos> {
1648 if self.is_empty() {
1649 return self.start_pos..self.end_pos;
1650 }
1651
1652 self.lines(|lines| {
1653 assert!(line_index < lines.len());
1654 if line_index == (lines.len() - 1) {
1655 lines[line_index]..self.end_pos
1656 } else {
1657 lines[line_index]..lines[line_index + 1]
1658 }
1659 })
1660 }
1661
1662 /// Returns whether or not the file contains the given `SourceMap` byte
1663 /// position. The position one past the end of the file is considered to be
1664 /// contained by the file. This implies that files for which `is_empty`
1665 /// returns true still contain one byte position according to this function.
1666 #[inline]
1667 pub fn contains(&self, byte_pos: BytePos) -> bool {
1668 byte_pos >= self.start_pos && byte_pos <= self.end_pos
1669 }
1670
1671 #[inline]
1672 pub fn is_empty(&self) -> bool {
1673 self.start_pos == self.end_pos
1674 }
1675
1676 /// Calculates the original byte position relative to the start of the file
1677 /// based on the given byte position.
1678 pub fn original_relative_byte_pos(&self, pos: BytePos) -> BytePos {
1679 // Diff before any records is 0. Otherwise use the previously recorded
1680 // diff as that applies to the following characters until a new diff
1681 // is recorded.
1682 let diff = match self.normalized_pos.binary_search_by(|np| np.pos.cmp(&pos)) {
1683 Ok(i) => self.normalized_pos[i].diff,
1684 Err(i) if i == 0 => 0,
1685 Err(i) => self.normalized_pos[i - 1].diff,
1686 };
1687
1688 BytePos::from_u32(pos.0 - self.start_pos.0 + diff)
1689 }
1690
1691 /// Converts an absolute `BytePos` to a `CharPos` relative to the `SourceFile`.
1692 pub fn bytepos_to_file_charpos(&self, bpos: BytePos) -> CharPos {
1693 // The number of extra bytes due to multibyte chars in the `SourceFile`.
1694 let mut total_extra_bytes = 0;
1695
1696 for mbc in self.multibyte_chars.iter() {
1697 debug!("{}-byte char at {:?}", mbc.bytes, mbc.pos);
1698 if mbc.pos < bpos {
1699 // Every character is at least one byte, so we only
1700 // count the actual extra bytes.
1701 total_extra_bytes += mbc.bytes as u32 - 1;
1702 // We should never see a byte position in the middle of a
1703 // character.
1704 assert!(bpos.to_u32() >= mbc.pos.to_u32() + mbc.bytes as u32);
1705 } else {
1706 break;
1707 }
1708 }
1709
1710 assert!(self.start_pos.to_u32() + total_extra_bytes <= bpos.to_u32());
1711 CharPos(bpos.to_usize() - self.start_pos.to_usize() - total_extra_bytes as usize)
1712 }
1713
1714 /// Looks up the file's (1-based) line number and (0-based `CharPos`) column offset, for a
1715 /// given `BytePos`.
1716 pub fn lookup_file_pos(&self, pos: BytePos) -> (usize, CharPos) {
1717 let chpos = self.bytepos_to_file_charpos(pos);
1718 match self.lookup_line(pos) {
1719 Some(a) => {
1720 let line = a + 1; // Line numbers start at 1
1721 let linebpos = self.lines(|lines| lines[a]);
1722 let linechpos = self.bytepos_to_file_charpos(linebpos);
1723 let col = chpos - linechpos;
1724 debug!("byte pos {:?} is on the line at byte pos {:?}", pos, linebpos);
1725 debug!("char pos {:?} is on the line at char pos {:?}", chpos, linechpos);
1726 debug!("byte is on line: {}", line);
1727 assert!(chpos >= linechpos);
1728 (line, col)
1729 }
1730 None => (0, chpos),
1731 }
1732 }
1733
1734 /// Looks up the file's (1-based) line number, (0-based `CharPos`) column offset, and (0-based)
1735 /// column offset when displayed, for a given `BytePos`.
1736 pub fn lookup_file_pos_with_col_display(&self, pos: BytePos) -> (usize, CharPos, usize) {
1737 let (line, col_or_chpos) = self.lookup_file_pos(pos);
1738 if line > 0 {
1739 let col = col_or_chpos;
1740 let linebpos = self.lines(|lines| lines[line - 1]);
1741 let col_display = {
1742 let start_width_idx = self
1743 .non_narrow_chars
1744 .binary_search_by_key(&linebpos, |x| x.pos())
1745 .unwrap_or_else(|x| x);
1746 let end_width_idx = self
1747 .non_narrow_chars
1748 .binary_search_by_key(&pos, |x| x.pos())
1749 .unwrap_or_else(|x| x);
1750 let special_chars = end_width_idx - start_width_idx;
1751 let non_narrow: usize = self.non_narrow_chars[start_width_idx..end_width_idx]
1752 .iter()
1753 .map(|x| x.width())
1754 .sum();
1755 col.0 - special_chars + non_narrow
1756 };
1757 (line, col, col_display)
1758 } else {
1759 let chpos = col_or_chpos;
1760 let col_display = {
1761 let end_width_idx = self
1762 .non_narrow_chars
1763 .binary_search_by_key(&pos, |x| x.pos())
1764 .unwrap_or_else(|x| x);
1765 let non_narrow: usize =
1766 self.non_narrow_chars[0..end_width_idx].iter().map(|x| x.width()).sum();
1767 chpos.0 - end_width_idx + non_narrow
1768 };
1769 (0, chpos, col_display)
1770 }
1771 }
1772 }
1773
1774 /// Normalizes the source code and records the normalizations.
1775 fn normalize_src(src: &mut String, start_pos: BytePos) -> Vec<NormalizedPos> {
1776 let mut normalized_pos = vec![];
1777 remove_bom(src, &mut normalized_pos);
1778 normalize_newlines(src, &mut normalized_pos);
1779
1780 // Offset all the positions by start_pos to match the final file positions.
1781 for np in &mut normalized_pos {
1782 np.pos.0 += start_pos.0;
1783 }
1784
1785 normalized_pos
1786 }
1787
1788 /// Removes UTF-8 BOM, if any.
1789 fn remove_bom(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
1790 if src.starts_with('\u{feff}') {
1791 src.drain(..3);
1792 normalized_pos.push(NormalizedPos { pos: BytePos(0), diff: 3 });
1793 }
1794 }
1795
1796 /// Replaces `\r\n` with `\n` in-place in `src`.
1797 ///
1798 /// Returns error if there's a lone `\r` in the string.
1799 fn normalize_newlines(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
1800 if !src.as_bytes().contains(&b'\r') {
1801 return;
1802 }
1803
1804 // We replace `\r\n` with `\n` in-place, which doesn't break utf-8 encoding.
1805 // While we *can* call `as_mut_vec` and do surgery on the live string
1806 // directly, let's rather steal the contents of `src`. This makes the code
1807 // safe even if a panic occurs.
1808
1809 let mut buf = std::mem::replace(src, String::new()).into_bytes();
1810 let mut gap_len = 0;
1811 let mut tail = buf.as_mut_slice();
1812 let mut cursor = 0;
1813 let original_gap = normalized_pos.last().map_or(0, |l| l.diff);
1814 loop {
1815 let idx = match find_crlf(&tail[gap_len..]) {
1816 None => tail.len(),
1817 Some(idx) => idx + gap_len,
1818 };
1819 tail.copy_within(gap_len..idx, 0);
1820 tail = &mut tail[idx - gap_len..];
1821 if tail.len() == gap_len {
1822 break;
1823 }
1824 cursor += idx - gap_len;
1825 gap_len += 1;
1826 normalized_pos.push(NormalizedPos {
1827 pos: BytePos::from_usize(cursor + 1),
1828 diff: original_gap + gap_len as u32,
1829 });
1830 }
1831
1832 // Account for removed `\r`.
1833 // After `set_len`, `buf` is guaranteed to contain utf-8 again.
1834 let new_len = buf.len() - gap_len;
1835 unsafe {
1836 buf.set_len(new_len);
1837 *src = String::from_utf8_unchecked(buf);
1838 }
1839
1840 fn find_crlf(src: &[u8]) -> Option<usize> {
1841 let mut search_idx = 0;
1842 while let Some(idx) = find_cr(&src[search_idx..]) {
1843 if src[search_idx..].get(idx + 1) != Some(&b'\n') {
1844 search_idx += idx + 1;
1845 continue;
1846 }
1847 return Some(search_idx + idx);
1848 }
1849 None
1850 }
1851
1852 fn find_cr(src: &[u8]) -> Option<usize> {
1853 src.iter().position(|&b| b == b'\r')
1854 }
1855 }
1856
1857 // _____________________________________________________________________________
1858 // Pos, BytePos, CharPos
1859 //
1860
1861 pub trait Pos {
1862 fn from_usize(n: usize) -> Self;
1863 fn to_usize(&self) -> usize;
1864 fn from_u32(n: u32) -> Self;
1865 fn to_u32(&self) -> u32;
1866 }
1867
1868 macro_rules! impl_pos {
1869 (
1870 $(
1871 $(#[$attr:meta])*
1872 $vis:vis struct $ident:ident($inner_vis:vis $inner_ty:ty);
1873 )*
1874 ) => {
1875 $(
1876 $(#[$attr])*
1877 $vis struct $ident($inner_vis $inner_ty);
1878
1879 impl Pos for $ident {
1880 #[inline(always)]
1881 fn from_usize(n: usize) -> $ident {
1882 $ident(n as $inner_ty)
1883 }
1884
1885 #[inline(always)]
1886 fn to_usize(&self) -> usize {
1887 self.0 as usize
1888 }
1889
1890 #[inline(always)]
1891 fn from_u32(n: u32) -> $ident {
1892 $ident(n as $inner_ty)
1893 }
1894
1895 #[inline(always)]
1896 fn to_u32(&self) -> u32 {
1897 self.0 as u32
1898 }
1899 }
1900
1901 impl Add for $ident {
1902 type Output = $ident;
1903
1904 #[inline(always)]
1905 fn add(self, rhs: $ident) -> $ident {
1906 $ident(self.0 + rhs.0)
1907 }
1908 }
1909
1910 impl Sub for $ident {
1911 type Output = $ident;
1912
1913 #[inline(always)]
1914 fn sub(self, rhs: $ident) -> $ident {
1915 $ident(self.0 - rhs.0)
1916 }
1917 }
1918 )*
1919 };
1920 }
1921
1922 impl_pos! {
1923 /// A byte offset.
1924 ///
1925 /// Keep this small (currently 32-bits), as AST contains a lot of them.
1926 #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
1927 pub struct BytePos(pub u32);
1928
1929 /// A character offset.
1930 ///
1931 /// Because of multibyte UTF-8 characters, a byte offset
1932 /// is not equivalent to a character offset. The [`SourceMap`] will convert [`BytePos`]
1933 /// values to `CharPos` values as necessary.
1934 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
1935 pub struct CharPos(pub usize);
1936 }
1937
1938 impl<S: Encoder> Encodable<S> for BytePos {
1939 fn encode(&self, s: &mut S) {
1940 s.emit_u32(self.0);
1941 }
1942 }
1943
1944 impl<D: Decoder> Decodable<D> for BytePos {
1945 fn decode(d: &mut D) -> BytePos {
1946 BytePos(d.read_u32())
1947 }
1948 }
1949
1950 // _____________________________________________________________________________
1951 // Loc, SourceFileAndLine, SourceFileAndBytePos
1952 //
1953
1954 /// A source code location used for error reporting.
1955 #[derive(Debug, Clone)]
1956 pub struct Loc {
1957 /// Information about the original source.
1958 pub file: Lrc<SourceFile>,
1959 /// The (1-based) line number.
1960 pub line: usize,
1961 /// The (0-based) column offset.
1962 pub col: CharPos,
1963 /// The (0-based) column offset when displayed.
1964 pub col_display: usize,
1965 }
1966
1967 // Used to be structural records.
1968 #[derive(Debug)]
1969 pub struct SourceFileAndLine {
1970 pub sf: Lrc<SourceFile>,
1971 /// Index of line, starting from 0.
1972 pub line: usize,
1973 }
1974 #[derive(Debug)]
1975 pub struct SourceFileAndBytePos {
1976 pub sf: Lrc<SourceFile>,
1977 pub pos: BytePos,
1978 }
1979
1980 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
1981 pub struct LineInfo {
1982 /// Index of line, starting from 0.
1983 pub line_index: usize,
1984
1985 /// Column in line where span begins, starting from 0.
1986 pub start_col: CharPos,
1987
1988 /// Column in line where span ends, starting from 0, exclusive.
1989 pub end_col: CharPos,
1990 }
1991
1992 pub struct FileLines {
1993 pub file: Lrc<SourceFile>,
1994 pub lines: Vec<LineInfo>,
1995 }
1996
1997 pub static SPAN_TRACK: AtomicRef<fn(LocalDefId)> = AtomicRef::new(&((|_| {}) as fn(_)));
1998
1999 // _____________________________________________________________________________
2000 // SpanLinesError, SpanSnippetError, DistinctSources, MalformedSourceMapPositions
2001 //
2002
2003 pub type FileLinesResult = Result<FileLines, SpanLinesError>;
2004
2005 #[derive(Clone, PartialEq, Eq, Debug)]
2006 pub enum SpanLinesError {
2007 DistinctSources(DistinctSources),
2008 }
2009
2010 #[derive(Clone, PartialEq, Eq, Debug)]
2011 pub enum SpanSnippetError {
2012 IllFormedSpan(Span),
2013 DistinctSources(DistinctSources),
2014 MalformedForSourcemap(MalformedSourceMapPositions),
2015 SourceNotAvailable { filename: FileName },
2016 }
2017
2018 #[derive(Clone, PartialEq, Eq, Debug)]
2019 pub struct DistinctSources {
2020 pub begin: (FileName, BytePos),
2021 pub end: (FileName, BytePos),
2022 }
2023
2024 #[derive(Clone, PartialEq, Eq, Debug)]
2025 pub struct MalformedSourceMapPositions {
2026 pub name: FileName,
2027 pub source_len: usize,
2028 pub begin_pos: BytePos,
2029 pub end_pos: BytePos,
2030 }
2031
2032 /// Range inside of a `Span` used for diagnostics when we only have access to relative positions.
2033 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
2034 pub struct InnerSpan {
2035 pub start: usize,
2036 pub end: usize,
2037 }
2038
2039 impl InnerSpan {
2040 pub fn new(start: usize, end: usize) -> InnerSpan {
2041 InnerSpan { start, end }
2042 }
2043 }
2044
2045 /// Requirements for a `StableHashingContext` to be used in this crate.
2046 ///
2047 /// This is a hack to allow using the [`HashStable_Generic`] derive macro
2048 /// instead of implementing everything in rustc_middle.
2049 pub trait HashStableContext {
2050 fn def_path_hash(&self, def_id: DefId) -> DefPathHash;
2051 fn hash_spans(&self) -> bool;
2052 /// Accesses `sess.opts.unstable_opts.incremental_ignore_spans` since
2053 /// we don't have easy access to a `Session`
2054 fn unstable_opts_incremental_ignore_spans(&self) -> bool;
2055 fn def_span(&self, def_id: LocalDefId) -> Span;
2056 fn span_data_to_lines_and_cols(
2057 &mut self,
2058 span: &SpanData,
2059 ) -> Option<(Lrc<SourceFile>, usize, BytePos, usize, BytePos)>;
2060 fn hashing_controls(&self) -> HashingControls;
2061 }
2062
2063 impl<CTX> HashStable<CTX> for Span
2064 where
2065 CTX: HashStableContext,
2066 {
2067 /// Hashes a span in a stable way. We can't directly hash the span's `BytePos`
2068 /// fields (that would be similar to hashing pointers, since those are just
2069 /// offsets into the `SourceMap`). Instead, we hash the (file name, line, column)
2070 /// triple, which stays the same even if the containing `SourceFile` has moved
2071 /// within the `SourceMap`.
2072 ///
2073 /// Also note that we are hashing byte offsets for the column, not unicode
2074 /// codepoint offsets. For the purpose of the hash that's sufficient.
2075 /// Also, hashing filenames is expensive so we avoid doing it twice when the
2076 /// span starts and ends in the same file, which is almost always the case.
2077 fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
2078 const TAG_VALID_SPAN: u8 = 0;
2079 const TAG_INVALID_SPAN: u8 = 1;
2080 const TAG_RELATIVE_SPAN: u8 = 2;
2081
2082 if !ctx.hash_spans() {
2083 return;
2084 }
2085
2086 let span = self.data_untracked();
2087 span.ctxt.hash_stable(ctx, hasher);
2088 span.parent.hash_stable(ctx, hasher);
2089
2090 if span.is_dummy() {
2091 Hash::hash(&TAG_INVALID_SPAN, hasher);
2092 return;
2093 }
2094
2095 if let Some(parent) = span.parent {
2096 let def_span = ctx.def_span(parent).data_untracked();
2097 if def_span.contains(span) {
2098 // This span is enclosed in a definition: only hash the relative position.
2099 Hash::hash(&TAG_RELATIVE_SPAN, hasher);
2100 (span.lo - def_span.lo).to_u32().hash_stable(ctx, hasher);
2101 (span.hi - def_span.lo).to_u32().hash_stable(ctx, hasher);
2102 return;
2103 }
2104 }
2105
2106 // If this is not an empty or invalid span, we want to hash the last
2107 // position that belongs to it, as opposed to hashing the first
2108 // position past it.
2109 let Some((file, line_lo, col_lo, line_hi, col_hi)) = ctx.span_data_to_lines_and_cols(&span) else {
2110 Hash::hash(&TAG_INVALID_SPAN, hasher);
2111 return;
2112 };
2113
2114 Hash::hash(&TAG_VALID_SPAN, hasher);
2115 // We truncate the stable ID hash and line and column numbers. The chances
2116 // of causing a collision this way should be minimal.
2117 Hash::hash(&(file.name_hash as u64), hasher);
2118
2119 // Hash both the length and the end location (line/column) of a span. If we
2120 // hash only the length, for example, then two otherwise equal spans with
2121 // different end locations will have the same hash. This can cause a problem
2122 // during incremental compilation wherein a previous result for a query that
2123 // depends on the end location of a span will be incorrectly reused when the
2124 // end location of the span it depends on has changed (see issue #74890). A
2125 // similar analysis applies if some query depends specifically on the length
2126 // of the span, but we only hash the end location. So hash both.
2127
2128 let col_lo_trunc = (col_lo.0 as u64) & 0xFF;
2129 let line_lo_trunc = ((line_lo as u64) & 0xFF_FF_FF) << 8;
2130 let col_hi_trunc = (col_hi.0 as u64) & 0xFF << 32;
2131 let line_hi_trunc = ((line_hi as u64) & 0xFF_FF_FF) << 40;
2132 let col_line = col_lo_trunc | line_lo_trunc | col_hi_trunc | line_hi_trunc;
2133 let len = (span.hi - span.lo).0;
2134 Hash::hash(&col_line, hasher);
2135 Hash::hash(&len, hasher);
2136 }
2137 }